认识方程-PPT课件

合集下载

认识方程PPT免费

认识方程PPT免费
生物学中通过建立方程模 型来研究生物的生长、繁 殖和进化等问题。
跨学科领域中方程应用探讨
经济学
在经济学中,方程被用来描述市 场供需关系、价格变动等经济现
象。
社会学
社会学研究中,通过建立方程模型 来分析社会现象和社会问题。
环境科学
环境科学中利用方程来模拟和预测 环境变化,如气候变化模型等。
THANKS
加减消元法
当方程中两个方程的某一未知数的系数相等或互为相反数时 ,把这两个方程的两边相加或相减来消去这个未知数,从而 将二元一次方程组转化为一元一次方程来解。
实际问题中二元一次方程组应用
行程问题
利用二元一次方程组可 以解决相遇问题、追及
问题等行程问题。
工程问题
利用二元一次方程组可 以解决工作效率、工作 时间、工作总量之间的
认识方程PPT免费
目录
• 方程基本概念 • 一元一次方程 • 二元一次方程组 • 一元二次方程 • 分式方程和无理方程 • 方程在生活和科学中的应用
01
方程基本概念
方程定义与分类
方程定义
含有未知数的等式,表示两个数 学表达式之间的相等关系。
方程分类
根据未知数的个数、次数和系数 等特点,方程可分为一元一次方 程、一元二次方程、二元一次方 程组等。
去分母
通过两边乘以最小公倍数消去分母, 化为整式方程。
解整式方程
利用整式方程的解法,求出未知数的 值。
检验
将求得的解代入原方程,检验是否满 足原方程,并排除增根。
无理方程定义及解法
无理方程定义
转化
根号内含有未知数或绝对值符号内含有未 知数的方程称为无理方程。
通过换元法或平方法将无理方程转化为有 理方程。

5.1 认识方程 课件 (共20张PPT) 北师大版数学七年级上册

5.1 认识方程 课件  (共20张PPT) 北师大版数学七年级上册

4. 已知方程 (m 2)x m 1 3 m 5 是关于 x 的一元一 次方程,求 m 的值,并写出原方程.
解:因为方程 (m 2)x m 1 3 m 5 是关于 x 的一元 一次方程, 所以 |m|-1 = 1,且 m-2 ≠ 0,得 m = -2. 所以原方程为-4x + 3 = -7.
A. 3x-2=2x
B. 4x-1=2x+3
C. 3x+1=2x-1 D. 5x-3=6x-2
2. 若 x=4 是关于 x 的方程 ax=8 的解,则 a 的值 为___2___.
当堂小结
认识方程
方程的定义 一元一次方程
方程的解
课堂练习 1. x = 1 是下列哪个方程的解
A. 1 x 2 C. x 1 x 2
甲种支数 乙种支数 20支
解:设甲种铅笔买了 x 支,乙种铅笔买了 (20 - x) 支. 0.3x + 0.6(20-x) = 9,是一元一次方程.
(3)一个梯形的下底比上底多 2 cm,高是 5 cm,面 积是 40 cm2,求上底.
1 2 (上底+下底)×高 = 梯形面积
解:设上底为 x cm,则下底为 (x + 2) cm. 1 (x x 2)5 40,是一元一次方程. 2
x
415 424 433 442 451 460 379 388 …
10x + 15(45 - x) 46570 64655 6460 465 470 475 480 485 …
总结 使方程左、右两边的值相等的未知数的值,叫作方 程的解。求方程的解的过程称为解方程。
练一练
1. 下列方程中,解为 x=-2 的是( C )
典例精析
例1 判断下列各式哪些是方程:

《认识方程》说课课件.ppt

《认识方程》说课课件.ppt
依据课标说理念:
注重学生能力的培养 注重数学思想的渗透 注重数学知识的教学
丽江师范高等专科学校
结合理念说教材:
丽江师范高等专科学校
联系实际说学情
学生具备 学生已经获 用天平或台秤 得了有关“轻重” 称物体的生活 直观、具体的数 经验,能够正 学活动经验。学 确描述生活中 生又先理解了用 的等量情境。 字母表示数的意 义。
丽江师范高等专科学校
第三、教学内容编排不同


传统教材
对 比
解方程的教学与 列方程解应用题
现在教材
解方程的教学与 列方程解应用题
的教学分开进行。 的教学有机结合 。
丽江师范高等专科学校
地位作用
从具体的、确定的数过渡到用字母表示抽象 的、可变的数,是认识上的一个飞跃。
从列出算式解发展到列出方程解,这又是数 学思想方法认识上的一次飞跃。
丽江师范高等专科学校
教学重点
认识方程,会用方程表示简单情境中的等量关系。
教学难点
寻找等量关系是教学的难点。
丽江师范高等专科学校
实践反思说流程: 教学策略
1 注重生活原型,抽象“方程”模
型。
2 注重探究过程,体会“方程”内
涵。
3 注重思想渗透,领悟“方程”思
想。
丽江师范高等专科学校
策略一 注重生活原型,抽象“方程”模 型。
丽江师范高等专科学校
丽江师范高等专科学校 11级数学教育1班
姓名:吴迪
学号:201130201042
丽江师范高等专科学校
认识方程
通 解把课实 读 读握前践 教 学目思反 材 生标考思
丽江师范高等专科学校
主要内容
·用字母表示数 ·认识方程,会用方程表示简单的等量关系 ·等式的性质 ·解简单的方程:如3X+2=5 2X-X=3 ·初步学会用方程解决简单的实际问题

《认识方程》ppt课件

《认识方程》ppt课件

利润问题
其他问题
利用二元一次方程组表示进价、售价和利润 之间的关系,求解最大利润等问题。
如浓度问题、配套问题等,都可以通过设立 二元一次方程组进行求解。
04
一元二次方程
一元二次方程形式
一般形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$
标准形式
02
$(x-p)^2 = q$
含有绝对值的情况
需要根据绝对值的性质,分别讨论绝对值内部表达式的正负情况, 从而转化为常规的无理方程进行求解。
含有参数的情况
需要根据参数的不同取值范围,分别讨论方程的解的情况,从而 得到参数对方程解的影响。
06
方程在实际问题中应用
行程问题建模与求解
路程、速度和时间关系建模
通过方程表达路程、速度和时间之间的数学关系,如s=vt(s为路 程,v为速度,t为时间)。
标准形式
$x + a = b$,通过移项可将一般 形式转化为标准形式。
解一元一次方程方法
等式性质法
利用等式性质(等式两边 同时加上或减去同一个数, 等式仍成立)来解方程。
移项法
将方程中的未知数项移到 等式的一边,常数项移到 等式的另一边,从而解出 未知数。
合并同类项法
将方程中的同类项合并, 简化方程后求解。
不等式
用不等号连接的式子称为不等式,表示左右两边不 相等。
不等式性质
不等式两边同时加上或减去同一个数,不等式性质 不变;不等式两边同时乘以或除以同一个正数,不 等式性质不变;不等式两边同时乘以或除以同一个 负数,不等式反向。
02
一元一次方程
一元一次方程形式
一般形式

北师大版七年级上册数学5.1 认识方程PPT课件

北师大版七年级上册数学5.1 认识方程PPT课件
树苗原来的高度40厘米+长的高度=1米
解:设大约x周后树苗长到1米,根据题意得: 40+5x=100.
探究新知
(2)第六次全国人口普查统计数据(2010年11月1日新华社公布). 截止2010年11月1日0时,全国每10万人中具有大学文化程 度的人数为8930人,比2000年7月1日0时增长了147.30%, 2000年6月底每10万人中约有多少人具有大学文化程度?
课堂检测
能力提升题
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买了 两种铅笔共20 支,两种铅笔各买了多少支?
买甲种共用的钱+买乙种共用的钱=9元 甲种支数+乙种支数=20支
解:设甲种铅笔买了x支,乙种铅笔买了(20-x)支.
0.3x+0.6(20-x)=9,是一元一次方程.
课堂检测
探究新知 归纳小结 判断一个数值是不是方程的解的步骤: 1. 将数值代入方程左边进行计算; 2. 将数值代入方程右边进行计算; 3. 若左边=右边,则是方程的解,反之,则不是.
巩固练习
变式训练
1.下列一元一次方程中,解为 x=1 的是( B )
A. 2x+1=4
B. x+1=2
C. 2x-3=5
A. 1-x=2
B. 2x-1=4-3x
C.
x+1 2
=x-2
D. x-4=5x-2
2. 若 x =1是方程x2 -2mx +1=0的一个解,则m的值为( C )
A. 0
B. 2
C. 1
D. -1
课堂检测
基础巩固题
3. 下列方程:
①x -2=
1 x
④y2 -4y=3

5.1 认识方程(课件)青岛版(2024)数学七年级上册

5.1 认识方程(课件)青岛版(2024)数学七年级上册

一元一次方程, 则k的值是( )
A. 1
B. 2
C. -1
D. 3
解题秘方:由一元一次方程的定义可知未知数的 次数为1,系数不为0,据此求出k的值.
感悟新知
解:根据题意,得k-1 ≠ 0且|k-2|=1 . 由|k-2|=1,得k-2=±1 ,所以k=3或k=1. 由k-1 ≠ 0,得k ≠ 1 . 所以 k=3. 答案:D
感悟新知
特别解读
知2-讲
①②③是判断一元一次方程的三个标准,其中“元”
指“未知数”,“次”指“未知数的次数”,“整式”指
分母不含未知数.
任何一个一元一次方程经过化简与整理后都可以写成
标准形式ax+b=0(a ≠ 0),a ≠ 0是重要条件,也是判断是
否为一元一次方程的根本条件.
感悟新知
知2-讲
2. 一元一次方程的标准形式 任何一个一元一次方程变形后总可以化为ax+b=0的形 式. 其中x是未知数,a,b是已知数,且a ≠ 0 . 我们把 ax+b=0叫作一元一次方程的标准形式.
2-1. 在方程3x-y=2,x+1x-2=0,12x=12,x2-2x-3= 0 中,一元一次方程有( A )
A. 1 个
B. 2个
C. 3 个
D. 4个
感悟新知
知2-练
特别提醒 判断一元一次方程不仅要看原方程,还要看化
成标准形式后未知数的系数是否为0.
感悟新知
知2-练
例 3 [期末·枣庄峄城区] 若方程(k-1)x|k-2|=3是关于x的
C. 4个
D. 5个
感悟新知
知1-练
解题秘方:紧扣方程的“两个条件”进行判断.
解:①不是方程,因为它不含未知数;③ 不是方程,因为 它不是等式;⑥不是方程,因为它不是等式;②④⑤均满 足方程的“两个条件”,是方程. 答案:B

方程课件ppt课件ppt

方程课件ppt课件ppt

方程的种类
总结词
列举方程的不同类型
详细描述
一元一次方程、一元二次方程、二元一次方程、二元二次方程等。每种类型的方 程都有其特定的形式和特点。
方程的解法概述
总结词
概括方程的解法流程
详细描述
解方程的基本步骤包括去分母、去括号、移项、合并同类项和化简等。根据不同类型的方程,解法会有所不同。
02 一元一次方程
数学建模与方程的关系
01
方程是数学建模的重要工具之一,用于描述实际问题中 变量之间的关系。
02
通过方程,可以建立实际问题的数学模型,进而求解和 分析。
03
不同类型的实际问题可能需要建立不同类型的方程,如 代数方程、微分方程、积分方程等。
1.谢谢聆 听
基于泰勒级数展开,通过迭代逐 步逼近非线性方程组的解。
拟牛顿法
改进牛顿法,使用拟牛顿矩阵代 替海森矩阵,提高迭代效率。
梯度下降法
基于函数梯度的负方向搜索最优 解,适用于大规模非线性优化问
题。
06 数学建模与方程的应用
数学建模的基本概念
数学建模
运用数学语言和方法,通过抽象、简 化建立能近似刻画并解决实际问题的 一种强有力的数学工具。
一元一次方程的定义
总结词
一元一次方程的基本定义
详细描述
一元一次方程是只含有一个未知数,且该未知数的次数为1的方程。它的一般形式是 ax + b = 0,其 中 a 和 b 是常数,x 是未知数。
一元一次方程的解法
总结词
一元一次方程的解法
详细描述
一元一次方程的解法包括移项、 合并同类项和系数化为1等步骤。 解一元一次方程的目的是求出未 知数的值。
多元一次方程组

5.1 认识方程 课件(共21张PPT)

5.1  认识方程  课件(共21张PPT)
则大水杯的单价为 (x+5) 元 个 ,买 3个大水杯的钱的代数表达: 3(x +5)元
4 x=3(x +5)
“表示同一个量的两个不同的式子相等”是一个基本的相等关系.
列算式:列出的算式表示解题的计算过程, 只能用已知数.对于较复杂的问题,列算式比较困难.
列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题比较方便.
___3_m___+___7_n__=___7_6______。
购买费用的代数表达:( 3 m + 7 n ) 元
当m=2,n=10时,左边=3×2+7×10=76=右边 我们把m=2,n=10这一对数 叫作方程3m+7n=76的一个解。
(4) 用买3个大水杯的钱,可以买4个小水杯, 大水杯的单价比小水杯的单价多5元,小水杯的单价是多少元? 设小水杯的单价为 x 元 个 , 买 4个小水杯的钱的代数表达: 4 x 元 ,
(2) 如图,一个面积为15的长方形分成一个正方形和 一个宽为2的长方形,问:分成的正方形的边长为a2 cm2.
大长方形面积的代数表达:
使方程左右两边相等的未知数的值,叫作方程的解。
(3)小明到超市购买m瓶单价为3元的
和n支单价为7元的笔共花费76元,可得方程:
第五章 一元一次方程
认识方程
浙教版七年级上册
温故知新:
(1)用一根长24 cm的铁丝围成一个正方形,
正方形的边长是多少? 列算式: 24÷4
设正方形的边长为x cm.
正方形周长的代数表达:4 x (cm)
x
4x 24
像这样,先设出字母表示未知数,然后根据问题中的相等关系, 列出一个含有未知数的等式,这样的等式叫作方程 。

2024年秋新北师大七年级数学上册 第1节 认识方程(课件)

2024年秋新北师大七年级数学上册 第1节 认识方程(课件)

地, 每小时比原计划多走1 km,因此提前12 min到达乙地.
(1)这个情境涉及哪些量?它们之间有怎样的等量关系? 涉及的量: 张叔叔原计划每小时走的路程、实际每小时走的路 程、原计划所用时间、实际所用时间
问题3:甲、乙两地相距22 km,张叔叔从甲地出发到乙地, 每小时比原计划多走1 km,因此提前12 min到达乙地. (2)如果设张叔叔原计划每小时走x km,那么他比原计划提前 的时间可以用含x的代数式表示为______.
解法一 鸡:(35×4-94) ÷2=23(只) 兔:35-23=12(只).
解法二 兔:(94-35×2) ÷2=12(只) 鸡: 35-12=23 (只)
合作交流,探究新知
探究点1:根据问题列方程
问题1: 在班级秋游活动中,全体学生和老师共购买了45张门票,学生票每张10 元,成人票每张15元,师生总票款为475元. 你知道学生和老师的人数分 别是多少吗?购买学生票和成人票的票款分别是多少? (1)这个问题涉及哪些量?它们之间有怎样的等量关系? (2)如果设学生人数为x,那么师生总票款可以用含x的代数式表示为____. (3)你能得到怎样的表示量相等的式子?
部,它解的:17,设其“和它等”于1为9.”x,你得能求x出 问17 x题中19的“它”吗?
(2)某球队参加足球联赛,规定每队胜一场得3分,平一场得1分, 负一场得0分. 球队已比赛了10场,并保持不败,一共得了22分. 该 球队已胜了多少场?平了多少场?
解:设该球队已胜了x场,则平了(10-x)场
探究2:一元一次方程的概念与方程的解
Ⅰ.一元一次方程的概念
问题1 观察方程10x+15(45-x)=475,2x+3=7x+4,它们有什么

认识方程课件

认识方程课件

认识方程课件一、方程的概念方程是数学中一个基本概念,它是表示两个表达式相等的一种数学语句。

方程通常包含一个或多个未知数,通过解方程可以找到未知数的值。

方程在数学、科学和工程等领域有广泛的应用,是解决实际问题的重要工具。

二、方程的分类根据方程的次数,方程可以分为一次方程、二次方程、三次方程等。

一次方程的最高次数为1,例如一元一次方程。

二次方程的最高次数为2,例如一元二次方程。

三次方程的最高次数为3,例如一元三次方程。

三、方程的解法解方程是找到使方程成立的未知数的值。

解方程的方法有很多,下面介绍几种常见的解方程方法:1.代入法:代入法是将一个表达式代入另一个表达式中,通过简化得到未知数的值。

代入法适用于求解二元一次方程组。

2.消元法:消元法是通过消去一个未知数,将方程简化为一元方程,然后求解未知数的值。

消元法适用于求解二元一次方程组。

3.分式方程求解:分式方程求解是将分式方程转化为整式方程,然后求解未知数的值。

分式方程求解适用于分式方程。

4.方程的图像法:方程的图像法是通过绘制方程的图像,观察图像与坐标轴的交点,得到方程的解。

方程的图像法适用于一元一次方程和一元二次方程。

四、方程的应用方程在数学、科学和工程等领域有广泛的应用。

在数学中,方程可以用于解决几何问题、求解函数的极值、求解数列的通项公式等。

在科学中,方程可以用于描述自然现象、建立物理模型、求解化学反应的平衡等。

在工程中,方程可以用于设计电路、计算结构的强度、优化生产过程等。

五、总结方程是数学中一个基本概念,它是表示两个表达式相等的一种数学语句。

方程可以根据未知数的个数和方程的次数进行分类。

解方程是找到使方程成立的未知数的值,常用的解方程方法有代入法、消元法、分式方程求解和方程的图像法。

方程在数学、科学和工程等领域有广泛的应用,是解决实际问题的重要工具。

重点关注的细节:解方程的方法解方程是数学中的核心内容之一,它涉及到多种方法和技巧。

在数学教育中,解方程的方法是需要学生重点掌握的技能,因为这些方法不仅是解决数学问题的工具,也是培养学生逻辑思维和解决问题能力的重要途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用 字 母 表 示 数
1只青蛙,1张嘴,2只眼睛,4条腿,1声扑通跳下水。
1只青蛙,1张嘴,2只眼睛,4条腿,1声扑通跳下水。 2只青蛙,2张嘴,4只眼睛,8条腿,2声扑通跳下水。
1只青蛙,1张嘴,2只眼睛,4条腿,1声扑通跳下水。 2只青蛙,2张嘴,4只眼睛,8条腿,2声扑通跳下水。 3只青蛙,3张嘴,6只眼睛,12条腿,3声扑通跳下水。
m2 平方分米 dm2 平方厘米 cm2 平方毫米 mm2
平方米
t kg g
字母不但表示数,还可以表示其它的含义,在我们生活中的应用非常广泛 。
努 力 吧 !
1只手有5个手指; 2只手有10个手指; n只手有( )个手指。
说出下面哪组中的两个式子结果一定相同。
62
6+6
x· x
2x
2.5a 2.5+a a×a
a2
10a+b 1.一个两位数,十位上的数是 a,个位上的数是b,这个两位数是 ( )。 2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c, 这个三位数是( )。
100a+10b+c
14 6 5
=
12 10
15
3
= 9
30 5 6 7
56 8 4
a9Leabharlann = 36x21 3
= 7
a
x
一列火车每小时行60千米,从甲站到乙站行了 4.5小时。甲乙两站之间的铁路长多少千米?
路程

S=vt
速度
×
时间
=60×4.5 =270(千米)
乘法交换律
a×b=b×a
乘法结合律 (a
·b)·c
=
a ·(b ·c )
用字母表示运算定 律,简明易记、便 于应用。
把下面每种图形的面积计算公式用字母表示出来
S = a· a
a
S = a2
a
读作:a的平方, 表示2个a相乘。
为了书写方便,人们常用字母表示计量单位。
长度单位 千米 Km 米 m 分米 dm 厘米 cm 毫米 mm
面积单位
平方千米 km2
质量单位
吨 千克 克
你能用一句话表示这首儿歌吗?
n只青蛙
张嘴
……
在月球上,人能举起物体的质量是地面上的6倍。
在地球上能举起 在月球上能举起 物体的质量/kg 物体的质量/kg
1 2 3 …… a 1×6=6 2×6=12 3×6=18
…… 6a
a×6通常写作:3· a或3a, 数字一般写在字母前面。
12 3 9 8
相关文档
最新文档