高中数学空间中点线面的位置关系练习题

合集下载

高三数学点线面的位置关系试题

高三数学点线面的位置关系试题

高三数学点线面的位置关系试题1.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是()A.①③B.②④C.①④D.②③【答案】C【解析】对于①,由于两条平行线中的一条直线与一个平面垂直,则另一条直线也与该平面垂直,因此①是正确的;对于②,分别位于两个平行平面内的两条直线必没有公共点,但它们不一定平行,因此②是错误的;对于③,直线n可能位于平面α内,此时结论显然不成立,因此③是错误的;对于④,由m⊥α且α∥β得m⊥β,又m∥n,则n⊥β,因此④是正确的.故选C.2.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则B.若,,则C.若,,则D.若,,则【答案】B【解析】若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.【考点】空间直线和平面的位置关系.3.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:(1)EF//平面MNCB;(2)平面MAC平面BND.【答案】(1) (2)见解析【解析】(1)取的中点,连接,欲证平面,只要证只要证四边形是平行四边形即可,事实上,由于分别是的中点,易知另一方面又有 ,所以FG与ME平行且相等,四边形是平行四边形,问题得证.(2) 连接、,欲证平面,只要证平面,即证与平面内的两条相交直线、都垂直;由菱形易知;另外,由平面平面及矩形易证平面,进而有,所以问题得证.试题解析:证明:(1)取的中点,连接,因为且,又因为、分别为、的中点,且, 2分所以与平行且相等,所以四边形是平行四边形,所以, 4分又平面,平面,所以平面 6分(2)连接、,因为四边形是矩形,所以,又因为平面平面所以平面 8分所以因为四边形是菱形,所以因为,所以平面 10分又因为平面所以平面 12分【考点】1、直线与平面平行的判定;2、直线与平面及平面与平面垂直的判定与性质.4.已知三棱柱的侧棱在下底面的射影与平行,若与底面所成角为,且,则的余弦值为()A.B.C.D.【答案】C【解析】由三余弦公式得.又,所以.【考点】空间几何体及空间的角.5.设a、b为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且b⊥α,则a∥b;③若a∥α且a∥β,则α∥β;④若a⊥α且a⊥β,则α∥β.其中为真命题的是________.(填序号)【答案】②④【解析】①错,a∥α,b∥α,直线a与b可能相交、平行或异面;③错,若α∩β=l,a∥l,aα,aβ,则a∥α,a∥β.6.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.【答案】2【解析】若α、β换为直线a、b,则命题化为“a∥b,且a⊥γb⊥γ”,此命题为真命题;若α、γ换为直线a、b,则命题化为“a∥β,且a⊥b b⊥β”,此命题为假命题;若β、γ换为直线a、b,则命题化为“a∥α,且b⊥αa⊥b”,此命题为真命题,故真命题共2个.7.如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?【答案】(1)见解析(2)当BM=1时【解析】(1)证明:连结CE交AD于O,连结OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF//C1E.OF平面ADF,C1E平面ADF,所以C1E∥平面ADF.(2)解:当BM=1时,平面CAM⊥平面ADF.在直三棱柱ABC-A1B1C1中,由于B1B⊥平面ABC,BB1平面B1BCC1,所以平面B1BCC1⊥平面ABC.由于AB=AC,D是BC中点,所以AD⊥BC.又平面B1BCC1∩平面ABC=BC,所以AD⊥平面B1BCC1.而CM平面B1BCC1,于是AD⊥CM.因为BM=CD=1,BC=CF=2,所以Rt△CBM≌Rt△FCD,所以CM⊥DF.DF与AD相交,所以CM⊥平面ADF.CM⊥平面CAM,所以平面CAM⊥平面ADF.当BM=1时,平面CAM⊥平面ADF.8.如图PA⊥圆O所在平面,AB是圆O的直径,C是圆O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的是________.(填序号)【答案】①②④【解析】①AE平面PAC,BC⊥AC,BC⊥PA AE⊥BC,故①正确,②AE⊥PB,AF⊥PB,EF⊥PB,故②正确,③若AF⊥BC AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误,由①可知④正确.9.如图,PA⊥正方形ABCD,下列结论中不正确的是()A.PB⊥CB B.PD⊥CDC.PD⊥BD D.PA⊥BD【答案】C【解析】由CB⊥BA,CB⊥PA,PA∩BA=A,知CB⊥平面PAB,故CB⊥PB,即A正确;同理B正确;由条件易知D正确.10.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.【答案】(1)见解析(2)【解析】(1)证明:∵AA1=A1C=AC=2,且O为AC中点,∴A1O⊥AC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,A1O⊂平面A1AC,∴A1O⊥平面ABC.(2)∵VE-BCC1=VABC-A1B1C1=VA1-BCC1,∴BE=BA1,即A1E=A1B.连接OB,在Rt△A1OB中,A1O⊥OB,A1O=,BO=1,故A1B=2,则A1E的长度为.11.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列为真命题的是()A.若α⊥β,m⊥α,则m∥βB.若α⊥γ,β⊥γ,则α∥βC.若m⊥α,n∥m,则n⊥αD.若m∥α,n∥α,则m∥n【答案】C【解析】举反例,对于A,可能mβ;对于B,α,β可能相交;对于D,m,n可能相交或异面.12.设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:①若m⊥n,m⊥α,n⊄α则n∥α;②若α⊥β,则α∩β=m,n⊂α,n⊥m,则n⊥β;③若m⊥n,m∥α,n∥β,则α⊥β;④若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直.其中,所有真命题的序号是________.【答案】①②【解析】③错误,α,β相交或平行;④错误,n与m可以垂直,不妨令n=α∩β,则在β内存在m⊥n.13.已知α,β是两个不同的平面,下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.其中是平面α∥平面β的充分条件的为________(填上所有符号要求的序号).【答案】①④【解析】①正确,此时必有α∥β;②错误,因为此时两平面平行或相交均可;③错误,当两直线a,b在两平面内分别与两平面的交线平行即可;④正确,由于α∥β,经过直线α的平面与平面β交于a′,则a∥a′,即a′∥α,又b∥α,因为a,b为异面直线,故a′,b为相交直线,由面面平行的判定定理可知α∥β,综上可知①④是平面α∥平面β的充分条件.14.设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.上述命题中,所有真命题的序号是________.【答案】④【解析】若a∥α,a∥β,则α∥β或α与β相交,即命题①不正确;若a⊥α,a⊥β,则α∥β,即命题②不正确;若a∥α,b∥α,则a∥b或a与b相交或a与b异面,即命题③不正确;若a⊥α,b⊥α,则a∥b,即命题④正确,综上可得真命题的序号为④.15.正方形与梯形所在平面互相垂直,,,点在线段上且不与重合。

空间点、直线、平面之间的位置关系 高中数学例题课后习题详解

空间点、直线、平面之间的位置关系 高中数学例题课后习题详解

8.4空间点、直线、平面之间的位置关系8.4.1平面练习1.判断下列命题是否正确,正确的画“√”,错误的画“×”.(1)书桌面是平面.(2)平面α与平面β相交,它们只有有限个公共点.(3)如果两个平面有三个不共线的公共点,那么这两个平面重合.【答案】(1)×;(2)×;(3)√.【解析】【分析】根据平面性质可知(1)错误,根据公理2知(2)错误,根据公理3可判断(3)正确.【详解】(1)由平面性质知,平面具有无限延展性,所以桌面只是平面一部分,不是平面;(2)根据公理2可知,若两个平面有一个共点,则有过该点的唯一交线,可知有无限个公共点,且在一条直线上,故判断错误;根据公理3,不共线的三个点确定一个平面,因此两个平面有三个不共线的公共点,那么这两个平面重合,正确.【点睛】本题主要考查了平面的基本性质,属于容易题.2.下列命题正确的是()A.三点确定一个平面B.一条直线和一个点确定一个平面C.梯形可确定一个平面D.圆心和圆上两点确定一个平面【答案】C【解析】【分析】根据公理2对选项逐一分析,由此确定正确选项.【详解】对于A选项,三个不在同一条直线上的点,确定一个平面,故A选项错误.对于B选项,直线和直线外一点,确定一个平面,故B选项错误.对于C选项,两条平行直线确定一个平面,梯形有一组对边平行,另一组对边不平行,故梯形可确定一个平面,所以C选项正确.对于D选项,圆的直径不能确定一个平面,所以若圆心和圆上的两点在直径上,则无法确定一个平面.所以D 选项错误.故选:C【点睛】本小题主要考查公理2的理解和运用,属于基础题.3.不共面的四点可以确定几个平面?请画出图形说明你的结论.【答案】4个【解析】【分析】画出空间四边形,可以得到确定的平面个数.【详解】可确定4个平面,如图:由不共线的三个点确定一个平面可知,不共线的四个点可确定平面ABC ,平面ACD ,平面ABD ,平面BCD ,共4个平面.【点睛】本题主要考查了不共线的三个点确定一个平面,属于容易题.4.用符号表示下列语句,并画出相应的图形:(1)点A 在平面α内,点B 在平面α外;(2)直线a 经过平面α外的一点M ;(3)直线a 既在平面α内,又在平面β内.【答案】(1),A B αα∈∉,如图.(2),M M a α∉∈,如图.(3),a a αβ⊂⊂,如图.【解析】【分析】根据点线面的关系,借用集合符号,表示即可.【详解】(1),A B αα∈∉,如图:(2),M M a α∉∈,如图:(3),a a αβ⊂⊂或=a αβI ,如图:【点睛】本题主要考查了空间几何中的符号语言,属于容易题.8.4.2空间点、直线、平面之间的位置关系例1:如图8.4-16,用符号表示下列图形中直线、平面之间的位置关系.分析:根据图形,先判断直线、平面之间的位置关系,然后用符号表示出来.解:在(1)中, l αβ= ,a A α= ,a B β⋂=.在(2)中,l αβ= ,a α⊂,b β⊂,a l P = ,b l P = ,a b P = .例2:如图8.4-17,AB B α⋂=,A αÏ,a α⊂,B a ∉.直线AB 与a 具有怎样的位置关系?为什么?解:直线AB 与a 是异面直线.理由如下.若直线AB 与直线a 不是异面直线,则它们相交或平行.设它们确定的平面为β,则B β∈,a β⊂.由于经过点B 与直线a 有且仅有一个平面α,因此平面α与β重合,从而AB α⊂,进而A α∈,这与A αÏ矛盾.所以直线AB 与a 是异面直线.练习5.如果两条直线a 与b 没有公共点,那么a 与bA.共面B.平行C.异面D.平行或异面【答案】D【解析】【分析】根据空间中直线与直线的位置关系的定义即可判断出直线a 与b 的位置关系.【详解】如果两条直线没有公共点,则这两条直线平行或异面,则a 与b 平行或异面.故选:D.【点睛】本题考查空间中两直线位置关系的判断,属于基础题.6.设直线a b ,分别是长方体的相邻两个面的对角线所在的直线,则a 与b ()A.平行B.相交C.是异面直线D.可能相交,也可能是异面直线【答案】D【解析】【分析】按直线的三种位置关系分析.【详解】如图,长方体ABCD A B C D ''''-中,当'A B 所在直线为a ,BC '所在直线为b 时,a 与b 相交;当'A B 所在直线为a ,B C '所在直线为b 时,a 与b 异面.故选:D.【点睛】本题考查空间两条直线间的位置关系,属于基础题.7.如图,在长方体ABCD A B C D ''''-中,判定直线AB 与AC ,直线AC 与A C '',直线A B '与AC ,直线A B '与C D '的位置关系.【答案】见解析【解析】【分析】按直接的三种位置关系判断.【详解】解:直线AB 与AC 相交;直线AC 与A C ''平行;直线A B '与AC 异面;直线A B '与C D '异面.【点睛】本题考查空间两条直线间的位置关系,属于基础题.8.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)若直线l 上有无数个点不在平面α内,则//l α.()(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.()(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.()(4)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.()【答案】(1)×(2)×(3)×(4)√【解析】【分析】(1)举反例说明;(2)分析三种位置关系的可能性.由线面平行的性质定理得平行线,平面内与这平行相交的直线,与平面外的那条直线异面;(3)把与平行平行的直线平移,观察与平面的位置关系;(4)由线面平行的定义判断.【详解】(1)当直线1与平面α相交时,直线1上也有无数个点不在平面α内;(2)也可能异面;(3)也可能直线在平面内;(4)∵1∥a ,∴l 与α没有公共点,∴l 与α内任意一条直线都没有公共点.答案:(1)×(2)×(3)×(4)√【点睛】本题考查线面平行的定义与性质.掌握线面平行的定义是解题基础.9.已知直线,a b ,平面,αβ,且a α⊂,b β⊂,//αβ.判断直线,a b 的位置关系,并说明理由.【答案】它们是平行直线或异面直线;答案见解析.【解析】【分析】利用反证法,根据两条直线交点的个数,可判断其位置关系;【详解】直线,a b 的位置关系是平行直线或异面直线;理由如下:由//αβ,直线,a b 分别在平面α,β内,可知直线,a b 没有公共点.因为若,a b 有公共点,那么这个点也是平面α,β的公共点,这与是平面α,β平行矛盾.因此直线,a b 不相交,它们是平行直线或异面直线.习题8.4复习巩固10.画出满足下列条件的图形:(1),,,a b a b A c A ααα⊂⊂⋂=⋂=;(2),,,//,//l AB CD AB l CD lαβαβ⋂=⊂⊂【答案】见解析【解析】【分析】由题意直接画图即可.【详解】如图【点睛】本题主要考查的是空间图形的画法,直线和平面的位置关系,基本知识的考查,是基础题.11.经过同一条直线上的3个点的平面A.有且只有一个B.有且只有3个C.有无数多个D.不存在【答案】C【解析】【分析】根据平面的性质,直接判定即可得出结果.【详解】经过一条直线可以作无数多个平面.故选:C.【点睛】本题主要考查由线确定平面的数量,熟记基础题型.12.若直线a 不平行于平面α且a α⊄,则下列结论成立的是A.平面α内的所有直线与a 异面B.平面α内不存在与a 平行的直线C.平面α内存在唯一的直线与a 平行D.平面α内的直线与a 都相交【答案】B【解析】【分析】由题意知直线a 与平面α相交,依次判断选项即可.【详解】解:由条件知直线a 与平面α相交,则平面α内的直线与a 可能相交,也可能异面.不可能平行故选:B.【点睛】本题考查判断直线与平面相交,属于基础题.13.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”(1)两两相交且不共点的三条直线确定一个平面.()(2)四边形可以确定一个平面.()(3)若a ,b 是两条直线,,αβ是两个平面,且,a b αβ⊂⊂,则a ,b 是异面直线.()【答案】①.√②.×③.×【解析】【分析】根据空间中的平面公理与推理,以及异面直线的定义,对命题进行判断即可.【详解】对于(1),两两相交且不共点的三条直线确定一个平面,如三角形所在的三边确定一个平面,(1)正确;对于(2),当四边形是空间四边形时不能确定一个平面,(2)错误;对于(3),若a ,b 是两条直线,,αβ是两个平面,且,a b αβ⊂⊂,则a ,b 是平行、相交、异面直线,(3)错误.【点睛】本题主要考查的是平面公理与推论的应用问题以及异面直线的判定,是基础题.14.填空题(1)如果a 、b 是异面直线,直线c 与a 、b 都相交,那么这三条直线中的两条所确定的平面共有_______个;(2)若一条直线与两个平行平面中的一个平面平行,则这条直线与另一个平面的位置关系是________;(3)已知两条相交直线a 、b ,且//a 平面α,则b 与α的位置关系是__________.【答案】①.2②.直线平行于平面或直线在平面内③.//b α或b 与α相交【分析】(1)根据两相交直线可确定一个平面可得解;(2)利用图形可判断直线与平面的位置关系;(3)利用图形可判断b 与α的位置关系.【详解】(1)因为a 、b 是异面直线,直线c 与a 、b 都相交,则c 与a 、c 与b 可分别确定一个平面,故这三条直线中的两条所确定的平面共有2个;(2)若一条直线与两个平行平面中的一个平面平行,则这条直线在这个平面内或这条直线与平面平行,如下图所示:已知//αβ,//a α,则//a β(如图1),a β⊂(如图2).(3)已知两条相交直线a 、b ,且//a 平面α,如下图所示:如图3所示,可知//b α,如图4所示,b 与α相交.故答案为:(1)2;(2)直线与平面平行或直线在平面内;(3)//b α或b 与α相交.15.正方体各面所在平面将空间分成几部分?【答案】27个部分【分析】根据题意画出图形即可得出答案.【详解】如图,图中画出了正方体最上层把空间分成9个部分,同理中层、下层也分别把空间分成9个部分,因此共将空间分成27个部分.【点睛】本题主要考查的是平面基本性质,正确理解确定平面的几个公理及由题意画出图形且有较强的空间想象能力是解题的关键,是中档题.综合运用16.如果一条直线与两条平行直线都相交,那么这三条直线共面吗?请说说你的理由.【答案】共面,理由见解析【解析】【分析】先说明两条平行直线确定一个平面,再证第三条直线在这个平面内即可.【详解】共面.两条平行直线确定唯一的平面,又第三条直线与两条平行直线都相交,第三条直线有两个点在此平面内,则第三条直线也在这个平面内,所以这三条直线共面.【点睛】本题主要考查的线共面的判定,以及学生对平面基本性质的理解和应用,是基础题.17.如图,三条直线两两平行且不共面,每两条直线确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?【答案】三条直线两两平行且不共面,一共可以确定三个平面;如果三条直线相交于一点,则最多可以确定三个平面.【解析】【分析】这三条直线象三棱柱的三条侧棱根据平面的基本性质可以确定3个平面,得到结果;满足相交于一点的三条直线能够确定一个平面或三个平面,从而得出其最多可以确定几个平面.【详解】①三条直线两两平行,这三条直线象三棱柱的三条侧棱,其中每两条直线可以确定一个平面,则可以确定3个平面;②三条直线两两相交每两条确定一个平面,当这三条直线在同一个平面时则可以确定1个平面;当这三条直线不在同一个平面时,则可以确定3个平面;这三条直线能够确定一个平面或三个平面,最多可以确定3个平面.【点睛】本题考查查平面的基本性质及其应用,考查进行简单的合情推理,本题是一个推论应用问题,是一个基础题.18.已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示,求证:P,Q,R三点共线.【答案】证明见解析【解析】【分析】推导出P,Q,R都在平面ABC与平面α的交线上,即可证明.【详解】证明:法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由基本事实3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.拓广探索19.如图是一个正方体的展开图,如果将它还原为正方体,那么在AB,CD,EF,GH这四条线段中,哪些线段所在直线是异面直线?【答案】直线EF和直线HG,直线AB和直线HG,直线AB和直线CD.【解析】【分析】首先将正方体的展开图还原成正方体,由经过平面外一点和平面内一点的直线和平面内不经过该点的直线是异面直线,进行判断.【详解】还原正方体如图,由经过平面外一点和平面内一点的直线和平面内不进过该点的直线是异面直线可得,AB,CD,EF,GH这四条线段所在直线是异面直线为:直线EF和直线HG,直线AB和直线HG,直线AB和直线CD.【点睛】本题考查的是异面直线的判定,将正方体的展开图还原成正方体,再利用异面直线的判定定理判断是解题的关键,是基础题.20.在本节,我们学习了平面,了解了它的基本特征以及一些利用点、直线、平面等组成立体图形的基本元素刻画这些特征的方法,类似地,直线有什么基本特征?如何刻画直线的这些基本特征?【答案】答案见解析.【解析】【分析】写出直线的特点:直的,无限延伸,无粗细,不可以测量长度,再指出直线的对称性即可.【详解】直线的基本特征:直线是直的,没有粗细,没有端点,可以向两端无线延展、不可以测量长度;刻画直线的基本特征:直线是轴对称图形,它有无数条对称轴,直线本身以及与它垂直的直线都是它的对称轴.变式练习题21.如图,在空间四边形ABCD中,E,F分别为AB,BC的中点,点G,H分别在边CD,DA上,且满足12CG GD,DH=2HA.求证:四边形EFGH为梯形.【答案】证明见解析【解析】【分析】利用条件证明,EF HG互相平行,且不相等即可证得四边形为梯形.【详解】证明:因为E,F分别为AB,BC的中点,所以EF12AC = .又21DHHA=,21DGGC=,所以DH DGHA GC=,从而HG23AC=,所以EF∥HG且EF≠HG,故四边形EFGH为梯形.22.在正方体ABCD-A1B1C1D1中,P,Q,M,N分别为AD,AB,C1D1,B1C1的中点.求证:A1P∥CN,A1Q∥CM,且∠PA1Q=∠MCN.【答案】证明见解析【解析】【分析】根据平行四边形的性质及等角定理,即可得到答案;【详解】证明:如图,取A1B1的中点K,连接BK,KM.易知四边形MKBC为平行四边形,所以CM∥BK.因为A1K∥BQ且A1K=BQ,所以四边形A1KBQ为平行四边形,从而A 1Q ∥BK .由基本事实4有A 1Q ∥CM .同理可证A 1P ∥CN .因为∠PA 1Q 与∠MCN 对应边分别平行,且方向相反,所以∠PA 1Q =∠MCN .23.如图,P 是△ABC 所在平面外一点,D ,E 分别是△PAB 和△PBC 的重心.求证:D ,E ,A ,C 四点共面且DE =13AC .【答案】证明见解析【解析】【分析】如图,连接PD ,PE 并延长,分别交AB ,BC 于点M ,N ,连接MN ,证明DE ∥MN 且DE =23MN ,原题即得证.【详解】证明:如图,连接PD ,PE 并延长,分别交AB ,BC 于点M ,N ,因为D ,E 分别是△PAB ,△PBC 的重心,所以M ,N 分别是AB ,BC 的中点,连接MN ,则MN ∥AC 且MN =12AC .在△PMN 中,因为23PD PE PM PN ==,所以DE ∥MN 且DE =23MN .所以DE ∥AC 且DE =23×12AC =13AC .则D ,E ,A ,C 四点共面.24.如图,在四面体ABCD 中,E ,G 分别为BC ,AB 的中点,点F 在CD 上,点H 在AD 上,且有DF ∶FC =1∶3,DH ∶HA =1∶3.求证:EF ,GH ,BD 交于一点.【答案】证明见解析【解析】【分析】利用基本事实4和基本事实2可证三线共点.【详解】证明连接GE ,HF .因为E ,G 分别为BC ,AB 中点,所以1//2GE AC .因为DF ∶FC =1∶3,DH ∶HA =1∶3,所以1//3HF AC .从而GE ∥HF 且GE HF ≠,故G ,E ,F ,H 四点共面且四边形EFHG 为梯形,因为EF 与GH 不能平行,设EF ∩GH =O ,则O ∈平面ABD ,O ∈平面BCD .而平面ABD ∩平面BCD =BD ,所以EF ,GH ,BD 交于一点.25.在长方体1111ABCD A B C D -中,(1)直线1A B 与直线1D C 的位置关系是___________;(2)直线1A B 与直线1B C 的位置关系是_______________;(3)直线1D D 与直线1D C 的位置关系是______________;(4)直线AB 与直线1B C 的位置关系是______________.【答案】①.平行.②.异面.③.相交.④.异面.【解析】【分析】(1)根据题意得出四边形11A BCD 为平行四边形,即可得出结论;(2)根据异面直线的定义判断即可;(3)直线1D D 与直线1D C 相交于一点,则直线1D D 与直线1D C 的位置关系是相交;(4)根据异面直线的定义判断即可.【详解】(1)在长方体1111ABCD A B C D -中,11//A D BC ,四边形11A BCD 为平行四边形.11//A B D C ∴.(2)直线1A B 与直线1B C 不同在任何一个平面内,所以直线1A B 与直线1B C 的位置关系是异面.(3)直线1D D 与直线1D C 相交于点1D ,所以直线1D D 与直线1D C 的位置关系是相交.(4)直线AB 直线1B C 不同在任何一个平面内,所以直线AB 与直线1B C 的位置关系是异面.故答案为:(1)平行;(2)异面;(3)相交;(4)异面【点睛】本题主要考查了判断直线与直线的位置关系,属于基础题.26.如图所示,G 是正方体1111ABCD A B C D -的棱1DD 延长线上的一点,E ,F 是棱AB ,BC 的中点,试分别画出过下列各点、直线的平面与正方体表面的交线.(1)过点G 及AC .(2)过三点E ,F ,1D .【答案】(1)答案见解析;(2)答案见解析.【解析】【分析】(1)连接GA 交11A D 于点M ,连接GC 交11C D 于点N ;连接MN ,AC ,由图可得交线;(2)根据公理,连接EF 分别交DC 、DA 的延长线于点P ,Q ,连接1D P 交1CC 于点M ,连接1D Q 交1AA 于点N ;连接MF ,NE 由图可得交线.【小问1详解】连接GA 交11A D 于点M ,连接GC 交11C D 于点N ;连接MN ,AC ,则MA ,CN ,MN ,AC 为所求平面与正方体表面的交线.如图①所示.【小问2详解】连接EF 交DC 的延长线于点P ,交DA 的延长线于点Q ;连接1D P 交1CC 于点M ,连接1D Q 交1AA 于点N ;连接MF ,NE ,则1D M ,MF ,FE ,EN ,1ND 为所求平面与正方体表面的交线.如图②所示.。

高考数学专题复习八8.2空间点、线、面的位置关系-模拟练习题(附答案)

高考数学专题复习八8.2空间点、线、面的位置关系-模拟练习题(附答案)

8.2空间点、线、面的位置关系基础篇考点一点、线、面的位置关系1.(2023届福建厦门联考,5)如图,在三棱柱ABC-A1B1C1中,△A1B1C1是正三角形,E是BC的中点,则下列叙述中正确的是()1与B1E是异面直线1与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°答案C2.(2019课标Ⅱ,7,5分)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案B3.(2021安徽江南十校一模,7)设a、b为两条直线,则a∥b的充要条件是()A.a、b与同一个平面所成角相等B.a、b垂直于同一条直线C.a、b平行于同一个平面D.a、b垂直于同一个平面答案D4.(2022甘肃二诊,6)正方体上的点M,N,P,Q是其所在棱的中点,则下列各图中直线MN与直线PQ是异面直线的是()ABCD答案B5.(2023届广西桂林月考二,9)已知三条不同的直线a,b,c,平面α,β,下列说法正确的是()A.命题p:经过一个平面上一点有且只有一个平面与已知平面垂直.命题p是真命题B.已知直线a∥b,b∥c,则a∥cC.命题q:已知a∥α,b∥α,则a∥b.命题q是真命题D.已知a⊥b,b⊥c,a∥α,c∥β,则α∥β答案B6.(2023届黑龙江部分学校联考,4)一个封闭的正方体容器ABCD-A1B1C1D1,P,Q,R分别是AB,BC和C1D1的中点,由于某种原因,P,Q,R处各有一个小洞,当此容器内存水的表面恰好经过这三个小洞时,容器中水的上表面的形状是() A.三角形 B.四边形 C.五边形 D.六边形答案D7.(2022皖南八校三模,15)三棱锥A-BCD中,AB=CD=1,过线段BC中点E作平面EFGH与直线AB、CD都平行,且分别交BD、AD、AC于F、G、H,则四边形EFGH的周长为.答案2考点二异面直线所成的角1.(2018课标Ⅱ,9,5分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()答案C2.(2022江西赣州二模,8)在正四棱锥P-ABCD中,点E是棱PD的中点.若直线PB与直线CE则P B的值为()A.1B.2C.2D.22答案C3.(2022黑龙江模拟,8)如图,某圆锥SO的轴截面SAC是等边三角形,点B是底面圆周上的一点,且∠BOC=60°,点M是SA的中点,则异面直线AB与CM所成角的余弦值是()A.13 C.34答案C4.(2023届河南焦作调研一,11)已知圆柱的轴截面是边长为2的正方形,AB和CD分别是该圆柱上、下底面的一条直径,若四面体ABCD则异面直线AB与CD所成角的余弦值为()C.12D.13答案D综合篇考法一点、线、面位置关系的判定及其应用1.(2023届昆明一中双测二,4)在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E,F分别为棱A1B1,B1C1的中点,经过E,F,O三点的平面与正方体相交所成的截面为() A.梯形 B.平行四边形C.矩形D.正方形答案A2.(2022黑龙江大庆实验中学月考,11)给出下列命题:①若△ABC的三条边所在直线分别交平面α于P,Q,R三点,则P,Q,R三点共线;②若直线a,b是异面直线,直线b,c是异面直线,则直线a,c是异面直线;③若三条直线a,b,c两两平行且分别交直线l于A,B,C三点,则这四条直线共面;④对于三条直线a,b,c,若a⊥c,b⊥c,则a∥b.其中所有真命题的序号是() A.①② B.①③ C.③④ D.②④答案B3.(2019课标Ⅲ,8,5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B4.(2023届山西大同联考一,10)如图,在四棱柱ABCD-A1B1C1D1中,AB=AD=AA1=1,AD⊥AA1,AD⊥AB,∠A1AB=60°,M,N分别是棱AB和BC的中点,则下列说法中不正确的是()A.A1,C1,M,N四点共面B.B1N与AB共面C.AD⊥平面ABB1A1D.A1M⊥平面ABCD答案B5.(2021内蒙古赤峰2月月考,16)如图,在棱长为2的正方体中,点M、N在棱AB、BC上,且AM=BN=1,P在棱AA1上,α为过M、N、P三点的平面,则下列说法正确的是.①存在无数个点P,使面α与正方体的截面为五边形;②当A1P=1时,面α与正方体的截面面积为33;③只有一个点P,使面α与正方体的截面为四边形;④当面α交棱CC1于点H时,PM、HN、BB1三条直线交于一点.答案①②④6.(2020新高考Ⅰ,16,5分)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为.答案2π2考法二异面直线所成的角的求解1.(2023届贵阳开学测试,12)在长方体ABCD-A1B1C1D1中,AA1=2AB=2AD=4,点E在棱CC1上,且C1E=2CE,点F在正方形ABCD内.若直线A1F与BB1所成的角等于直线EF与BB1所成的角,则AF的最小值是() A.322 B.32 C.924 D.922答案A2.(2022安徽黄山第二次质检,10)已知四棱锥P-ABCD中,底面ABCD是梯形,AD∥BC,BC=AB=PA=2AD=2,PB=3,AC与BD交于M点,PN=2ND,连接MN,则异面直线MN与AB所成角的余弦值为()A.-18B.23 D.34答案D3.(2021东北三省四市联考,8)长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=43.过BC的平面分别交线段AA1,DD1于M、N两点,四边形BCNM为正方形,则异面直线D1M与BD所成角的余弦值为()A.14142114C.14435答案D4.(2018课标Ⅱ,9,5分)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为() A.1556C.52答案C5.(2022四川攀枝花联考(三),10)如图,直三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是BC,A1B1的中点,下列说法中正确的是()A.DE⊥B1C1B.A1C∥平面B1DE1与DE是相交直线D.异面直线B1D与A1C1所成角的余弦值为5答案D6.(2022太原一模,15)已知在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB=2,若三棱锥的外接球体积为43π,则异面直线PB与AC所成角的余弦值为.答案12。

高三数学 空间点、直线、平面之间的位置关系练习题(含答案)

高三数学  空间点、直线、平面之间的位置关系练习题(含答案)

空间点、直线、平面之间的位置关系建议用时:45分钟一、选择题1.下列命题中,真命题的个数为()①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1B.2C.3D.4B[根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.] 2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直A[由BC AD,AD A1D1知,BC A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A1B与EF相交.] 3.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥cC[对于A,B,D,a与c可能相交、平行或异面,因此A,B,D不正确,根据异面直线所成角的定义知C正确.]4.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外A[如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P必在直线AC上.]5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为()A.15 B.25C.35 D.45D[连接BC1,易证BC1∥AD1,则∠A1BC1即为异面直线A1B与AD1所成的角.连接A1C1,由AB=1,AA1=2,则A1C1=2,A1B=BC1=5,在△A1BC1中,由余弦定理得cos∠A1BC1=5+5-22×5×5=4 5.]二、填空题6.已知AE是长方体ABCD-EFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有条.4[作出长方体ABCD-EFGH.在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH、GF、BC、CD.共4条.]7.已知在四面体ABCD中,E,F分别是AC,BD的中点.若AB=2,CD =4,EF⊥AB,则EF与CD所成角的度数为.30°[如图,设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中位线.由此可得GF∥AB,且GF=12AB=1,GE∥CD,且GE=12CD=2,∴∠FEG或其补角即为EF与CD所成的角.又∵EF⊥AB,GF∥AB,∴EF⊥GF.因此,在Rt△EFG中,GF=1,GE=2,sin∠GEF=GFGE=12,可得∠GEF=30°,∴EF与CD所成角的度数为30°.]8.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC 的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是.②③④[如图,把平面展开图还原成正四面体,知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN垂直,故②③④正确.]三、解答题9.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.[证明](1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG =13BC ,CH =13DC , 所以GH ∥BD , 所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)易知FH 与直线AC 不平行,但共面,所以设FH ∩AC =M , 所以M ∈平面EFHG ,M ∈平面ABC . 又因为平面EFHG ∩平面ABC =EG , 所以M ∈EG ,所以FH ,EG ,AC 共点.10.如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值. [解] (1)S △ABC =12×2×23=23, 三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=43 3.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE 是异面直线BC 与AD 所成的角(或其补角).在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.1.在正三棱柱ABC-A1B1C1中,AB=2BB1,则AB1与BC1所成角的大小为()A.30°B.60°C.75°D.90°D[将正三棱柱ABC-A1B1C1补为四棱柱ABCD-A1B1C1D1,连接C1D,BD,则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=2,则BC=CD=2,∠BCD =120°,BD=23,又因为BC1=C1D=6,所以∠BC1D=90°.]2.在正方体ABCD-A1B1C1D1中,M,N分别为棱CC1,A1D1的中点,则异面直线A1B与MN所成的角为()A.30°B.45°C.60°D.90°A[如图,取C1D1的中点P,连接PM,PN,CD1.因为M为棱CC1的中点,P为C1D1的中点,所以PM∥CD1,所以PM∥A1B,则∠PMN是异面直线A1B与MN所成角的平面角.设AB=2,在△PMN中,PM=PN=2,MN=6,则cos∠PMN=2+6-22×2×6=32,即∠PMN=30°.故选A.]3.如图所示,在四面体ABCD中作截面PQR,若PQ与CB的延长线交于点M,RQ与DB的延长线交于点N,RP与DC的延长线交于点K.给出以下命题:①直线MN⊂平面PQR;②点K在直线MN上;③M,N,K,A四点共面.其中正确结论的序号为.①②③[由题意知,M∈PQ,N∈RQ,K∈RP,从而点M,N,K∈平面PQR.所以直线MN⊂平面PQR,故①正确.同理可得点M,N,K∈平面BCD.从而点M,N,K在平面PQR与平面BCD的交线上,即点K在直线MN上,故②正确.因为A∉直线MN,从而点M,N,K,A四点共面,故③正确.]4.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.[解](1)由已知可求得正方形ABCD的面积S=4,所以四棱锥O-ABCD的体积V=13×4×2=83.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,∴ME∥OC,则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=2,EM=3,MD=5,∵(2)2+(3)2=(5)2,即DE2+EM2=MD2,∴△DEM为直角三角形,且∠DEM=90°,∴tan∠EMD=DEEM=23=63.∴异面直线OC与MD所成角的正切值为6 3.5.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠F AB=90°,BC 12AD,BE12F A,G,H分别为F A,FD的中点.(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解](1)证明:由题设知,FG=GA,FH=HD,所以GH 12AD.又BC 12AD,故GH BC.所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BE 12F A,G是F A的中点知,BE GF,所以EF BG.由(1)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上,所以C,D,F,E四点共面.1.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22C.33 D.13A[根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角.设平面CB1D1∩平面ABCD=m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1.∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.]2.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15 B.56C.55 D.22C[如图,在长方体ABCD-A1B1C1D1的一侧补上一个相同的长方体EFBA-E1F1B1A1.连接B1F,由长方体性质可知,B1F∥AD1,所以∠DB1F为异面直线AD1与DB1所成的角或其补角.连接DF,由题意,得DF=12+(1+1)2=5,FB1=12+(3)2=2,DB1=12+12+(3)2= 5.在△DFB1中,由余弦定理,得DF2=FB21+DB21-2FB1·DB1cos∠DB1F,即5=4+5-2×2×5×cos∠DB1F,∴cos∠DB1F=5 5.]11。

高中数学必修二单元测试:空间点、线、面之间的位置关系word版含答案

高中数学必修二单元测试:空间点、线、面之间的位置关系word版含答案

空间点、线、面之间的位置关系单元测试一抓基础,多练小题做到眼疾手快1.“点P在直线m上,m在平面α内”可表示为( )A.P∈m,m∈αB.P∈m,m⊂αC.P⊂m,m∈αD.P⊂m,m⊂α解析:选B 点在直线上用“∈”,直线在平面上用“⊂”,故选B.2.(2018·平阳期末)已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C 由平行直线公理可知,若c∥b,则a∥b,与a,b是异面直线矛盾.所以c与b不可能是平行直线.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( ) A.6 2 B.12C.12 2 D.24 2解析:选A 如图,已知空间四边形ABCD,设对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的45°角,故S四边形EFGH=3×4·sin 45°=62,故选A.4.如图所示,平行六面体ABCD­A1B1C1D1中,既与AB共面又与CC1共面的棱有________条;与AB异面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.与AB异面的棱有CC1,DD1,B1C1,A1D1,共4条.答案:5 45.如图,在三棱锥A­BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析:如图所示,连接DN,取线段DN的中点,连接M ,C .∵M 为AD 的中点,∴M ∥AN ,∴∠ MC 为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理易求得AN =DN =CM =22,∴M = 2.在Rt △C N 中,C = 2 2+12= 3.在△C M 中,由余弦定理,得cos ∠ MC =2 2+ 22 2-3 22×2×22=78. 答案:78二保高考,全练题型做到高考达标1.已知A ,B ,C ,D 是空间四点,命题甲:A ,B ,C ,D 四点不共面,命题乙:直线AC 和BD 不相交,则甲是乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:选A 若A ,B ,C ,D 四点不共面,则直线AC 和BD 不共面,所以AC 和BD 不相交;若直线AC 和BD 不相交,若直线AC 和BD 平行时,A ,B ,C ,D 四点共面,所以甲是乙成立的充分不必要条件.2.(2018·宁波模拟)如图,在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行D .MN 与A 1B 1平行解析:选D 如图,连接C 1D ,在△C 1DB 中,MN ∥BD ,故C 正确;因为CC 1⊥平面ABCD ,所以CC 1⊥BD , 所以MN 与CC 1垂直,故A 正确;因为AC ⊥BD ,MN ∥BD ,所以MN 与AC 垂直,故B 正确;因为A 1B 1与BD 异面,MN ∥BD ,所以MN 与A 1B 1不可能平行,故D 错误.3.下列命题中,真命题的个数为( )①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M ∈α,M ∈β,α∩β=l ,则M ∈l .A .1B .2C .3D .4解析:选B 根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.4.如图,在正方体ABCD ­A 1B 1C 1D 1中,M 为棱D 1C 1的中点.设AM 与平面BB 1D 1D 的交点为O ,则( )A .三点D1,O ,B 共线,且OB =2OD 1B .三点D 1,O ,B 不共线,且OB =2OD 1C .三点D 1,O ,B 共线,且OB =OD 1D .三点D 1,O ,B 不共线,且OB =OD 1解析:选A 连接A 1M 与B 1D 1交于点H ,连接OH .因为△MD 1H 与△A 1B 1H 相似,所以D 1HHB 1=D 1M A 1B 1=MH A 1H =12.因为OH ∥A 1A ,所以OH AA 1=MH MA 1=13,所以OH =13AA 1,所以OH =13B 1B ,且OH ∥BB 1,所以由三角形相似可知,D 1,O ,B 三点共线,且OB =2OD 1.5.已知正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为() A.32 B .33010C.3010 D.12解析:选C 如图,设正方体的棱长为a ,取线段AB 的中点M ,连接CM ,MF ,EF .则MF綊AE,所以∠CFM即为所求角或所求角的补角.在△CFM中,MF=CM=52a,CF=62a,根据余弦定理可得cos∠CFM=30 10,所以可得异面直线AE与CF所成的角的余弦值为3010.故选C.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB 与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37.(2018·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是_______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC 1与AD 所成角等于异面直线AC 1与BC 所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD ,因为圆柱的轴截面ABB 1A 1是正方形,所以C 1D =2AD ,所以直线AC 1与AD 所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为 2. 答案: 29.(2018·舟山模拟)在空间四边形ABCD 中,已知AD =1,BC =3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角.解:如图,分别取AD ,CD ,AB ,BD 的中点E ,F ,G ,H ,连接EF ,FH ,HG ,GE ,GF .由三角形的中位线定理知,EF ∥AC ,且EF =34, GE ∥BD ,且GE =134,GE 和EF 所成的锐角(或直角)就是AC 和BD 所成的角. 同理,GH ∥AD ,HF ∥BC ,GH =12,HF =32. 又AD ⊥BC ,所以∠GHF =90°,所以GF 2=GH 2+HF 2=1.在△EFG 中,GE 2+EF 2=1=GF 2,所以∠GEF =90°,即AC 和BD 所成的角为90°.10.如图所示,在三棱锥P ­ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =90°,AB =2,AC =23,PA =2.求:(1)三棱锥P ­ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23, 故三棱锥P ­ABC 的体积为V =13·S △ABC ·PA =13×23×2=433. (2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34. 即异面直线BC 与AD 所成角的余弦值为34. 三上台阶,自主选做志在冲刺名校1.如图是三棱锥D ­ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线DO 和AB 所成角的余弦值等于( )A.33 B .12C. 3D.22 解析:选A 由三视图及题意得如图所示的直观图,从A 出发的三条线段AB ,AC ,AD 两两垂直且AB =AC =2,AD =1,O 是BC 中点,取AC 中点E ,连接DE ,DO ,OE ,则OE =1,又可知AE =1,由于OE ∥AB ,故 ∠DOE 即为所求两异面直线所成的角或其补角.在直角三角形DAE 中,DE =2,由于O 是中点,在直角三角形ABC 中可以求得AO =2,在直角三角形DAO 中可以求得DO = 3.在三角形DOE 中,由余弦定理得cos ∠DOE =1+3-22×1×3=33,故所求余弦值为33. 2.如图所示,三棱柱ABC ­A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)法一:如图所示,取AE的中点O,连接OF,过点O作OM⊥AC于点M.因为侧棱A1A⊥底面ABC,所以侧面A1ACC1⊥底面ABC.又因为EC=2FB=2,所以OM∥FB∥EC且OM=12EC=FB,所以四边形OMBF为矩形,BM∥OF.因为OF⊂平面AEF,BM⊄平面AEF,故BM∥平面AEF,此时点M为AC的中点.法二:如图所示,取EC的中点P,AC的中点Q,连接PQ,PB,BQ.因为EC=2FB=2,所以PE綊BF,所以PQ∥AE,PB∥EF,所以PQ∥平面AFE,PB∥平面AEF,因为PB∩PQ=P,PB,PQ⊂平面PBQ,所以平面PBQ∥平面AEF.又因为BQ⊂平面PBQ,所以BQ∥平面AEF.故点Q即为所求的点M,此时点M为AC的中点.(2)由(1)知,BM与EF异面,∠OFE(或∠MBP)就是异面直线BM与EF所成的角或其补角.易求AF=EF=5,MB=OF=3,OF⊥AE,所以cos∠OFE=OFEF=35=155,所以BM与EF所成的角的余弦值为155.。

高中数学空间中点线面的位置关系练习题

高中数学空间中点线面的位置关系练习题

空间中点线面的位置关系练习题1、下列有关平面的说法正确的是( )A 一个平面长是10cm ,宽是5cmB 一个平面厚为1厘米C 平面是无限延展的D 一个平面一定是平行四边形2、已知点A 和直线a 及平面α,则:①αα∉⇒⊄∈A a a A , ② αα∈⇒⊂∈A a a A , ③αα∉⇒⊂∉A a a A , ④αα⊂⇒⊂∈A a a A , 其中说法正确的个数是( )A.0B.1C.2D.33、下列图形不一定是平面图形的是( )A 三角形B 四边形C 圆D 梯形4、三个平面将空间可分为互不相通的几部分( )A.4、6、7B.3、4、6、7C.4、6、7、8D.4、6、85、共点的三条直线可确定几个平面 ( )A.1B.2C.3D.1或36、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点,则,正方体的过P 、Q 、R 的截面图形是( )A 三角形B 四边形C 五边形D 六边形 A Q B 1 R C B D P A 1 C 1 D 1 ∙ ∙ ∙7、三个平面两两相交,交线的条数可能有————————————————8、不共线的四点可以确定——————————————————个平面。

9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有———————————10、空间两条互相平行的直线指的是( )A.在空间没有公共点的两条直线B.分别在两个平面内的两条直线C.分别在两个不同的平面内且没有公共点的两条直线D.在同一平面内且没有公共点的两条直线11、分别和两条异面直线都相交的两条直线一定是( )A 异面直线B 相交直线C 不平行直线D 不相交直线12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。

高考数学必考点专项第22练 点、线、面的位置关系(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第22练 点、线、面的位置关系(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第22练 点、线、面的位置关系一、单选题1. 已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2. 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A. 直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB. 直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC. 直线1A D 与直线1D B 相交,直线//MN 平面ABCDD. 直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B3. 如图,四棱锥P ABCD -,AC BD O ⋂=,M 是PC 的中点,直线AM 交平面PBD于点N ,则下列结论正确的是( )A. ,,,O N P M 四点不共面B. ,,,O N M D 四点共面C. ,,O N M 三点共线D. ,,P N O 三点共线4. 已知在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,E 是PD中点,2PA AB =,则直线BD 与CE 所成角的余弦值为( )A.6B.6C.8D.85. 设A 、B 、C 、D 的空间四个不同的点,在下列结论中,不正确的是( ) A. 若AC 与BD 共面,则AD 与BC 共面B. 若AC 与BD 是异面直线,则AD 与BC 是异面直线C. 若AB AC =,DB DC =,则AD BC =D. 若AB AC =,DB DC =,则AD BC ⊥6. 当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( )A.B.C.D.7. 如图,在长方体1111ABCD A B C D -中,AB=1,1AD==2AA ,P 为BC 的中点,Q为线段1CC 上的动点,过点A ,P ,Q 的平面截该长方体所得的截面记为.S 则下列命题正确的是( )①当0CQ 1<时,S 的形状为四边形,且当CQ=1时,S 的形状为等腰梯形;②当3CQ=2时,S 与11C D 的交点R ,满足11=3C R ;③当3CQ 22<<时,S 的形状为六边形; ④当CQ=2时,S 的面积为3.A. ①②③④B. ②③④C. ①②④D. ②③二、多选题8. 如图,下列正方体中,O 为底面的中点,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A. B.C. D.9. 如图所示,在正方体1111ABCD A B C D - 中, M , N 分别为棱1C 1D ,1C C 的中点,其中正确的结论为( )A. 直线AM 与1C C 是相交直线B. 直线AM 与BN 是平行直线C. 直线BN 与1MB 是异面直线D. 直线MN 与AC 所成的角为60︒10. 如图,点M 在正方体1111ABCD A B C D -的棱1CC 上(不含端点),给出下列四个命题,其中正确的命题是( )A. 过M 点有且只有一条直线与直线AB ,1AD 都垂直B. 过M 点有且只有一条直线与直线AB ,1AD 都是异面直线C. 过M 点有无数个平面与直线AB ,1AD 都平行D. 过M 点有无数个平面与直线AB ,1AD 都相交11. 在正方体1111ABCD A B C D -中,E ,F ,G 分别是11A B ,11B C ,1BB 的中点,下列四个推断中正确的是( )A. //FG 平面11AA D DB. //EF 平面11BC DC. //FG 平面11BC DD. 平面//EFG 平面11BC D三、填空题12. a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最小值为60︒;其中正确的是__________.(填写所有正确结论的编号)13. 已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别是棱AB ,BC ,1CC 的中点,过E ,F ,G 三点作该正方体的截面,点M 为底面ABCD 内一动点.若1MD 与该截面平行,则直线1MD 与1CC 所成角的余弦值的最大值为__________. 四、解答题14. 如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长度都为2,且两两夹角为60.︒求:1(1)AC 的长;1(2)BD 与AC 夹角的余弦值.15. 如图,在空间四边形ABCD 中,,E F 分别是,AB AD 的中点,,G H 分别在,BC CD 上,且::1:2.BG GC DH HC ==(1)求证:,,,E F G H 四点共面;(2)设EG 与FH 交于点P ,求证:,,P A C 三点共线.16. 如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,且22AB AD ==,2PA =,.3PAB PAD π∠=∠=(1)求线段PC 的长度;(2)求异面直线PC 与BD 所成角的余弦值;17. 如图,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的中点,点F在棱1B B 上,且满足12.B F FB =(1)求证:11EF A C ⊥;(2)在棱1C C 上确定一点G ,使A ,E ,G ,F 四点共面,并求此时1C G 的长; (3)求几何体ABFED 的体积.18. 如图,PA⊥平面ADE,B,C分别是AE,DE中点,AE AD⊥, 2.===AD AE AP (1)求二面角A PE D--的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.答案和解析1.【答案】B解:空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 两两相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行. 故充分性不成立;若m ,n ,l 两两相交,则m ,n ,l 在同一平面,故必要性成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:.B2.【答案】A解:连1AD ,在正方体1111ABCD A B C D -中, M 是1A D 的中点,所以M 为1AD 中点, 又N 是1D B 的中点,所以//MN AB ,MN ⊂/平面,ABCD AB ⊂平面ABCD ,所以//MN 平面.ABCD因为AB 不垂直BD ,所以MN 不垂直BD ,则MN 不垂直平面11BDD B ,所以选项B ,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确. 故选.A3.【答案】D解:由题意可知O ,N ,P ,M 四点均在平面PAC 上,故O ,N ,P ,M 四点共面,故A 错. 若点D 与O ,M ,N 共面,则点D 在平面PAC 内,与题目矛盾,故B 错. O ,N ∈平面PBD ,M ∉平面PBD ,故O ,M ,N 三点不共线,故C 错.连接PO ,因为平面PAC ⋂平面PBD PO =,N AM ∈,AM ⊂平面PAC ,所以N ∈平面PAC , 又N PBD ∈,所以N PO ∈,故D 正确. 故选.D4.【答案】B解:因为2PA AB =,设2PA =,则1AB AD ==,以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则(1,0,0)B ,(0,0,2)P ,(1,1,0)C ,(0,1,0)D ,1(0,,1)2E,设异面直线BD 与CE 所成角为θ,则故选.B5.【答案】C解:.A 若AC 与BD 共面,则A ,B ,C ,D 四点共面,则AD 与BC 共面,所以A 正确;B .假设AD 与BC 不是异面直线,则AD 与BC 共面,于是AC 与BD 共面,这与AC 与BD 是异面直线矛盾,故AD 与BC 也是异面直线,所以B 正确;D .若AB AC =,DB DC =,取BC 的中点E ,则BC AE ⊥,BC DE ⊥,AE DE E ⋂=,AE ,DE ⊂平面ADE ,故BC ⊥平面ADE ,AD ⊂平面ADE ,则AD BC ⊥,所以D 正确.C .若AB AC =,DB DC =,由上图可知 AD 不一定等于BC ,所以C 不正确; 故选.C6.【答案】B解:设BP 与1AD 所成的角为θ,以B 为坐标原点,BC 为x 轴,BA 为y 轴,1BB 为z 轴建立空间直角坐标系, 如图所示,不妨设||1AB =,则(0,0,0)B ,(1,0,0)C ,1(0,1,1)A ,1(1,0,1)C ,11(1,0,1)AD BC ∴==,(1,0,0)BC =,1(1,1,1).CA =-设1CP CA λ=,01λ,则1(1,,)BP BC CA λλλλ=+=-,01λ,2212(1)2λλ=⨯-+2113[,]22146()33λ=∈-+,故选.B7.【答案】C解:如图当CQ=1时,即 Q 为1CC 中点,此时可得1PQ//AD ,1AP==2QD ,故可得截面1APQ D 为等腰梯形,由上图当点 Q 向 C 移动时,满足0CQ 1<<,只需在1DD 上取点 M 满足AM//PQ ,即可得截面为四边形 APQM ,故①正确;当3CQ=2时,延长1DD 至 N ,使1=1D N ,连接 AN 交11A D 于 E ,连接 NQ 交11C D 于 R ,连接 ER ,可证AN//PQ ,由1NR D ∽1QR C ,可得1C R :11=D R C Q :1=1D N :2,故可得11=3C R ,故②正确; 由上可知当3CQ 22<<,只需点 Q 上移即可,此时的截面形状仍然上图所示的 APQRE ,显然为五边形,故③错误;当CQ=2时, Q 与1C 重合,取11A D 的中点 F ,连接 AF ,可证1//AF PC ,且1PC1FC1AP C F 为平行四边形,故其面积为AFP =2=3S S ,故④正确.故选.C8.【答案】BC解:对于A ,设正方体棱长为2,设MN 与OP 所成角为θ, 则12tan 12442θ==+,∴不满足MN OP ⊥,故A 错误; 对于B ,如图,作出平面直角坐标系,设正方体棱长为2,则(2,0,0)N ,(0,0,2)M ,(2,0,1)P ,(1,1,0)O ,(2,0,2)MN =-,(1,1,1)OP =-,0MN OP ⋅=,∴满足MN OP ⊥,故B 正确;对于C ,如图,作出平面直角坐标系,设正方体棱长为2,则(2,2,2)M ,(0,2,0)N ,(1,1,0)O ,(0,0,1)P ,(2,0,2)MN =--,(1,1,1)OP =--,0MN OP ⋅=,∴满足MN OP ⊥,故C 正确;对于D ,如图,作出平面直角坐标系,设正方体棱长为2,则(0,2,2)M ,(0,0,0)N ,(2,1,2)P ,(1,1,0)O ,(0,2,2)MN =--,(1,0,2)OP =,4MN OP ⋅=-,∴不满足MN OP ⊥,故D 错误.故选:.BC9.【答案】CD解:1CC ⊂平面11CC D D ,AM ⋂平面11CC D D M =,1M CC ∉,∴直线AM 与直线1CC 异面,故A 不正确,同理可证:直线AM 与直线BN 异面,故B 不正确;直线BN 与直线1MB 异面,故C 正确, 利用平移法,可得直线MN 与AC 所成的角即为1D C 和AC 所成角,即为60︒,故D 正确, 故选.CD10.【答案】AD解:接1BC ,1AD ,由题意可得11//BC AD ,如图所示:所以A 、B 、1C 、1D 共面,1(M CC ∈不含端点),所以M 不在面11ABC D ,过M 作面11ABC D 的垂线垂足为Q ,即仅有一条过M 点的直线与直线AB ,1AD 都垂直,故A 正确;在面11ABC D 任取一点E 不在直线AB ,1AD 上,得到的直线ME 与直线AB ,1AD 都是异面直线,故B 不正确;而过M 点仅有一个平面与面11ABC D 平行,所以过M 点有无数个平面与直线AB ,1AD 都平行不正确,故C 不正确;过M 有无数多个平面与面11ABC D 相交,所以过M 点有无数个平面与直线AB ,1AD 都相交,故D 正确.故选.AD11.【答案】AC解:A 项:在正方体中,,分别是,的中点, ,,, 平面,平面,平面,故A 正确; B 项:E ,F 分别是11A B ,11B C 的中点,11//EF A C ∴,与平面相交,与平面相交,故错误;C 项:1//FG BC ,FG ⊂/平面,平面, 平面,故C 正确;D 项:与平面相交,平面与平面相交,故D 错误.故选.AC12.【答案】②③解:由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体的棱长为1,故||1AC =,||2AB =, 斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 为坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)a =,||1a =, 直线b 的方向单位向量(1,0,0)b =,||1b =,设B 点在运动过程中的坐标为(cos ,sin ,0)B θθ',[0,360),θ︒︒∈ (cos ,sin ,1)AB θθ∴'=-,||2AB '=,设AB '与a 所成夹角为α,[0,90]α︒︒∈,则|(cos ,sin ,1)(0,1,0)|22cos |sin |[0,]22||||a AB θθαθ-⋅==∈⋅', [45,90]α︒︒∴∈,∴③正确,④错误.设AB '与b 所成夹角为β,[0,90]β︒︒∈, |||(cos ,sin ,1)(1,0,0)|2cos |cos |2||||||||AB b AB b b AB θθβθ'⋅-⋅==='⋅⋅', 当AB '与a 夹角为60︒时,即60α︒=时,2|sin |2cos 2cos 602θα︒===, 22cos sin 1θθ+=,21cos |cos |22βθ∴==, [0,90]β︒︒∈,60β︒∴=,此时AB '与b 的夹角为60︒,∴②正确,①错误.故答案为:②③.13.【答案】3解:由题意,补全戳面EFG 为正六边形EFGHQR ,如下图所示:1CC 1//DD ,故1DD M ∠即为直线1MD 与1CC 所成的角.由1CD //GH ,因为1CD ⊂/平面EFGHQR ,GH ⊂平面EFGHQR ,所以1CD //平面.EFGHQR由//AC EF ,因为AC ⊂/平面EFGHQR ,EF ⊂平面EFGHQR ,所以//AC 平面EFGHQR ,再由1CD AC C ⋂=,又1CD ,AC ⊂平面1ACD ,所以平面1ACD //平面.EFGHQR由1MD ⊂平面1ACD ,可得1MD //平面.EFGHQR易知点M 位于底面对角线AC 上,且当M 与底面中心O 重合时,1DD M ∠最小,其余弦值此时最大,且最大值为1112216cos .321()2D D DD O D O ∠===+ 故答案为6.314.【答案】解:设AB a =,AD b =,1AA c =,则两两夹角为60︒,且模均为2.111(1).AC AC CC AB AD AA a b c =+=++=++222221||()||||||222AC a b c a b c a b b c a c ∴=++=+++⋅+⋅+⋅112622242=+⨯⨯⨯=, 1||26AC ∴=,即1AC 的长为111(2).BD BD DD AD AB AA b a c =+=-+=-+1()()BD AC b a c a b ∴⋅=-+⋅+22 4.a b a a c b a b b c =⋅-+⋅+-⋅+⋅=21||()22BD b a c =-+=2||()23AC a b =+=,1cos BD ∴<,116||||2BD AC AC BD AC ⋅>===⋅ 1BD ∴与AC 夹角的余弦值为615.【答案】证明:(1)E 、F 分别是AB 和AD 的中点,EF ∴为ABD 的中位线,//EF BD ∴,又::1:2BG GC DH HC ==,在CBD 中//.BD GH ∴//EF GH ∴,所以,E 、F 、G 、H 四点共面.(2)EG FH P ⋂=,,,P EG P FH ∴∈∈由EG ⊂平面ABC ,,P EG ∈得P ∈平面ABC ,由FH ⊂平面ADC ,,P FH ∈得P ∈平面ADC ,又平面ABC ⋂平面ADC AC =,所以P AC ∈,所以,,P A C 三点共线.16.【答案】解:(1)PC PA AC PA AB AD =+=++,所以22222224412221PC PA AB AD PA AB PA AD AB AD =+++⋅+⋅+⋅=++-⨯-⨯3=, 所以线段PC 的长度为 3. (2)()()PC BD PA AB AD AD AB ⋅=++-111201122220222=-⨯⨯++⨯+⨯⨯-⨯-=-, 所以,故异面直线PC 与BD 所成角的余弦值为215.15(3)因为E 为AB 的中点,所以AD AE =,又因为()AP DE AP AE AD AP AE AP AD ⋅=⋅-=⋅-⋅112121022=⨯⨯-⨯⨯=, 所以AP DE ⊥,即.PA ED ⊥17.【答案】(1)证明:连接11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111.A C B D ⊥在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D , 所以111.A C DD ⊥因为1111B D DD D ⋂=,11B D ,1DD ⊂平面11BB D D ,所以11A C ⊥平面11.BB D D因为EF ⊂平面11BB D D ,所以11.EF AC ⊥(2)解:取1C C 的中点H ,连接BH ,则//.BH AE在平面11BB C C 中,过点F 作//FG BH ,则//.FG AE连接EG ,则A ,E ,G ,F 四点共面. 因为11122CH C C a ==,11133HG BF C C a ===, 所以111.6C G C C CH HG a =--=故当116C G a =时,A ,E ,G ,F 四点共面.(3)解:因为四边形EFBD 是直角梯形,所以几何体ABFED 为四棱锥.A EFBD - 因为211()2()52322212EFBD a a a BF DE BD S a +⨯+===, 点A 到平面EFBD 的距离为1222h AC a ==, 所以231152253312236A EFBD EFBD V S h a a a -==⨯⨯=, 故几何体ABFED 的体积为35.36a18. 【答案】解:PA ⊥平面ADE ,AD ,AB ⊂平面ADE ,PA AB ∴⊥,PA AD ⊥,AE AD ⊥,∴以{,,}AB AD AP 为正交基底建立空间直角坐标系A xyz -,则各点的坐标为(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,2)P(1)AD AE ⊥,AD PA ⊥,AE ,PA ⊂平面PAE ,AE PA A ⋂=,AD ⊥平面PAE ,AD ∴是平面PAE 的一个法向量,(0,2,0).AD = (1,1,2)PC =-,(0,2,2).PD =- 设平面PED 的法向量为(,,)m x y z =, 则0m PC ⋅=,0m PD ⋅=,即20220.x y z y z +-=⎧⎨-=⎩,令1y =,解得1z =, 1.x = (1,1,1)m ∴=是平面PED 的一个法向量, 可得cos AD <,33||||AD m m AD m ⋅>==,由图可知,二面角A PE D --为锐二面角, ∴二面角A PE D -- (2)(1,0,2)BP =-,设(,0,2)(01)BQ BP λλλλ==-, 又(0,1,0)CB =-,则(,1,2)CQ CB BQ λλ=+=--, 又(0,2,2)DP =-,cos CQ ∴<,1||||10CQ DP DP CQ DP ⋅>== 设12t λ+=,[1,3]t ∈,则2cos CQ <,2225109t DP t t >=-+ 2291520109()99t =-+, 当且仅当95t =,即25λ=时, 即|cos CQ <,|DP >的最大值为10 因为cos y x =在(0,)2π上是减函数,此时直线CQ 与DP 所成角取得最小值,又1BP ==255BQ BP ∴==。

点线面位置关系例题与练习(含答案)

点线面位置关系例题与练习(含答案)

点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。

1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

高一数学点线面的位置关系试题答案及解析

高一数学点线面的位置关系试题答案及解析

高一数学点线面的位置关系试题答案及解析1.设是两条不同的直线,是一个平面,则下列命题不正确的是()A.若,,则B.若,∥,则C.若,,则∥D.若∥,∥,则∥【答案】D.【解析】A:根据线面垂直的定义,可知A正确;B:利用线面垂直的判定,可知B正确;C:根据垂直同一平面的两直线平行可知C正确;D:与的位置关系也有可能是相交或异面,∴D错误.【考点】空间中直线与平面的位置关系.2.已知m,n是两条不同直线,是三个不同平面,下列命题中正确的是()A.若m,n,则m n B.若C.若D.若【答案】D【解析】A选项中m,n可以相交;B选项中可能相交,不同于平面中的垂直于同一直线的两直线平行;C选项中m有可能与的相交线平行,同时也与平行,但平面不平行;综合选D.【考点】直线与平面的位置关系.3.若m,n是两条不重合的直线,,,是三个两两不重合的平面,给出下列四个命题:①若则;②若则;③若则;④若m,n是异面直线,则.其中真命题是()A.①和④B.①和③C.③和④D.①和②【答案】A【解析】对于①,因为由m⊥α,m⊥β,可得出α∥β,故命题正确;对于②,若α⊥γ,β⊥γ,则α与β可能相交,也可能平行,故②错误;对于③若α∩β=a,m⊂α,n⊂β,m∥a,n∥a,∴m∥n,故③错;对于④,若α∩β=a,则因为m⊂α,m∥β,n⊂β,n∥α,所以m∥a,n∥a,∴m∥n,这与m、n是异面直线矛盾,故结论正确;故答案为:A.【考点】1.命题的真假判断与应用;2.平面与平面之间的位置关系.4.如图,三角形ABC是直角三角形,ACB=,PA平面ABC,此图形中有____________个直角三角形.【答案】4【解析】已知,平面,所以面,,均为直角,所以共4个直角三角形.【考点】线面垂直与线线垂直的关系5.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系6.正三棱柱中,,,D、E分别是、的中点,(1)求证:面⊥面BCD;(2)求直线与平面BCD所成的角.【答案】(1)见解析;(2).【解析】(1)易证⊥面,可得面⊥面;(2)面面于,过A作于点O,则面于O,连接BO,即为所求二面角的一个平面角,.(1)在正三棱柱中,有,所以面,可得面⊥面;(2)面面于DF,过A作AO⊥DF于点O,则AO⊥面BCD于O,连接BO,即为所求二面角的一个平面角,.【考点】线面垂直的判定定理,面面垂直的判定定理,二面角.7.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题8.如图,在底面是直角梯形的四棱锥S-ABCD中,(1)求四棱锥S-ABCD的体积;(2)求证:(3)求SC与底面ABCD所成角的正切值。

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析1. 如图,在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD ,则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC【答案】D【解析】在平面图形中CD ⊥BD ,折起后仍有CD ⊥BD ,由于平面ABD ⊥平面BCD ,故CD ⊥平面ABD ,CD ⊥AB ,又AB ⊥AD ,故AB ⊥平面ADC ,所以平面ABC ⊥平面ADC ,故选D.2. 如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H必在( )A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC 内部【答案】A【解析】由BC 1⊥AC ,又BA ⊥AC ,则AC ⊥平面ABC 1,因此平面ABC ⊥平面ABC 1,因此C 1在底面ABC 上的射影H 必在直线AB 上.3. 设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A .m ∥β且l 1∥α B .m ∥l 1且n ∥l 2 C .m ∥β且n ∥β D .m ∥β且n ∥l 2【答案】B【解析】对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由n ∥l 2可转化为n ∥β,同选项C ,故不符合题意,综上选B.4. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ∥n ,且n ⊥β C .α⊥β,且m ∥α D .m ⊥n ,且n ∥β【答案】B【解析】A 错误,只有m 垂直于α与β的交线时,才能得到m ⊥β;B 正确,这是线面垂直的性质定理;C错误,m与β可能平行,可能相交,m也可能在平面β内;D错误,m与β可能平行,可能相交,m也可能在平面β内.5.已知、是两条直线,、是两个平面,给出下列命题:①若,,则;②若平面上有不共线的三点到平面的距离相等,则;③若、为异面直线,,,,,则.其中正确命题的个数()A.个B.个C.个D.个【答案】B【解析】如下图所示,在正方体中,棱、、、的中点分别为、、、,对于命题①,平面,平面,则平面平面,命题①为真命题;对于命题②,和的中点和都在平面内,但是平面与平面不平行,命题②不正确;对于命题③,与为异面直线,平面,平面,平面,平面,则可以在平面内找到,,于是得到平面平面,平面平面,所以,平面平面,命题③正确,故选B.【考点】空间中点、线、面的位置关系6.在棱长为1的正方体AC1中,E为AB的中点,点P为侧面BB1C1C内一动点(含边界),若动点P始终满足PE⊥BD1,则动点P的轨迹的长度为( )A.B.C.D.【答案】B【解析】如图,根据题意,BD1要始终垂直于PE所在的一个平面,取BC,BB1的中点F,G,易证BD1⊥平面EFG,故点P的轨迹为线段FG,易求得这条线段的长度是.7.如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.(1)求证:PA//平面BDM;(2)求直线AC与平面ADM所成角的正弦值.【答案】(1)见解析 (2)【解析】证明:连结AC,交BD于点O,连结MO因为MO是的中位线,所以MO∥PA又因为面PAD中,所以MO∥面PAD(2)因为,点M到面ADC的距离,所以。

2021年高考数学《空间点、直线、面之间的位置关系》精选练习(含答案)

2021年高考数学《空间点、直线、面之间的位置关系》精选练习(含答案)

2021年高考数学《空间点、直线、面之间的位置关系》精选练习一、选择题1.下列叙述中错误的是( )A.若点P∈α,P∈β且α∩β=l,则P∈lB.三点A,B,C能确定一个平面C.若直线a∩b=A,则直线a与b能够确定一个平面D.若点A∈l,B∈l,且A∈α,B∈α,则l⊂α2.下列说法正确的是( ).①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行;②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线与另外一个平面平行,则这两个平面平行.A.①③B.②④C.②③④D.③④3.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( ).A.l⊂αB.l⊄αC.l∩α=MD.l∩α=N4.如果直线a//平面α,那么直线a与平面α内的( ).A.一条直线不相交B.两条相交直线不相交C.无数条直线不相交D.任意一条直线不相交5.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c( )A.一定平行B.一定相交C.一定是异面直线D.平行、相交或异面6.设A、B、C、D是空间中四个不同的点,下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC7.下列说法正确的是( )A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面8.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面9.给出下列关于互不相同的直线m,l,n,平面α,β及点A的四个命题:①若,,点,则与m不共面;②若m,l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则∥m;④若,,,∥β,m∥β,则α∥β.其中假命题是( )A.①B.②C.③D.④10.在空间中,下列命题:①如果直线a,b都与直线平行,那么a∥b;②如果直线a与平面β内的直线b平行,那么a∥β;③如果直线a与平面β内的直线b,c都垂直,那么a⊥β;④如果平面β内的直线a垂直于平面α,那么α⊥β.其中正确的是( )A.①③B.①④C.②④D.②③11.给出下列四个命题:①如果一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②如果一条直线和两个平行平面中的一个平面垂直,那么这条直线也和另一个平面垂直;③如果一条直线和两个互相垂直的平面中的一个平面垂直,那么这条直线一定平行于另一个平面;④如果两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是( )A.①②B.②③C.③④D.②④12.已知α,β,γ是三个不重合的平面,m ,n 是两条不重合的直线,下列命题为真命题的是( )A.m ∥α,n ∥α,则m ∥nB.α∥γ,n ∥β,α∩β=m ,则m ∥nC.α∥β,m ⸦α,n ⸦β,则m ∥nD.α∥γ,n ⸦β,n ⸦γ,α∩β=m ,则m ∥n13.已知m ,n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列命题: ①若m ∥β,n ∥β,且m ⸦α,n ⸦α,则α∥β;②若α∩β=n ,m ∥n ,则m ∥α且m ∥β;③若m ⊥α,m ∥β,则α⊥β;④若α∥β,且γ∩α=m ,γ∩β=n ,则m ∥n .其中的正确命题是( )A.①③B.①④C.②④D.③④14.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面.给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若m ∥α,n ∥α,则m ∥n ;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是( )A.①②B.②③C.③④D.①④二、填空题15.设l m n 、、是三条不同的直线,αβγ、、是三个不同的平面,下面有四个命题:①,l l βαβα若∥∥,则∥;②,l n m n l m 若∥∥,则∥;③,l l αβαβ⊥⊥若∥,则;④,,l m αβ⊥⊥若,.l m αβ⊥⊥则其中假命题的题号为:16.设平面α与平面β相交于l,直线a ⊂α,直线b ⊂β,a ∩b=M,则M________l.17.如图,平行六面体ABCD-A 1B 1C 1D 1中既与AB 共面又与CC 1共面的棱有 条.18.已知a 和b 是异面直线,且a ⊂平面α,b ⊂平面β,a//β,b//α,则平面α与β的位置关系是________.19.已知直线m,n,平面βα,,给出下列命题:①若βαβα⊥⊥⊥则,,m m ;②若βαβα//,//,//则m m ;③若βαβα⊥⊥则,//,m m ;④若异面直线m,n 互相垂直,则存在过m 的平面与n 垂直.其中正确的命题的题号为:答案解析20.B.21.答案:D;解析由两平面平行的判定定理知③④正确.22.答案:A;解析:据公理1可知:直线l上两点M、N都在平面α内,所以l在平面α内,故选A.23.答案:D;解析:线面平行,则线面无公共点,所以选D,对于C,要注意“无数”并不代表所有.24.D 当a,b,c共面时,a∥c;当a,b,c不共面时,a与c可能异面也可能相交.25.C 若AB=AC,DB=DC,AD不一定等于BC,C不正确.26.D 由异面直线的定义可知选D.27.答案:D.28.答案:C29.答案:B30.答案:D解题思路:31.答案:D解题思路:32.答案:D解题思路:33.答案:A解题思路:34.答案为:①③;35.答案:∈;解析因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.36.答案:5解析:与AB和CC都相交的棱有BC;与AB相交且与CC1平行的棱有AA1,BB1;与AB平1行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.37.答案:平行;解析:在b上任取一点O,则直线a与点O确定一个平面γ,设γ∩β=l,则l⊂β,∵a//β,∴a与l无公共点,∴a//l,∴l//α.又b//α,根据面面平行的判定定理可得α//β.38.答案为:③④;。

高中数学《点线面的位置关系》专题训练30题(含解析)

高中数学《点线面的位置关系》专题训练30题(含解析)

高中数学《点线面的位置关系》专题训练30题(含解析)高中数学《点线面的位置关系》专题训练30题(含解析)1.如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x 轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.2.如图,四边形为矩形,且平面,,为的中点.(1)求证:;(2)求三棱锥的体积;(3)探究在上是否存在点,使得平面,并说明理由.【答案】(1)见解析;(2);(3)见解析.【解析】【分析】(1)连结,由几何体的空间结构可证得,利用线面垂直的定义可知.(2)由(1)知为腰长为1的等腰直角三角形,结合题意转化顶点可得.(3)在上存在中点,使得.取的中点,连结.易证得四边形EGHC是平行四边形,所以EG//CH,结合线面平行的判断定理可知EG//平面PCD.【详解】(1)连结,∵为的中点, ,∴为等腰直角三角形,则,同理可得,∴,∴,又,且,∴,?又∵,∴,又,∴.(2)由(1)知为腰长为1的等腰直角三角形,∴,而是三棱锥的高,∴.(3)在上存在中点,使得.理由如下:取的中点,连结.∵是的中点,∴,且,?又因为E为BC的中点,且四边形ABCD为矩形,所以EC//AD,且EC=AD,所以EC//GH,且EC=GH,所以四边形EGHC是平行四边形,所以EG//CH,又EG平面PCD,CH平面PCD,所以EG//平面PCD.【点睛】本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.3.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.【详解】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.如图,在三棱锥中,平面平面,,,若为的中点.(1)证明:平面;(2)求异面直线和所成角;(3)设线段上有一点,当与平面所成角的正弦值为时,求的长.【答案】(1)证明见解析;(2)(3).【解析】【分析】(1)先证明平面平面,再证明平面;(2)分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,利用向量法求异面直线和所成角;(3)设,,利用向量法得到,解方程即得t的值和的长.【详解】(1)∵,,∴,∵平面平面,平面平面,平面,∴平面.(2)∵,,∴,,如图,分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,∵,,,,∴,,∵,∴异面直线和所成角为.(3)设为平面的法向量,∵,,∴,即,设,,∴,设与平面所成角为,∵,∴,,,,(舍),,∴的长为.【点睛】本题主要考查空间直线和平面位置关系的证明,考查异面直线所成的角和线面角的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,在三棱锥中,,,为的中点.?(1)证明:平面;?(2)若点在棱上,且,求点到平面的距离.【答案】(1)详见解析(2).【解析】【详解】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM 的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM= ,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【答案】(1)见解析;(2).【解析】【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果.【详解】(1)连接,,分别为,中点?为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)在菱形中,为中点,所以,根据题意有,,因为棱柱为直棱柱,所以有平面,所以,所以,设点C到平面的距离为,根据题意有,则有,解得,所以点C到平面的距离为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.7.如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底面,是的中点.(1)证明:直线平面;(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】【详解】试题分析:(1)取的中点,连结,,由题意证得∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:,,然后利用空间向量的相关结论可求得二面角的余弦值为.试题解析:(1)取中点,连结,.因为为的中点,所以,,由得,又所以.四边形为平行四边形,.又,,故(2)由已知得,以A为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系A-xyz,则则,,,,,则因为BM与底面ABCD所成的角为45°,而是底面ABC D的法向量,所以,即(x-1)2+y2-z2=0又M在棱PC上,设由①,②得所以M,从而设是平面ABM的法向量,则所以可取.于是因此二面角M-AB-D的余弦值为点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与互补或相等,故有|cosθ|=|cos<m,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.8.如图,在四棱锥P?ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A?PB?C的余弦值.【答案】(1)见解析;(2).【解析】【详解】(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.9.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用长方体的性质,可以知道侧面,利用线面垂直的性质可以证明出,这样可以利用线面垂直的判定定理,证明出平面;(2)以点坐标原点,以分别为轴,建立空间直角坐标系,设正方形的边长为,,求出相应点的坐标,利用,可以求出之间的关系,分别求出平面、平面的法向量,利用空间向量的数量积公式求出二面角的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角的正弦值.【详解】证明(1)因为是长方体,所以侧面,而平面,所以又,,平面,因此平面;(2)以点坐标原点,以分别为轴,建立如下图所示的空间直角坐标系,,因为,所以,所以,,设是平面的法向量,所以,设是平面的法向量,所以,二面角的余弦值的绝对值为,所以二面角的正弦值为.【点睛】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.10.如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,,由平面知识可知,,由相似比可求出,再根据四棱锥的体积公式即可求出.【详解】(1)因为底面,平面,所以,又,,所以平面,而平面,所以平面平面.(2)[方法一]:相似三角形法由(1)可知.于是,故.因为,所以,即.故四棱锥的体积.[方法二]:平面直角坐标系垂直垂直法?由(2)知,所以.建立如图所示的平面直角坐标系,设.因为,所以,,,.从而.所以,即.下同方法一.[方法三]【最优解】:空间直角坐标系法?建立如图所示的空间直角坐标系,设,所以,,,,.所以,,.所以.所以,即.下同方法一.[方法四]:空间向量法?由,得.所以.即.又底面,在平面内,因此,所以.所以,由于四边形是矩形,根据数量积的几何意义,得,即.所以,即.下同方法一.【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.11.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN ,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1 AMN所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由分别为,的中点,,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)连接,先求证四边形是平行四边形,根据几何关系求得,在截取,由(1)平面,可得为与平面所成角,即可求得答案.【详解】(1)分别为,的中点,,又,,在中,为中点,则,又侧面为矩形,,,,由,平面,平面,又,且平面,平面,平面,又平面,且平面平面,,又平面,平面,平面,平面平面.(2)[方法一]:几何法如图,过O作的平行线分别交于点,联结,由于平面,平面,,平面,面,所以平面平面.又因平面平面,平面平面,所以.因为,,,所以面.又因,所以面,所以与平面所成的角为.令,则,由于O为的中心,故.在中,,由勾股定理得.所以.由于,直线与平面所成角的正弦值也为.[方法二]【最优解】:几何法因为平面,平面平面,所以.因为,所以四边形为平行四边形.由(Ⅰ)知平面,则为平面的垂线.所以在平面的射影为.从而与所成角的正弦值即为所求.在梯形中,设,过E 作,垂足为G,则.在直角三角形中,.[方法三]:向量法由(Ⅰ)知,平面,则为平面的法向量.因为平面,平面,且平面平面,所以.由(Ⅰ)知,即四边形为平行四边形,则.因为O为正的中心,故.由面面平行的性质得,所以四边形为等腰梯形.由P,N为等腰梯形两底的中点,得,则.设直线与平面所成角为,,则.所以直线与平面所成角的正弦值.[方法四]:基底法不妨设,则在直角中,.以向量为基底,从而,,.,,则,.所以.由(Ⅰ)知平面,所以向量为平面的法向量.设直线与平面所成角,则.故直线与平面所成角的正弦值为.【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法;方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.12.如图,长方体ABCD–A1B1C1D1的底ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积.【答案】(1)见详解;(2)18【解析】【分析】(1)先由长方体得,平面,得到,再由,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为,根据题中条件求出;再取中点,连结,证明平面,根据四棱锥的体积公式,即可求出结果.【详解】(1)因为在长方体中,平面;平面,所以,又,,且平面,平面,所以平面;?(2)设长方体侧棱长为,则,由(1)可得;所以,即,又,所以,即,解得;取中点,连结,因为,则;所以平面,所以四棱锥的体积为.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.13.如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)方法一:连接、,证明出四边形为平行四边形,进而可证得点在平面内;(2)方法一:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可计算出二面角的余弦值,进而可求得二面角的正弦值.【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱上取点,使得,连接、、、,如图1所示.在长方体中,,所以四边形为平行四边形,则,而,所以,所以四边形为平行四边形,即有,同理可证四边形为平行四边形,,,因此点在平面内.[方法二]:空间向量共线定理以分别为x轴,y轴,z轴,建立空间直角坐标系,如图2所示.设,则.所以.故.所以,点在平面内.[方法三]:平面向量基本定理同方法二建系,并得,所以.故.所以点在平面内.[方法四]:根据题意,如图3,设.在平面内,因为,所以.延长交于G,平面,平面.,所以平面平面①.延长交于H,同理平面平面②.由①②得,平面平面.连接,根据相似三角形知识可得.在中,.同理,在中,.如图4,在中,.所以,即G,,H三点共线.因为平面,所以平面,得证.[方法五]:如图5,连接,则四边形为平行四边形,设与相交于点O,则O 为的中点.联结,由长方体知识知,体对角线交于一点,且为它们的中点,即,则经过点O,故点在平面内.(2)[方法一]【最优解】:坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,如图2.则、、、,,,,,设平面的一个法向量为,由,得取,得,则,设平面的一个法向量为,由,得,取,得,,则,,设二面角的平面角为,则,.因此,二面角的正弦值为.[方法二]:定义法在中,,即,所以.在中,,如图6,设的中点分别为M,N,连接,则,所以为二面角的平面角.?在中,.所以,则.[方法三]:向量法由题意得,由于,所以.如图7,在平面内作,垂足为G,则与的夹角即为二面角的大小.由,得.其中,,解得,.所以二面角的正弦值.[方法四]:三面角公式由题易得,.所以...设为二面角的平面角,由二面角的三个面角公式,得,所以.【整体点评】(1)方法一:通过证明直线,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出.14.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】【详解】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC =CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE =1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.15.如图,在四棱锥中,底面为矩形,平面平面,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求证:平面.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(1)欲证,只需证明即可;(2)先证平面,再证平面平面;(3)取中点,连接,证明,则平面.【详解】(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴;(Ⅱ)∵底面为矩形,∴.∵平面平面,平面平面,平面,∴平面,又平面,∴.又,,、平面,平面,∵平面,∴平面平面;(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴,又平面,平面,∴平面.【点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.16.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P?ABC的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据已知可得,进而有≌,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,,是圆内接正三角形,,≌,,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,,解得,,在等腰直角三角形中,,在中,,三棱锥的体积为.?【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.17.如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.【答案】(1)证明见解析(2)存在,理由见解析【解析】【详解】分析:(1)先证,再证,进而完成证明.(2)判断出P为AM中点,,证明MC∥OP,然后进行证明即可.详解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D 的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM 中点,所以MC∥OP.MC平面PBD,OP平面PBD,所以MC∥平面PBD.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P为AM中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.18.四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若△面积为,求四棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取中点,由于平面为等边三角形,则,利用面面垂直的性质定理可推出底面ABCD,设,表示相关的长度,利用的面积为,求出四棱锥的体积.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】19.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,(Ⅰ)设分别为的中点,求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.【答案】(I)见解析;(II)见解析;(III).【解析】【分析】(I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;(II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;(III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.【详解】(I)证明:连接,易知,,又由,故,又因为平面,。

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析1.如图,正方体ABCD-A1B1C1D1中,点P是直线BC1的动点,则下列四个命题:①三棱锥A-D1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变:其中正确的命题有____ .(把所有正确命题的编号填在横线上)【答案】①③【解析】①,点到线的距离不变,点到面的距离不变,所以体积不变,②取特殊点,当点与重合时,线与面所成角的大小改变;③点变化,但二面角都是面与面所成的角,所以大小不变.故①③正确.【考点】1.几何体的体积;2.二面角的大小;3.线面角.2.如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有()A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面【答案】A【解析】折成的四面体有AH⊥EH,AH⊥FH,∴AH⊥面HEF.3.直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)【答案】(1)见解析(2)【解析】解:(1)证法一:连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.证法二:取A′B′中点P,连接MP,NP.而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,因此平面MPN∥平面A′ACC′.而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解法一:连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC. 又A′N=B′C′=1,故V-MNC=V N-A′MC=V N-A′BC=V A′-NBC=.A′解法二:V-MNC=V A′-NBC-V M-NBC=V A′-NBC=.A′4.如图,正方体ABCD-A′B′C′D′的棱长为4,动点E、F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′-EFQ的体积()A.与点E、F的位置有关B.与点Q的位置有关C.与点E、F、Q的位置都有关D.与点E、F、Q的位置均无关,是定值【答案】D【解析】因为V-EFQ=V Q-A′EF=×(×2×4)×4=,故三棱锥A′-EFQ的体积与点E、F、A′Q的位置均无关,是定值.5.如图是正方体的展开图,则在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④【答案】C【解析】画出正方体,如图所示,易知,①②错误,③④正确.故选C.6.已知直线a,b异面, ,给出以下命题:①一定存在平行于a的平面使;②一定存在平行于a的平面使∥;③一定存在平行于a的平面使;④一定存在无数个平行于a的平面与b交于一定点.则其中论断正确的是( )A.①④B.②③C.①②③D.②③④【答案】D【解析】若直线不是异面垂直则不可能存在平行于a的平面使,所以①不正确;②③④正确;故选D.【考点】1.线面平行的位置关系.2.异面直线的概念.7.如图,ABCD是边长为2的正方形,,ED=1,//BD,且.(1)求证:BF//平面ACE;(2)求证:平面EAC平面BDEF;(3)求二面角B-AF-C的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)记与的交点为,连接,则可证,又面,面,故平面;(2)因⊥平面,得,又是正方形,所以,从而平面,又面,故平面平面;(3)过点作于点,连接,则可证为二面角的平面角.在中,可求得,又,故,∴,即二面角的大小为;证明:(1)记与的交点为,连接,则所以,又,所以所以四边形是平行四边形所以,又面,面,故平面;(2)因⊥平面,所以,又是正方形,所以,因为面,面,所以平面,又面,故平面平面;(3)过点作于点,连接,因为,面所以面,因为面,所以因为所以面所以又所以面所以,即得为二面角的平面角.在中,可求得,又,故,∴,即二面角的大小为;【考点】线面平行的判定;面面垂直的判定;二面角的求解.8.如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.(1)求证:平面ACFE;(2)当EM为何值时,AM//平面BDF?证明你的结论.【答案】(1)见解析;(2)当时,平面.【解析】(1)由已知可得四边形是等腰梯形,且,,得到.再根据平面平面,交线为,即得证.(2)在梯形中,设,连接,则,再根据,而,得到,确定得到四边形是平行四边形,从而,得证.(1)在梯形中,,,四边形是等腰梯形,且,,. 3分又平面平面,交线为,平面 . 6分(2)当时,平面, 7分在梯形中,设,连接,则,,而,, 9分,四边形是平行四边形,,又平面,平面平面. 12分【考点】立体几何平行关系、垂直关系.9.如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F 是DC上的点且DF=AB,PH为△PAD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;(3)证明:EF⊥平面PAB.【答案】(1)见解析(2)(3)见解析【解析】(1)证明:因为PH为△PAD边上的高,所以PH⊥AD,又因为AB⊥平面PAD,平面PAD,所以AB⊥PH,又因为PH AD=H,所以PH⊥平面ABCD;(2)因为E是PB的中点,所以点E到平面BCF的距离等于点P到平面ABCD距离的一半,即=,又因为=,所以三棱锥E-BCF的体积为;(3)取PA的中点Q,连结EQ、DQ,则因为E是PB的中点,所以EQ∥AB且EQ=AB,又因为DF=AB且DF∥AB,所以EQ∥DF且EQ=DF,所以四边形EQDF是平行四边形,所以EF∥DQ,由(1)知AB⊥平面PAD,所以AB⊥DQ,又因为PD=AD,所以DQ⊥PA,因为PAAB=A,所以DQ⊥平面PAB,因为EF∥DQ,所以EF⊥平面PAB.【考点】本题考查空间线线、线面的平行与垂直的证明以及三棱锥体积的求解,考查同学们的空间想象能力、逻辑推理能力以及分析与解决问题的能力.10.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】如下图所示,在正方体中,直线和与底面所成的角均为,但是直线和相交,A选项错误;取、、、的中点、、、,则、、三点到平面的距离相等,但是平面与平面相交,B选项错误;平面,平面,但是直线与平面和平面的交线平行,C选项正确;平面和平面都与平面都垂直,但是平面和平面相交,D选项不正确,故选C.【考点】空间中点、线、面的位置关系11.设平面、,直线、,,,则“,”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由平面与平面平行的判定定理可知,若直线、是平面内两条相交直线,且有“,”,则有“”,当“”,若,,则有“,”,因此“,”是“”的必要不充分条件.选B.【考点】1.平面与平面平行的判定定理与性质;2.充分必要条件12.设m,n是平面内的两条不同直线,l是平面外的一条直线,则且是的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据线面垂直的判定,即直线垂直于面,需要直线垂直于面内相交额两条直线,故且,根据线面垂直的性质,直线垂直面,则垂直于面内的所有直线,故且,所以且是的必要不充分条件,故选B【考点】线面垂直的判断线面垂直的性质13.已知不重合的直线m、l和平面,且,.给出下列命题:①若,则;②若,则;③若,则;④若,则,其中正确命题的个数是()A.1B.2C.3D.4【答案】B【解析】因为,,所以,,又,所以,.①正确;因为,,所以或,又,所以或相交或互为异面直线. ②不正确;因为,,所以,又,所以,故③不正确,④正确.选.【考点】平行关系,垂直关系.14.如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.(1)求棱AA1与BC所成的角的大小;(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为.【答案】(1)(2)P(1,3,2)【解析】(1)如图,以A为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A1(0,2,2),B1(0,4,2),=(0,2,2),==(2,-2,0).cos〈,〉===-,故AA1与棱BC所成的角是.(2)P为棱B1C1中点,设=λ=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB的法向量为n1=(x,y,z),=(2λ,4-2λ,2),则故n1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉===,解得λ=,即P为棱B1C1中点,其坐标为P(1,3,2).15.如图,在四棱锥PABCD中,M、N分别是侧棱PA和底面BC边的中点,O是底面平行四边形ABCD的对角线AC的中点.求证:过O、M、N三点的平面与侧面PCD平行.【答案】见解析【解析】∵O、M分别是AC、PA的中点,连结OM,则OM∥PC.∵OM∥平面PCD,PC平面PCD,∴OM∥平面PCD.同理,知ON∥CD.∵ON∥平面PCD,CD平面PCD,∴ON∥平面PCD.又OM∩ON于O,∴OM、ON确定一个平面OMN.由两个平面平行的判定定理知平面OMN与平面PCD平行,即过O、M、N三点的平面与侧面PCD平行.16.如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C的中点.求证:(1)直线FM∥平面A1EB;(2)平面A1FC⊥平面A1BC.【答案】(1)见解析(2)见解析【解析】(1)取A1B中点N,连结NE、NM,则MN∥=BC,EF∥=BC,所以MN∥=FE,所以四边形MNEF为平行四边形,所以FM∥EN.又FM平面A1EB,EN∥平面A1EB,所以直线FM∥平面A1EB.(2)因为E、F分别为AB和AC的中点,所以A1F=FC,所以FM⊥A1C.同理,EN⊥A1B.由(1)知FM∥EN,所以FM⊥A1B.又A1C∩A1B=A1,所以FM⊥平面A1BC.因为FM平面A1FC,所以平面A1FC⊥平面A1BC17.由平面α外一点P引平面的三条相等的斜线段,斜足分别为A、B、C,O为△ABC的外心,求证:OP⊥α.【答案】见解析【解析】学生错解:证明:因为O为△ABC的外心,所以OA=OB=OC,又因为PA=PB=PC,PO公用,所以△POA,△POB,△POC都全等,所以∠POA=∠POB=∠POC=90°,所以OP⊥α.审题引导:要记OP⊥α,需记OP垂直于α内两条相交的直线,由图形易知,可考虑证OP垂直于△ABC的两条边,注意到图中的等腰三角形PBC、OBC,不准找到证题途径.规范解答:证明:取BC的中点D,连结PD、OD,∵PB=PC,OB=OC,∴BC⊥PD,BC⊥OD,(5分)又PD平面POD,OD平面POD,且PD∩OD=D,∴BC⊥平面POD.(8分)∵PO平面POD,∴BC⊥PO.同理AB⊥PO.(12分)又AB、BC是α内的两条相交直线,∴PO⊥α.(14分)错解分析:上述解法中∠POA=∠POB=∠POC=90°,是对的,但它们为什么是直角呢?这里缺少必要的证明.18.如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1 C;(2)若AC=AA1,求证:MN⊥平面A1BC.【答案】(1)见解析(2)见解析【解析】证明:(1)连结AC1,因为M为A1B与AB1的交点,所以M是AB1的中点.又N为棱B1C1的中点,所以MN∥AC1.又AC1平面AA1C1C,MN平面AA1C1C,所以MN∥平面AA1C1C.(2)由AC=AA1,则四边形AA1C1C是正方形,所以AC1⊥A1C.因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为BC平面ABC,所以CC1⊥BC.因为∠ACB=90°,所以AC⊥BC.因为CC1∩AC=C,所以BC⊥平面AA1C1C,所以BC⊥AC1.又AC1平面AA1C1C,MN∥AC1,所以MN⊥A1C,MN⊥BC.又BC∩A1C=C,所以MN⊥平面A1BC.19.如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;【答案】见解析【解析】(解法1)选取条件①,在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC=.又∵PA=AC,∴PA=.∴在△PAB中,AB=1,PA=.又∵PB=,∴AB2+PA2=PB2.∴∠PAB=90°,即PA⊥AB.又∵PA⊥AC,AB∩AC=A,AB,AC真包含于平面ABC,∴PA⊥平面ABC.(解法2)选取条件②,∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面PAB.∵PA真包含于平面PAB,∴BC⊥PA.又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(解法3)选取条件③,若平面PAB⊥平面ABC,∵平面PAB∩平面ABC=AB,BC真包含于平面ABC,BC⊥AB,∴BC⊥平面PAB.∵PA真包含于平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.20.如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.【答案】(1)见解析(2)存在CP中点R【解析】(1)证法一:∵QA⊥平面ABCD,∴QA⊥CD,由四边形ABCD为正方形知DC⊥AD,又QA、AD为平面PDAQ内两条相交直线,∴CD⊥平面PDAQ,∴CD⊥PQ,在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD,又CD、QD为平面ADCB内两条相交直线,∴PQ⊥平面DCQ.证法二:∵QA⊥平面ABCD,QA平面PDAQ,∴平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,∴DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD,又CD、QD为平面ADCB内两条相交直线,∴PQ⊥平面DCQ.(2)存在CP中点R,使QR∥平面ABCD.证明如下:取CD中点T,连结QR、RT、AT,则RT∥DP,且RT=DP,又AQ∥DP,且AQ=DP,从而AQ∥RT,且AQ=RT,∴四边形AQRT为平行四边形,所以AT∥QR,∵QR平面ABCD,AT平面ABCD,∴QR∥平面ABCD.21.从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确的结论有________个.【答案】4【解析】四边形ABCD适合(1),四面体ACB1D1适合(2),DB1C1D1适合(3),DA1C1D1适合(4),因此正确的结论有4个22.已知是两条不同的直线,是一个平面,且∥,则下列命题正确的是( ) A.若∥,则∥B.若∥,则∥C.若,则D.若,则【答案】D【解析】由∥,∥,可得或∥,不正确;由∥,∥,可得∥或,相交或,互为异面直线,不正确;由∥,,可得∥或,相交,不正确;由∥,,可得,正确.选.【考点】平行关系,垂直关系.【考点】二项式定理23.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.【答案】【解析】∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=AC=×2=.24.已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.【答案】①③【解析】α∥β⇒直线l⊥平面β,由于直线m⊂平面β,∴l⊥m故①正确;由l∥m,直线l⊥平面α可推出直线m⊥平面α,而直线m⊂平面β,∴α⊥β故③正确.25.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】选项A正确,因为SD垂直于底面ABCD,而AC⊂平面ABCD,所以AC⊥SD;再由四边形ABCD为正方形,所以AC⊥BD;而BD与SD相交,所以,AC⊥平面SBD,AC⊥SB.选项B正确,因为AB∥CD,而CD⊂平面SCD,AB⊄平面SCD,所以AB∥平面SCD.选项C正确,设AC与BD的交点为O,易知SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.26.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.【答案】(1)见解析(2)【解析】(1)由AB是圆的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.因为BC⊂平面PBC,所以平面PBC⊥平面PAC.(2)过C作CM∥AP,则CM⊥平面ABC.如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.在Rt△ABC中,因为AB=2,AC=1,所以BC=.因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故=(,0,0),=(0,1,1).设平面BCP的法向量为n1=(x1,y1,z1),则所以不妨令y1=1,则n1=(0,1,-1).因为=(0,0,1),=(,-1,0),设平面ABP的法向量为n2=(x2,y2,z2),则所以不妨令x2=1,则n2=(1,,0).于是cos〈n1,n2〉==.由题图可判断二面角为锐角,所以二面角C-PB-A的余弦值为.27.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PAC;【答案】(1)证明见解析;(2)证明:见解析.【解析】(1)由直线与平面平行的判定定理即得.(2)注意到在直角梯形ABCD中,过C作CE⊥AB于点E,四边形ADCE为矩形利用勾股定理计算三角形的边长,进一步得到再根据平面,即可得出平面.试题解析:(1)证明:,且平面,平面.∴∥平面. 5分(2)证明:在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形∴,又,在,所以,则,∴ 9分又∵平面,,∴平面 12分【考点】直线与平面平行,勾股定理,垂直关系.28.在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是()A.点的轨迹是一条线段B.与不可能平行C.与是异面直线D.【答案】B【解析】由已知可取的中点,的中点,连结,易证平面∥平面,故可知点的轨迹是一条线段,与是异面直线,A、C对;当点与重合时与平行,B不对;在上取点F,连结,可证为与平面所成的角,当点F在MN的中点时最大,此时,则,D对,故选B.【考点】1.直线与平面平行的性质与判断;2.直线和平面的夹角;3.空间两直线的位置关系29.如图所示,正方体的棱长为1, 分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为。

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.若,是异面直线,直线∥,则与的位置关系是()A.相交B.异面C.异面或相交D.平行【答案】C【解析】空间中直线与直线有三种位置关系:相交,平行,异面;当直线与直线在同一个平面内,则相交,不在任何一个平面内,则是异面直线;要是,由平行公理得,这与为异面直线相矛盾,故位置关系是相交或异面.【考点】空间中直线和直线的位置关系.2.若、、是互不相同的直线,是不重合的平面,则下列命题中为真命题的是()A.若∥,,,则∥B.若,则C.若,∥,则D.若,则∥【答案】C【解析】对于,直线可能平行,可能异面;对于没有说明直线垂直交线;对于由平面与平面垂直的性质得正确;对于,垂直于同一条直线的两条直线可能平行、相交、异面.【考点】空间中点、线、面的位置关系.3.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.【答案】(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,;(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面;(3).【解析】(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,.(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面.(3)在中过作垂足为,由面⊥面知,面,.而,,.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.4.已知m,n是两条不同直线,是三个不同平面,下列命题中正确的是()A.若m,n,则m n B.若C.若D.若【答案】D【解析】A选项中m,n可以相交;B选项中可能相交,不同于平面中的垂直于同一直线的两直线平行;C选项中m有可能与的相交线平行,同时也与平行,但平面不平行;综合选D.【考点】直线与平面的位置关系.5.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF AB,则EF与CD所成的角为().A.B.C.D.【答案】D【解析】设为的中点,连接,由三角形中位线定理可得,则即为与所成的角,结合,在中,利用三角函数即可得到答案.【考点】异面直线及其所成的角.三角形中位线定理.6.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若既在平面内,又在平面内,则平面和平面重合.D.四条边都相等的四边形是平面图形【答案】B【解析】对于A,当三个点在同一直线上时,不能确定一个平面,故A不正确;对于B,三角形三条直线两两相交,有不共线的三点,因此一定是平面图形,故B正确;对于C,当在一条直线上时,平面和平面也可能相交,故C不正确;对于D,当四边形的对边所在直线是异面直线时,四边形不是平面图形,故D不正确,故选B.【考点】平面的基本性质.7.已知△中,,,平面,,、分别是、上的动点,且.(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?【答案】(1)见解析;(2)见解析.【解析】(1)通过证明⊥平面,说明平面平面;(2)将平面平面作为条件,利用三角形关系求解.试题解析:(1)∵⊥平面,∴⊥.∵⊥且,∴⊥平面,又∵,∴不论为何值,恒有,∴⊥平面.又平面,∴不论为何值,总有平面⊥平面.(2)由(1)知,⊥,又平面⊥平面,∴⊥平面,∴⊥.∵,,,∴,,∴,由,得,∴,故当时,平面平面.【考点】两平面的位置关系的证明.8.下列四个结论:⑴两条不同的直线都和同一个平面平行,则这两条直线平行.⑵两条不同的直线没有公共点,则这两条直线平行.⑶两条不同直线都和第三条直线垂直,则这两条直线平行.⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为()A.B.C.D.【答案】A【解析】两条不同的直线都和同一个平面平行,则这两条直线平行、相交或异面的位置关系.所以(1)不正确;两条不同的直线没有公共点,则这两条直线平行,或异面,所以(2)不正确;两条不同直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以(3)不正确;一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行或直线在平面内,所以(4)不正确.故选A.【考点】1.直线与平面的位置关系.2.直线与直线的位置关系.3.相关的判断定理.9.在正四面体(所有棱长都相等)中,分别是的中点,下面四个结论中不成立的是()A.平面平面B.平面C.平面平面D.平面平面【答案】C【解析】由AF⊥BC,PE⊥BC,可得BC⊥平面PAE,而DF//BC,所以,DF⊥平面PAE,故A正确.若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面PAE,故B正确.由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.故选C.【考点】正四面体的几何特征,平行、垂直关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中点线面的位置关系练习题
1、下列有关平面的说法正确的是( )C
A 一个平面长是10cm ,宽是5cm
B 一个平面厚为1厘米
C 平面是无限延展的
D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则:
①αα∉⇒⊄∈A a a A , ② αα∈⇒⊂∈A a a A , ③αα∉⇒⊂∉A a a A , ④αα⊂⇒⊂∈A a a A , 其中说法正确的个数是( )B
A.0
B.1
C.2
D.3 3、下列图形不一定是平面图形的是( )B A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( )C
A.4、6、7
B.3、4、6、7
C.4、6、7、8
D.4、6、8 5、共点的三条直线可确定几个平面 ( )D A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的
中点,则,正方体的过P 、Q 、R 的截面图形是( )D
A 三角形
B 四边形
C 五边形
D 六边形
7、空间两条互相平行的直线指的是( )D
A.在空间没有公共点的两条直线
B.分别在两个平面内的两条直线
C.分别在两个不同的平面内且没有公共点的两条直线
D.在同一平面内且没有公共点的两条直线
A
Q B 1
R
C
B
D
P A 1
C 1
D 1



8、三个平面两两相交,交线的条数可能有————————————————1或3
9、不共线的四点可以确定——————————————————个平面。

1或4
10、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有———————————②④⑤
11、设c
⊥③c
a//,以其中
a⊥④c 、表示直线,给出四个论断:①b
b
a、
a⊥②b c
任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————
或者若②④则①
—————————若①④则②
12、点E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,且BD =AC,则四边形EFGH是————————————。

菱形。

相关文档
最新文档