(完整版)陶瓷气体放电管工作原理及选型应用
陶瓷放电管的工作原理
陶瓷放电管的工作原理陶瓷放电管是一种利用陶瓷材料制成的电子器件,它具有较高的耐热性、耐高压性和耐腐蚀性。
它的工作原理是基于电场发射原理和放电效应。
陶瓷放电管的工作原理涉及到电场发射。
在陶瓷放电管的结构中,有一个阴极和一个阳极。
阴极通常由钨丝或其他材料制成,而阳极则是由金属或合金制成。
当陶瓷放电管被加热到一定温度时,阴极表面的电子会获得足够的能量,克服表面势垒并从阴极发射出来。
陶瓷放电管的工作原理还涉及到放电效应。
当阴极发射的电子穿过空间并到达阳极时,它们会与气体分子碰撞。
这些碰撞会引起气体分子的电离和激发,从而形成电子和离子的电流。
此时,陶瓷放电管处于放电状态。
陶瓷放电管的工作原理还与管内的气体种类和压强有关。
常见的气体种类包括氩气、氖气和氦气等。
当气体压强较小时,放电电流较小;而当气体压强较大时,放电电流较大。
这是因为气体压强的增加会增加电子与气体分子碰撞的机会,从而增加放电电流。
陶瓷放电管还具有自恢复性能。
这意味着当放电结束后,陶瓷放电管可以自动恢复到初始状态。
这是由于放电过程中产生的电离和激发的气体分子会重新组合成为中性分子,而陶瓷材料具有较高的耐腐蚀性,不会受到气体分子的腐蚀。
陶瓷放电管在实际应用中有着广泛的用途。
它可以用于气体放电显示器、气体放电灯、气体激光器等设备中。
此外,陶瓷放电管还可以用于电子学实验和科研领域,用于研究气体放电现象和放电特性。
总结起来,陶瓷放电管的工作原理是基于电场发射原理和放电效应。
通过加热阴极使电子获得足够的能量,从而发射出来,然后电子与气体分子碰撞,产生电流,并且具有自恢复性能。
陶瓷放电管在许多领域中发挥着重要的作用,是一种非常重要的电子器件。
陶瓷气体放电管设计及使用
通信设备电路防雷的设计及其元件的选择在通信设备的正常使用过程中,由于恶劣的电磁环境可能造成个别元器件的损坏,导致通信设备不能正常工作,造成重大损失。
为了确保通信设备的安全,通常在通信设备中设计有关保护电路。
在实际运用中,为了确保满足设备的保护和可靠性要求,保护电路往往采用多重协同保护(多级保护)。
在通信设备的正常使用过程中,交流电网和通信线路上会出现雷击浪涌电压、火花放电等EMI瞬态干扰信号。
瞬态干扰的特点是作用时间极短,但电压幅度高、瞬态能量大。
当瞬态电压叠加在控制系统的输入电压上,使输入通信设备系统的电压超过系统内部器件的极限电压时,便会损坏通信设备的电源;当瞬态电压叠加在通信线路上时,瞬间高压便会损坏信号环路中传输、控制的元器件。
另外,由于电力线搭碰、感应,通信电路上有可能出现持续的过电压、过电流,如不加保护也有可能损坏通信电路或器件,甚至造成火灾和生命财产损失。
因此,必须采用恰当的保护措施,对通信系统及设备进行防护。
过电压保护器件通常有高阻抗特性,当电压达到它的过电压保护值以上时,就转换到低阻抗;一旦过电压故障消失,保护器件会返回到高电阻状态,是一种可恢复器件。
常用的过电压保护器件有TSS(半导体晶闸管浪涌保护器件)、瞬态电压抑制器(TVS)、MOV(金属氧化物可变电阻)、和GDT(气体放电管)等。
相反,过电流保护元件通常有低阻抗特性,当通过它的电流达到过电流保护值以上时,转换到高阻抗。
常用的过电流保护器件有PPTC(聚合物正温度系数)、CPTC(陶瓷正温度系数)等,它们的共同特点是可重置,而不像保险丝为一次性的不可恢复器件。
可恢复过电流保护元件的优势很明显,一旦过电流故障消失,保护器件冷却后会返回到低电阻状态。
气体放电管-------气体放电管(GDT)是把一对放电间隙封装在充以放电介质(如惰性气体)的玻璃或陶瓷中的器件。
常用气体放电管的冲击击穿电压在一百多伏到几千伏,一旦冲击过电压达到冲击击穿电压时,------------------------------------------------------------------------------------------------------------------------------------------南山半导体---片式无源器件整合供应商南京市洪武路26号天丰大厦11层、12层 fenghua@气体放电管内的气体电离,其由原来的开路状态变为近似短路状态。
气体放电管的原理以及应用
气体放电管的原理以及应用1. 原理气体放电管是一种能够使气体导电的装置,利用电场或电流刺激气体分子产生激发态或离子态,从而实现电流的导通。
它由两个电极构成,其间充填了一定的气体。
1.1 激发态和离子态的产生在气体放电管中,电场或电流的刺激能够将气体分子从基态激发到激发态或离子态。
当气体分子从激发态或离子态返回基态时,会释放出能量,导致气体发光。
不同气体放电管中的气体种类和气压都会影响激发态和离子态的产生。
1.2 阳极和阴极气体放电管的两个电极分别为阳极和阴极。
阳极是带有正电荷的电极,阴极则是带有负电荷的电极。
当电压施加到气体放电管上时,阳极和阴极之间会产生电场,从而引发气体分子的激发态和离子态的产生。
1.3 寿命和稳定性气体放电管的寿命和稳定性是衡量其质量的重要指标。
寿命取决于放电管内的气体种类、气压以及电流密度等因素。
稳定性则受到气体成分和温度的影响。
2. 应用气体放电管由于其独特的放电性质和光发射特点,在许多领域都有广泛的应用。
2.1 照明气体放电管广泛用于照明领域,特别是荧光灯和氙气灯。
荧光灯中使用的气体放电管通过电流的刺激,使荧光粉激发产生可见光。
氙气灯则利用氙气在放电过程中产生的可见光来提供高亮度的照明。
2.2 显示技术气体放电管被广泛应用于各种显示技术中,如彩色电视、计算机显示器和电子看板等。
在彩色电视和计算机显示器中,气体放电管作为发光二极管(LED)的一种形式,能够发射出红、绿、蓝三原色的光,用于显示各种颜色的图像。
2.3 激光器气体放电管也可以用作激光器的放电管。
通过将特定的气体充填到放电管中,并在管内产生电流放电,可以激发气体分子产生激光。
气体放电管激光器广泛应用于科研、医疗、通信等领域。
2.4 气体检测气体放电管的放电特性对气体检测具有重要的应用价值。
应用于气体检测的放电管可以通过气体分子的放电特性来检测特定的气体成分和浓度,例如空气中的臭氧浓度、燃气中的甲烷浓度等。
2.5 光谱分析气体放电管还可以用于光谱分析领域。
陶瓷气体放电管产品选型指南说明书
G as D ischarge T ubes Selection Guide陶瓷气体放电管产品选型指南GDT版权及最终解释权归君耀电子(BrightKing )所有V2, 2018目录1GDT工作原理 (3)2GDT特点 (3)3GDT典型应用电路 (3)4GDT参数说明 (4)4.1.DC Spark-over Voltage 直流火花放电电压(直流击穿电压) (4)4.2.Maximum Impulse Spark-over Voltage 最大冲击火花放电电压(脉冲击穿电压) (5)4.3.Nominal Impulse Discharge Current 标称冲击放电电流 (6)4.4.Impulse Life耐冲击电流寿命 (7)5GDT选型注意事项 (7)5.1.直流击穿电压(DC-Spark-over Voltage)与脉冲击穿电压(Impulse Spark-over Voltage) (7)5.2.GDT的续流问题 (8)5.3.封装形式 (8)6GDT命名规则 (8)7君耀电子(BrightKing)GDT产品线 (9)7.1.两极放电管 (9)7.2.三极放电管 (10)1 GDT 工作原理GDT (Gas Discharge Tubes ),即陶瓷气体放电管。
GDT 是内部由一个或一个以上放电间隙内充有惰性气体构成的密闭器件。
GDT 电气性能取决于气体种类、气体压力、内部电极结构、制作工艺等因素。
GDT 可以承受高达数十甚至数百千安培的浪涌电流冲击,具有极低的结电容,应用于保护电子设备和人身免遭瞬态高电压的危害。
图1为典型的GDT 伏安特性图。
IV i 1i 2i 3U 1U 2U 3U 1 — 直流火花放电电压U 2 — 辉光电压U 3 — 弧光电压i 1 — 辉光至弧光转变电流i 2 — 峰值电流i 3 — 弧光至辉光转变电流图1 GDT 伏安特性曲线2 GDT 特点结电容低,大部分系列产品结电容不超过2pF ,特大通流量产品结电容在十几至几十皮法; 通流量大,我司GDT 单体8/20μs 波形的通流量范围为500A~100kA ; 直流击穿电压范围为75V~6000V ,脉冲击穿电压范围为600V~7800V ; 绝缘阻抗高,一般在1GΩ以上,不易老化,可靠性高;封装多样,有贴片器件及插件器件,两端器件及三端器件,圆形及方形电极,满足不同应用需求。
气体放电管工作原理实验
气体放电管工作原理实验气体放电管是一种用来产生放电现象的装置,其主要用途是研究以及实验物理学中的电学现象和量子效应。
通过在放电管内加入适当的气体,并施加高电压,可观察到诸如气体放电、荧光发光、产生X射线等现象。
本文将详细介绍气体放电管的工作原理,以及一些常见的实验准备和实验过程。
一、气体放电管的工作原理气体放电管利用带电粒子在电场中受到的力来产生电子运动、发光以及其他电学现象。
在气体放电管中,通过两个电极(阳极和阴极)施加电压,形成了电场。
当气体放电管内的气体处于较低的压强下,电场加速带电粒子(通常是电子)在管内碰撞气体原子或分子,使其激发或电离。
在室温下,气体放电管通常包含气体(如氖、氩、氦、汞蒸汽等)和阴极。
在管内加入适当的气体后,通电时,电子从阴极发射出来,并在电场的作用下,加速往阳极方向移动。
在移动过程中,电子会与气体分子或原子发生碰撞。
当电子与气体分子或原子碰撞时,会发生三种主要过程:1. 电子与气体原子或分子弹性碰撞,这会导致电子的方向改变,但能量不发生变化。
2. 电子与气体原子或分子非弹性碰撞,导致电子能量的转移给气体分子或原子,使其激发或电离。
激发态原子或分子会通过辐射的方式释放出能量,从而产生荧光发光现象。
3. 电子与气体原子或分子电离碰撞,从而形成离子。
二、实验准备1. 气体选择:根据实验需要选择合适的气体。
常用的气体有氖(Ne)、氩(Ar)、氦(He)、汞蒸汽(Hg Vapor)等。
不同气体的特性和实验结果会有所不同。
2. 放电管:选择合适的放电管。
放电管的尺寸和形状对实验结果具有影响,可根据实验需求选择。
3. 电源:提供合适电压和电流的电源。
放电管通常需要较高的电压才能产生可观察的放电现象。
4. 测量仪器:使用合适的测量仪器来记录和分析实验结果,如电流表、电压表、光谱仪等。
三、实验过程1. 气体放入:将选择好的气体注入放电管中。
需要注意的是,气体的压力和纯度对实验结果也有一定的影响,需要控制好这些因素。
GDT陶瓷气体放电管
GDTGDTGas Discharge TubesGas Discharge Tubes陶瓷气体放电管陶瓷气体放电管1.结构内部为空腔,里面有一种或几种惰性气体,采用陶瓷封装,利用惰性气体浓度不同,制成不同电压参数。
2.原理并联在电路中,当电路正常工作时,陶瓷放电管呈高阻态,当有过电压时,将内部的惰性气体击穿,从而将大部分能量泄放。
浪涌过后,陶瓷放电管恢复正常,从而起到保护电路的作用。
3.特点开关型过压保护器件反应速度100ns;最大通流量为100KA(8/20µs);使用寿命长;电压规格为70-6000V;电压偏差±20%;绝缘性能好,内阻1G-10G欧;缺点,残压高;电容小于3pF耐腐蚀,耐高低温能力强,使用寿命长。
4.技术参数DC Spark-over V oltage(直流火花放电电压(标称直流击穿电压)):施加缓慢升高的直流电压(一般为100V/S)时,GDT火花放电时刻的电压。
Maximum Impulse Spark-over V oltage(脉冲击穿电压(脉冲火花放电电压)):施加规定上升率和极性的冲击电压(一般为1000V/µs),在放电电流流过GDT之前,其两端子之间电压的最大值。
Nominal Impulse Discharge Current(标称脉冲放电电流):给定波形(8/20µs)的冲击电流峰值。
AC Discharge Current(交流放电电流):放电管能承受50HZ市电耐工频交流电流能力。
Impulse Life(脉冲寿命):在一定的电压波形和峰值下,能承受冲击的次数。
Minimum Insulation Resistance(最小绝缘电阻):放电管两端时间一定的电压而测试出来的绝缘阻值。
Maximum Capacitance(寄生电容):放电管两端的寄生电容值。
5.电气符号三级两级6.分类按照通流量(8/20µs)分:G H K L M N P W X Y Z2K 2.5K 3K 5K 10K 15K 20K 50K 60K 80K 100K7.命名方式2RM075L-82R:表示两级(3R表示三级);M:表示通流量为10KA075:表示标称直流击穿电压为75V;L:表示直插(M表示贴片);-8:表示惯纵直径。
气体放电管
气体放电管、压敏电阻的工作原理及特性【转】[ 2010-3-7 18:10:00 | By: dier1999 ]推荐一、气体放电管的工作原理及特征气体放电管一般采取陶瓷作为封装外壳,放电管内充斥电气机能稳固的惰性气体,放电管的电极一般有两个电极、三个电极和五个电极三种构造。
当在放电管的极间施加必定的电压时,便在极间产生不平均的电场,在电场的作用下,气体开端游离,当外加电压到达极间场强并超过惰性气体的绝缘强度时,两极间就会发生电弧,电离气体,发生“负阻特性”,从而立即由绝缘状态转为导电状态。
即电场强度超过气体的击穿强度时,就惹起间隙放电,从而限制了极间电压。
也就是说在无浪涌时,处于开路状态,浪涌到来时,放电管内的电极板关合导通。
浪涌消失机,极板复原到本来的状态。
气体放电管是一种开关型的防雷保护器件,一般用于防雷工程的第一级或第二级的掩护上;因为它的极间绝缘电阻大,因此寄生电容很小,所以用于对高频电子线路的保护有着显明的上风。
但是气体放电管因为其自身在放电时的时延性较大和动作敏锐性不够幻想,因而它关于上升陡度较大的雷电波头也难以进行无效的克制,所以气体放电管一般在防雷工程的运用上大多与限压型防雷器进行综合利用。
综上所述:气体放电管的长处是电畅通流畅容量大;寄生电容小;残压较低,普通900V左右;气体放电管的毛病是:1、放电时延性较大,动作敏锐度不够,呼应时光较慢,为80ns左右。
2、有续流,有利于对交换或20V以上的线路进行掩护,因而与火花间隙一样,具有续流的遮断问题。
3、无法进行劣化唆使和完成故障遥信功效,平安系数不高。
二、压敏电阻的工作原理及特征压敏电阻是一种以氧化锌为重要成份的金属氧化物半导体非线性的限压型电阻。
压敏电阻的伏安特征是持续和递减的,因而它不具有续流的遮断问题。
它的工作原理为压敏电阻的氧化锌和添加剂在必定的前提下“烧结”,电阻就会受电压的强烈影响,其电流跟着电压的升高而急剧上升,上升的曲线是一个非线性指数。
600v陶瓷放电管
600v陶瓷放电管600V陶瓷放电管是一种常用的电子元件,主要用于电路中的放电保护。
本文将从陶瓷放电管的工作原理、特点以及应用领域等方面进行阐述。
一、工作原理陶瓷放电管是一种利用气体的电离特性来实现放电保护的元件。
它由一个陶瓷管和两个电极构成,内部充填有特定的气体。
当电路中的电压超过设定值时,陶瓷放电管会发生电离,导通电流,起到保护电路的作用。
当电压下降到设定值以下时,陶瓷放电管会恢复到非导通状态。
二、特点1. 高电压承受能力:600V陶瓷放电管能够承受高达600V的电压,适用于高压电路中的放电保护。
2. 快速响应速度:陶瓷放电管具有快速的响应速度,当电路电压超过设定值时,能够迅速导通电流,起到保护作用。
3. 高温稳定性:陶瓷材料具有良好的高温稳定性,能够在高温环境下正常工作。
4. 长寿命:由于其使用陶瓷材料,600V陶瓷放电管具有较长的使用寿命,能够长时间稳定地工作。
三、应用领域600V陶瓷放电管广泛应用于各种电子设备和电路中的放电保护。
具体应用领域包括:1. 电力系统:在电力系统中,600V陶瓷放电管可用于保护变压器、发电机等设备,防止过电压对设备的损坏。
2. 通信设备:在通信设备中,600V陶瓷放电管可用于保护传输线路和通信设备,防止雷击等外界干扰对设备的影响。
3. 汽车电子:在汽车电子中,600V陶瓷放电管可用于保护汽车电路,防止由于电池过压或短路等原因引起的故障。
4. 工业控制:在工业控制领域,600V陶瓷放电管可用于保护PLC、变频器等设备,提高设备的可靠性和稳定性。
5. 光伏发电:在光伏发电系统中,600V陶瓷放电管可用于保护光伏组件和逆变器,防止过电压对设备的损坏。
600V陶瓷放电管是一种常用的电子元件,具有高电压承受能力、快速响应速度、高温稳定性和长寿命等特点。
它在电力系统、通信设备、汽车电子、工业控制和光伏发电等领域中有着广泛的应用。
通过使用600V陶瓷放电管,可以有效保护电子设备和电路,提高其可靠性和稳定性。
气体放电管原理选型及应用
气体放电管选型丨原理丨应用丨放电管参数丨规格丨参数丨放电管资料丨开关管资料丨防雷元件-放电管开关管TVS管区别气体放电管原理选型及应用气体放电管按照高效率弧光放电的气体物理原理工作。
从电气的角度看,气体放电管就是压敏开关。
一旦施加到放电管上的电压超过击穿电压,毫微秒内在密封放电区形成电弧。
高浪涌电流处理能力和几乎独立于电流的电弧电压对过压进行短路。
当放电结束,放电管熄灭,内阻立即返回数百兆欧姆。
气体放电管近乎完美的满足保护性元件的所有要求。
它能将过压可靠的限制在允许的数值范围内,并且在正常的工作条件下,由于高绝缘阻抗和低电容特性,放电管对受保护的系统实际上不发生任何影响。
一般来说,当浪涌电压超过系统绝缘的耐电强度时,放电管被击穿放电,从而在短时间内限制浪涌电压及减少干扰能量。
当具有大电流处理能力的弧光放电时,由于弧光电压低,仅几十伏左右,从而防止了浪涌电压的进一步上升。
气体放电管即利用这一自然原理实现了对浪涌电压的限制。
气体放电管主要参数:1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。
2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs 电流波形下,所能承受及散发的电流。
3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。
气体放电管电容量很小,一般为≤1pF。
4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。
气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。
5)温度范围其工作温度范围一般在-55℃~+125℃之间。
6)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω气体放电管的应用示例1)电话机/传真机等各类通讯设备防雷应用如图3所示。
特点为低电流量,高持续电源,无漏电流,高可靠性。
图3通讯设备防雷应用2)气体放电管和压敏电阻组合构成的抑制电路图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。
陶瓷气体放电管
陶瓷气体放电管
陶瓷气体放电管是一种用于产生电流的器件,它主要由陶瓷管、电极和填充气体三部分组成。
填充在陶瓷管中的气体通过加电压的方式使电子激发并产生电流,从而实现电气信号的放大和控制。
陶瓷气体放电管的工作原理是基于气体放电现象。
通常,填充在陶瓷管中的气体可以被分成两类,即惰性气体和反应性气体。
惰性气体包括氦、氖、氩等,而反应性气体则包括氢、氧、氮等。
当放电管加上一定的电压时,电极之间的电场足以将气体分子电离,并产生大量电子。
这些电子与气体原子或分子相互作用,使其能级发生变化,从而发出特定的光谱线。
陶瓷气体放电管的主要优点是具有高精度、高稳定性、高可靠性等特点。
它能够承受高电量的电流,从而使其具有较高的输出功率和响应速度。
此外,陶瓷气体放电管适用于各种电气信号放大和控制应用,例如放大器、振荡器、测量仪器等。
总之,陶瓷气体放电管是一种高性能的电子元件,它广泛应用于各种电子设备中。
在未来,随着科技的不断发展,陶瓷气体放电管的应用领域和功能将不断扩展和升级。
大功率陶瓷气体放电管在电源防雷领域的运用
大功率陶瓷气体放电管在电源防雷领域的运用摘要:本文主要分析了雷击对电子电力设备产生危害的原因,介绍了大功率陶瓷气体放电管的工作原理、优缺点等,并介绍了其在电源防雷领域的应用。
关键词: 大功率陶瓷气体放电管电源防雷工作原理应用1.雷击对电子电力设备的危害分析1.1 电源浪涌遍布各处的电网使得电源浪涌很容易随雷击而产生。
在距离几百千米的之外的雷击产生的雷击浪涌会以光速在电网里传输,当它到达电子设备时电压可能高达上千伏,这个高压作用时间很短,只有几十到几百微秒,可能不足以烧毁电力电子设备,但是对于其内部的半导体元件却有很大损害,随着损害加深,电力电子设备也逐渐变得越来越不稳定,使设备性能大大降低,严重时可能导致电力系统的瘫痪,其带来的后果不堪设想。
这样的浪涌电压完全有可能一次性将电子设备毁坏。
1.2 信号系统浪涌感应雷击可以使信号系统产生浪涌电压。
金属导电体在感应雷击产生的干扰信号的影响下,传输中的电压信号或电流信号数据的误码率会上升,传输的准确性和传输速率受到极大的影响。
针对以上技术缺陷,大功率放电管陶瓷气体放电管可以很好地给予解决。
2. 大功率陶瓷气体放电管简介大功率陶瓷气体放电管作为一种开关器件,被广泛应用于防雷保护。
大功率陶瓷气体放电管是将相隔一定距离的两个电极封装在充满惰性气体的陶瓷管中的电器元件。
大功率陶瓷放电管主要有以下几个优点:一是可以提供稳定的击穿电压;二是绝缘性能好,具有高绝缘电阻;三是较低的电容特性,低电容特性能够减少干扰或在高频的操作环境下减低传送损失;四是高过保持电压,能够快速恢复高阻抗状态以确保连续操作下的安全性;五是没有穿越电压,在多极避雷器中无横向电压;六是具有双向对称特性。
但它具有击穿电压分散性较大、可靠性较差、响应速度较慢和多次冲击易老化等缺点。
大功率陶瓷气体放电管的基本工作原理如下:放电管原先处于断路状态,电阻很大,电容很小。
在放电管的两电极上施加电压时,管内初始电子受到电场的作用而加速运动,不断与气体分子发生碰撞。
(完整版)陶瓷气体放电管工作原理及选型应用
陶瓷气体放电管工作原理及选型应用、产品简述陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。
其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。
按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。
2、工作原理气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。
当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。
当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。
气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。
3、特性曲线Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压4、主要特性参数①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。
这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V 等几种,我们有最高3000V、最低70V的。
其误差范围:一般为±20%,也有的为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
陶瓷气体放电管特性及应用
陶瓷气体放电管特性及应用作者:韦国成来源:《科技资讯》 2013年第33期韦国成(江苏省镇江市电子管厂江苏镇江 212003)摘要:随着邮电通信、广播电视、各类家用电器、设备仪表、计算机设备等的发展,陶瓷气体放电管作为防雷及过电压保护的保护设施,正日益得到越来越广泛的应用。
相比于其他类型的放电管,陶瓷气体放电管管身体积小,工作功率大,运行效率高,且绝缘性能突出,两极之间电容小,是目前行业内性能十分突出的优质放电管。
加强对于陶瓷气体放电管应用原理及其特性研究,有利于更好的将其使用于实际生产之中,充分发挥设备特性,取得良好的电路保护效果。
本文即对陶瓷气体放电管工作原理作出简要分析,并对其自身特性及实际应用进行相关阐述。
关键词:陶瓷气体放电管原理特性应用中图分类号:TM6 文献标识码:A 文章编号:1672-3791(2013)11(c)-0008-01陶瓷气体放电管是一种陶瓷材料制成的特殊结构的气体放电设备,其在放电间隙之间充填某种特定的惰性气体充当介质,同时配置活性很高的电子发射材料,并配备放电引燃机构。
气体放电管设备的生产过程中,通过贵金属焊料在高温环境下进行构件焊接,最终方可生产得到陶瓷气体放电管。
陶瓷气体放电管的主要应用是瞬间过压时的保护作用,除此之外,还在点火时也会有所应用。
相比于其他类型的放电管设备,陶瓷气体放电管两极间电容更低,对于冲击电流的耐受性能更好,且具有高阻抗的特性,这都是普通放电管所不具备的性能,可见陶瓷气体放电管是一类性能较为优越的放电管设备。
当通电线路在遭遇雷击等状况下出现瞬时突变高压状况时,设备的放电管将被击穿,其阻抗瞬间由原有的高值降低,短时内呈现几乎线路短路的状态。
此时,陶瓷气体放电管可将过大的电流进行放泄,即通过设备中的线路接地或者原有的回路泄出电流,从而使得瞬间升高的电压下降到某一安全的低值,保证电路中电流、电压均控制在较为合理的范围之内,从而在瞬时高压状况之下对线路及线路中的各个设备起到了保护作用。
放电管介绍及选型(详解)
放电管特性及选用吴清海放电管的分类放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。
气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。
其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。
气体放电管同流量大,但动作电压较难控制。
半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。
半导体放电管的保护机理和应用方式和气体放电管相同。
半导体放电管动作电压控制精确,通流量较小。
放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。
当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。
气体放电管气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。
放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。
在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。
气体放电管(简称GDT)选型攻略
⽓体放电管(简称GDT)选型攻略GDT是⽓体放电管缩写词,(gas discharge tube)实质是⼀种密封在陶瓷腔体中的放电间隙,腔体中充有惰性⽓体以稳定放电管的放电电压。
其主要特点是通流能量⼤,可达数⼗千安,绝缘电阻极⾼,⽆漏流,⽆⽼化失效,⽆极性双向保护,静态电容极⼩,特别适⽤于⾼速⽹络通讯设备的粗保护。
可⼴泛⽤于各种电源及信号线的第⼀级雷击浪涌保护。
浪拓电⼦(LT)供应的GDT产品分为三⼤类:➣2电极⽓体放电管(GDT)·标准贴⽚式(SMD), 2电极·标准引线, 2-电极·薄形⽔平表⾯贴装系列·⾼电压系列·⾼电流系列·快速反应系列➣3电极⽓体放电管(GDT)·标准贴⽚式(SMD), 3-电极·标准引线, 3-电极·⾼电压, 3-电极·快速反应系列, 3-电极➣混和系列(复合式)⽓体放电管(GDT)·⽆续流GDT·过压组合式保护器陶瓷⽓体放电管选型指南· 在直流电路中⽓体放电管的标称电压选择为⼯作电压的1.8倍:在交流电路中选择为⼯作电压有效值的2.5倍。
· ⽓体放电管标称电流容量应⼤于被保护电路的可能最⼤浪涌冲击容量。
· 由于⽓体放电管有续流,⽓体放电管⼀般不可使⽤在直流电路中,除⾮直流⼯作电压低于⽓体放电管的击穿维持电压。
浪拓电⼦-陶瓷⽓体放电管全系列.pdf (923.05 KB, 下载次数: 2)◆浪拓电⼦提供的陶瓷⽓体放电管(GDT)包括多个品种,产品封装形式覆盖了SMD1206、SMD1210、SMD1812、φ5、φ5.5、φ8、φ8.3、φ16、φ30等各种标准封装形式,满⾜您不同应⽤环境的设计需求。
此帖出⾃信息发布论坛。
陶瓷气体放电管特性及应用
过电压和浪涌电流能对通讯设备和数据传输系统造成损坏,甚至对人身安全构成威胁。气体放电管提供最优的过电压 和浪涌保护。放电管能快速安全地限制过电压至正常水平,并可靠地排除危险电流。 过电压和浪涌电流可能由以下因素所造成(示意图1.2):
/ch/Technical_info.asp?id=15(第 1/6 页)2008-6-18 11:59:04
/ch/Technical_inf4
深圳市威特科电子有限公司
3、 应用领域 3.1 作为保护器件 信号保护(建议选用对应的微型管及中、小通流容量系列放电管): 电子线路中集成块、晶闸管、芯片等昂贵元件及线路板 电信网络中的信号线、网线、电话卡、交换机、传真机、电话机、配线架、交接箱、基站、移动电话天线 计算机系统的主机、调制解调器、数据处理系统、长分支线、短分支线及各种终端设备 视频系统、CATV设备、阴极射线管(CRT) 各种家用电器、实验设备、测试设备 电源保护(建议选用对应的中、高及超高流容量系列放电管): 各种设备的电源防雷、电源插座、电源转换器、插线、空气开关、负荷开关等低压电器 铁路电力、电气系统、LC设备、电动机、潜水泵、传动设备浪涌电压防护 3.2 作为开关器件 专用作点火开关的气体放电管具有独特的快速通断特点,能提供几个微秒和非常陡峭的峰值极高的前沿电压及电流脉 冲,它与点火变压相配合可产生电压为 12kV的典型高压脉冲,工业利用此效应就制成了点火开关. 开关放电管以其
/ch/Technical_info.asp?id=15(第 5/6 页)2008-6-18 11:59:04
深圳市威特科电子有限公司
Back 版权所有:深圳市威特科电子有限公司 技术支持:/
/ch/Technical_info.asp?id=15(第 6/6 页)2008-6-18 11:59:04
陶瓷气体放电管,如何正确选型?
陶瓷气体放电管,如何正确选型?陶瓷气体放电管,都是干货,看完就明白了陶瓷气体放电管,简称GDT,是一种开关型过压防雷保护元器件。
众所周知,陶瓷气体放电管GDT广泛应用于防雷工程的第一级或第二级保护上,常与限压型防雷保护器件综合应用。
不论是各种信号电路的防雷还是交直流电源的防雷,都可以借助陶瓷气体放电管将强大的雷电流泄放入大地,对高频电子线路的保护有着明显的优越性。
接下来,跟着专业的电路保护专家东沃电子,一起来揭开陶瓷气体放电管那层神秘的面纱,再也不怕被忽悠了!陶瓷气体放电管工作原理陶瓷气体放电管,其内部是由一个或多个放电间隙内充有惰性气体组成的密闭器件,其电气性能跟气体种类、气体压力和电极距离三者相关,主要应用于瞬时大电压的过电压保护。
其惰性气体主要是氖或氩,并保持一定的压力,同时电极表面涂以发射剂减少电子发射能。
陶瓷气体放电管工作原理是并联在电路中,在正常情况,由其独有的高阻抗和低电容特性,几乎对电路不产生任何影响;但,一旦有异常浪涌涌现时,GDT以纳秒级的响应速度被击穿放电,使得其阻抗下降,呈短路状态,将浪涌电流通过地线转接给大地,从而达到电路防护作用;当异常浪涌消失,GDT迅速回到了高阻状态,电路正常运行。
陶瓷气体放电管特性揭秘东沃电子,在研发、生产电路保护器件方面拥有精湛的技术水平和丰富的研发经验,为广大客户提供高品质的保护器件产品,只为电路更安全。
东沃电子结合陶瓷气体放电管的实际应用,总结出几点特点,助力大家更好地了解陶瓷气体放电管。
√ 纳秒级响应速度√ 稳定的击穿电压√ 低电容特性√ 高绝缘电阻√ 无穿越电压√ 对原电路无影响,电路设计简单方便√ 无放射性,对人体、环境和生态无影响√ 高可靠性,不易损坏,使用期限长由于陶瓷器气体放电管独有的特性,广泛应用各种场合,是一种常用、高效的防雷保护器件。
陶瓷气体放电管选型原则陶瓷气体放电管,外形圆柱形,按照电极数,可分为二极管放电管和三级放电管两种,带引线和不带引线两种结构形式,型号繁多,如何选择正确型号陶瓷气体放电管是采购商最头痛的难题?东沃电子,一家专业的陶瓷气体放电管生产厂家,为您带来满满的陶瓷气体放电管选型干货:1、陶瓷气体放电管的加入前提条件是陶瓷气体放电管的直流击穿电压的下限值必须高于电路中的最大正常工作电压,才能不能影响电路正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷气体放电管工作原理及选型应用
、产品简述
陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。
其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。
按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。
2、工作原理
气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。
当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。
当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。
气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。
3、特性曲线
Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压
4、主要特性参数
①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。
这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V 等几种,我们有最高3000V、最低70V的。
其误差范围:一般为±20%,也有的为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。
③冲击放电电流Idi:分为8/20μs波(短波)和10/1000μs波(长波)冲击放电电流两种。
常用的是8/20μs波。
冲击放电电流又分为单次冲击放电电流(8/20μs波冲击1次)和标称冲击放电电流(8/20μs波冲击10次),一般后者约为前者的一半左右,有2.5 kA、5 kA、10 kA、20 kA……等规格。
5、命名规则
6、封装及分类
按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。
两极:
1206-xxxAHIP Series
1812-xxxCHIP Series
2E-8*6(S) Series
2E-4 Series
2E-5 Series
2E-6 Series
2E-7 Series
2E-8*6 Series
2E-8*8 Series
三极:
3E-5(S) Series
3E-5(SS) Series
3E-6 Series
3E-7 Series
3E-8 Series
3E-8(T) Series
7、产品特点
优点:①击穿(导通)前相当于开路,电阻很大,没有漏电流或漏电流很小;②击穿(导通)后相当于短路,可通过很大的电流,压降很小;③脉冲通流容量(峰值电流)很大;2.5kA~100kA;④具有双向对称特性。
⑤电容值很小,小于3pF。
缺点:①由于气体电离需要一定的时间,所以响应速度较慢,反应时间一般为0.2~0.3μs(200~300ns),最快也有0.1μs(100ns)左右,在它未导通前,会有一个幅度较大的尖脉冲漏过去,而起不到保护作用。
②击穿电压一致性较差,分散性较大,一般为±20%。
③击穿电压只有几个特定值。
8、选型及应用
使用指导:
①在快速脉冲冲击下,陶瓷气体放电管气体电离需要一定的时间(一般为0.2~
0.3μs,最快的也有0.1μs左右),因而有一个幅度较高的尖脉冲会泄漏到后面去。
若要抑制这个尖脉冲,有以下几种方法:a、在放电管上并联电容器或压敏电阻;b、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;c、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。
②直流击穿电压Vsdc的选择:直流击穿电压Vsdc的最小值应大于可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。
③冲击放电电流的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流选择。
放电管冲击放电电流应按标称冲击放电电流(或单次冲击放电电流的一半)来计算
④陶瓷气体放电管因击穿电压误差较大,一般不作并联使用。
⑤续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。