人教版初中数学图形的平移,对称与旋转的图文答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学图形的平移,对称与旋转的图文答案
一、选择题
1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】 如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.
【详解】
A.是轴对称图形;
B.是轴对称图形;
C.是轴对称图形;
D.不是轴对称图形;
故选D.
【点睛】
本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.
2.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )
A .线段BE 的长度
B .线段E
C 的长度 C .线段CF 的长度
D .A D 、两点之向的距离
【答案】B
【解析】
【分析】 平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定
【详解】
∵△DEF 是△ABC 平移得到
∴A 和D 、B 和E 、C 和F 分别是对应点
∴平移距离为:线段AD 、BE 、CF 的长
故选:B
【点睛】
本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形. 3.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,
使点C落在C′的位置,C′D交AB于点Q,则BQ
AQ
的值为()
A B C.
2
D
【答案】A
【解析】
【分析】
根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度
数,求出其他角的度数,可得AQ=AC,将BQ
AQ
转化为
BQ
AC
,再由相似三角形和等腰直角
三角形的边角关系得出答案.
【详解】
解:如图,过点A作AE⊥BC,垂足为E,
∵∠ADC=45°,
∴△ADE是等腰直角三角形,即AE=DE=
2
AD,
在Rt△ABC中,
∵∠BAC=90°,AD是△ABC的中线,
∴AD=CD=BD,
由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,
∴∠CDC′=45°+45°=90°,
∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,
∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,
由△AEC∽△BDQ得:BQ
AC

BD
AE

∴BQ
AQ

BQ
AC

AD
AE

故选:A.
【点睛】
考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.
4.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.
【答案】C
【解析】
【分析】
试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;
选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;
选项C 既是轴对称图形,也是中心对称图形,故该选项正确;
选项D是轴对称图形,但不是中心对称图形,故该选项错误.
故选C.
【详解】
请在此输入详解!
5.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()
A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C
【解析】
【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.
【详解】观察几何体,可得三视图如图所示:
可知俯视图是中心对称图形,
故选C.
【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.
6.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )
A .1463
π- B .33π+ C .3338π- D .259
π 【答案】D
【解析】
【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.
【详解】
∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,
∴△ACB ≌△AED ,∠DAB=40°,
∴AD=AB=5,S △ACB =S △AED ,
∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,
∴S 阴影=
4025360π⨯=259π, 故选D.
【点睛】
本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
7.如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点A 在y 轴上,BC ∥x 轴,点B (2,32).将△ABC 绕点A 顺时针旋转的△AB ′C ′,当点B ′落在x 轴的正半轴上时,点C ′的坐标为( )
A32﹣1)B231)C33)D33﹣1)【答案】D
【解析】
【分析】
作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=1
2
BC=
2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'
=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22
'
AB OA
-1=1
2
AB',证出∠OAB'
=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.
【详解】
解:作C'D⊥OA于D,设AO交BC于E,如图所示:
则∠C'DA=90°,
∵∠CAB=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠B=45°,
∵BC∥x轴,点B232),
∴AE=1
2
BC2,BC=22AB,
∴AB=2,OA3,
由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,
∴OB'22
'
AB OA
-1=1
2
AB',
∴∠OAB'=30°,
∴∠C'AD=∠AB'O=60°,
在△AC'D和△AB'O中,
''
''
''
C DA AOB
C A
D AB O
AC AB
∠=∠


∠=∠

⎪=

,
∴△AC'D≌△B'AO(AAS),
∴AD=OB'=1,C'D=AO3,
∴OD=AO﹣AD=3﹣1,
∴点C′的坐标为(﹣3,3﹣1);
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.
8.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.
【详解】
解:第一个图形不是轴对称图形,是中心对称图形;
第二、三个图形是轴对称图形,也是中心对称图形,
第四个图形不是轴对称图形,不是中心对称图形;
故选:B.
【点睛】
此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握
9.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为()
A.30°B.45°C.60°D.75°
【解析】
【分析】
连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.
【详解】
解:连接BD ,如图所示:
∵四边形ABCD 为菱形,
∴AB AD =,
∵60A ∠=︒,
∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,
∵P 为AB 的中点,
∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,
∴90PDC ∠=︒,
∴由折叠的性质得到45CDE PDE ∠=∠=︒,
在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.
故选:D
【点睛】
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.
10.如图,若OABC Y 的顶点O ,A ,C 的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为( )
A .(4,1)
B .(5,3)
C .(4,3)
D .(5,4)
【答案】B
【分析】
根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.
【详解】
解:∵四边形OABC是平行四边形,
∴OC∥AB,OA∥BC,
∴点B的纵坐标为3,
∵点O向右平移1个单位,向上平移3个单位得到点C,
∴点A向右平移1个单位,向上平移3个单位得到点B,
∴点B的坐标为:(5,3);
故选:B.
【点睛】
本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.
11.对于图形的全等,下列叙述不正确的是()
A.一个图形经过旋转后得到的图形,与原来的图形全等
B.一个图形经过中心对称后得到的图形,与原来的图形全等
C.一个图形放大后得到的图形,与原来的图形全等
D.一个图形经过轴对称后得到的图形,与原来的图形全等
【答案】C
【解析】
A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;
B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;
C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;
D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,
故选C.
【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.
12.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()
A.1 B.2 C.3 D.22
【解析】
【分析】
根据平移的性质即可解答.
【详解】
如图连接AA ',根据平行线的性质得到∠1=∠2,
如图,平移的距离AA '=的长度123=+=
故选C.
【点睛】
此题考查平移的性质,解题关键在于利用平移的性质求解.
13.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.
图1 图2
有如下四个结论:
①勒洛三角形是中心对称图形
②图1中,点A 到BC 上任意一点的距离都相等
③图2中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是( )
A .①②
B .②③
C .②④
D .③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
①勒洛三角形不是中心对称图形,故①错误;
②图1中,点A到BC上任意一点的距离都相等,故②正确;
③图2中,设圆的半径为r
∴勒洛三角形的周长=
120
32
180
r
r
π
π⨯=
g g
圆的周长为2r
π
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误
故选B
【点睛】
本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.
14.下列几何图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
15.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;
④若B、D是对称点,则PB=PD.其中正确的结论有( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
【详解】
由轴对称的性质知,①②③④都正确.
故选D.
16.下列图形中,不是轴对称图形的是()
A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形
C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形
【答案】D
【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;
B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;
C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;
D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.
故选:D.
17.下列图形中,不一定是轴对称图形的是()
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C
【解析】
A.等腰三角形是轴对称图形,不符合题意;
B.等边三角形是轴对称图形,不符合题意;
C.直角三角形不一定是轴对称图形,符合题意;
D.等腰直角三角形是轴对称图形,不符合题意.
故选C.
18.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()
A.3个 B.4个 C.5个 D.2个
【答案】A
【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.
故选:A.
19.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
故选:D.
20.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )
A .28cm
B .26cm
C .24cm
D .22cm
【答案】C
【解析】
【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12
AC ,故四边形OECF 的面积是▱ABCD 面积的14
【详解】
解:如图,
由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=
12AC 故四边形OECF 的面积是▱ABCD 面积
14
即图中阴影部分的面积为4cm 2.
故选:C
【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.。

相关文档
最新文档