高级植物生理学第一章(三)植物的防御系统及分子机制

合集下载

高级植物生理学课件第一章细胞及细胞壁

高级植物生理学课件第一章细胞及细胞壁
调节细胞生长
细胞膜和细胞壁协同作用,通过调节细胞内外物质的交换和信号传递,控制细胞的生长和分裂。
影响因素及调控机制
环境因素
温度、光照、水分等环境因素会影响细胞膜和细胞壁的结 构和功能,进而影响细胞生理活动。
激素调节
植物激素如生长素、细胞分裂素等通过调节细胞膜和细胞 壁相关基因的表达,影响细胞膜和细胞壁的结构和功能。
实验结果比较
将不同实验条件下的观察结果进行比较,分 析处理条件对细胞壁结构的影响。
实验问题讨论
针对实验过程中出现的问题进行讨论,提出 可能的解决方案和改进措施。
THANKS FOR WATCHING
感谢您的观看
扫描和透射模式选择
根据观察目的选择合适的扫描或透射模式,以获取细胞壁的超微结构信息。
图像记录和分析
使用数字成像系统记录电子图像,并进行定性和定量分析。
特异性染色技术应用
荧光染色
利用荧光染料对细胞壁进行染色,通过荧光显微镜观察 细胞壁的结构和组成。
酶细胞化学染色
利用酶对细胞壁进行特异性染色,以显示细胞壁中不同 成分的空间分布。
镜头选择
根据观察需求选择合适的物镜和目镜,以获 得清晰的视野。
调焦技巧
使用粗准焦螺旋和细准焦螺旋进行调焦,避 免压碎样品或损坏镜头。
视野调整
通过移动载物台和调节光阑,使样品位于视 野中央并保持清晰。
电子显微镜观察方法
样品制备
将植物细胞切成薄片或进行染色处理,以便在电子显微镜下观察。
加速电压调整
根据样品厚度和观察需求调整加速电压,以获得清晰的电子图像。
木质素合成过多或过少
分别导致细胞壁过于坚硬或松软,影响植物体的正常生理功能和对环 境的适应性。

高级植物生理学教学大纲2010

高级植物生理学教学大纲2010

高级植物生理学教学大纲第一讲绪论一.植物生理学的定义和研究内容1.生长发育和形态建成2.物质与能量代谢3.信息传递和信号转导二.植物生理学的诞生与发展1.植物生理学的孕育阶段荷兰人海尔蒙的柳枝试验:(90kg土壤;2.27kg柳枝;5年后,柳树重76.7kg,而土壤损失仅几十克)。

1771年,光合作用的发现2.植物生理学的诞生与成长阶段从1840年李比希矿质营养学说的建立到19世纪末德国植物生理学家Sachs and Pfeffer的两部植物生理学专著的问世。

3.植物生理学发展、分化与壮大阶段A.农业化学-从植物生理学分化成一门独立学科B.生物化学独立成一门学科;对植物生理学的冲击。

分子生物学异军突起。

C.卡尔文循环,C4途径和CAM;弄清了光合膜上许多功能性色素蛋白的三维立体结构,将结构与功能的研究推向了微观世界。

D.细胞全能性-组织培养,为植物细胞工程和基因工程的大力发展创造了条件。

E.光周期现象-光敏色素,调控几十种生理过程。

F.关于植物激素的研究,激素测定方法:HPLC和ELISA。

J.逆境生理:活性氧,逆境蛋白,如上所述,分子生物学的迅速发展对传统的植物生理学提出了严峻的挑战和机遇;权威性的国际植物生理学评论刊物Anuual Review of Plant Physiology 从1985年起改为Annual Review of Plant Physiology and Plant Molecular Biology,2002年改为Anuual Review of Plant Biology目前,植物整体生理学的研究正借助现代生物化学和分子生物学的成就而以新的面貌出现,如关于物质如何由源端装入和库端卸出的机理;关于源库之间信息交换的机理;关于物质与信息交换的“高速公路”-维管束结构与功能的研究,都取得了令人瞩目的成就。

mRNA的运输-成花素问题的解决等。

三.植物生理与农业生产(一)作物产量形成与高产理论50年代掀起的“绿色革命”,改良品种的主要特点是矮杆或半矮杆,株型紧凑,叶片直立,耐肥性强。

现代植物生理学重点课后题答案

现代植物生理学重点课后题答案

第一章植物细胞的亚显微结构和功能一、名词解释流动镶嵌模型与单位膜模型一样,膜脂也呈双分子排列,疏水性尾部向内,亲水性头部朝外。

但是,膜蛋白并非均匀地排列在膜脂两侧,而是有的在外边与膜脂外表面相连,称为外在蛋白,有的嵌入膜脂之间甚至穿过膜的内外表面,称为内在蛋白。

由于膜脂和膜蛋白分布的不对称,致使膜的结构不对称。

膜具有流动性,故称之为流动镶嵌模型。

共质体也叫内部空间,是指相邻活细胞的细胞质借助胞间连丝联成的整体。

质外体又叫外部空间或自由空间,是指由原生质体以外的非生命部分组成的体系,主要包括胞间层、细胞壁、细胞间隙和导管等部分。

二简答题1.原核细胞和真核细胞的主要区别是什么?原核细胞低等生物(细菌、蓝藻)所特有的,无明显的细胞核,无核膜,由几条 DNA 构成拟核体,缺少细胞器,只有核糖体,细胞进行二分体分裂,细胞体积小,直径为1~10μm 。

真核细胞具有明显的细胞核,有两层核膜,有各种细胞器,细胞进行有丝分裂,细胞体积较大,直径 10 ~100μm 。

高等动、植物细胞属真核细胞。

2、流动镶嵌模型的基本要点,如何评价。

膜的流动镶嵌模型有两个基本特征:(1)膜的不对称性。

这主要表现在膜脂和膜蛋白分布的不对称性。

①膜脂在膜脂的双分子层中外半层以磷脂酰胆碱为主,而内半层则以磷脂酰丝氨酸和磷脂酰乙醇胺为主;同时不饱和脂肪酸主要存在于外半层。

②膜蛋白膜脂内外两半层所含的内在蛋白与膜两侧的外在蛋白其种类及数量不同,膜蛋白分布不对称性是膜功能具有方向性的物质基础。

③膜糖糖蛋白与糖脂只存在于膜的外半层,而且糖基暴露于膜外,呈现出分布上的绝对不对称性。

(2)膜的流动性①膜蛋白可以在膜脂中自由侧向移动。

②膜脂膜内磷脂的凝固点较低,通常呈液态,因此具有流动性,且比蛋白质移动速度大得多。

膜脂流动性大小决定于脂肪酸不饱和程度,不饱和程度愈高,流动性愈强。

3、细胞壁的主要生理功能(1)稳定细胞形态和保护作用(2)控制细胞生长扩大(3)参与胞内外信息的传递(4)防御功能(5)识别功能(6)参与物质运输4、“细胞壁是细胞中非生命组成部分”是否正确?为什么?不是。

植物免疫(植物抗病机制)PPT课件

植物免疫(植物抗病机制)PPT课件

.
2019/12/31
6
.
2019/12/31
7
参考文献
[1]王文娟等.植物抗病分子机制研究进展[J]生物技术通报,2007:19-24. [2]潘瑞炽等,植物生理学[M]北京:高等教育出版社,2012.7:340-343. [3]张艳秋等,植物系统获得性抗性研究进展[J]东北农业大学学报39(12): 113~117.
(1)植物防御素(phytoalexin) (2)木质素 (3)抗病蛋白 (4)激发子
.
2019/12/31
3
三、植物抗病机制
(The resistance mechanism of plants)
(1) R 基因介导的抗病反应
病原菌侵染植物后, 在R 基因作用下, 植物发生超敏感反应( hypersensitive response HR) : 在病原菌感染区域以及周围组织发生细胞的程序性死亡 ( programmed cell death PCD) , 这就使得病原菌被杀死从而不会扩散到其它 健康组织。HR 是植物局部抗病的表现, 这种局部抗性继而又引发整株植物对 病原的广谱抗性, 即系统获得性抗性( systemic aquire resistances SAR) 。发 生在远离感染区域的新生组织, 序列相同或相似的病原菌不能感染这些组织。
.
2019/12/31
8
.
ห้องสมุดไป่ตู้2020
9
.
2019/12/31
10
叶绿体被破坏,叶绿素含量减少。
④生长的改变
如小麦的丛矮病和水稻的恶苗病都与赤霉素有关。
.
2019/12/31
2
二、作物对病原微生物的抵抗

植物生理学第1章

植物生理学第1章
第一章 植物的细胞生理
一、重点: 生物膜的结构及功能 二、难点: 生物膜的流动镶嵌结构模型
第一节 植物细胞概述 一、高等植物细胞的特点
(一)原核细胞和真核细胞的区别
根据细胞的进化程度:
{ 真核(eukaryotic cell):除细菌和蓝藻以外的
低等和高等植物。
原核(prokaryotic cell):细菌、蓝藻等。
第四节
第三节 细胞壁 植物细胞的亚显微结构与功能
液泡的主要生理功能:
渗透调节的作用 类似溶酶体的作用
代谢库的贮存所
一些生化反应的场所(ETH的生物合成等)
第五节
植物细胞的信号转导 遗传信息系统
植物的生长发育受控于 环境信号系统 遗传信息系统:核酸和蛋白质为主,决定了生长
发育的潜在模式;
(三)主要功能
1.稳定细胞形态,控制细胞生长扩大 2.参与胞内外信息的传递 3.防御功能 4.识别作用
二、胞间连丝
(一)定义
指贯穿细胞壁的胞间层,连接相邻细胞的原 生质细丝。
共质体:通过胞间连丝结合在一起的原生质体
质外体:包括质膜以外的细胞壁、细胞间隙及死细胞的细胞腔。
(二)功能
1 物质运输 2 信息传递
植物细胞对水力学信号(水压的变化)也很敏感。 例如,玉米叶片木质部压力的微小变化就能迅速影响 叶片的气孔开度,木质部压力的降低几乎立即引起气 孔的开放,反之亦然。
(三)胞间信号的传递
当环境信号刺激的作用位点与效应位点在植物不同部位时, 胞间信号就要作长距离的传递。 高等植物胞间信号的长距离传递,主要有以下几条途径:
(二)结构特点
典型的高等植物细胞壁是胞间层、初生壁、 次生壁所组成。
胞间层(中层):位于相邻细胞的细胞壁之间。主要成 分是果胶质,使相邻的细胞彼此粘连。

高级植物生理课件

高级植物生理课件

PSII和PSI: PSII:P680核心、捕光色素蛋白复合体 (LHCII)、放氧复合体(OEC) PSI: P700核心、LHCI
(2)Z链 (Z schem)
2、电子传递体在类囊体膜上的分布
类囊体膜上存在4中蛋白复合体: PSII复合体:PSII-α:基粒中央 PSII-β:间质片层 Cytb/f复合体:基粒垛叠区、基粒末端与边缘
ATP合酶在文献中也被称为CF0-CF1复合 体。
4、光合磷酸化的抑制剂
(1)电子传递抑制剂 指抑制光合电子传递的试剂,如羟胺(NH2OH)切断水到PSⅡ 的电子流,DCMU抑制从PSⅡ上的QA到QB的电子传递;KCN和Hg 等则抑制PC的氧化。一些除草剂如西玛津(simazine)、阿特拉津 (atrazine)、除草定(bromacil)、异草定(isocil)等也是电子传递抑制剂, 它们通过阻断电子传递抑制光合作用来杀死植物。 (2)解偶联剂 指解除磷酸化反应与电子传递之间偶联的试剂。常见的这类试 剂有DNP(二硝基酚)、CCCP(carbonyl cyanide-3-chlorophenyl hydrazone,羰基氰-3-氯苯腙)、短杆菌肽D、尼日利亚菌素、NH+4 等,这些试剂可以增加类囊体膜对质子的透性或增加偶联因子渗 漏质子的能力,其结果是消除了跨膜的H+电化学势,而电子传递 仍可进行,甚至速度更快(因为消除了内部高H+浓度对电子传递 的抑制),但磷酸化作用不再进行。 (3)能量传递抑制剂 指直接作用ATP酶抑制磷酸化作用的试剂,如二环己基碳二亚 胺(DCCD)、对氯汞基苯(PCMB)作用于CF1,寡霉素作用于 CFo(CFo 下标的o就是表明其对寡霉素oligomycin敏感)。它们都抑 制了ATP酶活性从而阻断光合磷酸化。

《植物生理学》课程笔记

《植物生理学》课程笔记

《植物生理学》课程笔记第一章:植物细胞的结构、功能与信号转导一、植物细胞的结构1. 细胞壁细胞壁是植物细胞最外层的结构,它为细胞提供了机械支持和保护。

细胞壁的主要成分包括:- 纤维素:构成细胞壁的主要结构蛋白,赋予细胞壁强度和刚性。

- 半纤维素:填充纤维素微纤丝之间的空隙,增加细胞壁的弹性。

- 果胶:一种多糖,存在于细胞壁的中间层,具有亲水性,有助于细胞间的粘附。

- 伸展蛋白:一种富含羟脯氨酸的蛋白质,参与细胞壁的扩展和调节。

细胞壁的孔隙性和选择性透过性允许水分、气体和某些溶解物通过。

2. 细胞膜细胞膜是紧贴细胞壁内侧的一层薄膜,主要由磷脂双分子层和嵌入其中的蛋白质组成。

细胞膜的功能包括:- 物质运输:通过载体蛋白和通道蛋白调控物质的进出。

- 能量转换:参与光合作用和呼吸作用中的能量转换过程。

- 信号传递:细胞膜上的受体蛋白可以识别外部信号并启动细胞内信号转导。

- 细胞识别:细胞膜上的糖蛋白参与细胞间的识别和通讯。

3. 细胞质细胞质是细胞膜与细胞核之间的物质,包括细胞器和细胞溶胶。

细胞质的功能包括:- 支撑和连接细胞器。

- 提供代谢反应的场所。

- 参与物质的运输和分配。

4. 细胞核细胞核是细胞的控制中心,包含以下结构:- 核膜:双层膜结构,上有核孔复合体,调控物质的进出。

- 核仁:参与核糖体RNA的合成和核糖体的组装。

- 染色质:由DNA和蛋白质组成,负责存储和传递遗传信息。

5. 细胞器植物细胞内含有多种细胞器,各自具有特定的功能:- 线粒体:细胞的“能量工厂”,参与氧化磷酸化和ATP的合成。

- 叶绿体:光合作用的场所,含有叶绿素,能将光能转化为化学能。

- 内质网:分为粗糙内质网和光滑内质网,参与蛋白质的合成和脂质代谢。

- 高尔基体:负责蛋白质的修饰、包装和运输。

- 液泡:储存水分、营养物质和废物,维持细胞渗透压和膨胀状态。

- 质体:储存淀粉、蛋白质等物质,是植物细胞特有的细胞器。

二、植物细胞的功能1. 物质代谢植物细胞通过以下途径进行物质代谢:- 光合作用:在叶绿体内将光能转化为化学能,合成有机物。

植物生理学

植物生理学
受體︰指位於細胞質膜上能與化學信號 物質特異地結合,並能將胞外信號轉換為 胞內信號,發生相應細胞回應的物質。
質膜表面有三種類型受體:
1、G蛋白偶聯受體 (G-protein-linked receptor) 2、 酶聯受體 (enzyme -linked receptor)
3、離子通道偶聯受體 (ion-channel-linked receptor)
B、物理信號(physical signals)︰ 指細胞感受環境刺激後產生的具有傳遞 訊息功能的物理因子,如︰電波、水力 學信號等。
胞間物理信號電波長距離傳遞途徑 是維管束,短距離傳遞則透過共質體及 質外體。敏感植物動作電波的傳播速度 可達200 mm‧s-1 。
2、跨膜信號轉換
(1)受體(receptor)︰
圖1-14. 表皮細胞覆蓋初級植物體.
圖1-15. 豌豆屬葉下表皮細胞之氣孔電顯圖.
圖1-16. 次生細胞璧是由木質部第一次形成細胞組成,經
常以環狀及螺旋型堆積著.
圖1-17. 木本開花植物在光學顯微鏡下放射假導管及導管(85倍).
圖1-18. 菸草植物篩版構造類細胞璧分子合成模式是由雙醣重複組成
B、肌醇磷脂信號系統 質膜中有三種肌醇磷脂︰磷脂 肌醇(PI)、磷脂酰肌醇 – 4 –磷酸 (PIP)、磷脂酰肌醇 – 4,5 – 二磷酸 (PIP2)。
刺激信號與膜受體結合 受體激活 信號傳遞給G蛋白 磷脂酶C (PLC)水解PIP2產生肌醇三磷酸 (IP3)和二酰甘油(DG) IP3通過 調節Ca2+傳遞信息 DG 通過激活蛋 白激酶C(PKC)傳遞信息。
其分子途徑分為三個階段︰
1、 胞外刺激信號傳遞
2、 膜上信號轉換
3、胞內信號傳遞及蛋白質可逆磷酸化

植物生理学各章节复习重点

植物生理学各章节复习重点

在高温,强光,低CO2浓度,少水的条件下, 为什么C4植物的光合速率比C3植物的高?
1.C4途径的CO2固定中的PEPcase对CO2的亲和力比C3途径的CO2固定 中的Rubisco大,所以C4植物能够利用低浓度的CO2 ,而C3植物不 能; 2.C4植物叶片具有特殊的结构。其MC和VBSC具有不同类型叶绿体, 有不同的酶系。 MC中PEPcase 将空气中低浓度的 CO2 固定到C4 二羧酸中,再转运到VBSC中脱羧释放出 CO2 ,大大增加VBSC中的 CO2浓度,促进了催化的羧化反应,增加光合速率。而且C4植物的 光呼吸较弱,同时是在VBSC中进行,所释放的 CO2 又易于再被固 定。故低CO2浓度下, C4植物表现高的同化速率; 3.PEPcase对低温很敏感,活性明显下降,故需高温;
复 习 思 考 题 (一) 名词解释 (代谢)源;(代谢)库;共质体运输;质外体运输; 比质量转移率; 转移细胞 (二) 问答题 1 植物体内同化物分配的规律是什么? 2 简略压力流动假说。这些学说的实验依据是什么?有 什么优缺点? 3 代谢源与代谢库相互之间有什么关系?了解这种关系 对指导农业生产有什么意义? 4 如何理解蔗糖是高等植物韧皮部光合同化物运输的主 要形式?
1. 作物需水规律(水分临界期)
2. 合理灌溉的指标



考题ຫໍສະໝຸດ ⒈ 试述水在植物生活中的重要作用。 ⒉ 植物细胞的水势由哪几部分组成?说明成熟植物细胞从 萎蔫到充分膨胀的过程中,各个组分的变化情况。 ⒊ 被动吸水和主动吸水有何区别?它们各自在植物吸水过程 中的地位怎样? ⒋ 蒸腾作用有何生理意义?气孔蒸腾的主要路径是什么?气 孔蒸腾的主要特点是什么? ⒌ 简述气孔运动的机理。 ⒍ 水分在植物体内的运输动力是什么? ⒎ 什么是自由能、化学势和水势?为什么将这些概念引入 植物的水分生理中? 8.名词解释: 水势、束缚水、伤流、蒸腾作用、需水临界期、蒸腾系数、 自由水、根压、渗透作用、 吐水、压力势、渗透势、衬质势 、蒸腾效率、蒸腾拉力、吸胀作用、小孔扩散规律

高中生物植物生理学知识点总结

高中生物植物生理学知识点总结

高中生物植物生理学知识点总结高中生物中的植物生理学部分是一个重要的知识领域,它涵盖了植物的生长、发育、代谢等多个方面。

下面我们就来详细梳理一下这部分的关键知识点。

一、植物的水分生理1、水在植物生命活动中的作用水是细胞的重要组成成分,约占细胞鲜重的 70% 90%。

它参与植物的光合作用、呼吸作用等多种生理过程,也是许多物质溶解和运输的介质。

2、植物细胞的吸水方式(1)渗透吸水:具有液泡的成熟植物细胞主要通过渗透作用吸水。

细胞液与外界溶液之间存在浓度差,水分子会通过原生质层从低浓度溶液向高浓度溶液扩散。

(2)吸胀吸水:未形成液泡的细胞,如干燥的种子,主要通过吸胀作用吸水。

细胞中的亲水性物质(如蛋白质、淀粉等)会吸附水分子。

3、植物根系对水分的吸收(1)根系吸水的部位:主要是根尖的根毛区。

(2)根系吸水的途径:有质外体途径、跨细胞途径和共质体途径。

(3)影响根系吸水的土壤因素:包括土壤中可利用的水分含量、土壤通气状况、土壤温度和土壤溶液浓度等。

4、植物的蒸腾作用(1)蒸腾作用的概念:植物体内的水分以水蒸气的形式通过气孔散失到大气中的过程。

(2)蒸腾作用的方式:有角质蒸腾和气孔蒸腾,气孔蒸腾是植物蒸腾作用的主要方式。

(3)气孔运动的机理:保卫细胞的膨压变化引起气孔的开闭,涉及钾离子的进出、苹果酸的生成等。

(4)蒸腾作用的意义:能促进水分的吸收和运输,有助于矿物质的吸收和运输,还能降低叶片温度。

二、植物的矿质营养1、植物必需的矿质元素目前确定的植物必需元素有 17 种,包括大量元素(氮、磷、钾、钙、镁、硫)和微量元素(铁、锰、锌、铜、硼、钼、氯、镍)。

2、矿质元素的吸收(1)吸收部位:主要是根尖的根毛区。

(2)吸收形式:离子形式。

(3)吸收方式:分为主动吸收和被动吸收。

主动吸收需要消耗能量,逆浓度梯度进行;被动吸收不消耗能量,顺浓度梯度进行。

3、矿质元素的运输(1)运输途径:通过木质部向上运输,也有少量通过韧皮部运输。

植物生理学中的植物免疫与抗逆机制

植物生理学中的植物免疫与抗逆机制

植物生理学中的植物免疫与抗逆机制植物是地球上最早出现的生命形式之一,其与环境之间的互动一直都是研究的热点之一。

在植物生理学中,研究植物的免疫与抗逆机制是非常重要的一部分。

植物免疫与抗逆机制是植物对抗各种生物和非生物压力的反应过程,通过这些机制,植物能够抵抗病原菌、逆境环境等对其生长发育的负面影响,从而保证其生存与繁殖。

一、植物的非免疫抗逆机制在植物遭遇病原菌或者逆境环境时,除了免疫机制以外,植物还采取一些非免疫性的生理机制来应对。

比如,植物可以通过增加细胞壁的厚度来加强对病原菌的防御;另外,植物还可以合成一些抗寒蛋白,如冷凝蛋白,来提高对低温的抵抗能力。

此外,一些气孔关闭蛋白可以帮助植物在干旱条件下减少水分流失。

这些非免疫抗逆机制是植物在遇到不利因素时的基本反应,但相对免疫机制而言,它们的效果和持续时间往往有限。

二、植物的免疫机制1. 植物免疫系统的两大组成部分植物的免疫机制主要由两部分组成:PAMP(Pathogen-Associated Molecular Patterns)-PAMP受体(Pattern Recognition Receptors,PRRs)系统和侵染途径感知机制。

PAMP是病原体特有的分子模式,而PRRs是植物细胞表面的受体蛋白,其主要作用是感知病原体侵染并启动免疫反应。

2. PTI(PAMP-triggered immunity)与ETI(Effector-triggered immunity)PAMP通过PRRs激活PTI,从而启动植物的免疫防御。

PTI主要表现为防御反应的启动、转录因子的激活、抗生物素的合成等。

然而,一些进化适应得很好的病原菌通过释放一些效应蛋白(effectors)干扰植物的免疫反应。

当有效蛋白被植物细胞感知到时,ETI激活,从而加强植物的防御力量。

3. SAR(Systemic Acquired Resistance)和ISR(Induced Systemic Resistance)SAR和ISR都属于植物的免疫反应,它们在植物遭受病原侵染后扮演着非常重要的角色。

高级植物生理学第一章 植物生理与分子生物学(共111张PPT)

高级植物生理学第一章 植物生理与分子生物学(共111张PPT)

基因组研究包括两方面的内容: 以全基因组测序为目标的结构基因组学(structural genomics)
以基因功能鉴定为目标的功能基因组学(functional genomics)
2.1 植物基因组的复杂性
(1)植物除了细胞核基因组外,还有细胞质基因组;
(2)植物基因组的长度差异是整个生物界最大的; 拟南芥单倍体基因组:6.3×107 bp;
编码一个完整mRNA的一段DNA序列。
基因是遗传的物质基础,是DNA分子上具有遗传信息的特 定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因通过
复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。
基因有两个特点: 一、忠实复制自己:以保持生物的基本特征; 二、基因能够突变:为自然选择贮备了材料;
杂交。
探针是一段与目的基因有互补序列的用放射性同位素(32P
)标记的 DNA 或 RNA分子。
探针杂交
电泳分离
转膜
放射显影
核酸分子杂交
核酸分子杂交操作程序
② 根据蛋白质测序结果,合成一对 或数对PCR
⑥ 真核基因的表达——转录和翻译存在着时间和空间 间隔。
⑦ 真核基因表达的调控可从染色体结构至翻译后加 工多个层次(水平)上进行。
原核生物基因表达
真核细胞基因表达
2、植物的基因组
基 因 (gene)? 基因组 (genபைடு நூலகம்me)? 基因组学 (genomics)?
遗传物质单元,在染色体上占据特定位置、具有某种特定 遗传功能的 DNA 序列。
串联重复序列(tandemly repeated sequences): 重复序列以各自的核心序列(重复单元)首尾相连多次重复
,重复序列间被间隔序列分开。

植物生理学理论(第一章到第三章)

植物生理学理论(第一章到第三章)

植物生理学理论(第一章到第三章)植物生理学理论总结归纳第一篇植物的物质产生和光能利用第一章植物的水分生理水分生理包括水分的吸收、水分在植物体内的运输和水分的排出等3个过程。

第一节植物对水分的需要一、植物的含水量1、不同植物的含水量不同;2、同一种植物生长在不同环境中,含水量也不同;3、在同一植株种,不同器官和不同组织的含水量的差异也甚大。

二、植物体内水分存在的状态1、水分在植物细胞内通常呈束缚水和自由水两种状态(1)束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分(不参与代谢作用,但与植物抗性大小有密切关系)(2)距离胶粒较远而可以自由流动的水分(参与各种代谢作用,自由水占总含水量的百分比越大,则植物代谢越旺盛)①由于自由水含量多少不同,所以细胞质亲水胶体有两种不同的状态:一种是含水较多的溶胶(sol);另一种含水较少的凝胶(gel)2、水分子距离胶粒越近,吸附力越强;相反,则吸附力越弱。

3、自由水/束缚水低→凝胶耐旱自由水/束缚水高→溶胶三、水分在植物生命活动中的作用1、水分是细胞质的主要成分2、水分是代谢作用过程中的反应物质3、水分的植物对物质吸收和运输的溶剂4、水分能保持植物的固有姿态第二节植物细胞对水分的吸收植物细胞吸水主要有3中方式:扩散、集流、和渗透作用一、扩散:这是一种自发过程,指由于分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩散是物质顺着浓度梯度进行的。

二、集流:是指液体中成群的原子或分子在压力梯度下共同移动。

水分集流与溶质浓度梯度无关。

●水孔蛋白的作用:水分在细胞内的运输;水分长距离运输;调整细胞内的渗透压。

三、渗透作用:指溶剂分子通过半透膜而移动的现象。

渗透作用水势梯度儿移动。

1、水势的公式:ΨW=μW-μ0W/V W=△μW/V W2、水势=水的化学势/水的偏摩尔体积=N·m·mol-1/m3·mol-1=N·m-2=Pa3、溶液越浓,水势越低。

高级植物生理学教学大纲

高级植物生理学教学大纲

高级植物生理学教学大纲高级植物生理学教学大纲植物生理学是研究植物内部生物化学和生理过程的学科,它对于我们了解植物的生长、发育和适应环境的机制至关重要。

高级植物生理学教学大纲旨在为学生提供深入了解植物生理学领域的知识和技能,培养学生的批判性思维和科学研究能力。

一、引言植物生理学的重要性和应用领域介绍。

植物生理学的历史和发展概述。

介绍植物生理学的基本概念和研究方法。

二、植物生长与发育1. 植物生长的基本原理:细胞分裂、细胞伸长和细胞分化。

介绍植物激素对生长和发育的调控作用。

2. 植物生长的环境因素:光、温度、水分和营养物质对植物生长的影响。

讨论植物对环境变化的适应机制。

3. 植物发育的调控:基因调控和环境因素对植物发育的影响。

介绍植物发育过程中的关键调控因子。

三、植物的水分平衡1. 植物的水分吸收和输送:根系的吸水机制和导管系统的功能。

介绍水分运输的机制和调控。

2. 植物的水分利用效率:介绍植物对水分的利用和调节机制。

讨论植物的抗旱机制和适应干旱环境的策略。

3. 植物的水分胁迫响应:植物对水分胁迫的生理和分子响应。

讨论植物的抗旱基因和逆境信号传导途径。

四、植物的营养吸收与转运1. 植物的营养需求:植物对不同营养元素的需求和吸收机制。

介绍植物对营养元素的吸收途径和转运机制。

2. 植物的营养平衡:植物中营养元素的分配和调控。

讨论植物对不同环境条件下的营养适应策略。

3. 植物的营养缺乏与过量:植物营养缺乏和过量的症状和机制。

介绍植物的营养诊断和调节方法。

五、植物的光合作用1. 光合作用的基本原理:光合反应和光合电子传递链。

介绍光合作用的光合色素和光合膜结构。

2. 光合作用的调节:光合作用对光照强度、温度和二氧化碳浓度的响应。

讨论光合作用的调节机制和调控因子。

3. 光合作用的适应策略:植物对不同光环境的适应策略。

介绍植物的光合适应机制和光合产物的分配。

六、植物的逆境生理学1. 植物的逆境响应:植物对逆境的生理和分子响应。

研究生高级植物生理学课件整理

研究生高级植物生理学课件整理
从生物大分子到原始生命
生物大分子如何从随机组合到有序组装,抑制显示与生命相关的生化特性,目前还无法用实验重 现,只能通过推测和计算机来模拟。 生命进化的最大门槛:多核苷酸和多肽必须协调作用,以形成自身复制的生化系统。 蛋白质合成需要多核苷酸指导,多核苷酸自身复制需要蛋白酶催化,那么是现有核酸还是先有蛋 白?两种互相互补的大分子随机形成的可能性存在吗?
藻类 藻类的生活史有三种基本类型:只有单相植物体,唯有合子才是双相的,如水绵、轮藻;只有双相植物体,唯 有配子才是单相的,如硅藻、鹿角荣;有单相植物体也有双相植物体的,如刚毛藻、石克海带。 在具有单、双相植物体的藻类生活史中,出现单相植物体与双相植物体轮替发生的现象,出现有性世代与无性 世代轮替发生的现象此为世代交替。异形世代交替比同形世代交替进化。所有高等植物都是异形世代交替。根 据各种特征,藻类分成十一个门和一个类。
授课内容 1.生命的起源和植物的系统进化;2.植物细胞;3.光敏色素与光调控;4.植物激素(1);5.植物激素(2);6.植 物对病原体的应急反应;7.植物的逆境反应;8.衰老与细胞凋亡;9.信号的感应和传递;10.植物的表观遗传。
第一章 生命的起源和植物的系统进化 (一)生命的起源 生命起源的化学基础: 原始大气层主要成分:甲烷和氨气,没有氧气! 对甲烷和氨气混合气体进行放电导致一系列氨基酸的化学合成,它们可以进一步反应说出其他氨基酸、嘌呤、 嘧啶以及少量糖。
平行进化与趋同进化的区别: 平行进化:亲缘关系较近的植物种或植物类群,经过平行进化产生相似的特征 趋同进化:亲缘关系较远的的植物种或类群,由于适应相同的生境而形成了相近的特征
世代交替 世代交替广义指的是生物生殖过程中,存在着有性世代(孢子体,双倍体)和无性世代(配子体,单倍体)无 性生殖的交替出现,称为世代交替。

植物生理学重点整理

植物生理学重点整理

植物⽣理学重点整理第⼀章:植物的⽔分⽣理⽔分在⽣命活动中的作⽤:1,是细胞质的主要成分2,是代谢作⽤过程的反应物质3,是植物对物质吸收和运输的溶剂4,能保持植物的固有姿态根吸⽔主要在根尖进⾏,根⽑区吸⽔能⼒最⼤1.根⽑区有许多根⽑,增⼤了吸收⾯积2.同时根⽑细胞壁的外部由果胶质组成,粘性强,亲⽔性也强,有利于与⼟壤颗粒黏着和吸⽔3.根⽑区的输导组织发达,对⽔分移动的阻⼒⼩这种以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说,称为内聚⼒学说亦称蒸腾-内聚⼒-张⼒学说随着蒸腾的进⾏,叶⾁细胞不断失⽔,同时⼜不断向邻近细胞吸⽔,依次传递下去,便从导管中吸收⽔分直到根部。

由于⽔分⼦的特殊结构,使它们之间能够形成氢键,产⽣很⼤的内聚⼒,同时⽔分⼦与导管和管胞细胞壁的纤维素分⼦之间还有很强附着⼒,此外,由于导管和管胞的孔径很⼩,⽽且细胞壁很厚,有很强的坚韧程度,所以导管在很⾼的张⼒下,也不会向内凹陷,⽽阻⽌⽔分的运输。

导管中产⽣的这种张⼒⼀直传递到与根尖靠近的下端,甚⾄有时还能穿越过根组织传递出去第⼆章:植物的矿质营养必需元素判断标准(Anron和Stout)1.完成植物整个⽣长周期不可缺少的,缺少则植物不能完成其⽣命周期2.在植物体内的功能是不能被其他元素代替的,植物缺乏该元素时会表现专⼀的症状,并且只有补充这种元素症状拜会消失3.这种元素必须直接参与植物体内的新陈代谢,对植物起直接的营养作⽤,⽽不是通过改变⼟壤理化性质、微⽣物⽣长条件等原因所产⽣的间接作⽤⼤量元素:指植物需要量较⼤,在植物体内含量较⾼(≥0.1%DW)的元素,10种。

碳氢氧氮钾钙镁磷硫硅微量元素:指植物需要量较少, 在植物体中含量较低(<0.01%)的元素氯铁硼锰锌铜镍钼确定⽅法:不供给该元素后,观察植物的反应,是否会有缺素症发⽣溶液培养法或⽔培法:将植物根系浸泡在⽆⼟营养液中培养的⽅法(在含有全部或部分营养元素的溶液中栽培植物的⽅法)。

植物生理学第一章知识分享

植物生理学第一章知识分享

• 第十章 植物的生殖与成熟
• 第十一章 植物衰老、脱落 与

休眠
• 第十二章 植物的逆境生理
绪论
一、植物生理学的定义与内容
定义: 研究植物生命活动规律的科学
内 容:研究植物细胞生理 研究植物物质代谢 研究植物能量代谢 研究植物形态建成 研究植物信息传递 研究植物环境生理
第一章 植物细胞的结构与功能
2.合成多糖类和糖蛋白; 3.与质膜、细胞壁的形成有关; 4.与溶酶体和液泡膜的产生有关。
液 泡(单膜)
液泡发生途径:
高尔基体途径 内质网途径
液泡的功能:
调节功能
类似溶酶体的作用
代谢库的功能
溶 酶 体(单层膜) 初 级 溶 酶 体
次级溶酶体 功 能:自身消化(衰老、饥饿、受损伤时)
线 粒 体(双层膜)
次级溶酶体 功 能:自身消化(衰老、饥饿、受损伤时)
线 粒 体(双层膜)
结 构:
功 能:
质 体 白 色 体(造粉体) 杂 色 体
叶 绿 体(双层膜)
微 体(单层膜)
过 氧 化 体:光呼吸场所之一 乙 醛 酸 体:乙醛酸循环场所
圆 球 体(单层膜)
油体 蜡体
二、微 梁 系 统
微管
结构 功 能:与 细 胞 分 裂 有 关;
三、细胞浆的功能
第五节 植物细胞间的通道
细胞间的联系方式: 细胞间的主要通道:
胞间层 胞间连丝
胞间连丝 自由空间
胞间连丝 结构:
功能: 物质运输通道
信息传递通道 细胞间的电导通道 细胞器穿壁运动 病毒胞间运动的通道
共质体(内部空间):细胞内有生命的部分,即原生质体,通过胞
间连丝连成一个整体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
病原物侵染常会引植物体异常生长: IAA:诱发肿瘤,过度生长,偏上性和形成不定根。如根 癌农杆菌、夹竹桃瘿瘤病菌等。
GA:病毒侵染使GA降 低,植株矮化(丛矮病),赤
霉菌侵染产生大量GA,植
株徒长(恶苗病)。
CTK:类菌原体侵染
产生CTK类代谢产物,促
使侧芽大量生长,破坏顶端 优势(丛枝病)。
ABA:病理效应为矮缩和落叶。烟草感 染烟草花叶病毒后表现缩症状,感染青枯菌 后生长抑制现象与ABA水平增加有关。棉花 黄萎病菌侵染棉花植株后ABA显著增加,引
(2)呼吸作用增强
植物感病后呼吸作用明显增强,这是植物对许多病 原物的典型早期反应。
① 呼吸速率变化:植物细胞的正常结构受到破坏, 酶与底物直接接触,呼吸酶活性增强; ② 呼吸途径变化:EMP-TCAC 受抑制,PPP 比例 增大。PPP-莽草酸途径-次生抗菌物质-抗病性增强。 ③ 末端氧化系统变化:细胞色素氧化酶活性降低, 多酚氧化酶活性增强,有利于植物的抗病。
(4)正常氮代谢破坏
① 侵染初期,植物蛋白质含量增加,同时合成新蛋 白——“病程相关蛋白”(PR)。
② 病原物繁殖利用寄主含氮化合物,寄主蛋白质降
解,蛋白质含量降低,游离氨基酸含量升高。
③ 有些病原物刺激植物局部徒长,形成肿瘤,氮素 集中运往肿瘤细胞,导致正常细胞氮素降低。
(5)植物体内正常激素平衡破坏
葡糖苷是在许多植物都有的一种无毒糖苷。植物 受伤后无毒糖苷由 葡糖苷酶水解成有毒内脂。
含氰氢酸的生氰糖苷经相应水解酶水解产生对病 菌有毒的氰氢酸。 不含氰的糖苷可通过氧化产生有抗菌活性的醌类 物质。
C:诱导增加合成
受病原物侵染而增加合成的抗菌物质包括酚类化合物
及其衍生物。酚类、醌的作用包括:
a、参与植物生长和细胞壁的形成。 b、对病原菌的磷酸化酶、转氢酶、果胶酶、纤维素 酶等的活性有明显的抑制作用。 c 、干扰酶与金属辅基结合。 d、 是多数植物保卫素合成的重要原料。
高等植物酚类化合物主要由莽草酸途径和苯丙烷途径 合成的。 其中莽草酸途径由简单碳水化合物开始,到形成芳香 族氨基酸 ,许多酚类物质是由苯丙氨酸和酪氨酸进一步通 过苯丙烷代谢途径生成的。
在和这些基因的表达速度、程度以及基因表达所产生的抗病 物质的量所决定的。
抗病基因表达快,产物活性强的植株抗病性就强,反之
则弱。某些诱导因子, 可以改变植物抗病基因所处的状态, 使之加速表达,从而使寄主植物提高抗病性。
寄主与病原物识别
接触识别 结构组分间感应与互补 致病因子及寄主的反应
根据病理过程
接触后识别
(3)光合作用降低
病原物侵染引起植物叶绿体形态异常及功能破坏, 叶绿素含量减少,导致光合作用降低。
① 细菌代谢产物(毒素)破坏 chl 或抑制 chl 合成,引
起叶绿体超微结构变化,致使光合作用降低。
② 真菌会引起植物叶绿体分解,组织坏死,其代谢产 物(毒素)直接破坏光合磷酸化作用,光合作用降低。 ③ 病毒侵染还会使植物光化学反应活性、对CO2 的 吸收速率降低。
遗传。
对于植物的抗病性,从遗传学角度,Flor 最早提出 “基因对基因”的假说,认为抗性是植物品种所具有的 抗性基因和与之相应的病原物的非致病性基因结合时才 得以表现。
ቤተ መጻሕፍቲ ባይዱ
一些表达植物抗病性类型的名称
垂直抗性(vertical resistance)
水平抗性(horizontal resistance ) 小种非专化抗性(non-race specific R.) 多基因抗性(polygenic R.) 复基因抗性(multigenic R.)
植物的抗病性:
植物的抗病性是寄主植物抵抗病原物侵染的性能。 是植物的一种属性,是相对某种病原物而言。 同一植物对某一种病原物是抗病的,而对另一种 病原物则可能感病的。这决定于植物对病原物的亲和
性程度,对病原物不亲和的植物是属于抗病的,而亲
和的则是感病的。
J .E.Vanderplank根据寄主、病原物变异的关联性, 把植物抗病性分为垂直抗性和水平抗性。 垂直抗性:病原物的变异和寄主的变异在质量是相关 联的,表现为一种植物品种对一个或几个小种具有抗性— —小种专化抗性。
垂直抗病性是由单基因或少数基因控制的,由主效基
因单独地起作用,一般表现为高度抗性,抗性遗传表现为
质量遗传;
水平抗性:病原物的变异和寄主的变异无关联,表
现为一种植物对病原物所有小种都具有抗性——非小种 专化抗性。 水平抗性是由多基因控制的,由许多微效基因综合 起来起作用,强度不及垂直抗性,抗性遗传表现为数量
识 别 类 型
亲和识别
根据互作性质 非亲和识别 一般性识别 根据分子机制 特异性识别
有效定植、感病反应
侵染受阻、抗病反应 非基因对基因关系 基 因 对 基 因关系
基因 活化
一 般 性 识 别 与 特 异 性 识 别
2 、 病原物的致病因子
毒素toxin: 胞 外 酶: 病原激素 胞外多糖
毒素toxin
内生菌的作用
植物内生菌与病原菌具有相同的生态位,在植物体内相 互竞争空间、营养,使病原菌得不到营养供给而消亡,增强 宿主抗病能力。植物内生菌可以分泌抗生素、毒素等代谢物 质,这些代谢物质能够诱导植物产生系统抗性(ISR)。 植物内生菌代谢产物有抗肿瘤、抗菌,抗病毒等作用。 利用植物内生菌的次生代谢物质开发新的药物将是今后医药 方面的研究方向之一。 作为外源基因载体:以内生菌为受体构建植物内生防病 或杀虫工程菌,引入植物体内,起到与转基因防病杀虫植物 相同或类似的作用。
起落叶。
Eth:病理效应为抑制生 长、失绿、落叶、偏上性、刺 激不定根产生和促进果实成熟。
近60种病原真菌和细菌能产生
乙烯。
(二)植物抗病性的生理生化特征
植物抗病性是寄主植物抵抗病原物侵染的能力。传
统植物病理学把植物对病原物的反应分为感病、耐病、
抗病和免疫四种类型。 从植物生理学观点来看,植物抗病性是植株在形态 结构和生理生化等方面综合的时间上和空间上表现的结
低温、干旱、盐渍、紫
外辐射、病原体侵染、机械 损伤等都会诱导植物防御基 因表达,并通过这些基因产 物来适应或抵抗各种逆境。
三、植物的防御系统及分子机制

(一) 植物—病原物相互作用的生理基础 (二) 植物抗病性的生理生化特征 (三) 植物的抗病基因与防卫反应基因

(四) 植物—病原物相互作用的分子机制
高级植物生理学第一章
三、植物的防御系统及分子机制
植物的防御系统
植物不是被动的、没有任何活动能力的生物。 所有植物都可以和其同伴“交流”,它们也懂得如 何在既定的环境中保护自己。
植物具有记忆功能。如果曾有一种害虫对它们 的生存构成过威胁,下次就会“认出”这种虫子,并 且以释放少量电荷的形式表现出来。
日齐素
辣椒素
几种茄科植物的植物保卫素 块茎防疫素
豌豆素 (pisatin)
几种豆科植物
菜豆素 (pheseolin)
的植物保卫素
合成途径:
乙酸---丙二酸途径;
苜蓿素 (sativan) 莽草酸途径;
合 成 甘 薯 酮 的 乙 酸
甲 羟 戊 酸 途 径
丙 二 酰
苯 丙 烷 类 途 径
植保素在植物体的积累有以下特点: ① 抗性与感性植株都可以积累植保素,但是抗性植株植 保素形成的速度快,在感病初期就达到高峰,产生过敏性 反应;
很多植物受到”侵害”时会发出信号 (乙烯、茉 莉酮酸甲酯等)向自身其它器官或其他植物“报警” 或“求救”。有些细胞则采取“自杀”以保护整体。
植物的防御方式各式各样,可有物理的、化学的、 生化的、生物的等方式。
遭遇任何逆境都会启动防御系统做出防御反应, 并与 “有害生物”达成某种平衡,共同生存。
高等植物的生存依赖于它 们适应环境的能力、受环境影 响改变基因表达的模式以及对 外界信息做出的应答。
内生
与寄主互作决定病害的程
度,寄生生活发生的基础
在寄主一病原物的关系中:
感病寄主与病原物为亲和互作——在适宜的环境条
件下病害发生;
抗病品种或非寄主植物与病原物为非亲和互作— —不能侵染和引起病害。 一种病原物所能侵染的植物种类一般是少数,能
被侵染的植物称为该病原物的寄主,不能被侵染的植 物称为该病原物的非寄主。
小种专化抗性(race specific R.) 单基因抗性(monogenic R.) 主效基因抗性(major gene R.)
质量抗性 (qualitative R.)
真正抗性(true resistance) 过敏性抗性(hypersensitive R.)
数量抗性(quantitative R.)
② 植保素只局限在受侵染的细胞周围积累,并不运输
到其他部位。在侵染细胞周围起化学屏障作用,阻挡病原
菌的进一步侵染。 ③ 病原物对植保素的诱导是非专一性的,致病的病原 菌和非致病的小种都能诱导植保素的形成。一些非生物的 因子(如紫外光、重金属等)也可能诱导植保素形成。
B:原有组分转化
主要指由糖苷类化合物转化而成的抗菌物质。
内 生菌
内生菌是指在其生活史的一定阶段或全部阶段生活于 健康植物的各种组织和器官的细胞间隙或细胞内的细菌、 真菌或放线菌。
1886:DeBarry于1886年提出“endophyte” 一词。 1991:Petrini提出内生菌是指生活史的一定阶段生活在 活体植物组织内不引起植物明显病害的微生物。 1992:Kleopper认为内生菌是指能够定殖在植物细胞间 隙或细胞内,并与寄主植物建立和谐联合关系的一类微生物, 能在植物体内定殖的致病菌和菌根菌不属于内生菌。
寄 主 专 化毒 素 非寄主专化毒素 酶的类型:
作用 机制
抑制寄主防卫机制 影 响 细 胞膜 透性 促进病原物的运动 增强寄主的敏感性
相关文档
最新文档