第1讲-等腰三角形

合集下载

第1讲 等腰三角形

第1讲 等腰三角形

第1讲等腰三角形知识点1.等腰三角形⑴定义:有两条边相等的三角形叫做等腰三角形。

⑵性质:①等腰三角形的两个底角相等(简称“等边对等角”);②等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”)。

③等腰三角形是轴对称图形。

⑶判定方法:①等腰三角形的定义;②如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

2.等边三角形(也叫正三角形)⑴定义:三条边都相等的三角形叫做等边三角形。

⑵性质:①等边三角形的各角相等,并且每一个角都等于60°;②等边三角形是轴对称图形。

⑶判定方法:①等边三角形的定义;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。

3.等腰直角三角形⑴定义:顶角是直角的等腰三角形叫做等腰直角三角形。

⑵性质:等腰直角三角形的两个锐角都等于45°。

知识点2.线段的垂直平分线:⑴定义:垂直并且平分一条线段的直线叫做这条线段的垂直平分线或中垂线。

⑵性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等。

⑶判定方法:线段的垂直平分线的定义;⑷重要规律:三角形的三边的垂直平分线相交于一点,这个点叫做三角形的外心,它到三角形的三个顶点的距离相等。

知识点3.角的平分线⑴性质:角平分线上的点到这个角的两边的距离相等。

⑵判定方法:角平分线的定义;⑶重要规律:三角形的三条角平分线相交于一点,这个点叫做三角形的内心,,它到三角形的三边的距离相等。

专题1—等腰三角形例1.等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为度.变式练习1:(2012广安)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或75°D.60°变式练习2:等腰三角形的一个角是另一个角的2倍,则这个等腰三角形的顶角等于.变式练习3:已知等腰三角形的一个外角等于140°,那么这个等腰三角形的顶角等于.变式练习4:(2012广元)已知等腰三角形的一个内角为80°,则另两个角的度数是:例2.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形变式练习1:性质“等腰三角形的三线合一”,其中所指的“线”之一是()A.等腰三角形底角的平分线B.等腰三角形腰上的高C.等腰三角形腰上的中线D.等腰三角形顶角的平分线变式练习2:等腰三角形的对称轴是.例3.(2012铜仁)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.9变式练习1:(2012孝感)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A.512-B.512+C.51-D.51+变式练习2:(2012黄冈)如图,在△ABC 中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC 的度数为________°.:例4.(2012攀枝花)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A. 20或16 B.20 C.16 D.以上答案均不对变式练习1:(2012随州)等腰三角形的周长为16,其一边长为6,则另两边为_________。

等腰三角形

等腰三角形

第一讲 等腰三角形知识点:一、认识三角形 1、三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做 三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线 3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

需要稳定的东西 一般都制成三角形的形状。

4、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形等边三角形 三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等 的直角三角形。

5、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

6、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

7、三角形的面积:三角形的面积=21×底×高 二、等腰三角形相关知识点 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

第1讲 等腰三角形八年级数学下册同步讲义(北师大版)

第1讲  等腰三角形八年级数学下册同步讲义(北师大版)

第1讲 等腰三角形 1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算. 知识点01 等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . 2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形 目标导航知识精讲等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【知识拓展1】根据等边对等角求角度例1.(2021·贵州·思南县张家寨初级中学八年级阶段练习)如图,在等腰三角形ABC中,AB=AC,点D为AC上一点,且AD=BD=BC,则∠A等于多少?例2.(2021·黑龙江省八五一一农场中学八年级期末)如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中∠CAB 的度数例3.(2021·广东·广州市白云区广大附中实验中学九年级阶段练习)已知:如图所示,在Rt△ABC中,∠C =90°,D是BC上一点,且DA=DB,∠B=15°.求∠CAD的度数.例4.(2021·广西三江·八年级期中)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,求∠C的度数.【即学即练1】如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【即学即练2】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【知识拓展2】利用三线合一求解与证明例1.(2021·湖北武汉·八年级阶段练习)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD =CE.⊥,垂足为D,E是BC延长线上的一点,例2.(2021·重庆·八年级期中)如图:已知等边ABC中,BD AC=,且CE CD(1)求证:BD DE=;(2)若M为BE中点,求证:DM平分BDE∠.例3.(2021·河南镇平·八年级阶段练习)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB 上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是_______(填序号).①SSS;②SAS;③AAS;④ASA;⑤HL(2)如图2,连接EF.①求证:△CEF ≌△DFE ;②求证:△PEF 是等腰三角形;③小军作图得到的射线OP 是∠AOB 的平分线吗?请判断并说明理由.例4.(2021·广东广州·八年级阶段练习)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,AB :AD :13BD =:12:5,ABC 的周长为36,求ABC 的面积.例5.(2022·黑龙江富裕·八年级期末)已知:在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,点E 为CD 上一点,且DE =AD ,连接BE 并延长交AC 于点F ,连接DF .(1)求证:BE =AC ;(2)若AB =BC ,且BE =2cm ,则CF = cm .例6.(2021·江苏滨海·八年级期中)如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC =16m,上弦长AB=10m,求中柱AD的长.【即学即练1】(2021·福建·福州三牧中学九年级阶段练习)如图,在△ABC中,∠A=40°,∠ABC=80°,BE 平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【即学即练2】(2021·黑龙江五常·八年级阶段练习)已知:以线段AB为边在线段的同侧作△ABC与△BAD,BC与AD交于点E,若AC=BD,BC=AD.(1)如图1,求证:CE=DE;AB的线段.(2)如图2,当∠C=90°,∠AEB=2∠AEC时,作EF⊥AB于F,请直接写出所有等于12【即学即练3】(2021·吉林·八年级期末)如图,在ABC 中,AB AC =,AD 为边BC 的中线,E 是边AB 上一点(点E 不与点A 、B 重合),过点E 作EF BC ⊥于点F ,交CA 的延长线于点G .(1)求证:AD //FG ;(2)求证:AG AE =;(3)若3AE BE =,且4AC =,直接写出CG 的长.【即学即练4】(2021·江苏·扬州市梅岭中学八年级阶段练习)在平面直角坐标系中,三角形△ABC 为等腰直角三角形,AC =BC ,BC 交x 轴于点D .(1)若A (﹣8,0),C (0,6),直接写出点B 的坐标 ;(2)如图2,三角形△OAB 与△ACD 均为等腰直角三角形,连OD ,求∠AOD 的度数;(3)如图3,若AD 平分∠BAC ,A (﹣8,0),D (m ,0),B 的纵坐标为n ,求2n +m 的值.【知识拓展3】等腰三角形中的分类讨论例1.在等腰三角形中,有一个角为40°,求其余各角.例2、已知等腰三角形的周长为13,一边长为3,求其余各边.【即学即练】如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,AB=5,AC=7,BC=8,△AEF 的周长为( )A .13B .12C .15D .20【知识拓展4】等腰三角形性质和判定综合应用例1、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E , BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.知识点02 等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【知识拓展4】等边三角形例1、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【即学即练】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【知识拓展5】在直角三角形中,30°角所对的直角边等于斜边的一半。

沪科版八上数学1等腰三角形--含30°角的直角三角形的性质教学课件

沪科版八上数学1等腰三角形--含30°角的直角三角形的性质教学课件
第15章 轴对称图形与等腰三角形
第3节 等腰三角形
含30°角的直角三角形的性质
1 课堂讲授
含30°角的直角三角形的性质 含30°角的直角三角形的性质的应用
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
知识点 1 含30°角的直角三角形的性质
知1-讲
1.定理:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
知2-讲
1 如图是屋架设计图的一部分,立柱BC垂直于横
梁AD,AB=8 m,∠A=30°,则立柱BC的长
度为( A )
A.4 m
B.8 mC.10 mD.16源自m知2-练知2-练
2 如图是某商场一楼与二楼之间的手扶电梯示意图,
其中AB,CD分别表示一楼、二楼地面的水平线,
∠ABC=150°,BC的长是8 m,则乘电梯从点B到
(1)画出礁石C的位置;(2)求从B处到礁石C的距离.
解:(1)以B为顶点,向北偏西60°作角, 这角一边与AC交于点C, 则点C为 礁石所在地.
知2-讲
解: (2)∵∠ACB= 60°-30°=30°,(三角形 的外角性质) 又∵∠BAC= 30°,∴∠BCA=∠BAC. ∴BC=BA. ∵BA=10×(10-8)=20(n mile), ∴BC=20(n mile). 即从 B处到礁石C的距离是20n mile.
1.在直角三角形中,30°角所对的直角边等于斜边的一 半.这个定理将特殊的直角三角形中的角度关系转化 为直角三角形中边的等量关系.在一般情况下,遇到 30°角常用的添加辅助线的方法就是作垂线,构造含 30°角的直角三角形,解决相关的线段问题.
2.利用含30°角的直角三角形的性质求有关线段的 长:

等腰三角形的性质PPT授课课件

等腰三角形的性质PPT授课课件

HK版 八年级上
第三章 声的世界
第2节 声音的特性
第2课时 噪声的防治
习题链接
提示:点击 进入习题
1 噪声;空气 4 dB;不能
答案呈现
7 人耳 10 见习题
2D
5D
8C
3C
6 声源;传播过程 9 B
基础巩固练
8.[中考·山东潍坊]将教室的门窗关闭,室内同学听到的 室外噪声减弱。对该现象说法正确的是( C ) A.室外噪声不再产生 B.噪声音调大幅降低 C.在传播过程中减弱了噪声 D.噪声在室内的传播速度大幅减小
AB=AC,

BD=CD,
AD=AD,
∴△BAD ≌△CAD (SSS).
∠B=∠C.
这样,我们就证明了性质1
感悟新知
归纳
知1-讲
我们可以发现等腰三角形的性质: 性质1 等腰三角形的两个底角相等(简写成“等边 对顶角”.
感悟新知
例 1 如图,在△ABC中,AB=AC,点D在AC上,且 BD=BC=AD,求△ABC各角的度数.
16 B
答案呈现
17 B 18 见习题 19 见习题
基础巩固练
1.某市已经明令禁止在城区内燃放烟花爆竹,因为燃放 烟花爆竹除了会造成空气污染外,燃放烟花爆竹时的 巨大声音还是一种___噪__声___(填“乐音”或“噪声”),爆 竹的巨大声音是__空__气____的振动产生的。
基础巩固练
7.[安徽霍邱月考]如图所示,在女子10 m气手枪比赛中,射 击时,很多运动员在耳朵里放一个耳塞或戴上耳罩,这 主要是在___人__耳___处减弱噪声。
能力提升练
解:(1)据题可知,“控制音量”是在声源处减弱噪声, 控制的是噪声的响度。

人教版八年级数学上册《等腰三角形》(第1课时)课件

人教版八年级数学上册《等腰三角形》(第1课时)课件

底边BC上的高AF,得出AF是顶角∠BAC的
平分线,再证AF∥DE即可. 1
1
2
证明:过点A作AF⊥BC于F,
∵AB=AC,AF⊥BC于F,
F
∴AF平分∠BAC,∴∠1= ∠BAC.
又∵∠BAC=∠D+∠AED,AD=AE, ∴∠D=∠AED,∴∠AED= 1 ∠BAC.
2 ∴∠1=∠AED, ∴AF∥DE, ∴DE⊥BC.
20cm或22cm
20 36°或90°
70°或40°
解:设∠A=x, ∵CD=AD,∴∠ACD=∠A=x, 又∵∠BDC=∠A+∠ACD=2x, ∵CD=CB,∴∠B=∠BDC=2x, 在△ABC中,∵AB=AC,∴∠B=∠BCA=2x, 又∵∠A+∠B+∠BCA=180°, ∴x+2x+2x=180°,x=36°, ∴∠A=36°,∠B=∠BCA=72°
13.3.1 等腰三角形
(第一课时)
1.了解等腰三角形的概念. 2.掌握等腰三角形的性质. 3.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形的概念和性质及其应用. 难点:等腰三角形的“三线合一”的性质的理解及 其应用.
阅读课本P75-77页内容,了解本节主要内容.
等腰
轴对称 底边上的高(顶角的平分线或底边上的中线) 所在的直线;
例1:如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD.求△ABC各角的度数. 解析:根据等腰三角形的性质,两底角相 等,利用三角形内角和定理建立方程. 解:设∠A=x°,
∵AD=BD,∴∠ABD=∠A=x°, ∴∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠C=∠BDC=2x°.
∵AB=AC,∴∠ABC=∠C=2x°. 在△ABC中, ∵∠A+∠ABC+∠C=180°,x°+2x°+2x°=180°, ∴x=36°,∴∠A=36°, ∴∠ABC=∠C=72°.

人教版《等腰三角形》ppt课件初中数学1

人教版《等腰三角形》ppt课件初中数学1

一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°

等腰三角形ppt课件

等腰三角形ppt课件
何图形的基本性质把复杂作图拆
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.


∵ DE=EB,∴∠ EBD= ∠ BDE= x°.

∴∠ BDC= ∠ A+ ∠ EBD= x°.


∵ BC=BD,∴∠ C= ∠ BDC= x°.


∵ AB=AC,∴∠ ABC= ∠ C= x°.



∴ x+ x+ x =18 0,解得x =4 5 .∴∠


A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成

北师大版八年级数学下册1.1等腰三角形课件(第2课时共32张)

北师大版八年级数学下册1.1等腰三角形课件(第2课时共32张)

A.1 cm
B.2 cm
C.3 cm
D.4 cm
课堂精练
7. 如图,在等边三角形ABC中,BD,CE是两条中 线,则∠1的度数为( C ) A.90° B.30° C.120° D.150°
课堂精练
8.【中考·南充】如图,等边三角形OAB的边长为 2,则点B的坐标为( D ) A.(1,1) B.( 3,1) C.( 3, 3) D.(1, 3)
北师版八年级数学下册
第1章 三角形的证明
1.1 等腰三角形 第2课时 等边三角形的性质
复习导入
等腰三角形有哪些性质? 1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,
即等腰三角形顶角的平分线、底边上 的中线及底边上的高线互相重合.
新知探究
一. 等腰三角形中相等的线段
在等腰三角形中画出一些线段(如角平分 线、中线、高等),你能发现其 中一些相等 的线段吗?能证明你的结论吗?
A.BD,CE为AC,AB边上的高
B.BD,CE都为△ABC的角平分线
C.∠ABD=
1 3
∠ABC,
∠ACE= 1 ∠ACB 3
D.∠ABD=∠BCE
课堂精练
3. 求等边三角形两条中线相交所成锐角的度数. 解:如图,在等边三角形ABC中,CE,BF分别是AB,
AC边上的中线,且CE与BF相交于点O, 则CE垂直平分AB,BF垂直平分AC, 在Rt△ABF中,∵∠A=60°, ∴∠ABF=30°. 在Rt△BEO中,∵∠EBO=30°,∴∠EOB=60°, 即等边三角形两条中线相交所成锐角的度数为60°.
②点G与点H一定重合;③点I与点H一定重合;④点G,点I
与点H一定重合.其中正确的有( D )

17.1 等腰三角形 - 第1课时课件(共23张PPT)

17.1 等腰三角形 - 第1课时课件(共23张PPT)
等边三角形的性质定理
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.

北师大八年级下册-第1讲-等腰三角形与直角三角形(教案)

北师大八年级下册-第1讲-等腰三角形与直角三角形(教案)
三、教学难点与重点
1.教学重点
(1)等腰三角形的性质与判定:掌握等腰三角形的底角相等、底边相等、高相等、中线相等、角平分线相等等性质,以及如何根据这些性质判断一个三角形是否为等腰三角形。
举例:在等腰三角形ABC中,若AB=AC,则∠B=∠C,BC为底边,AD为高,AE为角平分线,其中AD、AE、BC三条线段相等。
举例:在直角三角形HIJ中,若IJ为斜边,IJ²=IH²+HJ²。
(4)勾股定理的应用:能够运用勾股定理解决实际问题,如计算三角形的不定边长、判断一个三角形是否为直角三角形等。
举例:已知直角三角形的两条直角边分别为3cm和4cm,求斜边长。
2.教学难点
(1)等腰三角形的判定:学生需要理解并掌握多种判定方法,如两边相等、两角相等、对角线相等等,并能灵活三角形与直角三角形这一章节,整体来看,学生的学习态度非常积极,课堂氛围也不错。但在教学过程中,我也发现了一些需要改进的地方。
首先,对于等腰三角形和直角三角形的基本性质,大部分学生能够掌握,但在运用到实际问题中时,部分学生还是显得有些吃力。这说明我在教学中需要更注重培养学生的实际应用能力,将理论知识与生活实际相结合,让学生更好地理解几何知识在实际生活中的重要性。
同学们,今天我们将要学习的是“等腰三角形与直角三角形”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过一些三角形,比如在建筑物的设计中,或是家具的形状?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形与直角三角形的奥秘。
突破方法:通过画图、实际操作等方式,让学生直观感受等腰三角形的特点,加深对判定方法的理解。
(2)等边三角形的判定:学生容易混淆等边三角形与等腰三角形,需要强调等边三角形三条边都相等的特点。

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。

1.1第1课时等腰三角形的性质(教案)

1.1第1课时等腰三角形的性质(教案)
2.逻辑推理:引导学生运用定义和已知性质推导出等腰三角形的其它性质,培养逻辑推理和论证能力。
3.数学建模:通过解决实际问题,让学生学会运用等腰三角形的性质建立数学模型,提高解决实际问题的能力。
4.数学抽象:使学生能够从具体实例中抽象出等腰三角形的性质,培养数学抽象思维能力。
5.数学运算:在论证等腰三角形性质的过程中,训练学生的运算能力和严谨的数学态度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的定义、性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节等腰三角形的性质课程后,我进行了深入的思考。首先,我发现学生们对于等腰三角形的定义和性质的理解总体上是到位的。他们在课堂上能够积极参与,通过实际操作和小组讨论,对等腰三角形的性质有了直观的感受。
1.1第1课时等腰三角形的性质(教案)
一、教学内容
本节课选自八年级数学下册第五章“三角形”,第1课时“等腰三角形的性质”。教学内容主要包括以下三个方面:
1.等腰三角形的定义:两边相等的三角形称为等腰三角形,相等的两边称为腰,另一边称为底。
2.等腰三角形的性质:
a.等腰三角形的两底角相等。
b.等腰三角形的底边上的中线(即底边的中点到对角的线段)等于底边的一半,并且垂直于底边。
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版八年级数学上册课件:1.等腰三角形的判定

人教版八年级数学上册课件:1.等腰三角形的判定

A.15° C.20°
A
B.18° D.22.5°
关闭
答案
1
2
3
4
5
2.(2013·湖北宜昌中考)如图,在矩形 ABCD 中,AB<BC,AC,BD 相交于
点 O,则图中等腰三角形的个数是( ).
A.8
B.6
C.4
D.2
∵四边形 ABCD 是矩形, ∴AO=BO=CO=DO. ∴图中的等腰三角形是△ABO,△BCO,△DCO,△ADO,共 4 个,故选 C.
等腰三角形的判定
关闭
在△ABC 中,∠ABC=180°-∠A-∠C=180°-36°-72°=72°,
【∴∠例AB题C=】∠C,∴如AB图=A所C. 示,在△ABC 中,∠A=36°,∠C=72°,BD 为∠ABC 的平 分∵B线D 为,分∠A别BC计的算平∠分A线B, D,∠BDC 的度数,并说明图中有哪些等腰三关角闭形. ∴由∠A等BD腰=12三∠A角BC形=3的6°.性质及三角形的内角和,可求出∠ABD,∠BDC 的度
∴∠ABD=∠A.
∴数BD,由=A等D,∠腰BD三C角=∠A形BD的+判 ∠A=定72定°. 理可得出△ABC,△BCD,△ABD 是等腰三 ∴角∠B形DC. =∠C.
∴BD=BC. 综上所述,图中共有三个等腰三角形,分别为△ABC,△BCD,△ABD.
解析 答案
1
2
3
4
5
1.如图,在△ABC 中,点 D 在 AC 上,且 AB=AD,∠ABC=∠C+30°,则 ∠CBD=( ).答案 Nhomakorabea1
2
3
4
5
5.如图所示,AD 是△ABC 的角平分线,DE⊥AB,DF⊥AC,垂足分别是

第一章第01讲 等腰三角形的性质与判定(6类热点题型讲练)(解析版)

第一章第01讲 等腰三角形的性质与判定(6类热点题型讲练)(解析版)

第01讲 等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01 等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC D 中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD Ð=Ðìï=^Ð=Ð^Ð=Ðíï^î==若则若则若,则 知识点02 等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)21D C B A题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm,则第三边的长为cm.【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm,则底边为4cm,则第三边的长为8cm,488+>,故能组成三角形;②若一腰长为4cm,则底边为8cm,则第三边的长为4cm,+=,故不能组成三角形.448故答案为:8.【变式训练】解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02 根据等腰三角形等边对等角求角的度数题型03 根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE∵AB BC =,∴AE CE =,∵AC CD ^,90BAD Ð=°∴EBA BAE BAE Ð+Ð=Ð+Ð【答案】10【详解】解:AB Q 5BD CD \==,210BC BD \==,故答案为:10.(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC Ð=°,AB ∴222(2)BC AB AC =+=+∴190452B ACB Ð=Ð=´°=°,∵F 为BC 中点,题型04 根据等腰三角形三线合一进行证明 (1)若106BAC DAE ÐÐ=°,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =Ð=Ð=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ^,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD^连接AC AD ,∵AB AE ABC AED BC ED =Ð=Ð=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ^.2.如图,在ABC V 中,AB AC =,40BAC а=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD Ð的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形Ð,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BCV是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C Ð=ÐÐ=Ð,,再由角平分线的定义和等量代换得到B C Ð=Ð,即可证明ABC V 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C Ð=ÐÐ=Ð,,∵AD 平分CAE Ð,∴EAD CAD Ð=Ð,∴B C Ð=Ð,∴ABC V 是等腰三角形.【变式训练】【答案】ABC V 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x Ð=,3ECD x =∠,由角平分线的定义得到1【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06 等腰三角形的性质和判定综合应用【例题】如图,在ABC V 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC Ð交AC 于点E .(1)若40C Ð=°,求BAD Ð的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC V 的周长,AEF △的周长为15,求ABC V 的周长.【详解】(1)解:AB AC =Q ,C ABC \Ð=Ð,∵40C Ð=°,∴40ABC Ð=°,AB AC =Q ,D 为BC 的中点,AD BC \^,90BDA \Ð=°,∴90904050BAD ABC °°°°Ð=-Ð=-=;(2)证明:BE Q 平分ABC Ð,ABE EBC \Ð=Ð,又∵EF BC ∥,∴EBC BEF Ð=Ð,∴EBF FEB Ð=Ð,BF EF \=,BEF \V 是等腰三角形;(3)解:AEF QV 的周长为15,15AE AF EF \++=,BF EF =Q ,15AE AF BF \++=,即15AE AB +=,BE Q 平分ABC V 的周长,=15AE AB BC CE \++=,ABC \V 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC V 中,AB AC =,D 为CA 延长线上一点,DE BC ^于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80°,则这个等腰三角形的顶角为( ).A .20°B .80°C .100°D .20°或100°【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80°,∴等腰三角形的顶角为180808020°-°-°=°.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC V 中,,AB AC AD =为BC 边上的中线,30B Ð=°,则CAD Ð的度数为( )A .50°B .60°C .70°D .80°【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC V 是等腰三角形的是( )A .40B Ð=°,80C Ð=°B .123A BC ÐÐÐ=::::C .2A B CÐ=Ð+ÐD .三个角的度数之比是2:2:1【答案】D【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利A.16【答案】A【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.二、填空题【答案】117°/117度【分析】本题考查等腰三角形的性质,三角形内角和定理与外角的性质,根据等边对等角可得54BAC BCA °Ð=Ð=,CAE CEA Ð=Ð127CAE ACB Ð=Ð=°,1BAD Ð=Ð【答案】10°,80°,140°或20°【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC Ð=°,30ACB Ð=°,+ ∵BAC Ð是ABP V 的一个外角,∴20BAC APB ABP Ð=Ð+Ð=°,∵AB AP =,∵AB AP =,20BAP Ð=°,∴180802BAP ABP APB °-ÐÐ=Ð==°;当BA BP =时,如图:∵BA BP =,∴20BAP BPA Ð=Ð=°,∴180140ABP BAP BPA Ð=°-Ð-Ð=°;当PA PB =时,如图:∵PA PB =,∴20BAP ABP Ð=Ð=°;综上所述:当ABP V 是等腰三角形时,故答案为:10°,80°,140°或20°.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ^Q ,AD AC =AE \平分CAD Ð,CAE DAE \Ð=Ð,在CAE V 和DAE V 中,当AD BC^时,Q AB AC=,\142BD CD BC===,Q DEFV的周长DE DF EF=++,\DEFV的周长CE EF CD=+++(1)若120BAC Ð=°,求BAD Ð(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE Ð=Ð,求【答案】(1)见解析(2)108BAC Ð=°∵,AB AC AD AE ==.∴,BF CF DF EF ==,∴BD CE =.(2)∵,AB AC AD AE ==,AF ^∴BAF CAF Ð=Ð,DAF EAF Ð=Ð【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C Ð=Ð,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =Ð∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(4)同法(2)得到,FD BD CE EF ==,推出ADE V 的周长等于+AB AC ,即可得出结果;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C Ð=ÐÐ=Ð,∵AE 平分DAC Ð,∴DAE CAE Ð=Ð,∴B C Ð=Ð,∴ABC V 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD Ð,AC BD ∥,∴,ABC DBC ACB DBC Ð=ÐÐ=Ð,∴A ABC CB =Ð∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .理解概念:(1)如图1,在Rt ABC △中,90ACB Ð=°,CD AB ^,请写出图中两对概念应用:(2)如图2,在ABC V 中,CD 为角平分线,40A Ð=°,60B Ð=°.求证:动手操作:(3)当ACD V 是等腰三角形,DA DC =时,如图,则50ACD A Ð=Ð=°,BCD Ð=∴100ACB ACD BCD Ð=Ð+=°∠当ACD V 是等腰三角形,DA AC =则65ACD ADC Ð=Ð=°,BCD Ð∴5065115ACB Ð=°+°=°;当ACD V 是等腰三角形,CD AC =则1803ACD BCD B °-Ð=Ð=Ð=∴2603ACB ACD BCD Ð=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD Ð=Ð,设BDC BCD x Ð=Ð=,则B Ð=则1802ACD B x Ð=Ð=°-,由题意得,180250x x °-+°=,230x °。

等腰三角形知识点+经典例题

等腰三角形知识点+经典例题

第一讲等腰三角形【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.~作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;.(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.((2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质…等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。

2.3 等腰三角形的性质定理第1课时 等腰三角形性质定理1及等边三角形性质课件

2.3 等腰三角形的性质定理第1课时 等腰三角形性质定理1及等边三角形性质课件

新课讲解
几何语言
A
∵AB=AC,
∴∠B=∠C(等边对等角). B
C
巩固练习
1、等腰三角形一个底角为70°,它的顶角为__4_0__°_. 2、等腰三角形一个角为70°,它的另外两个角为 __7_0_°__,__4_0_°__或___5_5_°__,__5_5_°. 3、等腰三角形一个角为110°,它的另外两个角为 _______3_5_°__,__3_5__°_______.
证明:作顶角的平分线AD. 在△BAD和△CAD中,
AB=AC ( 已知 ),
∵ ∠1=∠2 ( 辅助线作法 ),
AD=AD (公共边) , ∴ △BAD ≌ △CAD (SAS). ∴ ∠B=∠C (全等三角形的对应角相等).
A 12 BDC
新课讲解
等腰三角形性质定理1
等腰三角形的两个底角相等. 也就是说,在同一个三角形中,等边对等角.
B
C
合作探究
探究1、任意画一个等腰三角形,用量角器测量一下它的
内角度数,你发现了什么? A
46°
两个底角 度数相等
67°67°
B
C
合作探究
探究2、把等腰三角形沿顶角平分线所在直线折叠,你有
什么发现?
A
两个底角
重合
猜想:等腰三角形
B
C
的两个底角相等.
验证猜想
已知:△ABC中,AB=AC.求证:∠B=∠C.
又∵∠3=∠1+∠A,
∴∠3=2∠1,
A
∴∠ABC=2∠1,即∠1=∠2,
∴在△BDC中,∠3+∠2+∠C=180°,即5∠2=180°,
解得,∠2=36°. ∴在△ABC中,∠A=∠2=36°,∠C=∠ABC=72°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲-等腰三角形3.(10广州)如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.【等腰三角形的性质和判定】7.(1)如图1,在△ABC中,AB=AC,∠C=30°,AD⊥AC,AD=2cm,则BC =.(2)如图2,在△ABC中,AB=AC,点D在BC上,且AD=BD,AC=CD,则∠B=°.8.如图,已知E为等腰△ABC的底边BC上一动点,过E作EF⊥BC交AB于D,交CA的延长线于F,问:(1)∠F与∠ADF的关系怎样?说明理由;(2)若E在BC延长线上,其余条件不变,上题的结论是否成立?若不成立,说明理由;若成立,画出图形并给予证明.图1AB CD图29.如图,在四边形ABCD 中,∠B =90°,DE ∥AB 交BC 于E ,交AC 于F ,∠CDE = ∠ACB =30°,BC =DE .(1)求证:△FCD 是等腰三角形; (2)若AB =4,求CD 的长.【等边三角形的性质和判定】10.如图,△ABC 为等边三角形,点D ,E 分别在BC ,AC 边上,且AE =CD ,AD ,BE 相交于点P .(1)求证:△ABE ≌△CAD ; (2)求∠BPD 的度数;(3)若BQ ⊥AD 于Q ,PQ =3,PE =1,求AD 的长.11.已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . (1)求证:AD =AE .(2)若BE ∥AC ,试判断△ABC 的形状,并说明理由.A BCDEPQ12.(13惠州)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为().A.16 B.18 C.20 D.16或20 13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD 的长是.14.(13南京)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=°.第13题第14题15.(13黔西南州)如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.如图,∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E,若OD=4cm,则PE=cm.第15题第16题【等腰三角形的综合应用】17.(13六中期中考)如图1:在△ABC中,AB=AC,∠B,∠C的平分线相交于点O,过点O作EF∥BC交AB,AC于E,F.(1)图中有几个等腰三角形?且EF与BE,CF间有怎样的关系?(2)若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF与BE,CF间的关系还存在吗?(3)若在△ABC中,AB≠AC,∠B的平分线与∠ACB的外角的平分线CO相交于O,过点O作OE∥BC交AB于E,交AC于F.如图3,这时图中还有等腰三角形吗?EF与BE,CF间的关系如何?为什么?图1 图2 图3CDBAABCOPDE18.如图,在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E,F分别是AB,AC上的动点,且BE=AF,求证:△DEF为等腰直角三角形;(2)在(1)的条件下,四边形AEDF的面积是否变化,证明你的结论;(3)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.19.(13六中期中考)如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.(1)在图1中,DE交AB于M,DF交BC于N.①证明:DM=DN;②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?请写出结论,不用证明.20.(1)在平面直角坐标系中,O 为坐标原点,A (2,-1),P 是x 轴上的一个动点,使△AOP 为等腰三角形,则符合条件的动点P 共有( ); A .4个B .3个C .2个D .1个(2)如图所示,在正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ). A .8 B .6C .4D .221.(14呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 °.22.如图,∠EAF =15°,AB =BC =CD =DE =EF ,则∠DEF =( ).A .90°B .75°C .70°D .60°23.(12斗门区一模)(1)在图1中,已知∠MAN =120°,AC 平分∠MAN .∠ABC =∠ADC =90°,则能得如下两个结论:a .DC =BC ;b .AD +AB =AC ,请你证明结论b ;CNMDBA图1(2)在图2中,把(1)中的条件“∠ABC =∠ADC =90°”改为∠ABC +∠ADC =180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.ABDM NC图2第一讲-参考答案1.A2.B3.34.C5.C6.47.(1)6;(2)36.8.(1)∠F=∠ADF,证明如下:证明:∵AB=AC,∴∠B=∠C,∵EF⊥BC,∴∠B+∠BDE=90°,∠C+∠F=90°∴∠BDE=∠F,∵∠ADF=∠BDE,∴∠ADF=∠F;(2)成立,证明:∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠ECF,∴∠B=∠ECF,∵EF⊥BC,∴∠B+∠BDE=90°,∠ECF+∠F=90°,∴∠BDE=∠F即∠ADF=∠F.9.证明:(1)∵DE//AB,∠B=90°,∴∠DEC=90°∴∠DCE=90°-∠CDE=60°∴∠DCF=∠DCE-∠ACB=30°∴∠CDE=∠DCF∴DF=CF∴△FCD是等腰三角形;(2)解:在△ACB和△CDE中,∵∠B=∠DEC,BC=DE,∠ACB=∠CDE,∴△ACB≌△CDE(ASA),∴AC=CD,在Rt△ABC中,∵∠B=90°,∠ACB=30°,AB=4,∴AC=2AB=8,∴CD=8.10.证明:(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=AC.又AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BPD=∠BAP+∠ABE=∠BAP+∠P AE=∠BAC=60°,(3)∵∠BPD=60°,BQ⊥PQ,∴∠PBQ=30°,∴PB=2PQ=6,∴BE=PB+PE=7,∵由(1)得△ABE≌△CAD,∴AD=BE=7.11.证明:(1)∵AB =AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠ADB =90°, ∵AE ⊥AB ,∴∠E =90°=∠ADB , ∵AB 平分∠DAE ,∴∠1=∠2,在△ADB 和△AEB 中,∵∠ADB =∠E ,∠1=∠2,AB =AB , ∴△ADB ≌△AEB (AAS ),∴AD =AE ; (2)△ABC 是等边三角形.证明如下:证明:∵BE ∥AC ,∴∠EAC =90°,∵AB =AC ,点D 是BC 的中点, ∴∠1=∠2=∠3=30°, ∴∠BAC =∠1+∠3=60°, ∴△ABC 是等边三角形.12.C13.314.4015.1516.217.解:(1)有5个等腰三角形;EF 与BE 、CF 间的关系是:EF =BE +CF =2BE =2CF .证明如下: 证明:∵EF ∥BC ,∴有∠EOB =∠OBC ,∠FOC =∠OCB ,又∵∠B ,∠C 的平分线交于O 点, ∴∠EBO =∠OBC ,∠FCO =∠OCB , ∴∠EOB =∠OBE ,∠FCO =∠FOC ,∴OE =BE ,OF =CF ,∴EF =OF +OE =BE +CF . 又∵AB =AC ,∴∠ABC =∠ACB , ∴∠EOB =∠OBE =∠FCO =∠FOC , ∴EF =BE +CF =2BE =2CF ;(2)有2个等腰三角形分别是:等腰△OBE 和等腰△OCF ;第(1)问中的EF 与BE ,CF 的关系是:EF =BE +CF .(3)有,还是有2个等腰三角形,△EBO ,△OCF ,EF =BE -CF ,理由如下:证明:∵EO ∥BC ,∴∠EOB =∠OBC ,∠EOC =∠OCG (G 是BC 延长线上的一点), 又∵OB ,OC 分别是∠ABC 与∠ACG 的角平分线 ∴∠EBO =∠OBC ,∠ACO =∠OCG , ∴∠EOB =∠EBO ,∠FCO =∠FOC , ∴BE =OE ,∴CF =FO ,又∵EO =EF +FO ,∴EF =BE -CF .18.(1)证明:连接AD ,∵AB =AC ,∠A =90°,D 为BC 中点,∴2BCAD BD CD ===,且AD 平分∠BAC ,∴∠BAD =∠CAD =45° 在△BDE 和△ADF 中,45BD AD B DAF BE AF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDE ≌△ADF (SAS ),∴DE =DF ,∠BDE =∠ADF ,∵∠BDE +∠ADE =90°,∴∠ADF +∠ADE =90°,即∠EDF =90°.∴△EDF 为等腰直角三角形.(2)解:四边形AEDF 面积不变.理解如下:证明:∵由(1)可知,△AFD ≌△BED ,∴S △BDE =S △ADF ,而S 四边形AEDF =S △AED +S △ADF =S △AED +S △BDE =S △ABD , ∴四边形AEDF 面积不会发生变化.(3)解:△DEF 为等腰直角三角形.证明:若E ,F 分别是AB ,CA 延长线上的点,如图所示:连接AD ,∵AB =AC ,∴△ABC 等腰三角形,∵∠BAC =90°,D 为BC 的中点,∴AD =BD ,AD ⊥BC ,∴∠DAC =∠ABD =45°,∴∠DAF =∠DBE =135°,又∵AF =BE ,∴△DAF ≌△DBE (SAS ).∴FD =ED ,∠FDA =∠EDB .∴∠EDF =∠EDB +∠FDB ,=∠FDA +∠FDB =∠ADB =90°.∴△DEF 仍为等腰直角三角形.19.证明:(1)①连接BD , ∵AB =BC ,∠ABC =90°,点D 为AC 的中点,∴BD ⊥AC ,∠A =∠C =45°,∴BD =AD =CD ,∴∠ABD =∠A =45°,∠MBD =∠C =45°,∵∠MDB +∠BDN =90°,∠NDC +∠BDN =90°,∴∠MDB =∠NDC ,在△MDB 和△NDC 中,∵∠MBD =∠C ,BD =CD ,∠MDB =∠NDC ,∴△MDB ≌△NDC (ASA ),∴DM =DN .②四边形DMBN 的面积不发生变化,理由如下:由①知S △BDM =S △CDN ,∴S 四边形DMBN =S △BCD ,∵△BDC 的面积是一个定值,∴四边形DMBN 的面积不发生变化,∵AB =AC =1,S △BCD =12S △ABC , ∴S 四边形DMBN =S △BCD =12S △ABC =14.(2)DM=DN仍然成立.理由如下:连接BD,由(1)知BD⊥AC,BD=CD∴∠ABD=∠ACB=45°,∵∠ABD+∠MBD=180°,∠ACB+∠NCD=180°,∴∠MBD=∠NCD,∵BD⊥AC,∴∠MDB+∠MDC=90°,∵∠NDC+∠MDC=90°,∴∠MDB=∠NDC,在△MDB和△NDC中,∠MBD=∠NCD,BD=CD,∠MDB=∠NDC,∴△MDB≌△NDC(ASA),∴DM=DN.(3)DM=DN仍然成立.20.(1)A(2)A21.63°或27°22.D23.(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,∵在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°,∴AC=2AD,AC=2AB,∴AD+AB=AC.(2)判断是:(1)中的结论a.DC=BC;b.AD+AB=AC都成立.理由如下:如图,在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴△ADC≌△EBC(ASA),∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.。

相关文档
最新文档