浅议能量反馈在电梯节能技术中的应用

合集下载

电梯一体化能量回馈原理及应用

电梯一体化能量回馈原理及应用

电梯一体化能量回馈原理及应用摘要:电梯作为一种垂直运输工具,在人们的日常生活中发挥着不可替代的作用。

随着电梯数量的不断增加,电梯能耗问题越来越受到人们的重视。

面对日益强化的资源环境约束,人们的危机意识不断增强,绿色低碳发展理念深入人心。

因此,利用能量回馈原理提高电梯的电能利用率具有重要意义。

关键词:电梯;能量回馈;原理;应用电梯作为一种高能耗的特种设备,人们在享受电梯带来便利的同时,电梯的节能问题也越来越突出。

而能量回馈技术是降低电梯能耗最具潜力的技术,它是将制动电阻原消耗的电能,通过逆变器转换为交流电能,送回交流电网进行再生运行或供附近其他用电设备使用,使电动机拖动系统单位时间内消耗的电能减少,以达到节约电能的目的。

一、电梯的概念依照电梯在实际生活中的运用及特征,电梯的含义分为广义和狭义。

狭义的电梯是指对规定楼层进行服务,具有轿厢等垂直或倾斜的升降设备,不包括自动人行道及自动扶梯等。

对广义的电梯而言,其主要是指具有动力驱动,可沿着刚性导轨进行运行的箱体或沿着固定的线路进行运行的梯级、踏步等,可对人或货物进行升降或平行运送的机电设备。

此外,按运行速度电梯可分为超高速、高速、快速及慢速几种类型。

同时,还可按用途的不同加以区分,如客梯、观光梯等,随着科技的发展,还出现了一些较为特殊的电梯,如立体停车场中所使用的电梯等。

二、能量回馈原理电梯作为垂直交通运输设备,其向上运送与向下运送的工作量大致相等,驱动电动机通常是工作在拖动耗电或制动发电状态下。

当电梯轻载上行及重载下行及电梯平层前逐步减速时,驱动电动机工作在发电制动状态下。

此时是将机械能转化为电能,过去这部分电能要么消耗在电动机的绕组中,要么消耗在外加的能耗电阻上。

前者会引起驱动电动机严重发热,后者需要外接大功率制动电阻,不仅浪费了大量的电能,还会产生大量的热量,导致机房升温。

有时候还需要增加空调降温,从而进一步增加了能耗。

电能回馈技术利用变频器交-直-交的工作原理,将机械能产生的交流电(再生电能)转化为直流电,再通过电能回馈技术将直流电逆变成交流电回馈到电网,供电网其他设备使用,从而使总耗电量下降,以起到电梯节能的目的。

能量回馈型节能电梯的应用分析与阐述

能量回馈型节能电梯的应用分析与阐述

能量回馈型节能电梯的应用分析与阐述摘要:在当前社会水平全面提升背景下,建筑行业得到了显著提升,在建筑物高度不断提升背景下,对电梯的应用也有了进一步增加。

在建筑工程中对电梯的应用为群众生活提供了极大便利。

特别是当前节能环保理念提出背景下,要想实现对能源资源的节约,就要加强对能量回馈型电梯的推广和应用。

传统电梯的应用方式是借助大功率电阻进行热能传送和耗散,而能量回馈型节约电梯则可以实现对部分再生资源的回收利用,通过相关技术处理可以在电网中进行有效应用,并为其他电器设备运行提供电能帮助,实现能源节约的目标。

为此,本文将对能量回馈型节能电梯的应用进行详细研究,希望对电梯运行中的能源节约提供有效帮助。

关键词:能量回馈型;节能电梯;应用随着当前社会发展水平的全面提升,电力能源问题逐渐成为了群众关注的重点问题。

特别是当前我国电梯应用数量提升背景下,电梯能耗问题也成为了研究的重点问题。

据不完全统计,由于我国电梯行业发展速度不断提升,全国电梯产量平均每年都在以百分之四十的速度进行增长。

并且一个普通的电梯每天的用电量可达到150度以上。

所以作为电能资源消耗大户,电梯节能降耗问题也成为了当前社会关注的重点问题,相关单位和工作人员只有进一步认识到当前问题所在,才能借助合理应对方案实现对问题的解决。

基于此,本文就将对能量回馈型节能电梯的应用展开进一步研究。

一、能量回馈型节能电梯的节能原理在发明电梯并对电梯进行使用后,电梯节能问题就始终与电梯技术的发展进行连接,比如电梯中所采用的电梯曳引机驱动技术、驱动控制系统和能量回馈技术在电梯中的应用,都是节能的重要表现。

要想进一步推进电梯节能目标的达成,就需要在电梯曳引机工作过程中对电能资源进行充分应用。

目前,基于该部分能量的处理,主要采用的就是能耗制动方式[1]。

也就是在工作中借助内置或是制动电阻的工作方式,将大功率电阻中对电能进行消耗。

这种工作方式很容易造成能源的无故流失,并且电阻在实际工作中也将产生大量热能资源,对电梯控制柜环境的提升将产生较大的负面影响,出现环境污染问题,这也违背了节能环保的目标要求。

浅谈能量回馈型节能电梯的推广意义

浅谈能量回馈型节能电梯的推广意义
科 技} 坛 l 论l
科 黑江— 技信息 — 龙— —
浅 谈能 量 回馈 型节 能 电梯 的推 广 意 义
张 帆

( 建 省特 种 设 备 检 验 院 , 建 福 州 30 0 ) 福 福 5 0 3
摘 要: 具体分析 了采用永磁 同步 电机( Ms 和 变频 变压调速 系统( vv ) P M) v F 相结合的方式 , 并结合全数 字4 ( S 电能 回馈控制 系统实现 节  ̄ D P) 5 能 目的 工 作 原 理 。 阐述 该 技 术 在 电梯 领 域 的 实 际应 用 和社 会 意 义 。 关键词 : 电梯 ; 能量 回馈 ; 节能 ;MS D P P M;S 当前 电梯 已成为耗能大户, 电梯节能降耗 已 引起社会各界的关注。电梯行 业已比以往任何时 候都更为努力地为减少电梯的能耗进行探索 , 通 过 近几 年 的研究 和开 发 ,一些 电梯 的节能 技术 也 日 趋成熟 , 特别是永磁同步(MS 驱动技术与制 P M) 动电能 回馈利用技术的重大突破 ,对电梯产品总 能 耗产 生 了巨大 影响 ,为 电梯 节 能带 来 了巨 大空
间。
采 用最 新全 数字 化 ( S ) D P 电能 回馈 控制 系统 的永磁同步电梯解决了普通节能电梯变频器回馈 单元的功能较少,而且其大部分功能由硬件电路 实现 , 造成硬件电路复杂 、 维护工作量大 、 输出电 能质量不够高等缺点。采用 D P控制变频器系统 S 框图如图 l 所示。系统由变频器主回路 、 能量回馈 装置 、 控制电路 、 驱动电路 、 系统保护 电路和采样 电路等组成。 其工作原理是: 当电机处于发电状态 时 , 相 交流 电压 通过 不可 控整 流模 块 整 流 , 到 三 得 的脉动直流电经过 电解电容 c滤波 ,输出稳定的 均 3 %以上 。 0 直流电压。IM逆变电路根据 S P P V WM信号对该 2 0世纪 末随 着科 学技术 发 展 , 电梯 变频 变压 直流电压进行斩波,形成 电压和频率 口调的三相 r 调速 技术 已经 普及 , 来的 交流 双速 、 流 调压 比原 交 交流 电驱 动 P M运 行 ; 电机处 于发 电状 态 时 , MS 当 检测直流侧电压 , 当电压值超过设定值时, 启动能 调速电梯在舒适性和降低能耗方面都有了较大提 高。 采用 变频 调速 技术可 以节 能降 耗 、 改善 控制性 量 回镌} , 生 能 量通过 能 量回馈 装置 反送 电 网。 器 再l 图l 中控 制与 驱动 电路 包括 D P系统 电路 、 S 能、 提高产品运行质量。其中应用得最为广泛是通 用变频器 ,通用变频器大都为电压型交一直一交 正常运行等缺点。目前 , 仿 渡 l电路 、WM驱动电路 、/ Y l P A D转换 电路 、 码 变频器。_相交流电首先通过二极管不控整流桥 梯和电能回 _ 馈型节能电梯普及率已经很高。为了 盘接 口电路等。采样电路包括变频器输出电流采 电机转速及转子磁极位置采样电路 、 直流 得到脉动直流电, 再经电解电容滤波稳压, 最后经 解决 电动机处 于再生发电状态产生 的再生能量 , 样 电路、 无源逆变输出电压、频率可调的交流电给电动机 德国西门子公司推出了电机四象限运行的电 压型 侧 电压采样电路以及能量回馈器的输出电流采样 同步电压检测电路。 系统保护电路由启动限 供电。 这类变频器功率因数高、 效率高、 精度高 、 调 交 一 一 直 交变频器,日 本富士公司也成功研制 了 电路 、 速范围宽,所以在工业中获得广泛应用。进入 2 电源再生装置 ,如 R l HR系列 、R N C系列电源 流电路 、 FEI 过压保护电路 、 M故障保护电路 、 I P 过流 世纪低功耗永磁同步无齿轮 电梯在全球得到推 再生单元 ,它把有源逆变单元从变频器 中分离出 保护电路组成。 该电路集成度高 , 回电网的电 且输 广 ,该 技术 电梯 从 2 0 年 开 始进 人我 国办 公楼 、 来 , 01 直接 作 为变频 器 的— 个外 围装 置 , 并 联到 变 能 质 量稳 定 ,无高 次谐 波 干扰 ,同时节 能效 果 达 可 0 住宅楼 、 酒店等场所 , 经过 1 0年的发展, 全国的无 频器的直流侧, 将再生能量回馈到电网中。 这些装 3 % 以上 。 齿轮电梯市场从原来的不足千台增长到近 2 O万 置普遍存在的问题是价格昂贵 ,再加上一些产品 现 在 我 国 节 能 电梯 技 术 在 某些 方 面 已 经 达 台。 作为电梯的核心部件, 曳引机直接影响着电梯 对电网的要求很高, 不适合我国的国情。同时早期 到了国际领先水平 ,但是节能电梯的普及率还很 的 节能效率。 传统的电梯曳引机大多采用蜗轮 、 蜗 回馈节能技术也存在一些不足 : 首先, 电梯能量回 低 , 有关数据显示 , 国约有 8%的电梯为交流双 我 0 杆传动方式, 具有体积大 、 传动效率低 、 运行噪音 馈技术对电梯使用场合有要求。 —般来说, 电梯额 速 、 流调 压 调速 、 频 变压 调 速 的有 齿 轮 电 梯 ; 交 变 大, 耗能量大等缺点。永磁同步电机的转子采用了 定 速 度越 快 、 定 载 重 量越 大 、 升高 度 越 高 , 额 提 节 低 功耗 永 磁 同步 无齿 轮 电梯 普 及率 不 及 2 % ; 0 可 永磁材料 , 没有励磁 电流 , 电机发热少, 无需阻尼 能效果越显著 ; 相反, 梯速越慢 、 额载越轻 、 提升高 以能源再生的造能回馈型节能电梯普及 率不及 绕组 , 效率和功率因数都比较高, 在轻载运行时节 度越低 , 节能效果则不明显。其次 , 能量回馈装置 2 %。节能电梯的未来市场容量十分可观 : 一是房 能效果明显 , 长期使用可以大幅度节省电能。比外 节电效果虽然明显 , J 但不易量化。最后 , 能量回馈 地产市场快速发展 ,二是西部地区的开发建设速 该类 电梯还具有噪声低 、 污染少 、 结构紧凑 、 重量 装置采用变频器作为逆变环节, 即使有电抗器 、 电 度加快, 使得对电梯的需求继续扩大。中国电梯协 轻等优点。目前电梯市场上, 国际上知名的电梯公 容器、 去噪等滤波环节 , 且使用双 P WM脉宽调制, 会相关负责人表示, 我国将在 2 1 0 0年成为世界节 司如通力( O E 、 KN ) 奥的斯( I 、 、 O S 三菱 蒂森等相 其波形也不免有些畸变 , T ) 在回馈的能量中, 其电流 能电梯推广使用最多的国家。国家有关部门也表 继推出永磁 同步驱动的无齿轮曳引机 的小机房 / 谐波畸变约在 5 ~ %之间。这些高次谐波对市 示, % 7 将在一定时间内在全国范围内推广节能 电梯。 无机房电梯产品。永磁同步驱动无齿轮曳引机迅 电、 对电网及其用电设备都有不 可忽视的影响 , 从 若在新电梯产品上广泛应用永磁同步电机 、制动 速成为电梯的主流传动方式 。 采用永磁同步电机 而产生对电源 、 环境的污染, 电磁干扰 。 电能 回馈等节能技术 ,全国仅 ( 下转 3 2页) 2

浅谈电梯节能中能量回馈节能技术的有效运用

浅谈电梯节能中能量回馈节能技术的有效运用

工程技术浅谈电梯节能中能量回馈节能技术的有效运用文/胡松明摘要:本文介绍了能量回馈和电梯能量回馈技术及工作原理,以及回馈技术在电梯中的应用和电梯节能的必要性,以求在电梯设计中,使能量回馈得到更好的发挥,节约能源。

关键词.电梯;能量回馈;节能技术一、概述(一)能量回馈在电梯、矿山提升机、港口起重机等场合,都会出现负载势能、动能的变化。

通俗的说,提升机与起重机在下放重物的时候,势能会变小,而当离心机设备停机的时候,动能则会变小。

由能量守恒定律我们可以知道,能量是守恒的,它不会无缘无故的消失不见,而是通过电机转换成为了再生电能。

实际上,在使用变頻调速的那些设备里,这部分电能大多数都是因为能耗制动电阻变成了热能而流失。

设想如果能够有一种装置,将这部分再生电能利用起来回送到电网,那么就可以省下这部分电能,起到节能降耗的效果,能量回馈装置就是这样一种产品(二)回馈节能基本原理将运动中负载上的机械能(位能、动能),通过能量回馈装置变换成为电能(再生电能),并且回送给交流电网,供附近其它用电设备使用,使电机拖动系统在单位时间消耗电网电能减少,从而实现节电的目的。

、电梯能量回馈技术及工作原理〔一)能量回锖枝术能量回馈技术,就是把电梯自身存在并且无用的直流电逆变为可用、有效的交流电。

同时,把逆变后的交流电回馈到电梯周边局域网中再次利用的一个过程。

〈二)工作原理实际上,电梯运行的过程是一个电能和机械能转换的过程,如果电梯需要重载上行或者是轻载下行,此时,就要给电梯提供足够的能量,这样一来才能够加大机械势能,然后,电梯通过曳引机把电能转换成机械势能,曳引机就处于一个耗电状态;如果电梯需要轻载上行或者是重载下行,此时,就要降低机械势能,电梯的机械势能由曳引机转换成电能,此时,曳引机就处于一个发电状态。

在曳引机进行发电的时候,产生的电能一定要进行及时的处理,否则的话,会对曳引机造成损耗:.常规的做法是涌过制散热电阻把发的电转化的热能散发到空气中,这就造成电梯机房的温度很高,通常需要安装空调和排风机来降温0能量回馈技术的应用就是替代制动单元和制动电阻,通过自动检测变频器的直流母线电压,将变频器的直流环节的直流电压逆变成和电网电压同频同相的交流电压,再经过多重噪声滤波环节之后连接到交流电网,实现绿色吓环保、节能的目的。

电梯节能及能量回馈节能技术在电梯节能中的实践应用漫谈

电梯节能及能量回馈节能技术在电梯节能中的实践应用漫谈
关键 词: 电梯 节能 ; 能量 回馈 ; 节能技 术
1 电梯 实现节 能的原 理 和可能性分析
能量 回馈装置 , 虽然有 电容器、 电抗 器, 以及去噪等滤波环节,
W M 脉 宽调制, 还是会出现 波形的畸变。 当前, 在回馈的 在 实际使用过程 中, 电梯用 电量较大 的部分是 : 用于驱动 或 者用P 电流谐波畸变大概为5 % 一 7 % 。 产生的这些高次谐波直接 电梯轿厢运 行的电动机需要消耗过 大的能量。 调查表 明, 电梯 能量中, 影 响着 电网、 市电、 用电设备, 造成 电磁干扰 , 环境 、 电源 的污 的电动机拽轿厢运行时消耗的电量约占总能量 的7 2 % 。 那么, 电
动机拖 动系统 的高效节能将成为实现电梯 节能的核心。 在 实际 染 。
应用 当中, 有较 多的途 径可 以实现 电机 拖动系统 的节 能, 其 中 3 能 量回馈节 能技术 在电梯节 能中的时间应 用 非常值得 当前应用和研 究的一个 途径是: 通过能 量回馈器将 电 能量 回馈器是根据 能量回馈技术 在电梯节能 中实践应 用 梯运行时产生的机械能转变成 电能, 在通过交流 电网将这部分 而制造的一种装 置。 其主电路组成为高智能模块 I P M 、 隔离二极 电能应用在其他 用电设备上 , 这样就可 以相应的降低电机 拽动 管D 1 、 D 2 、 I G B T 、电容、 滤波 电感 等电子元件。 能量 回馈器 的关 系统 的在 整个 电网电能的消耗量 , 从实现 了电梯节 能的目的。
术 就 是 在 这 个 理论 和 原 理 的基 础 上 研 究 发 展 的 。
电, 并向电网中输送 , 可达 到3 O % ~ 4 0 % 的节能率。 没有电阻发热
进 一步使机房的环境温度 得以降低 , 并 使电梯 控 目前 , 基 本上使用的 电梯多为变 频 电梯 , 当启动运行 速度 元件 的影 响, 制 系统 的运 行温 度得 以改善, 不 再会出现控制 系统 死机 的现 达 到最 大时, 也将产生出最大 的机械动 能; 当到达层站之前, 变 进一步使电梯 的使用寿命得到延长 。 同时, 机房 内不 再需要 频 电梯要逐渐减速, 此时的减速过程就是 电梯将机械动能释放 象, 使 用空调等 其他相关 的散热设备, 大量 的节省了机房 内各种散 的过程 。 变频 调速 器可 以借助电动机将 电梯运行 时产生的机械 环保、 节能 , 进而使 电梯更 加省电。 这 能转化 为电能, 并在大 电容 中储存。 在实际应用 中, 当大电容中 热设备和空调的耗 电量, 类 I P C — P F 系列 电梯 中使用 的回馈 自动单元应用的是D S P 中央处 储存 的电能越多, 那么将会有过 高的电容 电压, 如未能将这些

能量回馈节能技术在电梯节能中的应用

能量回馈节能技术在电梯节能中的应用
对于 这部分能量的处理是利用 “ 能耗制动方 式 ’ L 即通过 内
电阻的原 因, 应地 电梯 机房温度就 不会太高 , 相 电梯 出现 故障
置或 外加 制动电阻的方法将 电能消耗在 大功率电阻中。如此既 的可能性得 到 降低 , 延长 了 电梯 的使用寿命 , 并很好地 降低 了 白白浪费 了能量 , 电阻产生 的大 量热量还会污染 电梯控制柜 机房 降温 设备 的用 电量 。通过 此途径 ,可 以实现 节 电 2 % 且 5 周边 的环 境。能量回馈系统的作用就是将原来消耗在制动 电阻 5 %。在大功率 、 0 高楼层 、 频繁使用 的情况下 , 节能效 果会更 明 上的能量 , 通过逆变转 化为 交流 电, 回馈到 临近 的同一 电网 显。 丌. z新型能量 回馈器有一突出特点, 并 u王 即具有 电压 自适 或供其他 电气设备使 用。据统计 , 消耗在制动 电阻上的 能量 占 应控制回馈功 能, 在实际使用 中, 该功能价 值凸显 , 因为当 电网 电梯总用 电量 的 2 %~3 %,一般 能量逆 变 的效 率约为 8%。 5 5 5 层越高 、 电梯速度越快 , 节能效果愈明显 。 二、 能量回馈节能技 术在 电梯 节能中的实践应用
技术节 能效果 明显 , 因此 , 下面 笔者就 该技术 在 电梯 节能 中的 DS P中央处理器 , 速率高 、 精度高、 定性 能好 、 稳 抗干扰 能力强 ;
实践应用进行探讨 。

采用 自诊 断技 术确保输 出电压精确 , 防止 电流 回送 , 使变频器 不受任何影响。在频繁制动的场合, 电更明显 ; 正实现 了变 节 真 2 T-H .O T LZ有源能量回馈器。0T .H T L Z有源能量 回馈器
万台 , 因此 , 在全球 性能源紧缺 , 界各国、 行、 世 各 各业都在提倡 用空调等散热设备 ,可 以节省机房空调和 散热 设备 的耗 电量 ,

电梯能量回馈器节能技术的若干思考

电梯能量回馈器节能技术的若干思考

电梯能量回馈器节能技术的若干思考中国作为世界上电梯第一使用大国,2012年底电梯使用量达240余万部,以每部电梯平均每天用电60度算,每年耗电将达526亿度,占了整个三峡电站年发电总量(三峡年均发电量为847亿度)的一半还多。

所以如何让电梯节能,已成为世界电梯业界的研究课题。

一、现阶段我国电梯能量回馈器节能技术的现状目前,中国使用的电梯中只有3%左右的超高速电梯由于要达到快速制动的要求,自身已采用能量回馈控制系统,并且只有从国外纯进口的电梯才有能量回馈功能。

只要在国内生产的电梯,则100%都没有采用能量回馈技术。

电梯要节电,核心是如何将处于发电制动状态电动机输出的电能利用起来。

能量回馈器的作用就是能有效的将电容中储存的电能回送给交流电网供周边其它用电设备使用,节电效果十分明显,一般节电率可达21%-46%。

此外,由于无电阻发热元件,机房温度下降,可以节省机房通风设备或空调的耗电量,在许多场合,节约空调耗电量往往会带来更大的节电效果。

二、制约电梯节能技术发展的因素我国虽贵为电梯生产及使用数量第一大国,但在电梯节能方面却几成空白。

经笔者考察及市场调查与分析,其主要有以下几个方面的因素原因。

一是价格因素。

据了解,同样吨位的电梯,节能效率占优的无齿轮电梯售价比普通电梯要高出10%左右,虽然这部分价差经过一个季度的运行之后即可在电费中节省下来,但是房地产商往往不愿意为消费者承担这部分成本,因为电梯的安装成本要计算在建筑成本之内,而电梯运行的电费是由消费者自行支付。

宾馆、商场的开发商也存在同样心理,所以使用节能电梯积极性不高。

其次是国家产业标准缺位。

据了解,目前国家强制执行的电梯质量标准是电梯安全标准,并没有对电梯节能项目进行强制性规定。

各省的特种设备检验机构对电梯的全面检测多达90多项,定期检查也有50多项,均是对电梯的安全性能进行检验,没有一项与电梯节能有关。

由于没有强制性的电梯节能标准,国家也没有出台权威的节能指标来对电梯的节能性能进行检测,因此目前节能电梯产业尚无统一的产业标准。

MDBF能量回馈单元在电梯行业的应用

MDBF能量回馈单元在电梯行业的应用

MDBF能量回馈单元在电梯行业的应用一、电梯能耗的现状据中国电梯协会提供的信息显示,全国在用电梯总保有量已超过90万台,成为世界上电梯总保有量最多的国家。

而且,随着我国城市化进程进入快速发展期,每年都将有超过15万台新增电梯(新增电梯数量世界第一)投入使用。

电梯作为交通工具,已经成为人们日常生活不可缺少的一部分。

电梯运营离不开电能,一般正常使用的普通电梯,每天用电量大约在30度至150度之间,如果按照一部电梯每天用电80度计算,每年耗电量达29200度。

由此可见,电梯能耗已经成为建筑能耗的重要部分。

电梯在使用过程中,有电动运行与发电运行(也叫制动运行)两种状态。

其中的发电运行状态会产生一部分能量,我们称之为再生能源。

目前市场上使用的电梯(除进口高速电梯之外,约占总量的2%)将再生能源消耗在制动电阻上,在浪费这些能源的同时,也造成了电梯控制柜的发热。

如果将这部分再生能源收集起来,每年节约的电能相当可观。

我们简单计算一下,一般使用能量回馈装置来收集电梯再生能源,可以节省15%~45%的耗电量。

按照平均20%的数据计算,如果全国的电梯都安装了能量回馈装置,每年可以从电梯中回收52.56亿度电。

这个数字是什么概念呢?我们看一下,据中国水利网数据,国家黄河小浪底水电厂每年发电量平均为51亿度,也就是说,全国的电梯使用能量回馈装置来收集电梯再生能源,相当于又造了一个小浪底水电厂!使用能量回馈装置收集电梯再生能源,同时也降低了电梯运行中的发热量,将大大降低电梯控制系统的故障率,延长使用寿命。

21世纪能源将日益紧张,我国又是能源消耗大国,节能势在必行。

因此,使用能量回馈装置收集电梯再生能源是利国利民的一件好事,是造福子孙后代的大事!二、电梯能量回馈节能原理图1所示的是四层电梯示意图,从图中可以看到,电梯的轿厢与电梯配重连接在钢丝的两端,悬挂于电梯驱动电动机上。

当电动机正向或者反向旋转时,轿厢会相应的上行或者下行,实现了电梯运送乘客或者货物的目的。

能量回馈节能技术在电梯节能中的实践应用

能量回馈节能技术在电梯节能中的实践应用

能量回馈节能技术在电梯节能中的实践应用能量回馈节能技术在电梯节能中的实践应用主要是根据这一技术制造并使用能量回馈器。

能量回馈器的主电路由高智能模块IPM、IGBT、隔离二极管Dl、D2、滤波电感、电容等电子元件组成。

IPM模块是最为关键的部分,它能有效地把直流电能逆变为与交流电网同步的三相电流并且回送电网。

二极管Dl、D2是确保电梯节能系统安全运行的必须元件。

电感L--L3、电容c1--C3组成了高次谐波滤波器,可以有效地阻止IPM元件产生的高次谐波电流进入电网,通过这可以提高能量回馈器的电磁兼容性能。

另外,由单片微机、可编程逻辑芯片、外围信号采样器构成的控制电路,可以有序的控制IPM在PWM状态下工作,保证直流电能及时的回馈并且顺利实现再生利用。

(一)IPC-PF系列电梯回馈制动单元IPC-PF系列电梯回馈制动单元是采用加拿大技术生产制造的电梯专用高性能回馈式制动单元。

如果升降电梯能使用电梯回馈制动单元,就可以顺利地实现将电容中储存的直流电能转换成交流电能回送到电网,节电率达30%-40%。

还有,因为无电阻发热元件的原因,降低了机房的环境温度,同时也改善了电梯控制系统的运行温度,使控制系统不再死机,延长电梯使用寿命。

机房可以不再使用空调等散热设备,可以节省机房空调和散热设备的耗电量,节能环保,使电梯更省电。

IPC-pF系列电梯回馈制动单元采用DSP中央处理器,速率高、精度高、稳定性能好、抗干扰能力强;采用自诊断技术确保输出电压精确,防止电流回送,使变频器不受任何影响。

在频繁制动的场合,节电更明显;真正实现了变频调速系统的四象限运行。

(二)OTT-LHZ有源能量回馈器。

OTT-LHz有源能量回馈器直接采用了电梯能量回馈节能技术研制而成的,该回馈器因为没有使用高消耗的电阻,所以电阻发热源就可以忽略不计了。

另外,就是因为没有这个电阻的原因,电梯机房温度就不会太高,这样就极大地减少了电梯出现故障的可能性,电梯的使用寿命也能得到延长,同时也很好的降低了机房降温设备的用电量。

能量回馈技术在电梯上的应用分析和节能效果探讨

能量回馈技术在电梯上的应用分析和节能效果探讨

能量回馈技术在电梯上的应用分析和节能效果探讨文章从能量回馈技术入手,探讨了该技术在电梯节能中的实际应用,并对有源能量回馈器在电梯节能方面的效果和推广电梯节能的必要性进行了分析和介绍,以达到节电和改善系统运行环境的目的。

标签:能量回馈器;节能;电梯前言随着经济的快速发展,电梯的使用也越来越普遍,当然由电梯消耗的电能也日益增多,如何节约资源,降低能耗是我们研究的重点。

使用能量回馈型节能电梯还可以节约开发成本和节省电费由于采用高效无齿轮节能主机和无齿轮曳引主机,使电机的功率和电梯的主电机功率大大减小,使消耗的电和变频器的功效均大幅度降低。

1 能量回馈技术的分析与研究1.1 能量回馈技术的特点能量回馈技术在国内已经有了研究和发展,并且有与之相关的产品问世。

能量回馈系统中的拓扑结构,由于其功率开关的器件不同而可以被分为全控器件型结构以及半控器件型结构两大类。

全控型器件,如IPM、GTR、IGBT或MOSFET 的结构特点为动态响应迅速、集成度和开关频率高,并且利用这类全控型器件还能够使系统的效率大大提升。

半控器件型结构又称晶闸管型器件结构,这类结构中的晶闸管具有超强的耐浪涌冲击、耐流和耐压能力,这是比全控型功率器优越的地方,并且价格较低,保护和驱动电路简单。

1.2 能量回馈技术的节能原理有源能量回馈器主回路结构主要由滤波电容、串联電感、三相IGBT全桥和外围电路组成,如图1。

电梯变频器的输入端和有源能量回馈器的输出端相连,有两个隔离二极管VD1和VD2与输入端相串联后与变频器的PN 线相接。

图中虚线框内的控制电路的软件设计冗余度高,该电路是由外围信号采样器以及单片微机可编程逻辑芯片组成的,这种设计和结构能够使控制电路自动地识别三相交流电网的相位、相序、电流及电压的瞬时值,确保直流电可以立即回馈到交流电网,有序地控制智能功率模块即IPM 的工作状态。

该有源能量回馈器的功能,如图2。

电梯节能在电梯技术的研究和发展中一直被广泛关注,主要有关于电梯驱动控制系统、能量回馈系统和电梯曳引机驱动技术方面的节能。

电梯能量回馈装置的节能技术与应用研究

电梯能量回馈装置的节能技术与应用研究

电梯能量回馈装置的节能技术与应用研究摘要:电梯在运行中会耗费大量的电能,且同时会损耗大量的势能和动能,在一定程度上导致了能源的浪费。

能量回馈装置在电梯中的应用可以降低电梯运行中对能源的浪费,提升电梯运行的节能性与环保性。

基于此,本文首先阐释了电梯节能技术应用的意义,然后就其常见节能技术展开了探讨,最后重点探讨了能量回馈装置的运用,仅供参考。

关键词:电梯;节能技术;能量回馈装置1 电梯节能技术应用的意义目前,随着信息时代的技术支持,中国的社会主义经济市场和科技水平连续上升。

因此,为了保障国家社会资源的可持续发展空间,国家开始针对不同的行业资源进行节能计划的实施。

国家颁布的应用节能技术的明文规定,针对建筑事业中的电梯而言,它响应的不仅仅国家追求可持续发展的号召,还利用自身技术的优势,帮助了相关企业实现自身利益的最大化发展建设,很大程度上起到了积极推进国家经济发展的作用。

与此同时,随着国民经济的发展,传统楼梯对于目前的高楼大厦来说已经成为了辅助工具的使用,人们对电梯的使用率早已趋向于日常化,而要保证电梯的稳定运行和节能措施就得需要该信息技术的加入,因此,电梯节能技术的应用实现了提升电梯运行质量保障的主作用。

2 电梯节能新技术的具体发展2.1 节能传动2.1.1 无齿轮电磁的无齿轮开发与应用,与传统的电梯传动结构相互比较中,前者性能优势较为明显,它能有免去传统电梯中减速箱设备的占地面积,在运行期间还能有效节省所需的额外能耗,采用电磁无齿轮的传动系统可以有效减少电梯运行时的润滑油使用率,另外,其性能优势还包括了运行稳定、效率高、噪音低等特点。

2.1.2 齿轮齿轮传动的机械安装可以有效提升电梯的运行效率,具备一定的节能效用。

虽然该设备的节能效果非常好,但是因为其齿轮传统设备的制作成本偏高,价格受限,严重导致了齿轮传统设备在电梯市场地位、推广力低等问题。

2.1.3 同步齿轮为了使电梯建设资源得到充分利用,避免浪费的节能目的,相关技术研究员开展了电磁无齿轮+行星齿轮的传动节能结构的课题研究,力求做到电磁无齿轮和行星齿轮传统节能性质的有机结合,但因为其研究课题的时间较短,所积累的研究经验明显不足,再加上研究成本相对较高,导致了实验的被迫终止,故两者之间的有机结合研究课题并未实现商品化的研究理论依据2.2 节能拖动(1)节能调频。

能量回馈单元在电梯节能上的应用

能量回馈单元在电梯节能上的应用

根据中国电梯行业协会的统计数字,截至目前国内电梯的保有量约为250万台,国内每年销售的新梯正以50万台以上的速度递增,中国已经成为世界电梯超级大国。

随着中国电梯数量的不断激增,一部普通的电梯每天约用电50~150度。

按照每台电梯用电量80度/天,保守数量全国电梯250万台计算,每天消耗电能约为20000万度,每年的消耗的电能为720亿度,全国每年电梯消耗的电能接近三峡水电站一年的发电量,可见电梯消耗电能巨大。

电梯节能需求刻不容缓,节能电梯将是未来电梯发展的必然趋势。

最近10年,无齿轮曳引机已经逐步取代了有齿机,比传统的有齿轮曳引机节能40%左右,在电梯节能上已经迈开了一大步,但电梯的能耗依然很大,和空调并称两大“电老虎”,节能需求依然迫切。

近年来市场上又出现了电梯能量回馈装置,向电梯节能方向上又迈了一大步。

目前,国内绝大多数变频调速电梯均采用电阻消耗电容中储存电能的方法来防止电容过压。

由于电梯运行过程中,通过电阻产生的热量非常之高,电阻局部温度通常都是在100℃以上,为了使机房温度降低到常温状态,让电梯免于因高温而产生故障,用户需要安装大排风量的空调或风机;在电梯功率较大的机房,往往需要空调、风机同时使用,或是多台空调、多台风机同时启动。

在有些地方降温设备的耗电量往往比电梯的用电量还要高,用户明知能耗严重,却毫无办法。

1、电梯运行特性及现行节能众所周知,电梯是往复运动的,在电梯重载上行和轻载下行时,曳引机处于电动状态,带动轿厢运动;而当电梯在重载下行和轻载上行时,曳引机是发电状态,曳引机所发的电会是驱动器的直流电压升高,为了保证驱动器的正常工作,必须将所发的电处理掉,传统的做法是在驱动器上加制动单元和制动电阻,以热损耗的方式将曳引机所发的电通过制动电阻消耗掉。

由于曳引机所发的电被制动电阻以热能耗的方式消耗掉,没有有效的利用起来,目前也有一些方案可将这部份能耗加以利用,主要有以下几种:(1)采用大电容储能的方式,在电梯曳引机处于发电状态时,通过电路给大电容来充电,而大电容的电能用来给驱动器的控制电路部分来提供电能;采用大电容储能的方式实现了对所发的电再利用的一种进步,但是驱动器的控制电路部分功率很小,所以所消耗的电能也很小,因此曳引机所发的电能无法全部储存在大电容中,无法储存的部分还是需要通过制动电阻以热能的方式来消耗掉。

能量回馈技术在电梯节能的意义

能量回馈技术在电梯节能的意义

能量回馈技术在电梯节能的意义摘要:随着电梯使用量的增加,电梯已成为耗电大户,做好节能意义重大。

本文阐述能量回馈技术在电梯领域的实际应用和社会意义。

关键词:电梯;能量回馈;节能随着经济的持续发展,高层建筑群越来越多,电梯的保有量增长迅速,年均增长速度超过15%,提高了人民生活质量。

而电梯作为一种辅助运输工具,为乘客提供便捷服务;电梯是建筑物中耗电量较高的设备之一,其用电量已超过空调的用电量,在建筑内所有用电设备中用电量占比居前,所以行之有效的节能方式运用,将为用电量的减省出一份力。

一、电梯运行原理电梯是建筑内辅助交通工具,以曳引机为动力,带箱体上下运行,用于多层建筑乘人或载运货物。

主要由曳引机、导轨、对重装置、安全保护装置(如限速器、安全钳和缓冲器等)、操纵厢、轿厢、轿顶检修盒、层门与厅门、钢丝绳、外呼面板等组成。

利用钢丝绳穿插绕着曳引轮和导向轮,两端分别连接对重端和机房工型承重梁固定架上,再通过钢丝绳与曳引轮、导向轮间的摩擦传动,电动机驱动曳引轮使轿厢延着导轨上下移动。

具有安全可靠、乘坐舒适、平层准确和噪音小等特点。

在实际使用过程中,电梯用电量较大的运行工况是:轿厢超过80%载重上行和轿厢低于20%载重下行;而在轿厢轻负载上行和满负载下行时,会产生大量的机械动能,通过制动电阻转化为热能消耗掉,对机房环境和电梯控制系统等带来不利影响。

能量回馈技术的转化应用,得靠一种性能可靠的能量回馈器体现:通过能量回馈器将运行中产生的机械动能转变成再生电能,再将这部分再生电能反馈到电网,供电梯或其他电气设备使用。

二、能量回馈技术运用原理(一)能量回馈技术的节能原理。

电梯开始使用至今,节能技术的应用始终贯穿于电梯发展中,有曳引机技术的节能、驱动控制系统的节能、能量回馈系统的节能。

当电梯无负载上行或轿厢超过80%载重下行时,电梯处于发电状态,将机械势能转化为电能。

电梯要达到节能的成效,是把电动机在发电状态产生的电能利用起来。

浅析电梯控制系统中能量回馈的应用

浅析电梯控制系统中能量回馈的应用

浅析电梯控制系统中能量回馈的应用摘要:随着当今社会的经济与高科技的飞速发展,高层建筑也随之越来越多,电梯的数量也相应增多,本位旨在对电梯的原理进行分析,并对其控制系统中能量回馈应用进行探讨。

关键词:电梯电梯控制系统能量回馈应用电梯控制系统(Elevator control system)主要是指电梯的拖动与控制系统,它经历了由简单到复杂的演变,目前的电梯拖动系统主要在单、双交流电动机拖动系统、交流电动机定子调压调速系统等一系列拖动系统中得到广泛应用。

由于电梯的耗电量是建筑物各种耗电设备中消耗最多的设备之一,且远远高于照明以及供水等设施的耗电量,仅次于空调的用电量。

由于全世界能源高度紧张,电梯的耗电量则越来越被人们所重视,因此,电能的节约是人类能源问题的重要解决方式之一,节能的电梯将成为电梯行业的主要发展趋势。

电梯的基本工作原理其实电梯的主要构造原理是一个在上下两端分别固定的载重厢和配重的定滑轮组,引擎是一部电动机。

电动机有规律性的按照不同方向旋转致使载重厢相应的上行下行,从而达到了运载乘客以及货物的目的,在电梯控制系统中,对电动机起驱动作用的装置是变频器。

一般电梯的平衡系数在45%左右,当载重厢承担额定载重量的45%时,载重厢与电梯的配重装置重量则保持持平。

电梯的运行课分如下几种情况。

1、当载重厢或者电梯配重重量较大的一边处于下降状态时,此时的发动机处于发电状态,是整个系统释放重力势能的过程。

这就好比一辆满载货物的卡车下坡的过程,发动机根本不必过于吃力的运转,或者可以关闭发动机也能做到顺势而下。

2、当载重厢与电梯配重装置重量相对大的一边处于上升状态时,此时发动机处于电动工作状态,并需要大量电能的消耗,此时系统的势能不断增加,犹如一辆满载的卡车走上坡路的阶段,汽车的发动机必然要加大运转力度,使车身能够顺利通过上坡路。

3、当电梯即将达到目标楼层时,会出现减速制动,此时的电动机处于发电状态,原因在于此时的系统正在释放动能,犹如汽车疾驰之后的减速制动,由于疾驰之后形成惯性,发动机的紧张运转可以得到缓解。

能量回馈技术在电梯上的应用分析和节能效果探讨

能量回馈技术在电梯上的应用分析和节能效果探讨

动的问题是能量反馈技术在高速电梯和超高速电梯上得以运用的关键。 大多数 中低 速电梯采用能量 回馈技术没有很大 的意义 ,因为 它们使用的 是蜗 轮蜗杆 减速的驱动主机 , 然 而这 种主机反传动 的效率 不高。 目前 , 在 中低速电梯上运用永磁同步无齿传动技术是为能量回馈技术的使用奠定 基础 。现在很多 电梯公 司都 已经 陆续发 现了在 中低速电梯上运用永磁 同
器的 P N 线相接。
着 电梯速度 的加快和楼层增高而提升 。 2有源能量 回馈器在 电梯节能方面 的应用分 析 能量回馈技术通常在高速 电梯和超高速 电梯上被运用 一般的外加制动 电阻的能耗 制 动却 无法立即将 其控制 , 此 时就会造成电极 的绝缘 、 电解 电容 和开关器 件 的损 坏 , 甚至整个 系统 的安全 都会因此受到威胁 。 2 . 1能量 回馈节能技术在 电梯节 能中的实践应用 制 动高速 电梯 和超高速电梯制动时 , 如果使用一般 的外加 制动电阻 , 消耗 的能量 会很多 , 并且 电阻的发热现象也 会很严 重。 改善发热和系统制
前 言
随着经济的快速发展 , 电梯的使用也越来越普 遍 , 当然 由电梯 消耗 的 电能也 日益增多 , 如何 节约资源 , 降低 能耗是我们研究 的重点 。使用能量 回馈型节 能电梯 还可以节约开发成本和节省 电费 由于采用 高效无齿轮节 能 主机和无 齿轮曳引主机 , 使电机的功率和 电梯 的主电机功率 大大 减小 , 使消耗 的电和变频器的功效均大幅度降低 。 1能量 回馈技术的分析与研究 1 . 1能量 回馈技术 的特点 能量 回馈技术在 国内已经有 了研究和发展 ,并且 有与之相关 的产 品 问世 。 能量回馈系统 中的拓扑结构 , 由于其功率开关 的器件不 同而可 以被 分为全控器 件型结构 以及半控 器件型结构两大类 。全控型器件 , 如I P M、 G T R 、 I G B T 或M O S F E T的结构 特点为 动态响应迅 速 、 集成度 和开关频率 高, 并且利用这类全控 型器件 还能够使系统的效率大大提升 。 半控器件型 结构又称 晶闸管 型器件 结构 , 这类结构 中的晶 闸管具有超 强的耐浪涌 冲 击、 耐流和耐压能力 , 这是 比全控 型功率器优越 的地 方 , 并 且价格较低 , 保 护和驱动 电路简单 。 1 . 2能量 回馈技术的节能原理 有 源能量 回馈器 主回路结构 主要 由滤波 电容 、 串联 电感 、 三相 I G B T 全桥和外 围电路组 成 , 如图 1 。电梯变频器的输入端和有源能量 回馈器 的 输 出端相 连 , 有 两个隔离二极 管 V D1 和V D 2 与输入 端相 串联后 与变频

浅谈能量回馈系统在电梯中的运用

浅谈能量回馈系统在电梯中的运用

最新【精品】范文参考文献专业论文浅谈能量回馈系统在电梯中的运用浅谈能量回馈系统在电梯中的运用【摘要】:随着社会经济和科技的高速开展,楼宇自动化也日趋完善,采用形式也逐渐增多,电梯的数量也相应的增多,本文旨在对电梯根本构造原理进行介绍分析,并对其控制系统中的能量回馈原理结构进行探讨。

【关键词】:节能;电梯根本构造;控制系统中能量回馈的应用;[Abstract]:Withtherapiddevelopmentofsocialeconomyandscienceandtechnology, building automationhasbecomemoreperfect,theformalsograduallyincreased,acorrespondingincrease inthenumberofelevators, this paperistointroducethebasic principle ofelevator, andthecontrol systemofthe principleofenergyfeedbackstructure.[Keyword]:energysaving;thebasicstructureoftheelevatorcontrolapplication;energyfeedbacksyst em;中图分类号:TU229文献标识码:文章编号:节能环保是我国当前提倡的具有现实意义的一样根本国策。

在电梯行业日益竞争剧烈的今天,采用新技术,速度更快,载重量更大虽然是最能突出产品优势的几大方面,但是不可否认,电梯投入使用后的经济性和环保性也是电梯采购时必须考虑的因素。

一、电梯根本构造和运行现状。

1.电梯的根本构造现在电梯主要由曳引机系统、导向系统、轿厢系统、门系统。

重量平衡系统、电力拖动系统、电气控制系统、平安保护系统等组成。

这些局部分别安装在建筑物的井道和机房中。

通常采用钢丝绳传动,钢丝绳绕过曳引轮,两端分别连接轿厢和对重,曳引机驱动曳引轮使轿厢升降。

浅议能量反馈在电梯节能技术中的应用

浅议能量反馈在电梯节能技术中的应用

仿真模型得出 S V P W M 三 相 相 电压 调 制 波 。 将
电容 上, 产生泵升 电压, 滤波 电容两端 电压即 直流 母线 电压升 高到超 过电 网线 电压 峰值 后, 整 流桥 反向阻断 。当直流母线电压继续升高, 超 过启 动有源 逆变 电路 的工作 电压时, 逆变 电路开 始工作 , 将 直流母 线上 的能量逆 变 回
工 业 技 术
浅议能量反馈在电梯节能技术中的应用
张 红 坤
安阳市特种设备检测检验所 4 5 5 0 0 0
摘要 : 在提高能量 回馈系统在 电梯节 能的直流 电压 的利用 率。 减少 回馈 电能对 电网的污染。 本 文论述 了一种 电 梯 节能能量 回馈控制系统. 回馈能量的逆 变采用 S V P W M技术分析 了电梯节能逆变 系统 的组成及工作原理。 并对该逆变节能控制系统进行 了仿真实验研究。结果表 明: 该 系统设计合理。 在电梯节 能能量 回馈 系统 中采用 S V P W M 技术. 既能提高能量回馈逆 变电路对直流 电压的利用 率, 又 能减少逆变电能总谐波失真。 关键词: 电梯 节能 计算机仿真 能量逆变 S V P W M


引言
电梯节 能能量 回馈 系统的作用 就是将储 存在 变频器直流侧 电容中 的电能及时逆变为 交 流 电, 并 回馈给 电网, 从 而达 到节 能 的 目 的。对于直流 电能到交流 电能 的逆变 目前 已 经有一些成 熟的技术在 电梯节 能控制系统 的 逆变技 术应 用中取 得较 好效果 的还不 多, 本 文分析了 S V P 1 v M方法在 电梯节能能量逆变器 中的应用 。采 用变频调速 的电梯要求 电机 四 象 限运行 , 当 电梯快速制动 以及 电梯上行 时, 电梯 的驱 动电机 处于再 生发 电状态 , 产生 的 再生 电能传 输到变频器 的直流侧滤波 电容上 , 产生泵升电压。 严重威胁 系统 的工作安全 。目 前, 控 制泵升 电压 的普遍方法是 : 通过 在直流 母 线 上 接 一 个 能 耗 电阻 , 将 能量 释 放 。这 种 方 法 由于电梯在工作 中制 动频繁并带位 势负载 运 行, 一方面造 成能量严重浪 费 : 另一方面 电 阻发热, 使得环 境温 度升高, 影 响系统工作 的 可靠性 。

浅析电梯变频系统中对能量反馈的应用

浅析电梯变频系统中对能量反馈的应用

浅析电梯变频系统中对能量反馈的应用随着当今电子技术水平的不断进步以及新材料的涌现,使得节能这个话题可以从理论层面走到技术层面,影响着工业技术的革新和进步,能量反馈技术在设备中的应用就是诸多技术升级的案例之一。

以能量反馈在电梯中的使用为例,通过使用能量反馈技术,可以使电梯控制机房发热量减少,起到节约系统中由空调散热而产生的运行和维护成本,节能优势明显,并逐渐得到了市场的青睐。

标签:电梯变频系统;能量反馈;节能应用随着当今电子技术水平的不断进步以及新材料的涌现,使得节能这个话题可以从理论层面走到技术层面,影响着工业技术的革新和进步,能量反馈技术在设备中的应用就是诸多技术升级的案例之一。

以能量反馈在电梯中的使用为例,通过使用能量反馈技术,可以使电梯控制机房发热量减少,起到节约系统中由空调散热而产生的运行和维护成本,节能优势明显,并逐渐得到了市场的青睐。

接下来,我们就从能量反馈技术和能量反馈在电梯变频系统中的应用这两个方面来分别对其进行简要介绍。

1 能量反馈技术1.1 能量反馈技术及其发展能量反馈又称为能量回馈,是一种通过使用变频器能量回馈控制系统将电动机产生的机械能反馈到电网的技术。

其主要作用是就将系统产生的机械能量再利用。

为了解决这类问题,各公司分别推出了用于能量反馈的变频器,其中有西门子公司已经推出的电机四象限运行的电压型交-直-交变频器、富士公司推出的RHR系列、Frenic系列电源再生单元等,这些新设备为能量反馈技术的发展提供了新的营养,为能量反馈技术的应用创造了更广泛的范围[1]。

1.2 能量反馈系统的构成及工作过程能量反馈系统的主回路结构如图1所示,主要由滤波电容、三相全桥、串联电感、外围电路组成。

系统的输入端连接着电梯变频器的直流母线侧,输出端连接电网。

在其进行工作的过程中,曳引机为电动状态时,开关器V1~V6将处于断开状态;当曳引机为发电状态时,产生的能量将累积在变频器直流母线侧,从而产生泵升电压,当直流母线电压超过启动有源逆变电路的工作电压并满足其他逆变条件后,其能量反馈系统将开始工作,并将直流母线上的能量反馈给电网。

试论在电梯节能中能量回馈节能技术的应用

试论在电梯节能中能量回馈节能技术的应用

试论在电梯节能中能量回馈节能技术的应用作者:张磊来源:《科学与信息化》2018年第09期摘要在经济快速发展的今天,几乎所有高楼大厦都配备了电梯,而电梯消耗了太多城市资源,对电梯做好节能措施刻不容缓,本文就电梯节能手段之一——能量回馈节能技术进行分析和探讨。

关键词电梯节能;能量回馈技术;应用前言国民经济快速发展,基础设施大面积建设,房地产行业的火热,都对电梯行业的发展有极大促进作用,根据数据分析,电梯产业十分红火,每年同比增长百分比超过百分之四十,保守估计,我国每年电梯耗费的电能超过一亿度。

在全球都倡导绿色节能环保的背景下,我们更应该推进电梯节能技术,本文对能量回馈节能技术在实际中的应用进行分析。

1 能量回馈节能技术的原理从电梯被发明出来,为人们广泛应用开始,科研人员就一直在对电梯节能技术进行研究,从刚开始的电梯通过曳引机驱动技术节能,通过对电梯驱动控制系统改进节能。

利用能量回馈技术对电梯进行节能改善,本质上是将电梯曳引机在发电时产生的电能尽可能的全部利用起来。

在目前技术条件下,对于这些能量只能采取“能耗制动方式”,将电能输送到外接电阻上,从而使消耗多余电能。

这一方法既浪费能量,也会因为产生的热量过多而引发安全隐患,因此,必须想一种方法将额外电能输送到附近电网中供人们使用[1]。

而能量回馈系统做到了这一点,将原本需要消耗在外接电阻上的能量,通过相关设备将其转换为交流电,从而能够直接接入电网中,即防止了浪费又能够预防安全隐患。

根据实际情况看,对于发电机所发电量,电梯实际运行只占用其中百分之七十左右,而其他电能都是消耗在外接电阻上,而根据热力学相关定律,使用能量回馈技术节能效果最高可达到百分之三十,而且楼层越高,电梯运行速度越快的楼栋节能效果更加喜人。

2 电梯节能中能量回馈技术的实际应用能量回馈技术的实际应用主要是基于以下原理和技术制造并应用能量回馈器,其主要电路由以下几个模块构成:电容、LGBT、隔离二极管D1、D2以及高智能模块IPM等。

在电梯节能中能量回馈节能技术的应用

在电梯节能中能量回馈节能技术的应用

CHINA VENTURE CAPITAL机械与工艺摘要:随着现代化工业的高速发展,能源紧缺已成为日益突出的世界性问题。

尤其是我国电能供需矛盾最为严重,节能已成为中国经济生活势在必行的选择。

社会对日常能源应用问题的研究变得越来越普遍,电梯的节能效果也逐渐成为相关人士研究的重点内容。

电梯的能源使用如何达到节能效果以及在高速、超高速电梯中采用能量回馈技术则是本文的研究重点。

基于此,本文将就能量回馈技术在电梯中的应用等相关问题进行分析,并针对其节能效果展开探讨,提出有效促进电梯的节能、安全运行的策略。

关键词:现代化节能安全运行在电梯节能中能量回馈节能技术的应用文/华升富士达电梯有限公司孙艳峰作为现代建筑最大“用电老虎”之一的电梯,其是节能研发的首选。

近年来,随着经济的快速发展,由电梯消耗的电能日益增多。

有效节约资源降低能耗,是我们研究的重点。

能量回馈型节能电梯的出现与应用,运用高效出的无齿轮节能主机和无齿轮曳引主机,极大限度的降低了电机的功率和电梯的主电机功率,使消耗的电和变频器的功效均大幅度降低,最大限度节约了开发成本和电费消耗。

1、能量回馈技术的基本概念能量回馈技术是一种通过有源逆变装割各再生能量回馈到交流电网的技术。

指在生产机械中,储存的动能或势能,通过转化最终形成电能及时地、高效地“回收”到电网。

近些年,随着我国经济的快速提升与发展。

针对节能产业的研究,主要以节能为核心,开展相应的技术研究。

能量回馈技术的研发和应用,符合以节能作为基本的核心要求,将机械运动中产生的动能和势能,通过转化高效的回收到电网之中。

其是一种能量再生装置,可实现将能源回馈到电网中[1]。

当电梯达到目标层,释放的机械功能最大,同时,电动机在电梯运行中,通过变频器将机械能转变为电能,并将其储存在变频器的大电容中。

由于储存容量有限,储存的电容很可能引发满溢事件。

国外的能量回馈技术的研究以及相关产品的开发领先于我国,目前国内外有很多针对能量回馈技术的研究,且均获得了一定研究成效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅议能量反馈在电梯节能技术中的应用摘要:在提高能量回馈系统在电梯节能的直流电压的利用率,减少回馈电能对电网的污染,本文论述了一种电梯节能能量回馈控制系统,回馈能量的逆变采用svpwm技术分析了电梯节能逆变系统的组成及工作原理,并对该逆变节能控制系统进行了仿真实验研究。

结果表明:该系统设计合理,在电梯节能能量回馈系统中采用svpwm技术,既能提高能量回馈逆变电路对直流电压的利用率,又能减少逆变电能总谐波失真。

关键词:电梯节能计算机仿真能量逆变 svpwm
一、引言
电梯节能能量回馈系统的作用就是将储存在变频器直流侧电容中的电能及时逆变为交流电,并回馈给电网,从而达到节能的目的。

对于直流电能到交流电能的逆变目前已经有一些成熟的技术在电
梯节能控制系统的逆变技术应用中取得较好效果的还不多,本文分析了svpwm方法在电梯节能能量逆变器中的应用。

采用变频调速的电梯要求电机四象限运行,当电梯快速制动以及电梯上行时,电梯的驱动电机处于再生发电状态,产生的再生电能传输到变频器的直流侧滤波电容上,产生泵升电压,严重威胁系统的工作安全。

目前,控制泵升电压的普遍方法是:通过在直流母线上接一个能耗电阻,将能量释放。

这种方法由于电梯在工作中制动频繁并带位势负载运行,一方面造成能量严重浪费;另一方面电阻发热,使得环境温度升高,影响系统工作的可靠性。

二、能量回馈控制系统组成及工作原理
(一)、能量回馈系统组成
电梯节能能量回馈的本质是将直流电能转换为交流电能的有源逆变,其目的是将电动机在发电状态下产生的直流电能回馈到交流电网,实现节能并尽量避免对电网的污染。

电梯直流电能逆变回馈过程中,系统要求在相位、电压、电流等方面应满足的控制条件。

逆变过程必须与电网相位保持同步关系;当直流母线电压超过设定值时,才启动逆变装置进行能量回馈;逆变电流必须满足回馈功率的要求,但不大于逆变电路所允许的最大电流;应尽量减少逆变过程对电网的污染。

根据以上要求,本文设计了一种利用单片机为控制核心的电梯节能能量逆变系统。

系统中的功率电路采用新型功率器件ipm (智能功率模块)。

ipm内部集成了高速、低耗的igbt(绝缘门双极晶体管)和优化的门极驱动及过流、短路、欠压和过热保护电路,它提高了逆变电路的性能和工作可靠性,降低了系统成本,缩短了产品开发周期。

为保证系统安全工作,逆变回馈控制系统中还设置了过流、过压、等多种保护功能。

只要任何一种保护起作用,都将封锁逆变控制信号的输出,及时对ipm驱动电路进行封锁,保护ipm模块及其他电路不致损坏,提高能量回馈系统的安全性。

(二)、工作原理
当电梯上升负载较轻或快速制动时,电梯由于系统配重使电梯的驱动电机工作于发电状态,此时能同时连接在能量回馈系统与三相交流电网之间的高频磁芯扼流电抗器将吸收直流母线电压和电
网线电压的差值,以减小对电网电压的影响。

随着这部分能量的释放,当直流母线电压回落到设定值后,逆变电路停止工作。

量的传输反向,由电机将机械能反传给变频器。

这部分能量将累积在滤波电容上,产生泵升电压,滤波电容两端电压即直流母线电压升高到超过电网线电压峰值后,整流桥反向阻断。

当直流母线电压继续升高,超过启动有源逆变电路的工作电压时,逆变电路开始工作,将直流母线上的能量逆变回馈电网。

三、能量回馈逆变控制电路及控制方法
(一)、功率逆变电路设计
功率逆变器选用的是三菱公司生产的ipm模块pm150rse120,其内部原理电路如图2虚线框内电路所示。

其中电压ud为电梯变频器滤波电容即直流母线侧的直流电压, l1、l2、l3为高频磁芯扼流电抗器,电感值均为5 mh。

大功率开关管t1~t6是igbt晶体管。

经过三相逆变电路输出的三相交流电能直接回馈三相交流电网。

(二)、控制方法
控制方法的优劣直接影响逆变系统的性能,为了使电梯节能能量逆变器的节能效果显著,且减少逆变电能对电网造成的冲击,采用的控制方法应使直流电压利用率越高越好,逆变电能的总谐波失真越小越好。

本设计采用了三相变频技术中的svpwm技术,是一种较新的且应用广泛的pwm技术。

经过仿真表明这种逆变控制方法能使该系统能够达到较好的逆变效果。

四、能量逆变回馈控制系统实验仿真
(一)、控制算法仿真模型
采用matlab的simulink模块组成仿真模型对能量逆变系统进行仿真,根据svpwm方法的原理,构造svpwm算法的仿真模型,如图3所示。

实现svpwm算法的基本步骤为:首先,通过3/2变换将三相a-b-c平面坐标系下的电压变换到两相a-b静止坐标系下;其次,根据a-b坐标系下的电压判断参考电压矢量uref所在的扇区;再次,确定了uref所在的扇区,计算uref所在扇区的相邻两电压矢量的作用时间。

最后,已知各个矢量在不同扇区的作用时间,根据svpwm的开关模式,计算a、b、c三相相应的开关切换点。

根据svpwm算法的仿真模型得出svpwm三相相电压调制波。

将调制波与一定频率和幅值的三角载波比较,当与三角载波的值相等时,得到a、b、c三相电压相应的开关切换点,控制逆变电路大功率开关管的通断,改变pwm波形的状态。

由此可见, svpwm相电压调制波呈马鞍形,从而使svpwm方法的直流电压利用率提高,线性工作范围增大。

(二)、回馈控制系统仿真实验
电梯节能能量逆变器仿真模型。

设三相电压型pwm逆变电路的直流母线电压为800v,用svpwm方法产生的pwm波驱动逆变电路工作,调制比m=1/1.2,并将逆变的交流电能回馈三相交流电网。

逆变产生的相电压,线电压波形。

通过仿真可以看到,在电梯节能能量回馈系统中采用svpwm逆变技术,调制系数m=1/1.2,得到的仿真值接近于理论值,且输出线电压总谐波失真小于5%,符合电网要
求。

仿真结果说明在电梯节能能量逆变器中采用svpwm逆变技术,能够提高直流电压利用率,减小逆变电能对电网的冲击。

五、结束语
本文系统的分析和仿真,可以看到以中央处理单元(avr单片机)为控制核心而组成的电梯节能能量回馈系统设计合理,系统集成度高,体积小。

系统中采用svpwm逆变技术,使系统具有直流电压利用率高,逆变电能的总谐波失真小的特点。

在电梯节能能量逆变中采用svpwm技术,能发挥该技术的优点,有效提高能量回馈逆变的工作效率。

参考文献:
[1] 涂从欢.电力驱动系统中能量回馈控制的设计[j].电气传动,1996(3): 43-46.
[2] 易龙强,戴瑜兴.正弦逆变电源的数字脉宽调制技术[j].湖南大学学报:自然科学版, 2007, 34(1): 37-42.
[3] 刘凤君.现代逆变技术及应用[m].北京:电子工业出版社,2006.
[4] 盛雷,梁文林.中高频spwm变频器的设计与控制[j].洛阳工学院学报, 1999, 20(3): 46-49.
[5] 康现伟.空间矢量脉宽调制仿真及其谐波分析[j].电气传
动自动化, 2005, 27(1): 11-13.
[6] 袁登科,陶生桂,龚熙国.电压空间矢量脉宽调制技术的原理与特征分析[j].变频器世界, 2005(2): 38-40.。

相关文档
最新文档