一次函数的图象与找规律(压轴题)

合集下载

一次函数综合压轴题型

一次函数综合压轴题型

一次函数综合压轴题型一次函数综合压轴题型一次函数作为高中数学中必须掌握的基础知识之一,往往是各种数学题型的基础。

特别是在高考中,往往会出现一些综合性的题目,需要考生在一次函数的基础上,综合运用知识点来解答问题。

本文将介绍一道典型的一次函数综合压轴题型,并详细阐述解题思路,帮助读者更好地掌握一次函数的知识点。

【题目】已知函数$f(x)=kx+b$,其中$k>0$,$b>0$。

已知直线$y=kx$与曲线$y=f(x)$在点$P(3,5)$处相切,且直线$y=b$与曲线$y=f(x)$在点$Q$处相交。

若点$Q$到$x$轴的距离为$8$,求$k$和$b$的值。

【解题思路】1. 求函数$f(x)$在点$P(3,5)$处的导数,即为直线$y=kx$的斜率。

由相切条件可知,曲线在点$P(3,5)$处的切线与直线$y=kx$重合,因此二者的斜率相等。

函数$f(x)$在点$P(3,5)$处的导数可以表示为:$$f'(3)=k$$2. 利用函数$f(x)$在点$Q$处的函数值求解$b$的值。

函数$f(x)$在点$Q$处的函数值为直线$y=b$的纵坐标,因此可以利用函数$f(x)$与直线$y=b$的交点求解。

设$x_{Q}$为点$Q$的横坐标,则有:$$\begin{cases}f(x_{Q})=b\\kx_{Q}+b=b\end{cases}$$化简得到$x_{Q}=-\dfrac{b}{k}$,代入已知条件$Q$到$x$轴的距离为$8$中,可得:$$\left|-\dfrac{b}{k}\right|=8$$注意到题目中给定$k>0$,$b>0$,因此有$b=-8k$。

3. 利用函数$f(x)$在点$P$处的函数值求解$k$的值。

函数$f(x)$在点$P$处的函数值为$5$,因此可以利用函数$f(x)$和直线$y=b$的交点坐标求解。

设交点坐标为$(x_{1},-8k)$,则有:$$\begin{cases}f(x_{1})=-8k\\kx_{1}-8k=-8k\end{cases}$$化简得到$k=\dfrac{5}{3}$。

一次函数与几何压轴(十大题型)(解析版)—2024-2025学年八年级数学上册(浙教版)

一次函数与几何压轴(十大题型)(解析版)—2024-2025学年八年级数学上册(浙教版)

一次函数与几何压轴(十大题型)【题型1 一函数中面积问题】【题型2 一次函数中等腰三角形的存在性问题】【题型3 次函数中直角三角形的存在性问题】【题型4 一次函数中等腰直角三角形的存在性问题】【题型5 一次函数中平行四边形存在性问题】【题型 6 一次函数中菱形的存在性问题】【题型7 一次函数中矩形的存在性问题】【题型8 一次函数中正方形的存在性问题】【题型9 一次函数与相等角/2倍角的问题】【题型10 一次函数中45°角问题】【技巧点睛1】铅锤法求三角形面积【技巧点睛2】处理与一次函数相关的面积问题,有三条主要的转化途径:①知底求高、转化线段;②图形割补、面积和差;③平行交轨、等积变换。

【技巧点睛3】处理线段问题(1)在平面直角坐标系中,若线段与y轴平行,线段的长度时端点纵坐标之差(上减下,不确定时相减后加绝对值),若线段与x轴平行,线段的长度时端点横坐标之差(右减左,不确定时相减后加绝对值);(2)线段相关计算注意使用”化斜为直”思想。

【技巧点睛4】角度问题(1)若有角度等量关系,不能直接用时,我们要学会角度转化,比如借助余角、补角、外角等相关角来表示,进行一些角度的和差和角度的代换等,直到转化为可用的角度关系。

(2)遇45°角要学会先构造等腰直角三角形,然后构造“三垂直”全等模型,一般情况下是以已知点作为等腰直角三角形的直角顶点【技巧点睛5】最值问题(1)求线段和最值,可以从“两点之间线段最短”“垂线段最短”“三角形两边之和大于第三边,两边之差小于第三边”的模型去考虑;(2)注意“转化思想”的运用,将不可用线段进行转化,变成我们熟悉的模型【技巧点睛6】特殊三角形存在问题等腰三角形存在性问题1、找点方法:①以AB 为半径,点A 为圆心做圆,此时,圆上的点(除 D 点外)与A、B构成以 A 为顶点的等腰三角形(原理:圆上半径相等)②以AB 为半径,点B 为圆心做圆,此时,圆上的点(除 E 点外)与A、B构成以 B 为顶点的等腰三角形(原理:圆上半径相等)③做AB 的垂直平分线,此时,直线上的点(除F 点外)与A、B 构成以C 为顶点的等腰三角形(原理:垂直平分线上的点到线段两端的距离相等)2、求点方法:二、直角三角形存在性问题若▲ABC是直角三角形,则分三种情况分类讨论:∠A=90°,∠B=90°,∠C=90°,然后利用勾股定理解题。

一次函数压轴题(含答案)

一次函数压轴题(含答案)

一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。

$x$ 轴分别交于$A$。

$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。

1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。

2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。

3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。

考点:一次函数综合题。

分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。

解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。

因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。

又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。

一次函数压轴题精选

一次函数压轴题精选

一次函数压轴题精选一次函数压轴题精选一次函数是数学中的基础知识之一。

掌握了一次函数的基本概念和解题方法,可以为我们在学习数学的过程中打下坚实的基础。

下面是一些常见的一次函数压轴题,了解和掌握这些题目的解法,对于提高我们的数学水平有很大的帮助。

1、已知一次函数f(x)=4x-3,求当x=2时的函数值。

解法:将x=2代入函数f(x)中,即f(2)=4×2-3=5,所以当x=2时,函数值为5。

2、已知一次函数f(x)=3x+2,求其图像在坐标系中的截距。

解法:当x=0时,f(x)=3×0+2=2,所以函数图像在y轴上的截距为2。

3、已知一次函数kx+2y-4=0是直线L的解析式,求直线L在坐标系中的斜率。

解法:将kx+2y-4=0转化为y-intercept的形式为y=-(k/2)x+2,斜率即为-(k/2)。

4、已知一次函数f(x)=ax+b,若f(-3)=6,f(2)=7,则a和b的值分别为多少?解法:将x=-3代入函数f(x)中,得a(-3)+b=6,将x=2代入函数f(x)中,得a(2)+b=7。

将两式相加,得a=-1。

将a=-1代入其中一式,得-3-b=6,解得b=-9。

所以a=-1,b=-9。

5、已知一次函数y=kx,在坐标系中,直线y=kx与x轴的交点为(-3,0),且这条直线过点(1,5),则k的值为多少?解法:将直线y=kx化为截距式为y=k(x-(-3))=kx+3k,根据已知条件可以列出方程组:5=k(1)+3k,0=k(-3)+3k。

解得k=5/4。

所以k=5/4。

以上是一些常见的一次函数压轴题,希望大家都能够熟练掌握这些题目的解法,更好地掌握一次函数的基本知识。

一次函数压轴题[含答案解析]

一次函数压轴题[含答案解析]

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

一次函数易错题压轴题题型归纳及方法

一次函数易错题压轴题题型归纳及方法

一次函数易错题压轴题题型归纳及方法一次函数易错题压轴题题型归纳及方法一、基础概念梳理1.1 一次函数的定义和性质一次函数是指函数 f(x) = ax + b,其中 a 不等于 0。

其图像为一条直线,斜率为 a,截距为 b。

在直角坐标系中,表现为直线过原点或不过原点。

一次函数的性质包括斜率和截距等。

1.2 一次函数的图像和特征一次函数的图像呈线性关系,表现为直线。

斜率决定了直线的斜率和方向,截距决定了直线和 y 轴的交点。

掌握一次函数的图像和特征是解题的关键。

二、易错题分析2.1 斜率与线性关系易错点:部分学生对斜率的计算和理解存在困难,无法准确求解斜率或理解斜率的意义。

解决方法:要重点训练学生如何计算斜率,以及斜率对线性关系的影响。

可以通过练习题和实例来加深理解。

2.2 截距的求解易错点:学生在求解截距时常常出错,或者无法正确理解截距的含义。

解决方法:通过大量的实例练习,加深学生对截距的理解和运用能力。

可以设计一些生活中的例子来帮助学生理解截距的含义。

2.3 点斜式方程易错点:学生在转化为一般式方程时,容易出错或混淆概念。

解决方法:通过举例和练习,让学生掌握点斜式方程和一般式方程之间的转化,加深对一次函数的理解和掌握能力。

三、高级拓展题3.1 一次函数的应用在生活中,一次函数的应用非常广泛,包括经济学、物理学和工程学等领域。

这些应用题往往涉及到实际问题的建模和解决,需要学生有较强的数学建模和解题能力。

3.2 特殊题型及解法除了基本的一次函数题,还有一些特殊的题型需要引起重视,包括两条直线的关系、两个一次函数的综合运用等。

这些题型需要学生拓展思维,掌握各种解题方法。

四、总结回顾在学习一次函数这一题型时,学生需要注重基本概念的理解和掌握,加强实例练习,培养解题思维,拓展应用能力。

重点关注易错点,并采取有效的方法加以解决,提高学生对一次函数的理解和应用能力。

个人观点及理解对于一次函数的学习和掌握,我认为重在理解和应用。

一次函数的定义、图象和性质压轴题九种模型全攻略(原卷版)

一次函数的定义、图象和性质压轴题九种模型全攻略(原卷版)

专题11一次函数的定义、图象和性质压轴题九种模型全攻略【考点导航】目录【典型例题】 (1)【考点一判别是否一次函数】 (1)【考点二根据一次函数的定义求参数的值】 (2)【考点三画一次函数的图象】 (2)【考点四一次函数的图象和性质】 (4)【考点五根据一次函数经过的象限求参数问题】 (4)【考点六根据一次函数的增减性求参数问题】 (5)【考点七一次函数的图象与坐标轴的交点问题】 (5)【考点八两个一次函数图象共存问题】 (5)【考点九一次函数中的规律探究问题】 (6)【过关检测】 (7)【典型例题】【考点一判别是否一次函数】【变式训练】【考点二根据一次函数的定义求参数的值】【变式训练】【考点三画一次函数的图象】(1)请在所给的平面直角坐标系中画出该函数的图象.(2)结合所画图象,分别求出在函数图象上满足下列条件的点的坐标:①横坐标是4-;②和x轴的距离是2个单位长度.【变式训练】1.(2023上·福建漳州·八年级福建省漳州第一中学校考阶段练习)已知,一次函数24y x =-+的图像分别与x 轴,y 轴交于点A ,B .(1)请直接写出,A B 两点坐标:A :__________,B :__________;(2)在直角坐标系中画出函数图象(不用列表,直接描点、连线);(3)点P 是一次函数24y x =-+上一动点,则OP 的最小值为___________.2.(2023上·宁夏银川·八年级银川唐徕回民中学校考期中)已知函数24y x =-+回答下列问题:(1)画出函数24y x =-+的图象;当x _________时,0y >.(2)设直线与x 轴交于点A ,与y 轴交于点B ,求出AOB 的面积.(3)直线AB 上是否存在一点C (C 与B 不重合),使AOC 的面积等于8?若存在,求出点C 的坐标;若不存在,请说明理由.【考点四一次函数的图象和性质】例题:(2023上·广东深圳·八年级校考期中)下列关于函数32y x =+的结论中,错误的是()A .图象经过点()1,1--B .点()11,A x y ,()22,B x y 在该函数图象上,若12x x >,则12y y >C .将函数图象向下平移2个单位长度后,经过点()0,1D .图象不经过第四象限【变式训练】1.(2023下·广西南宁·八年级校考阶段练习)对于一次函数2y x =+,下列说法正确的是()A .图象不经过第三象限B .当2x >时,4y <C .图象由直线y x =向上平移2个单位长度得到D .图象与x 轴交于点()2,02.(2023上·安徽六安·八年级校考阶段练习)一次函数24y x =-+,下列结论错误..的是()A .若两点A (11,x y ),B (22,x y )在该函数图象上,且12x x <,则12y y >B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得到2y x =-的图象D .函数的图象与x 轴的交点坐标是()04,【考点五根据一次函数经过的象限求参数问题】【变式训练】【考点六根据一次函数的增减性求参数问题】【变式训练】【考点七一次函数的图象与坐标轴的交点问题】【变式训练】【考点八两个一次函数图象共存问题】例题:(2023上·陕西西安·八年级统考期末)直线y kx k =-+与直线y kx =在同一坐标系中的大致图象可能是图中()A .B .C .D .【变式训练】.B .C .D .2023上·辽宁铁岭·八年级统考期末)下列图形中,表示一次函数y mx =+与正比例函数y mnx =为常数,且0mn ≠)的图象的是().B .C .D .【考点九一次函数中的规律探究问题】(2024上·河北保定·八年级统考期末)如图,在平面直角坐标系中,点1A 2,3A …都在x 轴上,点【变式训练】1.(2023上·四川成都·八年级校考阶段练习)如图,在平面直角坐标系中,333A B C △,……,n n n A B C 都是等腰直角三角形,点点A ,1C ,2C ,3C ,…,n C 都在直线1122n n AC AC A C A C ⋅⋅⋅∥∥∥∥∥2.(2022上·贵州贵阳·八年级统考期末)如图,已知直线以11A B 为边作正方形1112A B C A ,过点2A 作x 轴的垂线交直线按此规律进行,则点2023C 的坐标为.【过关检测】一、单选题3.(2024上·河南平顶山·八年级统考期末)一次函数()12y m x =-+中,若y 随x 的增大而减小,则m 的值可能是()A .0B .1C .2D .34.(2023上·山东济南·八年级统考阶段练习)在同一平面直角坐标系中,函数()0y mx m =-≠与2y x m =+的图象大致是()A .B .C .D .5.(2023上·江苏无锡·八年级校联考阶段练习)关于一次函数31y x m =+-的图像与性质,下列说法中不正..确.的是()A .y 随x 的增大而增大B .当1m ≠时,该图像与函数3y x =的图像是两条平行线C .若图像不经过第四象限,则1m >D .不论m 取何值,图像都经过第一、三象限二、填空题三、解答题11.(2024上·安徽合肥·八年级校考期末)已知正比例函数图像经过点()1,2A -.(1)求此正比例函数的解析式:(2)点()2,2B -是否在此函数图像上?请说明理由;12.(2023上·江苏扬州·八年级校联考期末)已知2y +与x 成正比例,且3x =时4y =.(1)求y 与x 之间的函数关系式;(2)当2y =时,求x 的值.13.(2024上·江西吉安·八年级统考期末)已知函数()2321-=+-m x y m 是一次函数,(1)求m 的值;(2)该一次函数当31y -<<时,求x 的取值范围.14.(2023上·四川达州·八年级达州市高级中学校考期中)已知一次函数(21)(3)y m x n =--+,求:(1)m 当为何值时,y 的值随x 的增加而增加;(2)当m 、n 为何值时,此一次函数也是正比例函数;(3)若12m n ,,==求直线与x 轴和y 轴的交点坐标.15.(2023上·甘肃兰州·八年级校考期中)已知一次函数32y x =-.(1)求图象与两条坐标轴的交点坐标,并在如图的直角坐标系中画出它的图象;(2)从图象看,y随着x的增大而增大,还是随y>.(3)x取何值时,016.(2023上·山西太原·八年级统考阶段练习)如图,直线(1)点B的坐标为__________,点(2)若点P是x轴上的一个动点,画图说明并求出当点最小值.17.(2022上·陕西西安·八年级交大附中分校校考期中)如图,在平面直角坐标系中,直线6y x =-与y 轴交于A 点,点(4,)C m 为直线6y x =-上一点,直线y x b =-+过点C 且与y 轴交于点B .动点P 、Q 分别在线段AB ,BC 上,且满足CPQ BAC ∠=∠.(1)求m ,b 的值;(2)是否存在点P ,使得ACP BPQ ≌△△,若存在,求出点P 的坐标;若不存在,请说明理由;(3)当CPQ 为直角三角形时,求点P 的坐标.。

一次函数压轴题精选(含详细答案)

一次函数压轴题精选(含详细答案)

一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG的坐标.折叠,点N恰好落在x轴上的点H处,求点G3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y 轴上,一次函数y=x+3的图象经过点B、C.第1页(共99页)的坐标为 ;(1)点C的坐标为的坐标为 ,点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.两题中任选一题作答,我选择 题.请从下列A、B两题中任选一题作答,我选择A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC 边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(Ⅰ)试问:直线AC 与直线AB 是否垂直?请说明理由;(Ⅱ)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD 上寻找点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证△BEC ≌△CDA ;(2)模型应用:①已知直线y=x +4与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y=2x ﹣6上的一点,若△APD 是不以A 为直角顶点的等腰Rt △,请直接写出所有符合条件的点D 的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△AʹOP,连接BAʹ,当BAʹ取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P 与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点Bʹ恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,当点C移动到点O时,得是等边三角形,当点始终保持△ACP是等边三角形,轴上移动时,始终保持△点C在x轴上移动时,到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为P A的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x 轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与,与 对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,为坐标原点,点点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD 2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a 2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,平面直角坐标系中,已知直线连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.(1)求证:OB=OC;(2)当点C坐标为(0,3)时,求点Q的坐标;(3)当△OPC≌△ADP时,直接写出C点的坐标.29.如图1,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴与C,且OB:OC=3:1.(1)求直线BC的函数表达式;(2)直线EF:y=x﹣k(k≠0)交直线AB于E,交直线BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为一腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣8,0),点B的坐标是(0,n)(n>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为Pʹ(点Pʹ不在y轴上),连接PPʹ,PʹA,PʹC.设点P的横坐标为m.(1)若点P在第一象限,记直线AB与PʹC的交点为D.当PʹD:DC=5:13时,求m的值;(2)若∠ACPʹ=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△PʹCA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y 轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P 3(﹣4,﹣4);当BP 4=DP 4时,(﹣1+4)2+(0﹣p )2=(p ﹣4)2,解得:p=,此时P 4(﹣4,),综上,共有四个点满足要求.分别是P 1(﹣4,9),P 2(﹣4,﹣4),P 3(﹣4,﹣1),P 4(﹣4,).【点评】此题属于一次函数综合题,此题属于一次函数综合题,涉及的知识有:涉及的知识有:涉及的知识有:待定系数法求一次函数解析待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L :y=﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点N (0,4),动点M 从A 点以每秒1个单位的速度匀速沿x 轴向左移动. (1)点A 的坐标:的坐标: (4,0) ;点B 的坐标:的坐标: (0,2) ;(2)求△NOM 的面积S 与M 的移动时间t 之间的函数关系式;(3)在y 轴右边,当t 为何值时,△NOM ≌△AOB ,求出此时点M 的坐标; (4)在(3)的条件下,若点G 是线段ON 上一点,连结MG ,△MGN 沿MG 折叠,点N 恰好落在x 轴上的点H 处,求点G 的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.的坐标为 (﹣4,2);(1)点C的坐标为的坐标为 (0,3),点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,此题考查了一次函数综合题,需要综合利用勾股定理,需要综合利用勾股定理,需要综合利用勾股定理,等腰三角形的判等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段AB ,BC ,AC 的长分别为AB= 8 ,BC= 4 ,AC= 4 ;(2)折叠图1中的△ABC ,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2. 请从下列A 、B 两题中任选一题作答,我选择两题中任选一题作答,我选择 A 题. A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得△APD 为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由. B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点A ,P ,C 为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC ;(2)A 、①利用折叠的性质得出BD=8﹣AD ,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论;B 、①利用折叠的性质得出AE ,利用勾股定理即可得出结论; ②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,∴A (4,0),C (0,8), ∴OA=4,OC=8,∵AB ⊥x 轴,CB ⊥y 轴,∠AOC=90°, ∴四边形OABC 是矩形, ∴AB=OC=8,BC=OA=4,在Rt △ABC 中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A 、①由(1)知,BC=4,AB=8, 由折叠知,CD=AD ,在Rt △BCD 中,BD=AB ﹣AD=8﹣AD , 根据勾股定理得,CD 2=BC 2+BD 2, 即:AD 2=16+(8﹣AD )2, ∴AD=5,②由①知,D (4,5), 设P (0,y ), ∵A (4,0),∴AP 2=16+y 2,DP 2=16+(y ﹣5)2, ∵△APD 为等腰三角形, ∴Ⅰ、AP=AD , ∴16+y 2=25,∴y=±3,∴P (0,3)或(0,﹣3) Ⅱ、AP=DP , ∴16+y2=16+(y ﹣5)2,∴y=, ∴P (0,),Ⅲ、AD=DP ,25=16+(y ﹣5)2, ∴y=2或8,∴P (0,2)或(0,8).B 、①、由A ①知,AD=5, 由折叠知,AE=AC=2,DE ⊥AC 于E ,在Rt △ADE 中,DE==,②、∵以点A ,P ,C 为顶点的三角形与△ABC 全等, ∴△APC ≌△ABC ,或△CPA ≌△ABC , ∴∠APC=∠ABC=90°, ∵四边形OABC 是矩形,∴△ACO ≌△CAB ,此时,符合条件,点P 和点O 重合, 即:P (0,0), 如图3,过点O 作ON ⊥AC 于N , 易证,△AON ∽△ACO , ∴,∴, ∴AN=,过点N 作NH ⊥OA , ∴NH ∥OA ,∴△ANH ∽△ACO , ∴,∴,∴NH=,AH=, ∴OH=, ∴N (,),而点P 2与点O 关于AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,), 即:满足条件的点P 的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,相似三角形的相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x +6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E . (1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN 2 =(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA ﹣AC=3, ∴C (﹣3,0),∵∠EDB=∠AOB=90°,BD=BO ,∠EBD=∠ABO , ∴△EBD ≌△ABO , ∴BE=AB=10, ∴OE=BE ﹣OB=4, ∴E (0,﹣4),设直线CE 的解析式为y=kx ﹣4, ∴﹣3k ﹣4=0, ∴k=﹣,∴直线CE 的解析式为y=﹣x ﹣4,(2)解:存在,(﹣,),如图,∵点P 在直线y=x +6上,∴设P (﹣m ,﹣m +6),∴PN=m ,PM=﹣m +6,根据勾股定理得,MN 2=PN2+PM2=m2+(﹣m +6)2=(m ﹣)2+,∴当m=时,MN 2有最小值,则MN 有最小值,当m=时,y=﹣x +6=﹣×+6=,∴P (﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了待定系数法,主要考查了待定系数法,主要考查了待定系数法,全等三角形的判定和全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD ,AB ∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点P 是▱ABCD 边上的一个动点. (1)若点P 在边BC 上,PD=CD ,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x ﹣1上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出答案)【分析】(1)由题意点P 与点C 重合,可得点P 坐标为(3,4);(2)分两种情形①当点P 在边AD 上时,②当点P 在边AB 上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P 在线段CD 上时.②如图2中,当点P 在AB 上时.③如图3中,当点P 在线段AD 上时.分别求解即可; 【解答】解:(1)∵CD=6, ∴点P 与点C 重合, ∴点P 坐标为(3,4).(2)①当点P 在边AD 上时, ∵直线AD 的解析式为y=﹣2x ﹣2, 设P (a ,﹣2a ﹣2),且﹣3≤a ≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNMʹ中,∵PM=PMʹ=6,PN=4,∴NMʹ==2,在Rt△OGMʹ中,∵OG 2+OMʹ2=GMʹ2,∴22+(2+m)2=m2,解得m=﹣, ∴P (﹣,4)根据对称性可知,P (,4)也满足条件.②如图2中,当点P 在AB 上时,易知四边形PMGMʹ是正方形,边长为2,此时P (2,﹣4).③如图3中,当点P 在线段AD 上时,设AD 交x 轴于R .易证∠MʹRG=∠MʹGR ,推出MʹR=MʹG=GM ,设MʹR=MʹG=GM=x .∵直线AD 的解析式为y=﹣2x ﹣2, ∴R (﹣1,0),在Rt △OGMʹ中,有x 2=22+(x ﹣1)2,解得x=,。

一次函数压轴题精选30题专项练习

一次函数压轴题精选30题专项练习

一次函数压轴题精选30题专项练习1.小明家新房装修时选定了某种品牌同一花色的壁纸,这种壁纸有大卷和小卷两种型号,已知购买1卷大卷壁纸和2卷小卷壁纸共花费900元,购买2卷大卷壁纸和3卷小卷壁纸共花费1550元.其中一大卷壁纸可贴10平方米的墙壁,一小卷壁纸可贴5平方米的墙纸.(1)求大卷和小卷壁纸的单价;(2)小明的爸爸共购买了40卷壁纸.若设购买大卷壁纸x卷.①设购买壁纸总费用为y元,写出y与x的函数关系式;②小明的爸爸决定,买壁纸的预算不能超过15000元,求可贴墙壁的最大面积.2.为响应国家扶贫攻坚的号召,A市先后向B市捐赠两批物资,甲车以60km/h的速度从A市匀速开往B 市.甲车出发1h后,乙车以90km/h的速度从A市沿同一条道路匀速开往B市.甲、乙两车距离A市的路程y(km)与甲车的行驶时间x(h)之间的关系如图所示(1)A,B两市相距km,m=,n=;(2)求乙车行驶过程中y关于x的函数解析式,并写出x的取值范围;(3)在乙车行驶过程中,当甲、乙两车之间的距离为30km时,直接写出x的值.3.如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=.(1)求k的值;(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动设运动时间为t秒.①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;②若设△OED的面积为S,求s关于t的函数关系式,并求出t为多少时,s的值最大?4.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA和射线AC上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(包括边界),则m的取值范围是.5.如图,在平面直角坐标系中,等腰Rt△AOB斜边OB在x轴正半轴上,B(6,0),A在第一象限,直线y=x与AB相交于点C.动点P(m,0)从原点出发,沿线段OB向右运动(0≤m<6).过点P 作OB的垂线与直线OC相交于点F,与△AOB的边OA或AB相交于点E.以EF为直角边、点E为直角顶点,在EF的左侧作等腰直角△EFG,连接AP.(1)求直线AB的解析式及点C的坐标;(2)当以点P、E、A为顶点的三角形为等腰三角形时,求m的值;(3)当△EFG与△AOB的重叠部分的图形是轴对称图形时,直接写出m的取值或取值范围.6.如图,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,点P为射线AO上的一点(点P不与点A 重合),BC是△ABP的中线,点C,C′关于BP对称,设点P的横坐标为m.(1)求点A,B的坐标,若∠APB=45°,求PB所在直线的解析式;(2)若BC=BA,求m的值;(3)若点C′在x轴下方,直接写出m的取值范围.7.已知直线AB交x轴于点A(a,o),交y轴于点B(0,b),且a、b满足|a+b|+(b﹣4)2=0.(1)求∠ABO的度数;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,且AC=CF,△ACP是以AC为直角边的等腰直角三角形,CQ⊥AF于点Q,求的值.8.如图,直线y=﹣3x+12分别交x轴、y轴于点A,B,以AB为斜边向左侧作等腰Rt△ABD,延长BD 交x轴于点C,连接DO,过点D作DE⊥DO交y轴于点E.(1)求证:∠1=∠2.(2)求OE的长.(3)点P在线段AB上,当PE与∠COD的一边平行时,求出所有符合条件的点P的坐标.9.在平面直角坐标系中,已知点A(1,0),B(0,3),C(﹣3,0),D是线段AB上一点,CD交y轴于E,且S△BCE=2S△AOB.(1)求直线AB的解析式;(2)求点D的坐标;(3)猜想线段CE与线段AB的数量关系和位置关系,并说明理由;(4)若F为射线CD上一点,且∠DBF=45°,求点F的坐标.10.在平面直角坐标系中,一次函数的图象分别与x轴、y轴交于点A、B,点C在线段OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(不包括这两个三角形重合的情况).11.如图,直角坐标系xOy中,过点A(6,0)的直线l1与直线l2:y=kx﹣1相交于点C(4,2),直线l2与x轴交于点B.(1)k的值为;(2)求l1的函数表达式和S△ABC的值;(3)直线y=a与直线l1和直线l2分别交于点M,N,(M,N不同)①直接写出M,N都在y轴右侧时a的取值范围;②在①的条件下,以MN为边作正方形MNDE,边DE恰好在x轴上,直接写出此时a的值.12.如图,在平面直角坐标系中,点A(1,m)是直线y=﹣x﹣2上一点,点A向上平移5个单位长度得到点B.(1)求点B的坐标;(2)在直线y=﹣x﹣2上是否存在一点C,使得△ABC是直角三角形,若存在,求出C点坐标;若不存在,说明理由;(3)若一次函数y=kx﹣2图象与线段AB存在公共点D,直接写出k的取值范围.13.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.14.如图,直线l1:y=kx﹣2k+1经过定点C,分别交x轴,y轴于A,B两点,直线l2经过O,C两点,点Dl2上.(1)①直接写出点C的坐标为;②求直线l2的解析式;(2)如图1,若S△BOC=2S△BCD,求点D的坐标;(3)如图2,直线l3经过D,E(0,﹣)两点,分别交x轴的正半轴、l1于点P,F,若PE=PF,∠EDO=45°,求k的值.15.如图,在平面直角坐标系中,直线AB与x轴、y轴相交于A(6,0)、B(0,2)两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D 作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求经过A、B两点的一次函数表达式及点D的坐标;(3)在x轴上是否存在点P,使得以C、D、P为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标.(不用写过程)16.如图,直线y=﹣x+4,与x轴、y轴分别交于A,B两点,点C与点B关于原点对称.(1)直接写出点A,B,C的坐标;(2)在线段OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q.求证:PQ=PB;(3)在(2)的条件下,过点P作PM⊥AC于点M,直接写出的值.17.如图,矩形OABC在平面直角坐标系中,OA在x轴负半轴,OC在y轴正半轴,点D在边OC上,连接BD,将△BCD沿BD折叠,得到△BDE,使点E落在矩形OABC内部,过点E作EF⊥AB于F,直线CF交x轴于点M,若点E(﹣3,9),F恰为AB中点.(1)如图1,直线CM的解析式;(2)如图2,点P为x轴上的动点,过P作x轴的垂线,分别交直线CM、BD于点N、Q,若NQ=2CD,求点P坐标;(3)点H为直线BD上动点,若△AEH以AE为直角边的直角三角形,是否存在点H?如果存在,直接写出点H坐标;不存在,请说明理由!18.如图1,直线y=x和直线y=﹣x+5相交于点A,直线y=﹣x+5与x轴交于点C,点P在线段AC上,PD⊥x轴于点D,交直线y=x于点Q.(1)点A的坐标为;(2)当QP=OA时,求Q点的坐标及△APQ的面积;(3)如图2,在(2)的条件下,∠OQP平分线交x轴于点M.①直接写出点M的坐标;②点N在直线y=x的上方,当△OQN和△OQM全等时直接写出N点坐标.19.如图,在平面直角坐标系xOy中,直线y=x+4与x轴,y轴分别交于点A,B,与直线y=﹣x交于点C,点P的坐标是(t,0),过点P作x轴的垂线l,与射线CO,CB分别交于点D,E,以DE为边向右作正方形DEFG.(1)点C的坐标是;(2)当点F在y轴上时,求t的值;(3)设正方形DEFG与△BOC重合部分的面积为S,求S关于t的函数关系式,并直接写出自变量t 的取值范围.20.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值及此时点P的坐标;若不存在,说明理由.21.如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x 轴上,点C在y轴上,OC=5,点E在边BC上,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为OE.(1)求点G的坐标,并求直线OG的解析式;(2)若直线l:y=mx+n平行于直线OG,且与长方形ABMN有公共点,请直接写出n的取值范围.(3)设点P为x轴上的点,是否存在这样的点P,使得以P,O,G为顶点的三角形为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.22.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.23.直线AB:y=﹣x+6分别与x,y轴交于A,B两点,过点B的直线交x轴负半轴于点C,且OB:OC =3:1.(1)求直线BC的解析式;(2)在直线BC上是否存在点D(点D不与点C重合),使得S△ABD=S△ABC?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.24.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的横坐标为1.(1)求直线l1的解析式和点A的坐标.(2)直线l1与y轴交于点D,将l1向上平移9个单位得l3,l3与x轴、y轴分别交于点E、F,点P为l3上一动点,连接AP、BP,当△ABP的周长最小时,求△ABP的周长和点P的坐标.(3)将l1绕点C逆时针旋转,使旋转后的直线l4过点G(﹣2,0),过点C作l5平行于x轴,点M、N分别为直线l4、l5上两个动点,是否存在点M、点N,使△BMN是以点M为直角顶点的等腰直角三角形,若存在,求出点M的坐标,若不存在,请说明理由.25.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,直线y=﹣2x+3与x轴交于点B,与y 轴交于点C,与直线y=2x+6交于点D.(1)求点D的坐标;(2)将△BOC沿x轴向左平移,平移后点B的对应点为点E.点O的对应点为点F,点C的对应点为点G,当点F到达点A时,停止平移,设平移的距离为t.①当点G在直线y=2x+6上时,求△DCG的面积;②当△EFG与四边形AOCD重合部分的面积为2时,请直接写出t的值.26.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.27.如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x 轴上从点D向终点O匀速运动,同时动点M在直线y=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.28.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.29.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a﹣2)2+=0.(1)求A点的坐标为(,),B点的坐标为(,);(2)若点M为直线y=mx在第一象限上一点,且△ABM是以AB为腰的等腰直角三角形,求m的值;(3)如图过点A的直线y=nx﹣2n交y轴负半轴于点P,N点的横坐标为﹣1,过N点的直线y=x+c 交AP于点M(3,n),(i)试用含n的式子表示c;(ii)给出两个结论:①的值是不变;②的值是不变,只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.30.如图,在平面直角坐标系中,直线y=kx过点A(6,m),过点A作x轴的垂线,垂足为点B,过点A作y轴的垂线,垂足为点C.∠AOB=60°,CD⊥OA于点D.动点P从点O出发,以每秒2个单位长度的速度向点A运动,动点Q从点A出发.以每秒个单位长度的速度向点B运动.点P,Q 同时开始运动,当点P到达点A时,点P,Q同时停止运动,设运动时间为t(s),且t>0.(1)求m与k的值;(2)当点P运动到点D时,求t的值;(3)连接DQ,点E为DQ的中点,连接PE,当PE⊥DQ时,请直接写出点P的坐标.参考答案与试题解析1.小明家新房装修时选定了某种品牌同一花色的壁纸,这种壁纸有大卷和小卷两种型号,已知购买1卷大卷壁纸和2卷小卷壁纸共花费900元,购买2卷大卷壁纸和3卷小卷壁纸共花费1550元.其中一大卷壁纸可贴10平方米的墙壁,一小卷壁纸可贴5平方米的墙纸.(1)求大卷和小卷壁纸的单价;(2)小明的爸爸共购买了40卷壁纸.若设购买大卷壁纸x卷.①设购买壁纸总费用为y元,写出y与x的函数关系式;②小明的爸爸决定,买壁纸的预算不能超过15000元,求可贴墙壁的最大面积.【解答】解:(1)设大卷壁纸单价为m元/卷,小卷壁纸单价为n元/卷,由题意得:,解得:,答:大卷壁纸单价为400元/卷,小卷壁纸单价为250元/卷;(2)①购买大卷壁纸x卷,购买小卷壁纸(40﹣x)卷,则y=400x+250(40﹣x)=150x+10000,∴y与x的函数关系式为y=150x+10000;②∵y≤15000,∴150x+10000≤15000,解得:x≤,x为整数,设贴墙壁的面积为S,则S=10x+5(40﹣x)=5x+200,∵5>0,∴S随x的增大而增大,∵x最大值为33,∴S max=5×33+200=365,答:可贴墙壁的最大面积为365平方米.2.为响应国家扶贫攻坚的号召,A市先后向B市捐赠两批物资,甲车以60km/h的速度从A市匀速开往B 市.甲车出发1h后,乙车以90km/h的速度从A市沿同一条道路匀速开往B市.甲、乙两车距离A市的路程y(km)与甲车的行驶时间x(h)之间的关系如图所示(1)A,B两市相距360km,m=5,n=6;(2)求乙车行驶过程中y关于x的函数解析式,并写出x的取值范围;(3)在乙车行驶过程中,当甲、乙两车之间的距离为30km时,直接写出x的值.【解答】解:(1)由函数图象可知,AB两市相距360km,则m=+1=5(h),n==6(h),故答案为:360,5,6;(2)设乙车行驶过程中y关于x的函数解析式为y=k+b,将点(1,0)和点(5,360)代入得:,解得:,则乙车行驶过程中y关于x的函数解析式为y=90x﹣90,由(1)可知,m=5,则1≤x≤5;(3)设甲车行驶过程中y关于x的函数解析式为y=cx,将点(6,360)代入得:6c=360,解得:c=60,则甲车行驶过程中y关于x的函数解析式为y=60x,联立,解得:,即当甲车行驶3h时,两车相遇,由题意,分以下两种情况:①当甲、乙两车未相遇前,即1≤x<3时,则60x﹣(90x﹣90)=30,解得:x=2,符合题设;②当甲、乙两车相遇后,即3≤x<5时,则90x﹣90﹣60x=30,解得:x=4,符合题设;综上,在乙车行驶过程中,当甲、乙两车之间的距离为30km时,x的值为2或4.3.如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=.(1)求k的值;(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动设运动时间为t秒.①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;②若设△OED的面积为S,求s关于t的函数关系式,并求出t为多少时,s的值最大?【解答】解:(1)直线y=kx+3,当x=0时,y=3,∴B(0,3),∴OB=3,∵∠AOB=90°,且sin∠OAB=,∴=,∵AB=OB=×3=5,∴OA==4,∴A(4,0),把A(4,0)代入y=kx+3得0=4k+3,解得k=.(2)①不存在,理由如下:在OA上取一点F(,0),连接BF,当0<t<时,如图1,OD=t,OE=2t,∵==,==,∴=,∵∠DOE=∠FOB,∴△ODE∽△OFB,∴∠ODE=∠OFB,∴DE∥BF,当t=时,DE与BF重合,∴当0<t≤时,不存在DE∥OB;当<t<4时,如图2,AF=4=,AD=4﹣t,AE=8﹣2t,∵==,=,∴=,同理可证DE∥BF,∴此时不存在DE∥OB,综上所述,不存在DE∥OB.②当0<t≤时,如图1,S△OED=OD•OE=t×2t=t2,∴S=t2,∵a=1>0,∴S随t的增大而增大,∴当t=时,S最大=()2=;当<t<4时,如图2,作EG⊥x轴,则EG∥BO,∴△AGE∽△AOB,∴=,∴GE=•AE=(8﹣2t),∴S△OED=OD•GE=×t(8﹣2t)=t2+t,∴S=t2+t,∵S=t2+t=(t﹣2)2+,且<0,<2<4,∴当t=2时,S最大=,∵>,∴当t=2时,S的最大值为,综上所述,S=,当t=2时,S的最大值为.4.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA和射线AC上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(包括边界),则m的取值范围是2<m<5.【解答】解:(1)∵点A在正比例函数y=x的图象上,且点A的横坐标为4.∴点A(4,2),∴2=﹣4+b,∴b=6,∴一次函数解析式为y=﹣x+6,∵一次函数y=﹣x+6的图象与x轴,y轴分别交于B,C两点,∴点B(6,0),点C(0,6);(2)由(1)可知:OC=6,x A=4,∴S△OAC=×OC×x A=×6×4=12,∵S△OMC=S△OAC=4,∴S△OMC=×OC×|x M|=4,∴|x M|=,∴x M=±,分情况讨论:①当动点M在线段OA上时,x>0,则当x=时,y=,∴此时M点的坐标为(,),②动点M射线AC上运动时:a.若x>0,则当x=时,y=﹣+6=,故此时M点的坐标为(,),b.若x<0,则当x=﹣时,y=+6=,故此时M点的坐标为(﹣,),综上,M点的坐标为(,)或(,)或(﹣,);故答案为:(,)或(,)或(﹣,);(3)∵点P(m,1)在△AOB的内部(不包括边界),∴当y=1时,代入正比例函数中得:1=x,解得:x=2,当y=1时,代入一次函数中得:1=﹣x+6,解得:x=5,∴2<m<5.故答案为:2<m<5.5.如图,在平面直角坐标系中,等腰Rt△AOB斜边OB在x轴正半轴上,B(6,0),A在第一象限,直线y=x与AB相交于点C.动点P(m,0)从原点出发,沿线段OB向右运动(0≤m<6).过点P 作OB的垂线与直线OC相交于点F,与△AOB的边OA或AB相交于点E.以EF为直角边、点E为直角顶点,在EF的左侧作等腰直角△EFG,连接AP.(1)求直线AB的解析式及点C的坐标;(2)当以点P、E、A为顶点的三角形为等腰三角形时,求m的值;(3)当△EFG与△AOB的重叠部分的图形是轴对称图形时,直接写出m的取值或取值范围.【解答】解:(1)设直线AB的解析式为y=kx+b,如图1,作AH⊥OB于点H,∵AB=AO,∴OH=BH=OB=×6=3,∴H(3,0),∵∠OAB=90°,∴AH=OB=3,∴A(3,3),把A(3,3)、B(6,0)代入y=kx+b,得,解得,∴直线AB的解析式为y=﹣x+6;由得,∴C(5,1).(2)如图1,点E在OA上,AE=PE,∵PE⊥OB,∴∠OPE=90°,∵∠AOB=∠ABO=45°,∴∠POE=∠PEO=45°,∵P(m,0),∴PE=OP=AE=m,∴OE===m,∵AB=AO===3,∴m+m=3,解得m=6;如图2,点E在AB上,AE=PE,∵∠BPE=90°,∠PBE=45°,∴∠PEB=∠PBE=45°,∴AE=PE=PB=6﹣m,∵BE===PB=(6﹣m),∴6﹣m+(6﹣m)=3,解得m=3,综上所述,m的值为6或3.(3)当点E在OA边上,如图1,设FG交OA于点M,∵EF=EG,∠FEG=90°,∴∠MFE=∠G=45°,∴∠MEF=∠MFE=45°,∴ME=MF,∴△MEF是轴对称图形,此时0<m≤3;如图3,点E在AC上,EG交OA于点N,FG交OA于点M,EN=MN,连接FN,∵∠FEG=∠EPB=90°,∴EG∥OB,∴∠MNG=∠AOB=∠G=45°,∴∠GMN=90°,∴FG⊥OA,∵∠FEN=∠FMN=90°,FN=FN,EN=MN,∴Rt△EFN≌Rt△MFN(HL),∴四边形MFEN是轴对称图形,MF=EF,作CQ⊥OB于点Q,则Q(5,0),∴BQ=CQ=1,∵∠BQC=90°,∴BC===,∴AC=3﹣=2,∵P(m,0),∴F(m,m),∵PE=PB=6﹣m,∴EF=6﹣m﹣m=6﹣m,∵∠GMN=∠A=90°,∴MF∥AC,∴△OMF∽△OAC,∴=,∴===,设MF=2n,则OM=3n,∴OF===n,∴==,∵∠OPF=90°,OP=m,PF=m,∴OF==m,∴MF=OF=×m=m,∴m=6﹣m,解得m=;当点G与点M重合时,则MF=GF===EF,∴m=(6﹣m),解得m=,如图4,当≤m<5时,△EFG与△AOB的重叠部分为等腰直角△EFG,是轴对称图形;如图5,点E在BC上,FG交AB于点I,∵∠GEF=∠OPF=90°,∴GE∥OB,∴∠IEG=∠ABO=45°,∴∠IEG=∠G=45°,∴IG=IE,∴△IGE是轴对称图形,此时5<m<6,综上所述,m的取值范围是0<m≤3或m=或≤m<5或5<m<6.6.如图,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,点P为射线AO上的一点(点P不与点A 重合),BC是△ABP的中线,点C,C′关于BP对称,设点P的横坐标为m.(1)求点A,B的坐标,若∠APB=45°,求PB所在直线的解析式;(2)若BC=BA,求m的值;(3)若点C′在x轴下方,直接写出m的取值范围.【解答】解:(1)把x=0代入y=﹣2x+4,得到y=4.把y=0代人y=﹣2x+4,得x=2.∴A(2,0),B(0,4),若∠APB=45°,则点P在轴的负半轴上,且OP=OB=4.∴P(﹣4,0),设PB所在直线的解析式y=kx+b,∴,解得.∴PB所在直线的解析式为y=x+4;(2)若BC=BA,∵BO⊥CA,∴CO=OA,∵A(2,0),∴C(﹣2,0),∴AC=4,CO=OA=2,∵BC是△ABP的中线,∴PC=AC=4,∴OP=OC+PC=2+4=6,∴点P(﹣6,0),∴m=﹣6;(3)0<m<2.理由:当点P在x轴负半轴上时.点C′在x轴上方;点P与原点O重合时.点C′在x轴上,点P 在点O,A之间时,点C在x轴下方.∴0<m<2.7.已知直线AB交x轴于点A(a,o),交y轴于点B(0,b),且a、b满足|a+b|+(b﹣4)2=0.(1)求∠ABO的度数;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,且AC=CF,△ACP是以AC为直角边的等腰直角三角形,CQ⊥AF于点Q,求的值.【解答】解:(1)∵|a+b|+(b﹣4)2=0,∴a=﹣4,b=4,∴点A的坐标为(﹣4,0),点B的坐标为(0,4),∴AO=BO=4,∵∠AOB=90°,∴∠ABO的度数为45°;(2)△COD是等腰直角三角形.证明:如图1:∵BE⊥AC,OA⊥OB,∴∠EFB+∠EBF=∠OF A+∠OAF,又∵∠OF A=∠EFB,∴∠EBF=∠OAF,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS),∴OC=OD,∠AOC=∠BOD,∴∠AOB+∠BOC=∠BOC+∠DOC,∴∠DOC=∠AOB=90°,∴△COD为等腰直角三角形;(3)过点C作CK⊥OB交AB于K,∵∠ACP=90°,∴∠BCP=∠OAC,∵OA=OB,∴∠OAC+∠CAF=∠OAB=45°,∴∠OBA=∠F+∠BCF=45°,∵AC=CF,∴∠CAF=∠F,∴∠BCF=∠OAC=∠BCP,即OB平分∠PCF,∵△ACP是以AC为直角边的等腰直角三角形,∴CA=CP,∵AC=CF,∴CP=CF,∵CB=CB,∴△BCF≌△BCP(SAS),∴BF=BP,∵∠OBA=45°,CK⊥OB,∴△BCK为等腰直角三角形,∴△ACF和△BCK均为等腰三角形,∵CQ⊥AF,∴FQ=AQ,BQ=QK,∴BF=AK,∵△BCK为等腰直角三角形,∴BQ=QK=CQ,∴===2.8.如图,直线y=﹣3x+12分别交x轴、y轴于点A,B,以AB为斜边向左侧作等腰Rt△ABD,延长BD 交x轴于点C,连接DO,过点D作DE⊥DO交y轴于点E.(1)求证:∠1=∠2.(2)求OE的长.(3)点P在线段AB上,当PE与∠COD的一边平行时,求出所有符合条件的点P的坐标.【解答】(1)证明∵△ABD是以AB为斜边向左侧作等腰直角三角形,∠BDA=∠CDA=∠BOC=90°,∴∠1=90°﹣∠BCO,∠2=90°﹣∠BCO,∴∠1=∠2;(2)解:如图:∵DB⊥DA,DE⊥DO,∴∠3+∠4=90°,∠5+∠4=90°,∴∠3=∠5,∵∠1=∠2,且DB=DA,∴△BDE≌△ADO(ASA),∴BE=OA,又∵直线y=﹣3x+12分别交x轴、y轴于点A,B,∴OB=12,OA=4,∴BE=OA=4,∴OE=OB﹣BE=12﹣4=8;(3)解:∵点P在直线y=﹣3x+12上,∴设点P的坐标为(x,﹣3x+12).∵直线PE与∠COD的一边平行,∴分两种情况.①若PE∥OC,如图,∴点P的纵坐标等于点E的纵坐标=8,∴﹣3x+12=8,解得x=,∴点P的坐标为(,8);②若PE∥OD(如图),延长EP交x轴于点Q,由(2)知:△BDE≌△ADO,∴DO=DE,∵∠ODE=90°,∴∠DOE=45°=∠DOC=∠EQO,∴OQ=OE=8,∴Q(8.0).设直线EP为:y=kx+8,则0=8k+8,解得k=﹣1,∴直线EP为y=﹣x+8,联立直线AB,得,解得:,∴点P的坐标为(2.6),综上所述:符合条件的点P的坐标为(,8)或(2,6).9.在平面直角坐标系中,已知点A(1,0),B(0,3),C(﹣3,0),D是线段AB上一点,CD交y轴于E,且S△BCE=2S△AOB.(1)求直线AB的解析式;(2)求点D的坐标;(3)猜想线段CE与线段AB的数量关系和位置关系,并说明理由;(4)若F为射线CD上一点,且∠DBF=45°,求点F的坐标.【解答】解:(1)设直线AB的函数解析式为:y=kx+b,则,∴,∴直线AB的函数解析式为:y=﹣3x+3;(2)设E(0,t),∵A(1,0),B(0,3),∴OA=1,OB=3,∴S△AOB=,∵S△BCE=2S△AOB,∴S△BCE=3,∴,解得t=1,∴E(0,1),设直线CE的函数解析式为:y=mx+n,将C、E的坐标代入得:,∴,∴直线CE的函数解析式为:y=x+1,当x+1=﹣3x+3时,∴x=,则y=,∴D(),(3)猜想:CE=AB,CE⊥AB,理由如下:∵OE=OA=1,OC=OB=3,∠COE=∠BOA=90°,∴△COE≌△BOA(SAS),∴CE=AB,∠OCE=∠OBA,∵∠OBA+∠BAO=90°,∴∠OCE+∠BAO=90°,∴∠CDA=90°,∴CE⊥AB;(4)在射线CD上存在两个F点,使∠DBF=45°,如图,当点F在线段CD上时,过点D作GH∥y轴,过点B、F分别作GH的垂线,垂足分别为G、H点,∵CD⊥AB,∠DBF=45°,∴∠DBF=∠DFB=45°,∴BD=DF,∵∠BDG+∠FDH=90°,∠BDG+∠DBG=90°,∴∠FDH=∠DBG,又∵∠G=∠H∴△BDG≌△DFH(AAS),∴FH=DG=3﹣=,DH=BG=,∴点F(﹣,),当点F在CD的延长线上时,由对称性可知F(,),综上点F的坐标为:(﹣,)或(,),10.在平面直角坐标系中,一次函数的图象分别与x轴、y轴交于点A、B,点C在线段OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(﹣2,0)或(2,3)或(﹣)(不包括这两个三角形重合的情况).【解答】解:(1)由得,A(3,0),B(0,4),∴OA=3,OB=4,∵∠AOB=90°,由勾股定理得,AB=5,∵将△AOB沿AC翻折,点B恰好落在x轴上的点D处,∴AD=AB=5,∴OD=2,设OD=x,则BC=4﹣x,在Rt△OCD中,由勾股定理得:x2+22=(4﹣x)2,解得x=,∴C(0,);(2)由(1)得直线CD的解析式为y=x+,∵将△AOB沿AC翻折,点B恰好落在x轴上的点D处,∴∠ABO=∠CDO,∵∠BCE=∠DCO,∴∠BEC=∠COD=90°,①当点D与P重合时,OP=2,OC=,CP=,则△CPQ与△CBE全等,∴P(﹣2,0);②当CQ=BC=时,则点Q的纵坐标为﹣1时,点Q与直线CD之间的距离为2,则△CPQ与△CBE全等,∴P(﹣);③当PC=BE=2时,得点P(2,3),综上,点P的坐标为(﹣2,0)或(2,3)或(﹣).故答案为:(﹣2,0)或(2,3)或(﹣).11.如图,直角坐标系xOy中,过点A(6,0)的直线l1与直线l2:y=kx﹣1相交于点C(4,2),直线l2与x轴交于点B.(1)k的值为;(2)求l1的函数表达式和S△ABC的值;(3)直线y=a与直线l1和直线l2分别交于点M,N,(M,N不同)①直接写出M,N都在y轴右侧时a的取值范围;②在①的条件下,以MN为边作正方形MNDE,边DE恰好在x轴上,直接写出此时a的值.【解答】解:(1)将点C(4,2)代入y=kx﹣1得,2=4k﹣1,解得,故答案为:;(2)设直线l1的表达式为y=k1x+b将点A(6,0),C(4,2)代入得,,解得,∴直线l1的表达式为y=﹣x+6,当y=0时,,解得x=,∴点B的坐标为(,0),∴AB=6﹣=,∴S△ABC=;(3)①当x=0时,y=x﹣1=﹣1,y=﹣x+6=6,∴M,N都在y轴右侧时a的取值范围是:﹣1<a<6且a≠2.②当y=a时,x﹣1=a,则x=,∴点N的坐标为(,a),当y=a时,﹣x+6=a,则x=6﹣a,∴点M的坐标为(6﹣a,a)∴MN=|6﹣a﹣|=||,∵四边形MNDE为正方形,∴||=|a|,解得:或,∴或.12.如图,在平面直角坐标系中,点A(1,m)是直线y=﹣x﹣2上一点,点A向上平移5个单位长度得到点B.(1)求点B的坐标;(2)在直线y=﹣x﹣2上是否存在一点C,使得△ABC是直角三角形,若存在,求出C点坐标;若不存在,说明理由;(3)若一次函数y=kx﹣2图象与线段AB存在公共点D,直接写出k的取值范围.【解答】解:(1)∵点A(1,m)是直线y=﹣x﹣2上一点,∴m=﹣1﹣2=﹣3.∴点A的坐标为(1,﹣3),∴点A向上平移5个单位长度得到点B的坐标为(1,2);(2)存在,①当∠B=90°时,如图,∵B(1,2),C点在y=﹣x﹣2上,∴2=﹣x﹣2,解得:x=﹣4,∴C(﹣4,2),∴BC=5,∵点A向上平移5个单位长度得到点B,∴AB=BC=5,∴∠CAB=45°,②当∠ACB=90°时,作CG⊥AB于G,∵∠CAB=45°,∴△ABC是等腰直角三角形,∴G为AB中点,∵点A的坐标为(1,﹣3),点B的坐标为(1,2),∴G(1,﹣0.5)∵点C在y=﹣x﹣2上,∴﹣0.5=﹣x﹣2,解得:x=﹣1.5,∴C(﹣1.5,﹣0.5).综上,存在一点C,使得△ABC是直角三角形,C点坐标为(﹣4,2)或(﹣1.5,﹣0.5);(3)当直线y=kx﹣2过点A(1,﹣3)时,得﹣3=k﹣2,解得k=﹣1.当直线y=kx﹣2过点B(1,2)时,得2=k﹣2,解得k=4.如图,若一次函数y=kx﹣2与线段AB有公共点,则k的取值范围是﹣1≤k≤4且k≠0.13.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.【解答】解:(1 )∵OA=4,∴A(4,0),把A(4,0)代入,得:b=﹣3,过点D作DH⊥AB于点H,则DH=DO,BH=BO,∵当x=0时,y=3,∴B(0,﹣3),∴OA=4,BO=BH=3,∴,AD=DO+OA=DH+4,∵,∴,解得:DH=6,∴OD=6,∴点D的坐标为(﹣6,0),(2)过点P作PE⊥OD于点E,则△DPE∽△DBO,∵点P在直线BD上,且点P的横坐标为t,∴DE=t+6,∵OD=6,OB=3,∴,∵△DPE∽△DBO,∴,∴,解得:,∵PC⊥BD,∴△PDC∽△ODB,∴,∴,∴,∴;(3)作PH垂直于x轴于点H,设射线EP绕点E逆时针旋转45°交x轴于点K,顺时针旋转45°交x轴于点G.∵∠BPC=90°,∠BOC=90°∴B,P,C,O四点共圆,∴∠POC=∠PBC=45°,∴PH=HO,∴DH=6﹣HO=6﹣PH,∴,得PH=2,∴HC=CG=1,∴OE=2,∵∠KEP=∠DBC,∠PEB=∠BDC,∴∠KEP+∠PEB=∠DBC+∠BDC,即∠KEO=∠BCO,∴OE:GK=CO:BO=1:3,∴GK=6,∴K(﹣6,0),∴直线KE为:y=﹣x﹣2,联立方程组:,解得x=12,y=﹣6,∴F1(12,﹣6),∵∠KEP+∠PEG=90°,∴∠DEG=90°,∴∠OEG=∠ODE,∴OG:OE=OE:OD=1:3,∴OG=;∴G(,0),∴直线EG的解析式为:y=3x﹣2,联立方程组:,解得x=,y=2,∴F2(,2),综上所述:F的坐标为(12,﹣6)或(,2).14.如图,直线l1:y=kx﹣2k+1经过定点C,分别交x轴,y轴于A,B两点,直线l2经过O,C两点,点Dl2上.(1)①直接写出点C的坐标为(2,1);②求直线l2的解析式;(2)如图1,若S△BOC=2S△BCD,求点D的坐标;(3)如图2,直线l3经过D,E(0,﹣)两点,分别交x轴的正半轴、l1于点P,F,若PE=PF,∠EDO=45°,求k的值.【解答】解(1)①∵y=kx﹣2k+1经过定点C,∴点C的坐标与k的取值无关,∴x=2时,y=1,∴C(2,1),故答案为:(2,1);②设l2的解析式为:y=ax,把C(2,1)代入y=ax得:a=,∴l2的解析式为y=,(2)如图,取OB的中点H,连接CH,。

第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章一次函数压轴题考点训练A ....【答案】A【分析】根据y 1,y 2的图象判断出k+b 的值,然后根据k-1、所求函数图象经过的象限即可.【详解】解:根据y 1,y 2的图象可知,,且当x=1时,y 2=0,即k+b=0.∴对于函数()1y k x b =-+,有b 时,y=k-1+b=0-1=-1<0.∴符合条件的是选项.故选:A.【点睛】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关....()A.(-1,0)【答案】B【分析】由题意作A求的P点;首先利用待定系数法即可求得直线∵A(1,-1),∴C的坐标为(1,1连接BC,设直线BC∴123k bk b+-⎧⎨+-⎩==,解得⎧⎨⎩A .433B .233【答案】D【分析】根据题意利用相似三角形可以证明线段用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点【详解】解:由题意可知,2OM =,点则OMN ∆为顶角30度直角三角形,ON如图所示,当点P 运动至ON 上的任一点时,设其对应的点∵o AO AB ⊥,iAP AB ⊥∴o iOAP B AB ∠=∠又∵tan 30o AB AO =∙ ,tan i AB AP =∙∴::o i AB AO AB AP=∴o i AB B ∆∽AOP∆∴o i AB B AOP∠=∠【答案】32b -≤≤【分析】根据矩形的性质求得点D 的坐标,交,则交点在线段BD 之间,代入求解即可.【详解】解:矩形ABCD 中,点A 、根据矩形的性质可得:(1,3)D 根据图像得到直线y x b =+与矩形ABCD 将点(4,1)B 代入得:41b +=,解得b 将点(1,3)D 代入得:13+=b ,解得b 由此可得32b -≤≤【答案】0k <或01k <<【分析】分别利用当直线()430y kx k k =+-≠过点值范围,据此即可求解.【详解】解:当直线y =【点睛】本题主要考查等腰直角三角形的性质和两直线交点坐标的求法,加辅助线,构造等腰直角三角形和全等三角形,是解题的关键.评卷人得分三、解答题13.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往运任务承包给某运输公司.已知C乡需要农机34台,两乡运送农机的费用分别为250元/台和200元/台,从别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为系式,并直接写出自变量x的取值范围;值.【答案】(1)W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30;(2)有三种调运方案:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)a 的值为200元.【分析】(1)设A 城运往C 乡x 台农机,可以表示出运往其它地方的台数,根据调运单价和调运数量可以表示总费用W ;(2)列出不等式组确定自变量x 的取值范围,在x 的正整数解的个数确定调运方案,并分别设计出来;(3)根据A 城运往C 乡的农机降价a 元其它不变,可以得出另一个总费用与x 的关系式,根据函数的增减性,确定当x 为何值时费用最小,从而求出此时的a 的值.【详解】解:(1)设A 城运往C 乡x 台农机,则A 城运往D 乡(30﹣x )台农机,B 城运往C 乡(34﹣x )台农机,B 城运往D 乡(6+x )台农机,由题意得:W =250x +200(30﹣x )+150(34﹣x )+240(6+x )=140x +12540,∵x ≥0且30﹣x ≥0且34﹣x ≥0,∴0≤x ≤30,答:W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30.(2)由题意得:1401254016460030x x +>⎧⎨⎩,解得:28≤x ≤30,∵x 为整数,∴x =28或x =29或x =30,因此有三种调运方案,即:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)由题意得:W =(250﹣a )x +200(30﹣x )+150(34﹣x )+240(6+x )=(140﹣a )x +12540,∵总费用最小值为10740元,∴140﹣a <0∴W 随x 的增大而减小,又∵28≤x ≤30,∴当x =30时,W 最小,即:(140﹣a )×30+12540=10740,【答案】(1)y=2x+4(2)1112-+【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线(1)求m 的值;(2)点P 从O 出发,以每秒2个单位的速度,沿射线OA 方向运动.设运动时间为t ()s .①过点P 作PQ OA ⊥交直线AB 于点Q ,若APQ ABO ∆≅∆,求t 的值;②在点P 的运动过程中,是否存在这样的t ,使得POB ∆为等腰三角形?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)6;(2)①2或8;②2.5或4或6.4.3【点睛】本题主要考查一次函数图象与几何图形的综合,形的性质,利用分类讨论的思想方法,是解题的关键.17.如图,在平面直角坐标系中,直线2y x =-+交于点C .(1)求点A ,B 的坐标.(3)存在.∵线段AB在第一象限,∴这时点P在x轴负半轴.∵==OA 2,OB 4,∴222224BP OP OB x =+=+,222222420AB OA OB =+=+=,222()(2)AP OA OP x =+=-.∵222BP AB AP +=,∴222420(2)x x ++=-,解得8x =-,∴当点P 的坐标为(8,0)-时,ABP 是直角三角形;③设AB 是直角边,点A 为直角顶点,即90BAP ∠= .∵点A 在x 轴上,P 是x 轴上的动点,∴90BAP ∠≠ .综上,当点P 的坐标为(0,0)或(8,0)-时,ABP 是直角三角形.【点睛】本题考查的是一次函数的图象与及几何变换、一次函数的性质及直角三角形的判定等知识点,掌握分类讨论思想和一次函数图像的性质是解答本题的关键.。

2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)

2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)

人教版2020-2021年八年级下册期末复习(一次函数压轴题)一.解答题(共15小题)1.在平面直角坐标系中,A (0,8),点B 是直线y =x ﹣8与x 轴的交点.(1)写出点B 的坐标( , );(2)点C 是x 轴正半轴上一动点,且不与点B 重合,∠ACD =90°,且CD 交直线y =x ﹣8于D 点,求证:AC =CD ;(3)在第(2)问的条件下,连接AD ,点E 是AD 的中点,当点C 在x 轴正半轴上运动时,点E 随之而运动,点E 到BD 的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.2.已知,如图:在正方形OABC 中,A (0,1),B (1,1),C (1,0),D 为OB 延长线上的一动点,以AD 为一边在直线AD 下方作正方形ADEF ,AF 交OC 于点G .(1)若S △AOD =1,求D 点的坐标;(2)①求证:点E 始终落在x 轴上;②若S 四边形ABCG =a •S △ABE ,1<a <2,利用a 表示此时直线AF 的解析式.3.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (0,4)、B (﹣2,0)、C (23,0),点D 是边AC 上的一点,DE ⊥BC 于点E .点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称.连接DF ,EF .设点D 的横坐标为m ,EF 2为l ,请解决下列问题:(1)若一次函数的图象经过A 、C 两点,则此一次函数的表达式为 ;(2)若以EF 为边长的正方形面积为S ,请你求出S 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值;(3)△BEF 能否成为直角三角形.若能,求出m 的值;若不能,说明理由.4.如图,在平面直角坐标系中,一次函数12x 512-y +=的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF ⊥x 轴于点F ,交BD 于点E ,连接AE .(1)求线段AB 的长;(2)求点C 的坐标(3)求证:AD 平分∠EAF ;(4)求△AEF 的周长5.如图1,已知直线y =kx +1交x 轴于点A 、交y 轴于点B ,且OA :OB =4:3.(1)求直线AB 的解析式(2)如图2,直线y =31x +2与x 轴、y 轴分别交于点C 、D ,与直线AB 交于点P . ①若点E 在线段P A 上且满足S △CDE =S △CDO ,求点E 的坐标;②若点M是位于点B上方的y轴上一点,点Q在直线AB上,点N为第一象限内直线CD上一动点,是否存在点N,使得以点B、M、N、Q为顶点的四边形是菱形?若存在,求出点N坐标;若不存在,请说明理由.6.如图,直线y=﹣x+1与y轴、x轴分别交于A、B两点,点C在线段AB上从A向B运动,另一动点P从B出发,沿直线x=1运动,记AC的长为t,P的坐标为(1,b),分析此图后,对下列问题作出探究:(1)当t=且b=时,△AOC≌△BCP;(2)当OC与CP垂直时,①判断线段OC和CP的数量关系?并证明你得到的结论;②试写出b关于t的函数关系式和变量t的取值范围.③求出当△PBC为等腰三角形时点P的坐标.7.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+6分别交x轴,y轴于点A,B,已知点A的坐标为(6,0).(1)求k的值;(2)点C是线段OA上一点(不与点O,A重合),点D是OB的延长线上一点,连接CD交AB于点E,且CE=DE,设OC的长为t,BD的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E 作EF ⊥CD 交y 轴于点F ,点G 在线段DE 上,且EG =EF ,连接BG 并延长交FE 的延长线于点H ,若BF =d 43-29,求点E 的坐标.8.平面直角坐标系中,O 为坐标原点,直线b x 3y +=交y 轴于A ,x 轴于B ,S △AOB =83.(1)求b 的值;(2)点C 为射线BA 上一动点,连接OC ,以C 为边作等边△OCD ,点D 在OC 的右侧,求点D 的纵坐标;(3)在(2)的条件下,连接AD 、BD ,△BOC 的面积是△ACD 的面积的2倍,M 是x 轴上一点,连接DM ,若∠DMB ﹣∠DBM =90°,求点M 坐标.9.如图1,在矩形ABCD 中,动点P 沿着边AB 从点A 运动到点B ,同时动点Q 沿着边BC ,CD 从点B 运动到点D ,它们同时到达终点,若点Q 的运动路程x 与线段BP 的长y 满足y =8x 74-+,BD 与PQ 交于点E . (1)求AB ,BC 的长. (2)如图2,当点Q 在CD 上时,求DE BE . (3)将矩形沿着PQ 折叠,点B 的对应点为点F ,连接EF ,当EF 所在直线与△BCD的一边垂直时,求BP的长.10.平面直角坐标系中,设一次函数y=(2a﹣1)x+3﹣b的图象是直线l1.(1)如果把l1向下平移2个单位后得到直线y=3x+1,求a,b的值;(2)当直线l1过点(m,6﹣b)和点(m+3,4a﹣7)时,且﹣3<b<12,求a的取值范围;(3)点P(﹣2n+3,3n﹣1)在直线l2上运动,直线l2与直线l1无交点,求a、b所需满足的条件.11.如图,在平面直角坐标系中,直线y=kx+b与x轴,y轴分别相交于点A(4,0),点B(0,3),点C是线段OB的中点,动点P从点B开始以每秒1个单位长度的速度沿路线B→A向终点A匀速运动,设运动的时间为t秒,连接CP.(1)求直线AB的函数解析式;(2)请直接写出点P的坐标;(用含t的代数式表示)(3)①当S△BCP:S四边形AOCP=1:4时,求t的值;②将△BCP沿CP翻折,使点B落在点B′处,当PB′平行于坐标轴时,请直接写出t的值.12.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA =45°,求满足条件的点Q 的坐标;(3)如图2,在x 轴的负半轴上是否存在点Q ,使得以BQ 为边作正方形BQMN 时,点M 恰好落在直线l 上,且正方形BQMN 的面积被x 轴分成了1:2的两部分?若存在,请求出点Q 的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)经过点A (6,0)和点B (0,9),其图象与直线y =x 43交于点C .(1)求一次函数y =kx +b (k ≠0)的表达式;(2)点P 是线段OA 上的一个动点(点P 不与点O ,A 重合),过点P 作平行于y 轴的直线l ,分别交直线AB ,OC 于点M ,N ,设点P 的横坐标为m .①线段PM 的长为 ;(用含m 的代数式表示)②当点P ,M ,N 三点中有一个点是另两个点构成线段的中点时,请直接写出m 的值; ③直线l 上有一点Q ,当∠PQA 与∠AOC 互余,且△PQA 的周长为227时,请直接写出点Q 的坐标.14.如图1,已知直线y =﹣2x +2与y 轴、x 轴分别交于A 、B 两点,以B 为直角顶点在第一象限内作等腰Rt △ABC .(1)A ( );B ( );(2)求BC 所在直线的函数关系式;(3)如图2,直线BC 交y 轴于点D ,在直线BC 上取一点E ,使AE =AC ,AE 与x 轴相交于点F .①求证:BD =ED ;②在直线AE 上是否存在一点P ,使△ABP 的面积等于△ABD 的面积?若存在,直接写出点P 的坐标;若不存在,说明理由.15.在平面直角坐标系中,直线y =32x ﹣6与x 轴交于点A ,与y 轴交于点B ,点D 在直线AB 上,点D 的横坐标为3,点C (﹣6,0),动点F 从C 出发,沿x 轴正方向运动,速度为每秒1个单位长度,到达终点A 停止运动,设运动时间为t (t >0).(1)如图1①求点A 、B 的坐标;②当t =3时,求证DF =DA . (2)过点B 作BE ∥OA ,当BE =ED 时,连接ED 并延长交x 轴于点Q①点Q 的坐标为 ;②当∠FDE =3∠QFD 时,t 的值为 .。

专题01 一次函数 压轴题(十大题型)(原卷版)

专题01 一次函数 压轴题(十大题型)(原卷版)

(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。

第六章一次函数(动点、全等、三角形存在性问题压轴)(原卷版)

第六章一次函数(动点、全等、三角形存在性问题压轴)(原卷版)

第六章 一次函数(压轴题专练)一、动点函数问题1.如图,在长方形ABCD 中,动点P 从A 出发,以一定的速度,沿A B C D A ®®®®方向运动到点A 处停止(提示:当点P 在AB 上运动时,点P 到DC 的距离始终等于AD 和BC ).设点P 运动的路程为x ,PCD V 的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .6B .9C .15D .182.已知动点H 以每秒x 厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A B C D E F -----的路径匀速运动,相应的HAF △的面积 ()2cm S 关于时间(s)t 的关系图象如图2,已知8cm AF =,则下列说法正确的有几个( )①动点H 的速度是2cm/s ;②BC 的长度为3cm ;③b 的值为14;④在运动过程中,当HAF △的面积是230cm 时,点H 的运动时间是3.75s 和1025s ..A .1个B .2个C .3个D .4个3.如图1,四边形ABCD 中,90DAB ∠=︒,AB CD ∥,点P 从点A 出发,以每秒1个单位长度的速度,沿路线A -B-C -D 运动.设P 点的运动时间为ts ,PAD V 的面积为S ,当P 运动到BC 的中点时,PAD V 的面积为A .7B .7.5C .84.如图,在长为形ABCD 中,5cm 16cm AB AD ==,,点3cm 4cm AM AE ==,,连线CE ,动点P 从点B 出发,以运动到点A 即停止运动,连接MP ,设点P 运动的时间为(1)如图1,线段CE = cm ;当10t =时,线段EP = cm ;(2)如图1,点P 在线段BC 上运动的过程中,连接EM EP ,,当EMP V 是以EM 为直角边的直角三角形时,请求出对应的时间的值;(1)求线段OC的长;(2)若点E是点C关于y轴的对称点,求(3)已知y轴上有一点P,若以点标.(1)求n和b的值;△是直角三角形,求点P的坐标;(2)若ACP∠=∠,求点P的坐标.(3)当PBE BAC(1)求点D的坐标;(2)点E是线段CD上一动点,直线BE与x轴交于点i)若BDFV的面积为8,求点F的坐标;ii)如图2,当点F在x轴正半轴上时,将直线接FM,若1OF MF=+,求线段MF的长.(1)求直线AB的解析式;(2)已知点D为直线BC上第三象限的一点,连接AD,设点D的横坐标为t 间的函数关系式(不要求写出变量t的取值范围);(3)在(2)的条件下,256S=,点D关于y轴的对称点为点E,点F在第一象限直线。

专题06 一次函数图像的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题06 一次函数图像的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题06一次函数图像的五种考法类型一、图像的位置关系问题例.直线y kx k =-与直线y kx =-在同一坐标系中的大致图像可能是()A .B .C .D .【答案】A【分析】根据直线y kx k =-与直线y kx =-图像的位置确定k 的正负,若不存在矛盾则符合题意,据此即可解答.【详解】解:A 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以A 选项符合题意;B 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以B 选项不符合题意;C 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以C 选项不符合题意;D 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以D 选项不符合题意.故选A .【点睛】本题主要考查了一次函数的图像:一次函数0y kx b k =+≠()的图像为一条直线,当0k >,图像过第一、三象限;当0k <,图像过第二、四象限;直线与y 轴的交点坐标为()0b ,.【变式训练1】在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B ...【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.k>,故由一次函数图像与【详解】A、由正比例函数图像可知0,即0点的上方,故选项A不符合题意;....【答案】B【分析】先根据直线1l,得出k然后再判断直线2l的k和b的符号是否与直线.B...【答案】C【分析】根据一次函数的图象性质判断即可;ab>,【详解】∵0同号,A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.类型二、图像与系数的关系则13k≥或3k≤-,故答案为:【点睛】本题考查了一次函数的图象与性质,熟练掌握数形结合思想是解题关键.类型三、图像的平移问题例.将直线y kx b =+向左平移2个单位,再向上平移4个单位,得到直线2y x =,则()A .2k =,8b =-B .2k =-,2b =C .1k =,4b =-D .2k =,4b =【答案】A【分析】根据直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,然后结合得到直线2y x =,即可解出k 和b 的值.【详解】解:直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,得到直线2y x =,2k ∴=,240k b ++=,2k ∴=,8b =-,故选:A .【点睛】本题考查了一次函数图像平移变换,熟练掌握图象左加右减,上加下减的变换规律是解答本题的关键.【变式训练1】对于一次函数24y x =-+,下列结论错误的是().A .函数的图象与x 轴的交点坐标是(0,4)B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小【答案】A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 选项:当0y =时,2x =,所以函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 选项:函数的图象经过第一、二、四象限,不经过第三象限,故B 选项正确;C 选项:函数的图象向下平移4个单位长度,得到函数244y x =-+-,即2y x =-的图象,故C 选项正确;D 选项:由于20k =-<,所以函数值随x 的增大而减小,故D 选项正确.故选:C【点睛】本题考查一次函数的图象及性质,函数图象平移的法则,熟练运用一次函数的图象及性质进行判断是解题的关键.【变式训练2】把直线3y x =-先向右平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为()A .3B .1C .1-D .3-【答案】B【分析】由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,计算求解即可.【详解】解:由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,解得1m =,故选:B .【点睛】本题考查了一次函数图象的平移,一次函数与坐标轴的交点.解题的关键在于熟练掌握图象平移:左加右减,上加下减.类型四、规律性问题例.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,…,正方形1n n n n A B C C -,使得点1A ,2A ,3A ,….在直线l 上,点1C ,2C ,3C ,…,在y 轴正半轴上,则点2023B 的坐标为()A .()202220232,21-B .()202320232,2C .()202320242,21-D .()202220232,21+【答案】A【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点11A B 、的坐标,同理可得出2A 、3A 、4A 、5A …及2B 、3B 、4B 、5B …的坐标,根据点的坐标变化可找出变化规律()12,21n n n B --(n 为正整数),依此规律即可得出结论.【详解】解:当0y =时,由10x -=,解得:1x =,∴点1A 的坐标为()1,0,111A B C O 为正方形,()11,1B ∴,同理可得:()22,1A ,()34,3A ,()48,7A ,()516,15A ,…,∴()22,3B ,()34,7B ,()48,15B ,()516,31B ,…,【答案】20222022(21,2)-【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x =+和y 轴交于1A ,1A ∴的坐标()0,1,即11OA =,四边形111C OA B 是正方形,111OC OA ∴==,【答案】()20222,0【分析】根据1A 的坐标和函数解析式,即可求出点34,A A 探究规律利用规律即可解决问题.【详解】∵直线3y x =,点1A 的坐标为∴()11,3B 在11Rt OA B △中,11131,OA A B ==,类型五、增减性问题.B...A .()15,53B .()15,63C .()17,53D 【答案】D【答案】40432【分析】根据已知先求出2OA ,3OA ,33A B ,44A B ,然后分别计算出1S ,2S 【详解】解:∵11OA =,212OA OA =,∴22OA =,∵322O A O A =,∴34OA =,∵432OA OA =,。

八年级上册一次函数压轴题

八年级上册一次函数压轴题

八年级上册一次函数压轴题一、与几何图形结合类。

题1。

已知一次函数y = kx + b(k≠0)的图象经过点A( - 1,5),且与直线y=-x平行,求该一次函数的表达式。

解析。

1. 因为一次函数y = kx + b与直线y=-x平行,根据两直线平行斜率相等,所以k=- 1。

2. 把k = - 1,A(-1,5)代入y=-x + b得:5 = -(-1)+b。

3. 即5=1 + b,解得b = 4。

4. 所以该一次函数表达式为y=-x + 4。

题2。

在平面直角坐标系中,直线y = kx+3经过点(-1,1),求不等式kx + 3>0的解集。

解析。

1. 首先将点(-1,1)代入y = kx + 3中,可得1=-k + 3。

2. 解得k = 2。

3. 则不等式kx+3>0变为2x + 3>0。

4. 移项得2x>-3,解得x>-(3)/(2)。

题3。

一次函数y = 2x - 4与x轴、y轴分别交于A、B两点,求AOB的面积。

解析。

1. 当y = 0时,2x-4=0,解得x = 2,所以A(2,0)。

2. 当x = 0时,y=-4,所以B(0,-4)。

3. 则OA = 2,OB=4。

4. 根据三角形面积公式S=(1)/(2)× OA× OB,可得S=(1)/(2)×2×4 = 4。

题4。

已知直线y=kx + b(k≠0)与x轴正半轴交于点A,与y轴正半轴交于点B,若OA = OB = 2,求一次函数表达式。

解析。

1. 因为OA = OB=2,且A在x轴正半轴,B在y轴正半轴。

2. 所以A(2,0),B(0,2)。

3. 将A、B两点代入y=kx + b中,可得0 = 2k + b 2=b。

4. 把b = 2代入0 = 2k + b,得0=2k+2,解得k=-1。

5. 所以一次函数表达式为y=-x + 2。

题5。

一次函数y = mx + n(m≠0)的图象经过点(-2,3),且与x轴、y轴所围成的三角形面积为4,求m和n的值。

2020年中考数学压轴培优练习:一次函数图像类(附解析)

2020年中考数学压轴培优练习:一次函数图像类(附解析)

中考数学压轴培优练习:一次函数图像类一.选择题1.如图,直线y=x,点A 1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A2019的坐标为()A.(22017,0)B.(22018,0)C.(22020,0)D.(24034,0)2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个B.2个C.3个D.4个3.如图所示,在同一条道路上,甲车从A地到B地,乙车从B地到A地,甲乙同时出发,甲车先到达目的地,图中的折线段表示甲、乙两车之间的距离y(km)与行驶时间(h)的函数关系的图象,下列说法错误的是()A.出发2h后,两车相遇B.乙的速度是48km/hC.出发3h后,甲车距离B地96kmD.甲车到B地比乙车到A地早h4.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x5.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡6.如图,在平面直角坐标系xOy中,直线y=﹣x+分别与x轴、y轴交于点P、Q,在Rt△OPQ中从左向右依次作正方形A1B1C1C2、A2B2C2C3、A3B3C3C4…A n B n∁n C n+1,点A1、A2、A3…A n在x轴上,点B1在y轴上,点C1、C2、C3…C n+1在直线PQ上;再将每个正方形分割成四个全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形(阴影部分)的面积分别记为S1、S2、S3…S n,则S n可表示为()A..B..C..D..7.如图A、B两地相距50km.甲于某日下午1点骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地.图中折线PQR和线段MN分别表示甲和乙行驶的路程s与该日下午时间t之间的关系.下列说法正确的有()①甲、乙两人同时到达目的地;②乙出发后30分钟后追上甲;③甲的平均速度是10km/h,乙的速度是50km/h;④甲、乙相遇时距出发地25km.A.1个B.2个C.3个D.4个8.如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2019的纵坐标是()A.()2019B.()2018C.()2019D.()20189.如图所示,把Rt△ABC放在平面直角坐标系中,∠CAB=90°,BC=5,点A,B的坐标分别为(2,0),(5,0),将△ABC沿与y轴平行的方向向下平移,当点C落在y =x﹣2上时,线段BC扫过的面积为()A.3 B.7.5 C.15 D.2510.如图,直线l:y=x+1交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交l于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交l于点A3,在x轴正方向上取点B3,使B2B3=B2A3;…记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2017等于()A.24030B.24031C.24032D.24033二.填空题11.如图,在平面直角坐标系中,已知直线y=﹣x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点,将△ABC沿直线AC折叠,使得点B恰好落在轴x轴上,则点C的坐标为.12.小亮和妈妈从家出发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线出发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最终与妈妈会合,小亮和妈妈的速度始终不变,如图是小亮和妈妈两人之间的距离y(米)与妈妈出发的时间x(分钟)的图象;则小亮开始返回时,妈妈离家的距离为米.13.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s(km)与出发时间t(h)之间的函数关系图象,则小明家比小亮家早到景区分钟.14.如图,正方形OABC的顶点O在坐标原点,正方形ADEF的边AD与AB在同一宜线上,AF与OA在同一直线上,且AB=AD,OA边和AB边所在直线的解析式分别为:y=x和y=﹣x+,则点E的坐标为.15.如图,正方形A1B1C1O、A2B2C2C1……按照如图所示的方式放置,点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知B1(1,1),B2(3,2),B3(7,4),则B2019的坐标是.16.一列慢车从A地驶往B地,一列快车从B地驶往A地,两车同时出发,分别驶向目的地后停止.如图,折线表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的关系,求当快车到达A地时,慢车与B地的距离为千米.17.如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,D、E 分别是直线AB、y轴上的动点,当△CDE周长最小时,点D的坐标为.18.如图,直线y=x+1与直线y=mx﹣n相交于点M(1,b),则关于x,y的方程组的解为.19.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是.20.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2019B019C2019C2018中的点B2019的坐标为.三.解答题21.甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.22.甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.23.已知A(2,0),直线y=(2﹣)x﹣2交x轴于点F,y轴于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A',连接AA',A'D.直线l从AB开始,以1个单位每秒的速度沿y轴正方向向上平移,设移动时间为t.(1)求A'点的坐标(用t的代数式表示);(2)请猜想AB与AF长度的数量关系,并说明理由;(3)过点C作直线AB的垂线交直线y=(2﹣)x﹣2于点E,以点C为圆心CE 为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?24.已知:甲、乙两车分别从相距300km的A,B两地同时出发相向而行,甲到B地后立即返回,如图是它们离各自出发地的距离y与行驶时间x之间的函数图象.(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量x的取值范围;(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;(3)它们在行驶过程中有几次相遇?并求出每次相遇的时间.25.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中L1、L2分别表示甲、乙俩人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)根据图象,直接写出乙的行驶速度;(2)解释交点A的实际意义;(3)甲出发多少时间,两人之间的距高恰好相距5km;(4)若用y3(km)表示甲乙两人之阐的距离,请在坐标系中画出y3(km)关于时间x (h)的的数关系图象,注明关键点的数据.参考答案一.选择题1.解:由题意可得,点A 1坐标为(1,0),点B1的坐标为(1,),点A2坐标为(2,0),点B2的坐标为(2,2),点A3坐标为(4,0),点B3的坐标为(4,4),……∴点A2019的坐标为(22018,0),故选:B.2.解:由图象可知A、B两城市之间的距离为300km,故①正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,乙的速度:150÷(2.5﹣1)=100,乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选:A.3.解:A、出发2h后,其距离为零,即两车相遇,正确;B、乙的速度是=48km/h,正确;C、甲的速度为:km/h,240﹣72×3=24km,错误;D、h,即甲车到B地比乙车到A地早h,正确;故选:C.4.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线方程为y=kx,则3=k,k=,∴直线l解析式为y=x,故选:C.5.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.6.解:∵P(13,0),Q(0,),∴tan∠OPQ=,∵每个小正方形的边都与坐标轴平行,∴∠OA1B1=∠OA2B2=…=∠OA n B n,∴每组小正方形的边长都是该组小长方形边长的两直角边之差,正方形A1B1C1C2中,设点C1(a1,b1),∴b1=4a1,将点C1(a1,4a1)代入直线y=﹣x+,∴a1=1,b1=3,∴正方形A1B1C1C2中阴影正方形边长为2;∴阴影部分面积4;正方形A2B2C2C3中,设点C2(a2,b2),∴a2=4a1﹣=4,b2=b1﹣a1=3,∴正方形A2B2C2C3中阴影正方形边长为×2=;∴阴影部分面积,;正方形A3B3C3C3中,设点C3(a3,b3),∴a3=4a1+3a2=,b2=b1﹣a1﹣a2=,∴正方形A3B3C3C3中阴影正方形边长××2=;∴阴影部分面积;以此推理,第n个阴影正方形的边长为2×;∴阴影部分面积;故选:A.7.解:①乙比甲早到B城,早了5﹣3=2个小时;所以甲、乙两人同时到达目的地是错误的;②由图可知:M(2,0),N(3,50),Q(2,20),R(5,50)设直线QR的函数表达式为s1=k1t+b1,直线MN的函数表达式为s2=k2t+b2,将各点坐标代入对应的表达式,得:解得:,,解得:,∴s1=10t,s2=50t﹣100,联立两式可得直线QR、MN的交点的坐标为O(2.5,25)所以乙出发半小时后追上甲,故乙出发后30分钟后追上甲是正确的;③乙的速度为=50千米/时,甲的平均速度为=12.5千米/时,故甲的平均速度是10km/h,乙的速度是50km/h,是错误的;④因为乙出发半小时后追上甲,所以甲、乙相遇时距出发地25km,是正确的;故选:B.8.解:∵A1(1,1)在直线y=∴b=∴y=x+设A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A2019(x2019,y2019)则有y2=x2+,y3=x3+,…y2019=x2019+.又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.∴x2=2y1+y2,x3=2y1+2y2+y3,…x2019=2y1+2y2+2y3+…+2y2018+y2019.将点坐标依次代入直线解析式得到:y2=y1+1y3=y1+y2+1=y2y4=y3…y2019=y2018又∵y1=1∴y2=y3=()2y4=()3…y2019=()2018故选:B.9.解:∵∠CAB=90°,BC=5,点A、B的坐标分别为(2,0)、(5,0),∴AC=4,当点C落在y=x﹣2上时,如图,∴四边形BB′C′C是平行四边形,把x=2代入直线y=x﹣2,解得y=﹣1,即AC′=1,∴CC′=5,∴平行四边形BB′C′C的面积=AB×A′C′=5×3=15;故选:C.10.解:∵OB1=OA1;过点B1作A2B1⊥x轴,B1B2=B1A2;A3B2⊥x轴,B2B3=B2A3;…∴△△OA1B1,△B1A2B2,△B2A3B3是等腰直角三角形,∵y=x+1交y轴于点A1,∴A1(0,1),∴B1(1,0),∴OB1=OA1=1,∴S1=×1×1=×12,同理S2=×2×2=22,S3=4×4=42;…∴S n=22n﹣2=22n﹣3,∴S2017=22×2017﹣3=24031,故选:B.二.填空题(共10小题)11.解:当x=0时,y=﹣x+3=3,∴点B的坐标为(0,3);当y=0时,有﹣x+3=0,∴x=4,∴点A的坐标为(4,0).∴AB==5.①当点B恰好落在x轴负半轴时,设该点为B′,如图1所示.根据折叠的性质可知:CB′=CB,AB′=AB,∵点C的坐标为(0,n),∴OC=n,CB′=3﹣n,OB′=1,∵CB′2=OB′2+OC2,即(3﹣n)2=1+n2,∴n=,∴点C的坐标为(0,);②当点B恰好落在x轴正半轴时,设该点为B″,如图2所示.根据折叠的性质可知:CB″=CB,AB″=AB,∵点C的坐标为(0,n),∴OC=﹣n,CB″=3﹣n,OB″=9,∵CB″2=OB″2+OC2,即(3﹣n)2=92+(﹣n)2,∴n=﹣12,∴点C的坐标为(0,﹣12).故答案为:(0,)或(0,﹣12).12.解:妈妈的速度为:100÷2=50(米/分),小亮的速度为:[100+50(12﹣2)]÷(12﹣2)=60(米/分),相遇时行走的路程为:12×50=600(米),观察图象在x=18时,小亮和妈妈的相距最大,可知是小亮到达长嘉汇所经历的时间,所以家到长嘉汇的距离为:60×(18﹣2)=960(米),由(18﹣12=6分钟)可知妈妈返回找到相机行走路程为:6×50=300(米),此时设小亮在长嘉汇等妈妈的时间为t分钟,由图象知小亮与妈妈会合所用时间为27﹣18=9分钟可建立方程如下:60×(9﹣t)+50×9═960﹣(600﹣300),解得t=5.5(分钟),∴小亮开始返回时,妈妈离家的距离为:50×(18+5.5﹣6×2)=575(米).故答案为:57513.解:设出发时小明家的速度是a千米/小时,小亮家的速度是b千米/小时,且a>b,由题意得:0.8(a﹣b)=8,a=b+10,小明家因故停下来休息了15分钟,可知A(1.05,12),小亮的速度为:=80(千米/小时),∴小明家的速度是90千米/小时,设小明加速后的速度为m千米/小时,根据题意得:×80=(﹣1.05)m+0.8×90,m=100,﹣﹣1.05,=0.1(小时),=6(分),即小明家比小亮家早到景区6分钟.故答案为:6.14.解:联立OA边和AB边所在直线的解析式成方程组,,解得:,∴点A的坐标为(4,3).过点A作AM⊥x轴于点M,过点C作CN⊥N于点N,连接CE,则点A为线段CE 的中点,如图所示.∵∠CON+∠AOC+∠AOM=180°,∠AOC=90°,∴∠CON+∠AOM=90°.∵∠AOM+∠OAM=90°,∴∠CON=∠OAM.在△AOM和△OCN中,,∴△AOM≌△OCN(AAS),∴ON=AM,CN=OM,∴点C的坐标为(﹣3,4).∵点A为线段CE的中点,∴点E的坐标为(11,2).故答案为:(11,2).15.解:∵点B1、B2的坐标分别为(1,1),(3,2),∴A1(0,1),A2(1,2),∵点A1,A2在直线y=kx+b上,∴,解得,∴y=x+1,∵点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴点B3的坐标为(7,4),∴点A4的坐标为(7,8),∴点B4坐标为(15,8),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.∴B n的坐标是(2n﹣1,2n﹣1),∴B2019的坐标是(22019﹣1,22018).故答案为(22019﹣1,22018).16.解:由图象可得,慢车的速度为:1200÷10=120(千米/小时),快车的速度为:1200÷4﹣120=180(千米/小时),则快车到达A地的所用的时间为:1200÷180=(小时),故当快车到达A地时,慢车与B地的距离为:1200﹣120×=400(千米),故答案为:400.17.解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,∵直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,∴B(﹣2,0),C(﹣1,0),∴BO=2,OG=1,BG=3,易得∠ABC=45°,∴△BCF是等腰直角三角形,∴BF=BC=1,由轴对称的性质,可得DF=DC,EC=EG,当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,设直线FG的解析式为:y=kx+b,∵F(﹣2,1),G(1,0),∴,∴,直线FG的解析式为:y=﹣x+,解得,∴点D的坐标为(﹣,),故答案为:(﹣,).18.解:∵直线y=x+1经过点M(1,b),∴b=1+1,解得b=2,∴M(1,2),∴关于x的方程组的解为,故答案为:.19.(1)由函数图象可知,乙比甲晚出发1小时.故答案为:1.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤1;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(1,0),(2,20)代入得:,解得,∴乙的函数解析式为:y=20x﹣20 ②由①②得,∴,故≤x≤2符合题意.故答案为:0≤x≤1或≤x≤2.20.解:由题意可得,点B1的坐标为(1,1),点B2的坐标为(3,2),点B3的坐标为(7,4),点B4的坐标为(15,8),…,则点B2019的坐标为(22019﹣1,22018),故答案为:(22019﹣1,22018).三.解答题(共5小题)21.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.22.解:(1)设AC表达式为y=kx+b,把(6,0)、(21,25)代入得解得k=100,b=﹣600,所以AC所在直线的函数表达式y=100x﹣600;(2)设甲出发x分钟后两人相遇,则解得x=15,即甲出发15分钟后两人相遇,此时d=0,21分钟后乙到图书馆,甲距图书馆1500﹣60×21=240米,因此图象如下:(3)设甲出发x分钟甲、乙两人之间的路程至少为180m.①当乙没出发时,60x≥180,解得x≥3;当甲乙相遇前,即x≤15时60x﹣(100x﹣600)≥180解得x≤10.5,即3≤x≤10.5时甲、乙两人之间的路程至少为180m;③当甲乙相遇后,即x>15时100x﹣600﹣60x≥180,解得x≥19.5,即19.5≤x≤21时甲、乙两人之间的路程至少为180m;④乙到达终点后,1500﹣60x≥180,解得≤22;综上当3<x≤10.5或19.5≤x≤22分钟时甲、乙两人之间的路程至少为180m.23.解:(1)∵l∥AB.∴∠ODC=∠OAB,∵A(2,0)B(0,﹣2),∴tan∠OAB=,∴∠ODC=∠OAB=30°.∵BC=t,∴OC=2﹣t,∴OD=(2﹣t),∴AD=t.∵点A关于直线l的对称点为A',∴A'D=AD=t∠A'DA=60°,∴△A'DA是正三角形.过点A'作A'H⊥AD于H,∴AH=tA'H=t,∴A'点的坐标为(2﹣t,t).(2)AB=AF.说明:∵F(4+2,0),∴AF=4,在Rt△OAB中,OA=2,OB=2,∴AB=4,∴AB=AF.(3)∵直线l是点A和A'的对称轴,∴直线l是∠A'DA的平分线,∴点C到直线AD和A'D的距离相等,∴当⊙C与AD相切时,也一定与A'D相切.∵∠OAB=30°且AB=AF,∴∠ABF=15°,∴∠CBF=75°.∵CE⊥AB∠OBA=60°,∴∠BCE=30°,∴∠CEB=75°,∴CB=CE.∵⊙C与AD相切,∴OC=CE=CB,∴t=1.当⊙C与AA'相切于点M时,CE=CB=CM,∴CM=t,∵CM=DM﹣CD,在Rt△OCD中,∠ODC=30°,OC=t﹣2,∴CD=2t﹣4,∴2t﹣4+t=t,∴t=.24.解:(1)当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤时,是一次函数,设为y=kx+b,代入两点(3,300)、(,0),得,解得,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=;(2)设出发后a小时,两车离各自出发地的距离相等.由题意﹣80a+540=40a,解得a=s,答:出发后小时,两车离各自出发地的距离相等.(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=;②当3<x≤时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.25.【解答】解:(1)由图象可得,乙的行驶速度为:60÷(3.5﹣0.5)=20km/h;(2)设l1对应的函数解析式为y1=k1x+b1,,解得,即l1对应的函数解析式为y1=﹣30x+60;设l2对应的函数解析式为y2=k2x+b2,,解得,即l2对应的函数解析式为y2=20x﹣10,,解得,即点A的坐标为(1.4,18),∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B地18km;(3)由题意可得,|(﹣30x+60)﹣(20x﹣10)|=5,解得,x1=1.3,x2=1.5,答:当甲出发1.3h或1.5h时,两人之间的距离恰好相距5km;(4)由题意可得,当0≤x≤0.5时,y3=﹣30x+60,当0.5<x≤1.4时,y3=y1﹣y2=(﹣30x+60)﹣(20x﹣10)=﹣50x+70,当1.4<x≤2时,y3=y2﹣y1=(20x﹣10)﹣(﹣30x+60)=50x﹣70,当2<x≤3.5时,y3=20x﹣10,y3(km)关于时间x(h)的函数关系图象如右图(图2)所示.。

一次函数的图象与找规律(压轴题)

一次函数的图象与找规律(压轴题)

一次函数的图象与找规律一.选择题(共3小题)1.如图所示,已知在△ABC中,A(0,0),B(,0),C(0,1),在△ABC 内依次作等边三角形,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,使B1、B2、B3、…在x轴上,A1、A2、A3、…在BC边上,则第n个等边三角形的边长等于()A.B.C.D.2.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n (n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、A nB n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()四边形A n﹣1A.n2B.2n+1 C.2n D.2n﹣13.如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,…,按此做法进行下去,则点A8的坐标是()A.(15,0)B.(16,0)C.(8,0)D.(8﹣1,0)二.填空题(共7小题)4.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2007的坐标为.线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为.6.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是.7.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.于点B1,以原点O为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y 轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为(,);点A n的坐标为(,).9.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.一次函数的图象与找规律参考答案与试题解析一.选择题(共3小题)1.如图所示,已知在△ABC中,A(0,0),B(,0),C(0,1),在△ABC 内依次作等边三角形,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,使B1、B2、B3、…在x轴上,A1、A2、A3、…在BC边上,则第n个等边三角形的边长等于()A.B.C.D.【解答】解:∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.∵△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,∴∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于,故选A.2.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n (n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、A nB n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()四边形A n﹣1A.n2B.2n+1 C.2n D.2n﹣1【解答】解:观察,得出规律:S1=OA1•A1B1=1,S2=OA2•A2B2﹣OA1•A1B1=3,S3=OA3•A3B3﹣OA2•A2B2=5,S4=OA4•A4B4﹣OA3•A3B3=7,…,∴S n=2n﹣1.故选D.3.如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,…,按此做法进行下去,则点A8的坐标是()A.(15,0)B.(16,0)C.(8,0)D.(8﹣1,0)【解答】解:当x=0时,y=1;当y=0时,x=﹣1;可得A(﹣1,0),B(0,1),AA1=AB===;AA2=AB1==2;AA3=AB2==2;A1(﹣1,0),A2(2﹣1,0),A3(2﹣1,0);即A1(﹣1,0),A2(﹣1,0),A3(﹣1,0);可得,A8=﹣1=16﹣1=15.故选A.二.填空题(共7小题)4.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2007的坐标为(﹣21003,﹣21004).解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,((﹣2)n,2(﹣2)n)(n为自然数).∵2007=1003×2+1,∴A2n+1∴A2007的坐标为((﹣2)1003,2(﹣2)1003),即A2007(﹣21003,﹣21004).故答案为:(﹣21003,﹣21004).5.如图,直线l:y=﹣x,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为(﹣,0).【解答】解:∵点A1坐标为(﹣3,0),∴OA1=3,∵在y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),∴由勾股定理可得OB1==5,即OA2=5=3×,同理可得,OB2=,即OA3==5×()1,OB3=,即OA4==5×()2,以此类推,OA n=5×()n﹣2=,即点A n坐标为(﹣,0),当n=2016时,点A2016坐标为(﹣,0).故答案为:(﹣,0)6.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是(,).【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(1,0),AO ∥A1B1,∠B1OC=30°,∴CB1=OB1cos30°=,∴B1的横坐标为:,则B1的纵坐标为:,∴点B1,B2,B3,…都在直线y=x上,∴B1(,),等边三角形边长为1可得出:A的横坐标为:1,∴y=,∴A2(2,),…A n(1+,).∴A2015(,).7.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2).故答案为(3×2n﹣2,×2n﹣2).8.如图,直线l:y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l 于点B1,以原点O为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y 轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为(0,8);点A n的坐标为(0,2n﹣1).【解答】解:直线y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l 于点B1,可知B1点的坐标为(,1),以原点O为圆心,OB1长为半径画弧交y一轴于点A2,OA2=OB1=2OA1=2,点A2的坐标为(0,2),这种方法可求得B2的坐标为(2,2),故点A3的坐标为(0,4),点A4的坐标为(0,8),此类推便可求出点A n的坐标为(0,2n﹣1).故答案为:0,8,0,2n﹣1.9.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为(21008,21009).【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,((﹣2)n,2(﹣2)n)(n为自然数).∴A2n+1∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是(2n﹣1,2n﹣1).【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,的横坐标,纵坐标为An的纵坐标∴Bn的横坐标为A n+1又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的图象与找规律
一.选择题(共3小题)
1.如图所示,已知在△ABC中,A(0,0),B(,0),C(0,1),在△ABC 内依次作等边三角形,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,使B1、B2、B3、…在x轴上,A1、A2、A3、…在BC边上,则第n个等边三角形的边长等于()
A.B.C.D.
2.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n (n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、
A n
B n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()
四边形A n
﹣1
A.n2B.2n+1 C.2n D.2n﹣1
3.如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,…,按此做法进行下去,则点A8的坐标是()
A.(15,0)B.(16,0)C.(8,0)D.(8﹣1,0)
二.填空题(共7小题)
4.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2007的坐标为.
线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为.
6.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是.
7.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.
于点B1,以原点O为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y 轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为(,);点A n的坐标为(,).
9.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.
10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.。

相关文档
最新文档