(完整版)泰勒公式及其应用(数学考研)

合集下载

泰勒公式在考研数学的常见应用

泰勒公式在考研数学的常见应用

泰勒公式在考研数学的常见应用泰勒公式在解题中的妙用——从几道数学考研题说起泰勒公式是数学分析中的重要工具之一,它反映了函数在某一点处的局部行为。

在很多数学问题中,泰勒公式的应用可以帮助我们更好地理解问题的本质,从而找到更简洁高效的解题方法。

本文将从几道数学考研题入手,详细阐述泰勒公式在解题中的应用,同时介绍一些应用技巧和注意事项,并进一步拓展泰勒公式在更高维度和更复杂问题中的应用。

求limx→0⁡(1+x+x2/2−−−−−−−√)−1x−−−−−−−−−−−−−−−√ex−1ex−1这道考研题中,我们可以将函数f(x)=(1+x+x2/2)−−−−−−−−−−−−−−−√ex −1在x=0处展开成泰勒级数,然后利用级数求和的方法得到答案。

具体步骤如下:f(x)=ex−1+xex−1+x22ex−1=(x+1)+x22+O(x3)因此,limx→0⁡f(x)=limx→0⁡(x+1)+limx→0⁡x22+O(x3)=12+1+0=32这道考研题可以利用泰勒公式将sin⁡xx展开成幂级数,然后求导n 次得到答案。

具体步骤如下:y=sin⁡xx=∑k=0∞(−1)k×x2k+O(x3)y(n)=∑k=n∞(−1)k×2k×x2k−n+O(x3)因此,y(n)(0)=∑k=n∞(−1)k×2k×1=(−1)n×2n×1=2n×(−1)n证明:(1+x)ln⁡(1+x)−xx=O(x3)这道考研题可以利用泰勒公式将等式中的函数展开成幂级数,然后进行恒等变形得到答案。

具体步骤如下:f(x)=(1+x)ln⁡(1+x)−xx=(1+x)(ln⁡1+ln⁡(1+x))−xx=x+x2+O(x3)−ln⁡(1+x)+O(x3)=O(x3)因此,f(x)(0)=0+0+…=0,即(1+x)ln⁡(1+x)−xx=O(x3)成立。

泰勒公式在很多数学问题中都有着广泛的应用,例如在微积分、线性代数、概率论等领域。

常见的泰勒公式考研

常见的泰勒公式考研

常见的泰勒公式考研
泰勒公式是数学中的一个重要公式,用于表示一个函数在某一点的局部近似。

在考研数学中,泰勒公式也是一个常见的知识点,下面介绍几种常见的泰勒公式:
1. 麦克劳林公式:当x趋近于0时,可以把函数f(x)展开成一个无穷级数,即麦克劳林级数,用于计算函数在0处的近似值。

2. 带余项的泰勒公式:该公式在计算函数在某一点处的近似值时,会加上一个余项,用于表示误差大小。

3. 拉格朗日余项公式:该公式是带余项的泰勒公式的一种特殊情况,余项用拉格朗日中值定理求得。

4. 佩亚诺余项公式:该公式也是带余项的泰勒公式的一种特殊情况,余项用佩亚诺余项公式求得。

以上是几种常见的泰勒公式,考生在备考中需要熟练掌握。

- 1 -。

2024考研数学常见泰勒公式展开式

2024考研数学常见泰勒公式展开式

2024考研数学常见泰勒公式展开式泰勒公式是数学分析中的一个重要定理,它给出了一个函数在其中一点附近的多项式逼近。

它的形式如下:设函数f在点x=a处n+1次可导,则它在点x=a处的泰勒展开式为:\[f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)\]其中,Rn(x)为泰勒余项,余项有以下形式:\[R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}\]其中a<c<x为函数f在区间[a,x]上的其中一点。

常见的泰勒公式展开式如下:1.指数函数的泰勒展开式:\[e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n! }+R_n(x)\]其中\[R_n(x)=\frac{e^c}{(n+1)!}x^{n+1}\]2.正弦函数的泰勒展开式:\[\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{\cos c}{(2n+2)!}x^{2n+2}\]3.余弦函数的泰勒展开式:\[\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{\sin c}{(2n+1)!}x^{2n+1}\]4.自然对数函数的泰勒展开式:\[\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1}\frac{x^n}{n}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{(1+c)^{-n}}{n+1}x^{n+1}\]5.三角函数的泰勒展开式:\[\begin{align*} \sin x &= x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+\frac{(-1)^n}{(2n+1)!}x^{2n+1} \quad \text{(奇次项展开式)} \\ \cos x &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+\frac{(-1)^n}{(2n)!}x^{2n} \quad \text{(偶次项展开式)} \end{align*}\]除了上述常见的泰勒展开式之外,还有一些其他函数的泰勒展开式,如二次函数、指数对数混合形式等,这些展开式在不同的数学问题中有着重要的应用。

(完整版)泰勒公式及其应用(数学考研)

(完整版)泰勒公式及其应用(数学考研)

第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =第2章 预备知识2求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.第2章 预备知识4定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得第3章 泰勒公式的应用632020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:第3章 泰勒公式的应用82002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:第3章 泰勒公式的应用100)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有第3章 泰勒公式的应用 12691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n ,所以f 在0x 的开邻域 ),(0δx B 内的n 阶Taylor 公式为第3章 泰勒公式的应用 14))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x+∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x-∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即第3章 泰勒公式的应用16 )(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题, 因此上例实际上也是)(x f '',)(x f '''的归零。

泰勒公式在考研数学的常见应用

泰勒公式在考研数学的常见应用

泰勒公式在考研数学的常见应用泰勒公式是高等数学的重要公式,也是考研数学的重要考点,在求极限,中值定理的证明题等方面有着广泛的应用,熟练掌握泰勒公式的几种常见应用对于考研复习是至关重要的,本人结合多年教学经验和考研数学的研究,系统总结了泰勒公式的一些常见应用和解题技巧。

泰勒中值定理:若f(x)在含有x0的某个开区间(a,b)内具有n+1阶导数,则对任一x∈(a,b),有f(x)=f(x0)+f′(x0)(x-x0)+f″(x0)(x-x0)2+…+f(n)(x0)(x-x0)n+f(n+1)(ξ)(x-x0)n+1(1)这里ξ是x0与x之间的某个值。

公式(1)称为f(x)的带有拉格朗日余项的n阶泰勒公式。

若f(x)在x0具有n阶导数,则对任一x∈U(x0,δ),有(2)公式(2)称为f(x)的带有佩亚诺余项的n阶泰勒公式。

泰勒中值定理是讨论函数和各级高阶导数之间关系的中值定理,带有拉格朗日余项的泰勒公式具有区间的性质,因此一般用于证明等式或者不等式,带有佩亚诺余项的泰勒公式具有局部的性质,一般用于求极限。

1 利用泰勒公式求极限若分子、分母是多个同阶无穷小量的代数和,且洛必达法则求解过程复杂时,用泰勒公式求极限。

解题方法和步骤:①展开分母各项,直到合并同类项首次出现不为零的项。

②将分子的各项展开至分母的最低阶次。

③代入后求极限。

例1:计算分析:“”用洛必达法则计算复杂,考虑用泰勒公式求解。

解:由于原式2 利用泰勒公式证明等式或不等式利用泰勒公式证明问题要全力分析三个问题:(1)展开几阶泰勒公式。

由泰勒公式知,条件给出n+1阶可导,展开至n阶。

(2)在何处展开(展开点x0)。

展开点x0通常选取导数为零的点,区间的中点,函数的极值点。

(3)展开后x取何值。

通常选取x为区间的端点。

例2:设函数f(x)在闭区间[-1,1]上具有三阶连续的导数,且f(-1)=0,f(1)=1。

f′(0)=0,证明在(-1,1)内至少存在一点[-1,1],使得f″(ξ)=3。

考研泰勒公式大全

考研泰勒公式大全

考研泰勒公式大全考研泰勒公式是考研数学中的一个重要知识点,也是数学分析中的经典内容。

它是基于函数的无数阶导数和函数值之间的关系,可以用来近似计算函数的值。

由于涉及到较多的公式推导和应用场景,下面将详细介绍泰勒公式的推导过程和一些常见的应用。

1.雅可比泰勒公式泰勒公式的最基本形式是雅可比泰勒公式,它可以通过有限次的求导得到。

假设函数f(x)在x=a处具有无限次可导,那么在x=a处,f(x)的泰勒展开式可以写作:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x)(1)其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a 处的二阶导数,f^n(a)表示f(x)在x=a处的n阶导数,(x-a)^n表示(x-a)的n次幂,n!表示n的阶乘。

公式(1)中的最后一项Rn(x)表示余项,用来衡量泰勒展开式与原函数之间的误差。

当n趋向于无穷大时,如果余项Rn(x)趋于0,则泰勒展开式可以无限逼近原函数f(x),也就是可以用泰勒展开式来近似计算f(x)的值。

2.泰勒公式的推导泰勒公式的推导步骤可以通过数学归纳法来进行证明。

首先,我们有泰勒公式的一阶导数形式:f(x)=f(a)+f'(a)(x-a)+R1(x)其中,R1(x)为余项,我们将其化简为:R1(x)=f(x)-f(a)-f'(a)(x-a)然后,我们对R1(x)进行第一次求导:R1'(x)=f'(x)-f'(a)接着,将R1(x)和R1'(x)带入泰勒公式的形式中,我们可以得到泰勒公式的二阶导数形式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+R2(x)其中,R2(x)为二阶导数形式的余项,其化简步骤为:R2(x)=f(x)-f(a)-f'(a)(x-a)-f''(a)(x-a)^2/2!通过类似的推导方式,我们可以继续得到更高阶导数形式的泰勒公式,即得到公式(1)的形式。

初数数学公式解析泰勒公式

初数数学公式解析泰勒公式

初数数学公式解析泰勒公式泰勒公式是数学中常用的公式之一,它可以将一个函数在某一点附近展开成一个无穷级数,从而更加方便地进行计算和近似。

在初等数学中,我们经常会遇到需要使用泰勒公式的情况,下面我们就来详细解析泰勒公式及其应用。

一、泰勒公式的形式泰勒公式是根据函数在某点附近的函数值和其各阶导数的值来进行展开的。

对于一个光滑的函数f(x),在某一点a处,我们可以将其泰勒展开为以下形式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a处的二阶导数,以此类推。

二、泰勒公式的应用1. 近似计算通过泰勒公式展开,我们可以将一个复杂的函数转化为一个无穷级数,从而实现对该函数的近似计算。

在实际应用中,我们通常只取前几项,即保留到某个阶数的导数,从而得到一个近似值。

这种方法在数值计算和工程问题中具有重要的意义。

2. 函数图像的分析通过泰勒公式展开,我们可以更好地理解函数在某一点附近的性质。

例如,通过计算函数的导数可以确定函数在某点的增减性、凹凸性以及极值点的位置等。

3. 解析函数的求导对于一些复杂的函数,直接对其进行求导可能比较困难。

但通过使用泰勒公式展开后,我们可以较为方便地求出函数的导数。

这对于解析函数的微积分问题有很大的帮助。

三、泰勒公式的局限性需要注意的是,泰勒公式只能在某一点的附近作近似,其近似程度与展开阶数相关。

当阶数较低时,近似效果可能并不理想。

另外,对于非光滑函数或者在某一点处不光滑的函数,泰勒公式无法应用。

四、例题分析我们通过一个例题来进一步说明泰勒公式的应用。

例题:计算函数f(x) = sin(x)在x=0处的泰勒展开式,保留到二阶导数。

解:首先,我们计算出函数f(x) = sin(x)的一、二阶导数:f'(x) = cos(x)f''(x) = -sin(x)然后,根据泰勒公式的形式,展开式为:f(x) ≈ f(0) + f'(0)(x-0) + f''(0)(x-0)^2/2!化简后得到:f(x) ≈ 0 + 1(x) + (-sin(0))(x^2)/2即:f(x) ≈ x - (1/2)x^2这样,我们就得到了f(x) = sin(x)在x=0处的二阶泰勒展开式。

考研高数总复习泰勒公式(讲义)PPT课件

考研高数总复习泰勒公式(讲义)PPT课件
即,泰勒公式是一阶微分近似式和拉氏公式的 推广
2.取 x0 0,
在0 与x 之间,令 x (0 1)
则余项
Rn ( x)
f (n1) (x) x n1
(n 1)!
Foil 10
麦克劳林(Maclaurin)公式
f ( x) f (0) f (0)x f (0) x 2 f (n) (0) x n
误差 Rn ( x) f ( x) P:
1.若在 x 0 点相交

似 程
Pn ( x0 ) f ( x0 )
度 越
2.若有相同的切线
来 越
Pn( x0 ) f ( x0 )
好 3.若弯曲方向相同
Pn( x0 ) f ( x0 )
y
o
皮亚诺形式的余项
f (x)
n k0
f
(k)( x0 )( x k!
x0 )k
o[( x
x0 )n ]
Foil 9
注意:
1. 当n 0 时,泰勒公式变成拉氏中值公式
f ( x) f ( x0 ) f ( )( x x0 )
(在x

0
x之
间)
当 n=1 时,略去余项,得到一阶微分近似式
f (x) f (x0 ) f '(x)(x x0 )
注 意 到 f ( x ) (n1) e x
代入公式,得
e x 1 x x 2 x n e x x n1 (0 1).
2!
n! (n 1)!
Foil 13
由公式可知
ex 1 x x2 xn
2!
n!
估计误差 (设 x 0)
Rn ( x)
ex x n1 (n 1)!

考研泰勒公式大全

考研泰勒公式大全

考研泰勒公式大全泰勒公式是指对于可导函数在一些点附近进行近似展开的一种方法,泰勒公式包括一阶泰勒公式、二阶泰勒公式、高阶泰勒公式等。

下面将详细介绍泰勒公式的各种形式以及应用。

1.一阶泰勒公式:一阶泰勒公式也称为线性近似公式,其形式如下:f(x)=f(a)+f'(a)(x-a)其中,f(x)表示可导函数在点x处的函数值,f(a)表示可导函数在点a处的函数值,f'(a)表示可导函数在点a处的导数的值。

一阶泰勒公式的应用:一阶泰勒公式可以用来进行函数曲线的直线近似,特别是在计算中的一些复杂函数值时,可以通过一阶泰勒公式进行近似计算。

同时,一阶泰勒公式也可以用来求函数在一些点处的导数值。

2.二阶泰勒公式:二阶泰勒公式也称为二次近似公式,其形式如下:f(x)=f(a)+f'(a)(x-a)+(x-a)^2/2!*f''(a)其中,f(x)表示可导函数在点x处的函数值,f(a)表示可导函数在点a处的函数值,f'(a)表示可导函数在点a处的导数的值,f''(a)表示可导函数在点a处的二阶导数的值。

二阶泰勒公式的应用:二阶泰勒公式可以用来进行函数曲线的二次近似,尤其是在计算中的一些复杂函数值时,可以通过二阶泰勒公式进行近似计算。

二阶泰勒公式还可以用来求函数在一些点处的导数值和二阶导数值。

3.高阶泰勒公式:高阶泰勒公式是指泰勒公式的更一般形式,其表达式为:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2!*f''(a)+...+(x-a)^n/n!*f^n(a)其中,n为正整数,f^n(a)表示可导函数在点a处的n阶导数,n!表示n的阶乘。

高阶泰勒公式的应用:高阶泰勒公式可以用来进行函数曲线的更高阶近似,特别是在计算中的一些复杂函数值时,可以通过高阶泰勒公式进行近似计算。

高阶泰勒公式还可以用来求函数在一些点处的导数值和各阶导数值。

泰勒公式及其应用

泰勒公式及其应用
3.3带有柯西型余项的泰勒公式
如果函数在闭区间上有阶导数,在开区间内有阶导数,那么
, (1)
当时,又有 (2)
其中,都称为泰勒公式的柯西型余项[3].
3.4 带有积分型余项的令,则对该邻域内异于的任意点,在和之间至少存在一个使得:
若函数ƒ在点有直至阶的导数,则有

(是某个无穷小量),其中叫皮亚诺型余项[1].
它仅仅适用于“自变量充分接近于点”的情形,也就是说,只是“在小范围里”刻画了函数;我们希望:“在大范围里”也可以这样做.误差应有明确的表达式.从这些方面的研究,便可以得到拉格朗日余项的泰勒公式.
3.2 带有拉格朗日余项的泰勒公式
4.1 利用泰勒公式求极限
应用泰勒公式求极限,可以使问题化繁为简.
例1 计算的极限.
分析:此题为型极限,若用洛必达法则比较麻烦,在这里可将和分别用泰勒展开式代替,则可简化此式子.
解:利用展开式:,,
由此可得:

所以:

2.2研究现状评价
泰勒公式应用广泛,且一直以来对它的研究持续不断,虽然它在求极限、极值、证明不等式、求高阶导数、研究函数图像等方面已有人研究,但在它的应用上还有继续研究的空间.
2.3提出问题
对于泰勒公式前面有许多的学者对它都有一定的研究,但大部分都是个人对某一方面的研究,因此这里对泰勒公式常见的几项应用及余项进行了研究,及其对应用做了一定的分析和总结,以便于后者对泰勒公式的应用和学习.
2.文献综述
2.1研究现状
对于泰勒公式,很多研究者喜欢研究它的证明和应用,特别是在2002年后的10年左右,研究泰勒公式和泰勒公式的应用的研究者颇多,并且在这些方面好大一部分研究者都取得了显著成果,例如湖南的唐仁献,洛阳的王素芳,陶容的张永胜,湖北的蔡泽林、陈琴等都发表了有关泰勒公式的文献.特别是泰勒公式的应用,它的定理和性质在不等式的证明和计算中得到了充分的利用,且方法多种多样,做法新颖,因为应用广泛,现如今研究它的人也不少.

考研数学中的taylor公式

考研数学中的taylor公式

考研数学中Taylor 公式的灵活运用Taylor 公式是高等数学中的一个重要公式,合理巧妙地利用此公式将会使解题过程简洁、明了。

下面通过几个例题来说明Taylor 公式在以下几类问题中的妙用。

一.求极限例1.求极限22220112lim .(cos )sin x x x x x e x→+-+- 解 本题属于0""0型极限,现用Taylor 公式(皮氏余项)来解此题。

由于 222244*********()2222!22x x x x x o x ⎡⎤⎛⎫+-+=+-++-+ ⎪⎢⎥⎝⎭⎣⎦, 2242424424441(cos )sin 1()1()[()]2242!3()2x x x x e x o x x x o x x o x x o x ⎡⎤⎛⎫-=-++-++++ ⎪⎢⎥⎝⎭⎣⎦=-+ 所以2424220044()11182lim lim .312(cos )sin ()2x x x x x o x xx e x x o x →→++-+==---+二.求函数的渐近线例2.求函数21()ln 1f x x x ⎛⎫=+ ⎪ ⎪⎝⎭的渐近线。

解 ()f x 在0点是可去间断点,且0lim ()0x f x →=,故无垂直渐近线,又()f x 为偶函数,因此,只要考虑x →+∞的情况即可。

由Taylor 公式得2111ln 1()2x x o x x ⎛⎫+=++ ⎪ ⎪⎝⎭,因此由渐近线的定义,()f x 有倾斜渐近线12y x =+。

例3.求函数2()f x ax bx c =++(常数,,a b c 满足240ac b ->且0a >)的渐近线。

解 由Taylor 公式得12221()112b c b f x ax bx c a x a x o ax ax axx ⎡⎤⎛⎫⎛⎫=++=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1,021,02b a x x a x b a x x a x αβ⎧⎡⎤++>⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-++<⎢⎥⎪⎣⎦⎩(,αβ为x →∞时的无穷小量),因此由渐近线的定义,()f x 有两条倾斜渐近线122b b y ax ax ax a ⎡⎤=+=+⎢⎥⎣⎦以及122b b y ax ax ax a ⎡⎤=-+=--⎢⎥⎣⎦。

泰勒公式及其应用

泰勒公式及其应用

泰勒公式及其应用本文将介绍泰勒公式在数学分析中的应用。

泰勒公式是一种重要的工具,可以用于近似计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面。

本文将重点讨论泰勒公式在极限计算、敛散性的判断、中值问题以及等式与不等式的证明方面的应用。

2.泰勒公式泰勒公式是一种将函数展开为幂级数的方法。

它可以分为带有拉格朗日余项、皮亚诺型余项、积分型余项和柯西型余项的泰勒公式。

这些不同类型的泰勒公式可以用于不同的问题求解。

2.1具有拉格朗日余项的泰勒公式具有拉格朗日余项的泰勒公式是最常用的一种泰勒公式。

它可以将一个函数展开为一个幂级数,其中每一项的系数都与函数的导数有关。

这个公式的余项是一个拉格朗日型余项,可以用来估计函数在某个点的误差。

2.2带有皮亚诺型余项的泰勒公式带有皮亚诺型余项的泰勒公式是一种更精确的泰勒公式。

它可以用来估计函数在某个点的误差,并且比具有拉格朗日余项的泰勒公式更加精确。

2.3带有积分型余项的泰勒公式带有积分型余项的泰勒公式是一种将函数展开为幂级数的方法。

它可以用来估计函数在某个点的误差,并且比具有拉格朗日余项的泰勒公式更加精确。

2.4带有柯西型余项的泰勒公式带有柯西型余项的泰勒公式是一种将函数展开为幂级数的方法。

它可以用来估计函数在某个点的误差,并且比具有拉格朗日余项的泰勒公式更加精确。

3.泰勒公式的应用泰勒公式在数学分析中有广泛的应用。

本文将介绍泰勒公式在极限计算、敛散性的判断、中值问题以及等式与不等式的证明方面的应用。

3.1利用泰勒公式求未定式的极限利用泰勒公式可以求解一些未定式的极限。

例如,可以用泰勒公式将一个函数展开为幂级数,并利用级数的性质求解未定式的极限。

3.2利用泰勒公式判断敛散性泰勒公式可以用来判断一些级数的敛散性。

例如,可以用泰勒公式将一个函数展开为幂级数,并利用级数的性质判断级数是否收敛。

3.3利用泰勒公式证明中值问题泰勒公式可以用来证明一些中值问题。

泰勒公式的应用

泰勒公式的应用

泰勒公式和其应用摘要文章简要介绍了泰勒公式的证明和其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。

关键词:泰勒公式,最优化理论,应用一、泰勒公式1.1 一元泰勒公式若函数)(x f 在含有的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和:10)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1()(++-+n n x x n f ξ在和之间的一个数,该余项)(x R n 为拉格朗日余项。

1.1.1 泰勒公式的推导过程我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式:n n x x a x x a x x a a x p )()()()(0202010-++-+-+=来近似表达函数)(x f ;设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以)(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''=n n a n x p !)(0)(=,所以有!)(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(!)()(!2)())(()()(00)(200000-++-''+-'+= 1.1.2 泰勒公式余项的证明我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项):设)()()(x p x f x R n -=于是有0)()()(000=-=x p x f x R n所以有0)()()()(0)(000===''='=x R x R x R x R n n n n n根据柯西中值定理可得:n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ是在和之间的一个数; 对上式再次使用柯西中值定理,可得:)1(022*******))(1()()0))(1(()()())(1()(--+''=--+'-'=-+'n n n n n n n x n n R x n x R R x n R ξξξξξξ是在和之间的一个数; 连续使用柯西中值定理1+n 次后得到:)!1()()()()1()1(0+=-++n R x x x R n n n n ξ 这里是介于和之间的一个数。

考研数学泰勒展开式常用公式(一)

考研数学泰勒展开式常用公式(一)

考研数学泰勒展开式常用公式(一)考研数学泰勒展开式常用公式泰勒展开式基本公式•泰勒公式:设函数f(x)在x=a处具有n+1阶导数,则对于a附近的任一x,有以下泰勒展开式:f(x)=f(a)+f′(a)(x−a)+f″(a)2!(x−a)2+⋯+f(n)(a)n!(x−a)n+R(n)(x)其中,R(n)(x)为f(x)的带有Peano余项的n阶泰勒余项。

常用泰勒展开公式•正弦函数的泰勒展开:sinx=x−x33!+x55!−⋯+(−1)nx2n+1(2n+1)!+R(2n+2)(x)•余弦函数的泰勒展开:cosx=1−x22!+x44!−⋯+(−1)nx2n(2n)!+R(2n+1)(x)•指数函数的泰勒展开:e x =1+x +x 22!+x 33!+⋯+x n n!+R (n+1)(x ) • 自然对数函数的泰勒展开:ln (1+x )=x −x 22+x 33−⋯+(−1)n−1x n n+R (n )(x ) • 阶乘函数的泰勒展开:n!=√2πn (n e )n (1+112n +1288n 2−13951840n 3−⋯+(−1)k B 2k 2kn 2k−1+⋯) 公式示例• 示例1:计算sin ()的近似值根据正弦函数的泰勒展开式,将x =代入展开式并截取前几项,可得近似值:sin ()≈33!=−• 示例2:计算e 的近似值根据指数函数的泰勒展开式,将x =代入展开式并截取前几项,可得近似值:e ≈1++22!=• 示例3:计算ln ()的近似值根据自然对数函数的泰勒展开式,将x=代入展开式并截取前几项,可得近似值:ln()≈22 =通过以上示例,我们可以看到泰勒展开式对于计算某些函数的近似值非常有用。

但需要注意的是,在使用泰勒展开式进行近似计算时,只截取有限项会引入误差,因此需要根据精度要求选择合适的项数。

考研数学-专题7 泰勒公式及其应用

考研数学-专题7  泰勒公式及其应用

专题7 泰勒公式及其应用(一) 泰勒公式定理1(皮亚诺型余项泰勒公式) 如果)(x f 在点0x 有直至n 阶的导数,则有)()(!)()(!2)())(()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +−++−′′+−′+=L常称))(()(0nn x x o x R −=为皮亚诺型余项. 若00=x ,则得麦克劳林公式:).(!)0(!2)0()0()0()()(2n nn x o x n f x f x f f x f +++′′+′+=L定理2(拉格朗日型余项泰勒公式)设函数)(x f 在含有0x 的开区间),(b a 内有1+n 阶的导数,则当),(b a x ∈时有)()(!)()(!2)())(()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +−++−′′+−′+=L其中10)1()(1)()(++−)!+(=n n n x x n f x R ξ,这里ξ介于0x 与x 之间,称为拉格朗日型余项. 几个常用的泰勒公式 (拉格朗日型余项)12)!1(!!21)1(+++++++=n x nxx n e n x x x e θL121213)!12(cos )1()!12()1(!3sin )2(+−−+−+−−++−=n nn n x n x n x x x x θL 22122)!22(cos )1()!2()1(!21cos )3(+++−+−++−=n n n n x n x n x x x θL1112)1)(1()1()1(2)1ln()4(++−++−+−++−=+n n nnn x n x n x x x x θL n x n n x x x !)1()1(!2)1(1)1()5(2+−−++−++=+αααααααL L11)1()!1())(1()1(+−−++−+−−+n n x x n n n αθααααL(二) 泰勒公式本质及两个泰勒公式的异同点1. 本质(相同点)1)用多项式逼近函数 2) 用已知点信息表示未知点 3) 建立函数与高阶导数的关系2. 不同点1)条件不同皮亚诺型余项: )(x f 在点0x 有直至n 阶的导数拉格朗日型余项:)(x f 在含有0x 的开区间),(b a 内有1+n 阶的导数2)余项不同皮亚诺型余项: ))(()(0nn x x o x R −=; 定性;局部.拉格朗日型余项:10)1()(1)()(++−)!+(=n n n x x n f x R ξ;定量;整体. 【注】通常称皮亚诺型余项泰勒公式为局部泰勒公式,主要用来研究函数的局部性态(如:极限,极值);而称拉格朗日型余项泰勒公式为整体泰勒公式,主要用来研究函数的整体性态(如:最值,不等式).(三) 泰勒公式的应用1.利用高阶导数研究函数性态【例1】若,0)()()(0)1(00===′′=′−x f x f x f n L )2(0)(0)(≥≠n x f n ,则当n 为偶数时)(x f 在0x 处有极值.其中0)(0)(>x fn 时极小,0)(0)(<x f n 时极大;当n 为奇数时)(x f 在0x 处无极值.【例2】设函数)(x f 在]1,0[上二阶可导,且,1)(,0)0(,1)0(≤′′=′=x f f f 试证:)(x f 在]1,0[上的最大值不超过.232.计算函数近似值【例1】计算e 的近似值,使误差不超过.106−【解】 )(!!212x R n xx x e n nx+++++=L11)!1()!1()(+++<+=n xn n x n e x n e x R ξ取1=x ,得 !1!2111n e ++++≈L 其误差 )!1(3)!1(+<+=n n e R n当10=n 时,误差不超过.106−得.718282.2≈e3.求极限【例1】 ._________cos 11lim 0=−−−−+→xx xe x x ]3[−【解】【例2】设)(x f 在0=x 的某邻域内二阶可导,且0)(3sin lim 230=⎟⎠⎞⎜⎝⎛+→x x f xx x ,则 (A) 0)(3lim 220=⎟⎠⎞⎜⎝⎛+→x x f x x (B)3)0(=f(C)3)0(=′f (C)9)0(=′′f (D)【例3】(2001年1)设)(x f y =在)1,1(−内具有二阶连续导数,且0)(≠′′x f ,试证: (1)对于)1,1(−内的任一0≠x ,存在唯一的)1,0()(∈x θ,使))(()0()(x x f x f x f θ′+=成立;(2)21)(lim 0=→x x θ. 【证】(1)任给非零)1,1(−∈x ,由拉格朗日中值定理得).1)(0())(()0()(<<′+=x x x f x f x f θθ因为)(x f ′′在)1,1(−内连续,且0)(≠′′x f ,所以)(x f ′′在)1,1(−内不变号,不妨设0)(>′′x f ,则)(x f ′在)1,1(−内严格单增,故)(x θ唯一.(2)由泰勒公式得2)(21)0()0()(x f x f f x f ξ′′+′+=, ξ在0与x 之间.所以 2)(21)0()0()())((x f x f f x f x x f x ξθ′′+′=−=′,从而 ).(21)()0())(()(ξθθθf x x f x x f x ′′=′−′由于)0()()0())((limf xx f x x f x ′′=′−′→θθ,)0()(lim 0f f x ′′=′′→ξ,故 21)(lim 0=→x x θ. 4.求高阶导数【例1】(2015年2) 函数xx x f 2)(2=在0=x 处的n 阶导数.________)0()(=n f])2)(ln 1([2−−n n n【解1】 【解2】【例2】设),()()(x a x x f nϕ−=其中)(x ϕ在a x =处n 阶可导,若m 为不超过n 的正整数,则)()()(=+a fm n(A)!)()(n a m ϕ (B)!)()(m a n ϕ(C))(!)!()(a m m n m ϕ+ (D))()!(!)(a m n n n ϕ+ (C)【解1】【解2】【解3】5.证明不等式或等式【例1】设1)(lim,0)(30)4(=>→xx f x f x ,试证:)0()(3≠>x x x f .【例2】(1996年1,2)设)(x f 在[0,1]上具有二阶导数,且满足条件a x f ≤|)(|,b x f ≤′′|)(|,其中b a ,都是非负常数,c 是(0,1)内任一点.(1)写出)(x f 在点c 处带拉格朗日型余项的一阶泰勒公式; (2)证明 .22|)(|ba c f +≤′ 【证】(1) 2)(!2)())(()()(c x f c x c f c f x f −′′+−′+=ξ (2)在以上泰勒公式中,分别令0=x 和1=x 则有21)0(!2)()0)(()()0(c f c c f c f f −′′+−′+=ξ (1) 22)1(!2)()1)(()()1(c f c c f c f f −′′+−′+=ξ (2)(2)式减(1)式得])()1)(([21)()0()1(2122c f c f c f f f ξξ′′−−′′+′=−]|)(|)1(|)([|21)1()0(|)(|2122c f c f f f c f ξξ′′+−′′++≤′])1[(2222c c b a +−+≤又因为当)1,0(∈c 时,,1)1(22≤+−c c 故.22|)(|b a c f +≤′【例3】(1999年2)设函数)(x f 在闭区间]1,1[−上具有三阶连续导数,且0)1(=−f ,1)1(=f ,0)0(=′f ,证明:在开区间)1,1(−内至少存在一点ξ,使3)(=′′′ξf .【证法1】 由麦克劳林公式得32)(!31)0(!21)0()0()(x f x f x f f x f η′′′+′′+′+=, 其中η介于0与x 之间,]1,1[−∈x . 分别令1−=x 和1=x ,并结合已知条件,得01),(61)0(21)0()1(011<<−′′′−′′+=−=ηηf f f f .10),(61)0(21)0()1(122<<′′′+′′+==ηηf f f f两式相减,可得.6)()(21=′′′+′′′ηηf f因)(x f ′′′连续,)(x f ′′′在闭区间],[21ηη上有最大值和最小值,设其分别为M 和m ,则有.)]()([2121M f f m ≤′′′+′′′≤ηη再由连续函数的介值定理知,至少存在一点)1,1(],[21−⊂∈ηηξ,使.3)]()([21)(21=′′′+′′′=′′′ηηξf f f【证法2】【例4】设)(x f 在[0,1]上二阶可导,2)(max ,0)1()0(10===≤≤x f f f x .试证存在点)1,0(∈ξ使16)(−≤′′ξf .【证法1】设2)(max )(10==≤≤x f c f x ,则10<<c ,且0)(=′c f ,由泰勒公式知2)(!2)())(()()(c x f c x c f c f x f −′′+−′+=ξ 在上式中分别令0=x ,和1=x 得214)(cf −=′′ξ ),0(1c ∈ξ 22)1(4)(c f −−=′′ξ )1,(2c ∈ξ若21≤c ,则16)21(44)(221−=−≤−=′′c f ξ若21>c ,则16)21(4)1(4)(222−=−≤−−=′′c f ξ 故存在点)1,0(∈ξ使16)(−≤′′ξf .【证法2】【例5】设)(x f 在],[b a 上有二阶连续导数,且,0)()(==b f a f ,)(max ],[x f M b a x ′′=∈证明:.12)()(3M a b dx x f ba−≤∫【证1】由泰勒公式得21)(!2)())(()()(x a f x a x f x f a f −′′+−′+=ξ (1) 22)(!2)())(()()(x b f x b x f x f b f −′′+−′+=ξ (2)(1)式加(2)式得2221)(!2)()(!2)()2)(()(20x b f x a f x b a x f x f −′′+−′′+−+′+=ξξ 两端从a 到b 积分得 +−++=∫∫baba x df xb a dx x f )()2()(20dx x b f x a f ba])(!2)()(!2)([2221−′′+−′′∫ξξ 又∫∫∫=+−+=−+bababa badx x f dx x f x f x b a x df x b a )(2)(2)()2()()2( 则 =∫ba dx x f )(4dx x b f x a f ba ])(!2)()(!2)([2221−′′+−′′−∫ξξ dx x b M dx x a M dx x f b a b a b a ∫∫∫−+−≤22)(2)(2)(4 333)(3)(6)(6a b Ma b M a b M −=−+−=故.12)()(3M a b dx x f ba−≤∫【证2】∫bax x f d )(∫−=baa x x f )d()(∫−′−−=baba x a x x f x f a x d ))(()()(∫−−′−=bab x a x x f )d())((∫∫−′+−−′′+′−−−=bababa dxb x x f x b x a x x f x f b x a x ))((d ))()(()())(( ∫∫−+−−′′=ba bax df b x x b x a x x f )()(d ))()((∫∫−−−′′=babadx x f x b x a x x f )(d ))()((则 ∫ba x x f d )(∫−−′′=bax b x a x x f d ))()((21∫−−′′=ba xb x a x f d ))((2)(ξ (积分中值定理)∫−−′′=b a a x b x f 2)d()(4)(ξ3)(12)(a b f −′′−=ξ 故 .12)()(3M a b dx x f ba−≤∫思考题: 1.试证 ).0(1812112>+<−+x x x x2.设)(x f 在],[b a 上连续,在),(b a 内二阶可导,试证存在),(b a ∈ξ,使)(4)()()2(2)(2ξf a b a f b a f b f ′′−=++−. 3.设)(x f 三阶可导,且0)(lim,1)1(,0)1(0===−→xx f f f x ,试证存在)1,1(−∈η,使3)(≥′′′ηf .4. 若)(x f 在]1,0[上二阶可导,且0)1()0(,1)1(,0)0(=′=′==f f f f ,试证: ]1,0[∈ξ,使2)(≥′′ξf .5. 设)(x f 在0x x =的某邻域内1+n 阶可导,且,0)(0)1(≠+x fn).)((!)(!21)()()(0)(20000h h x f n h h x f h x f x f h x f n n θ+++′′+′+=+L 求极限).(lim 0h h θ→答案提示:1.【证】)(!2)121(21211)1(12221x R x x x x +−++=+=+ )(8121122x R x x +−+=其中).10(,)1(!3)221)(121(21)(33212<<+−−=−θθx x x R 由于当0>x 时,,0)(2>x R 则).0(1812112>+<−+x x x x2.【证1】2)2(!2)()2)(2()2()(b a x f b a x b a f b a f x f +−′′++−+′++=ξ 在上式中分别令b x a x ==,得4)(!2)()2)(2()2()(21a b f b a b a f b a f a f −′′+−+′++=ξ4)(!2)()2)(2()2()(22a b f a b b a f b a f b f −′′+−+′++=ξ上式两端相加得8)()]()([)2(2)()(221a b f f b a f b f a f −′′+′′++=+ξξ由)(x f 二阶可导及导函数的介值性知,存在ξ使得).(2)()(21ξξξf f f ′′=′′+′′则)(4)()2(2)()(2ξf a b b a f b f a f ′′−++=+【证2】令)()2()(x f ab x f x −−+=ϕ 2)]()2([2)()()2(a b c f a b c f a b c a b a −′−−+′=−′=−+ϕϕϕ 4)()(2a b f −′′=ξ即 4)()()2(2)()(2a b f b a f a f b f −′′=+−+ξ 3.提示:由0)(lim=→xx f x 知,.0)0(,0)0(=′=f f 写出)(x f 在0=x 处拉格朗日余项的二阶泰勒公式,再将1,1=−=x x 代入便可证明.4. 提示:分别写出)(x f 在1,0==x x 处拉格朗日余项的二阶泰勒公式,然后两式相减便可证明.5. 提示:参见:3.求极限中的例3,.11)(lim 0+=→n h h θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =第2章 预备知识2求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.第2章 预备知识4定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得第3章 泰勒公式的应用632020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:第3章 泰勒公式的应用82002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:第3章 泰勒公式的应用100)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有第3章 泰勒公式的应用 12691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n ,所以f 在0x 的开邻域 ),(0δx B 内的n 阶Taylor 公式为第3章 泰勒公式的应用 14))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x+∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x-∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即第3章 泰勒公式的应用16 )(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题, 因此上例实际上也是)(x f '',)(x f '''的归零。

相关文档
最新文档