初中数学韦达定理知识点及应用解析

合集下载

韦达定理详细讲解初中

韦达定理详细讲解初中

韦达定理详细讲解初中1. 韦达定理的基本概念嘿,大家好!今天咱们聊聊一个有趣的数学小知识,那就是韦达定理。

你可能会问,韦达是谁呀?其实,他是个很牛的数学家,专门研究方程的。

韦达定理主要是讲关于二次方程的根和系数之间的关系。

简单来说,如果你有一个形如 (ax^2 + bx + c = 0) 的方程,韦达定理告诉我们根的和和根的积是怎么回事。

听起来有点复杂,但别担心,咱们一步一步来,保证你听得明白!1.1. 根的和与根的积首先,咱们来看看根的和。

设这个方程的两个根是 (x_1) 和 (x_2),那么根据韦达定理,它们的和就是 (frac{b{a)。

哦,别以为这就完了!根的积也很重要,两个根的积是(frac{c{a)。

这就像你找朋友聚会,知道总共有多少人(和)和几对情侣(积),就能推算出不少事情来。

1.2. 实际例子来个实际例子,让你更容易理解。

假设我们有个方程 (2x^2 4x + 2 = 0)。

这里 (a = 2),(b = 4),(c = 2)。

根据韦达定理,根的和是 (frac{4{2 = 2),根的积是 (frac{2{2 = 1)。

哇,这样一算,感觉根的关系就像你和你最好的朋友一样,彼此心知肚明呢!2. 韦达定理的应用说到这儿,可能有的小伙伴会想:“这理论有啥用呢?”别急,让我给你讲讲韦达定理在实际生活中的妙用。

其实,这个定理在解决各种实际问题时简直是个好帮手!比如说,你想找出一个水池的水位变化,或者解决一些最优化问题,韦达定理都能派上用场,帮助你理清思路。

2.1. 在几何中的应用不仅如此,韦达定理在几何学里也大显身手哦!想象一下,一个三角形的顶点坐标,你可以用韦达定理来帮助你计算出某些重要的点,简直就是数学界的瑞士军刀,功能强大到不行。

2.2. 数学竞赛中的好帮手另外,韦达定理在数学竞赛中也是一大法宝。

许多题目都能通过它轻松解出,比如求解二次方程的根,甚至能帮助你推导出一些新的数学性质。

一元三次方程韦达定理及其应用

一元三次方程韦达定理及其应用

一元三次方程韦达定理及其应用刘海涛1ꎬ2(1.安徽省芜湖市第一中学ꎬ安徽芜湖241000ꎻ2.新青年数学教师工作室ꎬ安徽芜湖241000)摘㊀要:文章介绍了一元三次方程的韦达定理及其推导过程ꎬ并给出其在不同类型问题中的应用方法ꎬ以体现一元三次方程的重要性ꎬ最后给出笔者对于强基备考教学的思考.关键词:韦达定理ꎻ强基备考ꎻSOLO分类理论中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0002-04收稿日期:2023-11-05作者简介:刘海涛(1988-)ꎬ男ꎬ安徽省滁州人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.基金项目:安徽省芜湖市2022年度教育科学研究课题 基于SOLO理论的发展学生数学核心素养的实践研究 (项目编号:JK22019)㊀㊀在教学中笔者发现ꎬ在高中数学联赛或一些高校的强基考试中ꎬ经常会出现对一元三次方程的韦达定理的考查ꎬ甚至在一些省㊁市的高考模拟卷中也偶有考查.但是学生对此知识点知之甚少(该定理不属于高中教材内容)ꎬ少部分学生虽知道该定理却不会应用ꎬ导致普遍对涉及该定理的问题望而生畏㊁望而却步ꎬ从而被动放弃ꎬ实在可惜.笔者通过梳理近些年的相关考题ꎬ在介绍一元三次方程的韦达定理的基础上ꎬ从该定理在不同问题上的应用予以分类ꎬ整理成文ꎬ以供读者学习㊁交流之用ꎬ以期抛砖引玉[1].1定理的介绍若关于x的方程ax3+bx2+cx+d=0(aʂ0)有三个根x1ꎬx2ꎬx3ꎬ则三根满足:x1+x2+x3=-baꎬx1x2+x2x3+x3x1=caꎬx1x2x3=-da.证明㊀由a(x-x1)(x-x2)(x-x3)=a[x3-(x1+x2+x3)x2+(x1x2+x2x3+x3x1)x-x1x2x3]ꎬ得-a(x1+x2+x3)=bꎬa(x1x2+x2x3+x3x1)=cꎬ-ax1x2x3=dꎬ化简得证.说明㊀该定理是在复数域内ꎬ即三个根(x1ꎬx2ꎬx3)可为实数也可为虚数.2定理的应用2.1在三次方程中的直接应用例1㊀设aꎬbꎬc为方程x3-3x2-2x+1=0的三个实根ꎬ则1a4+1b4+1c4=.解析㊀由韦达定理得a+b+c=3ꎬab+bc+ca=-2ꎬabc=-1ꎬ则1a4+1b4+1c4=a4b4+b4c4+c4a4a4b4c4=a4b4+b4c4+c4a4=(a2b2+b2c2+c2a2)2-2(a4b2c2+a2b4c2+a2b2c4)=[(ab+bc+ca)2-2abc(a+b+c)]2-2a2b2c2[(a+b+c)2-2(ab+bc+ca)]=74.所以1a4+1b4+1c4=74.评注㊀该题为2022年清华大学TACA测试题ꎬ就是一元三次方程韦达定理的直接应用ꎬ如果考生熟悉定理ꎬ只要能够对目标式1a4+1b4+1c4进行合理配凑ꎬ即可轻松解题.2.2在函数问题中的应用2.2.1求函数的解析式例2㊀设αꎬβꎬγ为方程x3-x+1=0的三个实根ꎬ求一个三次项系数为1的三次函数f(x)ꎬ使方程f(x)=0的三根分别为1+α2ꎬ1+β2ꎬ1+γ2.解析㊀由韦达定理ꎬ得α+β+γ=0ꎬαβ+βγ+γα=-1ꎬαβγ=-1ꎬ则α2+β2+γ2=2ꎬ(αβ)2+(βγ)2+(γα)2=1.不妨设f(x)=x3+ax2+bx+cꎬ则a=-[(1+α2)+(1+β2)+(1+γ2)]=-5ꎬb=(1+α2)(1+β2)+(1+β2)(1+γ2)+(1+γ2)(1+α2)=8ꎬc=-(1+α2)(1+β2)(1+γ2)=-5.故f(x)=x3-5x2+8x-5.评注㊀该题为2021年天津大学强基考题ꎬ该题实为考查一元三次方程韦达定理的正向㊁逆向使用.2.2.2研究三次函数零点的关系例3㊀已知函数f(x)=x(x-3)2ꎬ若存在f(a)=f(b)=f(c)ꎬa<b<cꎬ则(㊀㊀).A.1<a<2㊀㊀㊀B.a+b+c=6C.a+b>2D.abcɪ(0ꎬ4)解析㊀求导得fᶄ(x)=3(x-1)(x-3).易知f(x)在(-ɕꎬ1)和(3ꎬ+ɕ)上单调递增ꎬ在(1ꎬ3)上单调递减ꎬ极小值f(3)=0ꎬ极大值f(1)=4.㊀设f(a)=f(b)=f(c)=kꎬ易知kɪ(0ꎬ4)ꎬaɪ(0ꎬ1)ꎬbɪ(1ꎬ3)ꎬ不难判断出函数f(x)在区间(0ꎬ3)上属于极值点左移ꎬ有a+b>2.由f(x)=k得方程x3-6x2+9x-k=0ꎬ其中aꎬb.c为该方程三个根.由韦达定理得a+b+c=6ꎬabc=kɪ(0ꎬ4).故选BCD.评注㊀该题为2023年深圳市一模考题的11题ꎬ网上有深圳市老师反映该题得分率较低ꎬ多数学生不知道如何判断BꎬD两选项的正确与否ꎬ少部分学生答对也是靠对函数图象的直观性做出的猜测.事实上ꎬ若考生考前了解过一元三次方程的韦达定理ꎬ则可较为快速㊁准确地解出该题.2.2.3求函数的最小值例4㊀实数aꎬb使得方程x3-ax2+bx-a=0有三个正实根ꎬ求2a3-3ab+3ab+1的最小值.解析㊀设方程x3-ax2+bx-a=0的三个正实根分别为αꎬβꎬγꎬ则α+β+γ=αβγ=aꎬαβ+βγ+γα=b.由三元均值不等式ꎬ得13(α+β+γ)ȡ3αβγ.则a3ȡ3aꎬ即aȡ33.由(α+β+γ)2ȡ3(αβ+βγ+γα)ꎬ得a2ȡ3b.于是2a3-3ab+3ab+1=a(2a2-3b)+3ab+1ȡa a2+3aa2/3+1=3aȡ93ꎬ当且仅当a=33b=9{时ꎬ即方程三根均为3时等号成立.故2a3-3ab+3ab+1的最小值为93.评注㊀该题为2020年第十届中国东南地区数学奥林匹克考试第1天的第1题.作为一项重大竞赛考题ꎬ该题的难度偏小ꎬ主要考查一元三次方程的韦达定理和两个三元不等式ꎬ是一个可以轻松 拿分 的数学竞赛考题.2.3在三角函数求值中的应用例5㊀求下列三式的值:(1)cos40ʎ+cos80ʎ+cosʎ160ʎꎻ(2)cos40ʎcos80ʎ+cos80ʎcos160ʎ+cos160ʎ cos40ʎꎻ(3)cos40ʎcos80ʎcos160ʎ.解析㊀观察三式的结构不难联想到一元三次方程韦达定理ꎬ故考虑构造一元三次方程ꎬ使cos40ʎꎬcos80ʎꎬcos160ʎ为该方程的三根ꎬ又注意到cos(3ˑ40ʎ)=cos(3ˑ80ʎ)=cos(3ˑ160ʎ)=-12ꎬ结合三倍角的余弦公式cos3θ=4cos3θ-3cosθꎬ得到方程4x3-3x+12=0的三根分别为cos40ʎꎬcos80ʎꎬcos160ʎ.于是得到(1)cos40ʎ+cos80ʎ+cos160ʎ=0ꎻ(2)cos40ʎcos80ʎ+cos80ʎcos160ʎ+cos160ʎ cos40ʎ=-34ꎻ(3)cos40ʎcos80ʎcos160ʎ=-18.评注㊀该题为华东师范大学出版社出版的«数学奥林匹克小丛书»上的一道题ꎬ解答该题的关键在于数系一元三次方程的韦达定理的三式结构特征ꎬ以及三倍角余弦公式.2.4在数论问题中的应用例6㊀已知aꎬbꎬcɪZꎬ且a+b+c=0ꎬ求证:2(a4+b4+c4)是一个完全平方数.证明㊀构造方程x3+mx2+nx+k=0(mꎬnꎬkɪZ)ꎬ其中aꎬbꎬc是该方程的三个整数根ꎬ由韦达定理得m=0ꎬn=ab+bc+caꎬk=-abc.由方程得a3=-(na+k)ꎬb3=-(nb+k)ꎬc3=-(nc+k).所以2(a4+b4+c4)=-2n(a2+b2+c2)-2k(a+b+c)=-2n[(a+b+c)2-2(ab+bc+ca)]=(2n)2ꎬ是一个完全平方数.评注㊀该题对高中数学竞赛生来说ꎬ是一道很平常的数论练习题ꎬ方法也有很多ꎬ但是利用一元三次方程(这里是整数域下的三次方程)的韦达定理解题ꎬ能起到事半功倍的效果ꎬ给人耳目一新的感觉[2].2.5在复数问题中的应用例7㊀已知三个复数aꎬbꎬc的模均为1ꎬ且a+b+c=1ꎬabc=1ꎬ求aꎬbꎬc.解析㊀由a+b+c=1ɪZꎬ得a-+b-+c-=1.又由题得aa-=bb-=cc-=1ꎬ则1a+1b+1c=a-+b-+c-=1.即ab+bc+caabc=1.所以ab+bc+ca=abc=1.由此可得aꎬbꎬc为方程x3-x2+x-1=0的三个根ꎬ因式分解方程可得(x-1)(x2+1)=0.故{aꎬbꎬc}={1ꎬiꎬ-i}.2.6在不等式问题中的应用例8㊀设aꎬbꎬc是实数ꎬ方程x3+ax2+bx+c=0有三个正根ꎬ证明:2a3+9cɤ7abꎬ并且等号成立当且仅当这3个正根相等.证明㊀设题中方程的三个正根分别为αꎬβꎬγꎬ由韦达定理ꎬ得α+β+γ=-aꎬαβ+βγ+γα=bꎬαβγ=-c.2a3+9c-7ab=-2(α+β+γ)3-9αβγ+7(α+β+γ)(αβ+βγ+γα)=(α+β+γ)[7(αβ+βγ+γα)-2(α+β+γ)2]-9αβγ=(α+β+γ)[3(αβ+βγ+γα)-2(α2+β2+γ2)]-9αβγ=(α2β+αβ2+β2γ+βγ2+γ2α+γα2)-2(α3+β3+γ3)=-(α3+β3-α2β-αβ2)-(β3+γ3-β2γ-βγ2)-(γ3+α3-γ2α-γα2)=-(α+β)(α-β)2-(β+γ)(β-γ)2-(γ+α)(γ-α)2ɤ0ꎬ当且仅当α=β=γ时取等号ꎬ故得证.评注㊀该题是2014年北京大学夏令营考题ꎬ利用韦达定理将2a3+9c-7ab转化为关于三正根αꎬβꎬγ的表达式ꎬ代数化简即可得证.2.7在立体几何中的应用例9㊀已知长方体的体积为1ꎬ长㊁宽㊁高之和为kꎬ表面积为2kꎬ求实数k的取值范围.解析㊀设该长方体的长㊁宽㊁高分别为aꎬbꎬcꎬ则a+b+c=kꎬab+bc+ca=kꎬabc=1ꎬ则可将aꎬbꎬc视作方程x3-kx2+kx-1=0的三根.又该方程可因式分解为(x-1)[x2-(k-1)x+1]=0ꎬ不妨设a=1ꎬ则bꎬc是方程x2-(k-1)x+1的两根.于是ә=(k-1)2-4ȡ0ꎬb+c=k-1>0ꎬbc=1>0ꎬìîíïïïï解得kȡ3.评注㊀题中三个条件恰好得到一元三次方程的韦达定理式的三个结构式ꎬ自然将长㊁宽㊁高作为一元三次方程的三根ꎬ借助三次方程解题.2.8在三角形中的应用例10㊀已知әABC的三边分别为aꎬbꎬcꎬ周长为2ꎬ求证:a2+b2+c2+2abc<2.证明㊀由题知a+b+c>2cꎬ易得0<c<1ꎬ同理0<aꎬb<1.不等式a2+b2+c2+2abc<2等价于a2+b2+c2+2abc<a+b+cꎬ化简得ab+bc+ca>1+abc.设f(x)=(x-a)(x-b)(x-c)ꎬ化简得f(x)=x3-2x2+(ab+bc+ca)x-abc.问题等价于证明f(1)>0.而由aꎬbꎬcɪ(0ꎬ1)ꎬ得证f(1)=(1-a)(1-b)(1-c)>0.评注㊀对于ab+bc+ca>1+abc的证明ꎬ解法多样ꎬ但是利用一元三次方程的韦达定理解题却是最简便的.3结束语一元三次方程的韦达定理虽没有出现在教材中ꎬ也不属于高中数学的知识点ꎬ但是通过文中的推导ꎬ我们不难发现ꎬ对于高中生而言该定理的理解完全不成问题ꎬ可以作为一种新定义题来命制题目ꎬ来考查学生的逻辑推理㊁数学运算等数学能力.基于此ꎬ笔者认为ꎬ在日常的教学中ꎬ广大一线教师可以考虑介绍一些介于高中与大学之间的数学知识ꎬ尤其是从数学逻辑推理的角度予以介绍ꎬ并给出证明过程ꎬ并辅之适量的习题以供训练ꎬ这样ꎬ学生的数学思维能力和知识储备都将得到大幅提升ꎬ高考中的优势自然明显ꎬ将来的数学学习也必将顺利.在介绍教材之外的知识点时ꎬ更重要的是让学生亲历知识的生成过程ꎬ知道概念的由来㊁定理的具体推导ꎬ从而掌握其中蕴含的数学思想方法[3]ꎬ这样ꎬ在遇到一道陌生问题时ꎬ学生才具有分析问题㊁解决问题的能力ꎬ考试自然能取得理想的成绩[4].参考文献:[1]刘海涛.例谈 定比点差法 在解析几何问题中的应用[J].中学数学研究(华南师范大学版)ꎬ2021(07):25-27.[2]刘海涛.例析构造对偶式在解题中的应用[J].数理化学习(高中版)ꎬ2021(04):14-17.[3]刘海涛.类比知识的抽象过程ꎬ寻找解题的最佳途径[J].中小学数学(高中版)ꎬ2022(03):51-54.[4]刘海涛.例析与高斯函数有关问题的常考题型与备考建议[J].数理化解题研究ꎬ2023(01):27-31.[责任编辑:李㊀璟]。

带你认识神一样的韦达定理

带你认识神一样的韦达定理

带你认识神一样的韦达定理韦达定理最大的应用无外乎可以快速求出两方程根的关系,所以韦达定理应用非常广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

伟大的韦达定理https:///wiki/Vieta%27s_formulas在一元二次方程的所有解法中,只有公式法不是将方程来变形,而是通过带入一般形式中的二次项系数、一次项系数和常数项直接来求出方程的根。

实际上求根公式反映的就是一元二次方程根与系数的一种关系,只不过这种关系比较复杂。

也就衍生出了表示两根之和与两根之积的简单的关系式:韦达定理关于韦达定理,我们还可以解决很多的初中数学问题:1 已知一元二次方程的一个根,求另一个根:应用时应把方程化为一般形式ax² + bx + c = 0(a≠0).根据选择使得到另一根易于计算的原则,酌情选择用两根之和或两根之积。

2一元二次方程根、两根关系及字母系数的互求。

3求两根和、积及其代数式的值:本题可先用求根公式求出方程的两根,再代入所求式子求出它的值,但计算量比较大。

可应用韦达定理,先把代数式适当变形,就可求出它的值。

4检验某两数是否为已知一元二次方程的两根。

5已知两数和与积,求此两数。

6求作方程使其根为已知数或满足某种条件:例题:求作一个一元二次方程,使其两根和为1,积为- 3.7在解方程(组) 中的应用。

本题直接解方程出现高次方程比较难,而利用韦达定理,会更容易。

8在证明等式或不等式中的应用。

若实数 a、 b、 c 满足 a + b + c = 0,abc = 1.求证:a、 b、 c 有一个大于3/2.9结合一元二次方程根的判别式判定一元二次方程实根的符号。

m 为何值时,关于 x 的一元二次方程(m + 3)x² - mx + 1 = 0 的两个根,(1) 均为正数;(2) 一正一负;(3) 均为负数。

分析:本题用常规方法有一定难度。

利用一元二次方程根的判别式与韦达定理相结合,比较容易确定两根的符号。

多项式的零点定理与韦达定理知识点

多项式的零点定理与韦达定理知识点

多项式的零点定理与韦达定理知识点多项式的零点定理是代数学中的一个重要定理,它给出了一个多项式方程的根(零点)的性质。

而韦达定理是利用多项式的系数与根之间的关系来研究多项式的一种方法。

本文将详细介绍多项式的零点定理和韦达定理的相关知识点。

一、多项式的零点定理多项式的零点定理又称为代数基本定理,它指出了一个非常重要的结论:如果一个多项式在某个数值点上取值为零,那么这个数值点就是多项式的一个根。

换句话说,一个多项式的根可以通过求解多项式方程来得到。

具体来说,对于一个n次多项式P(x),其中n≥1,如果存在一个实数a使得P(a)=0,那么a就是P(x)的一个根。

进一步地,对于n次多项式P(x),它至多有n个根。

这是由于多项式的次数决定了它的根数上限。

多项式的零点定理为我们解多项式方程提供了便利。

通过将多项式化简为因式乘积的形式,我们可以容易地得到其根的值。

二、韦达定理韦达定理是利用多项式的系数与根之间的关系来研究多项式的一种重要方法。

它可以帮助我们根据已知的多项式的根和系数,求解其他相关的根和系数。

设P(x)=ax^n+bx^(n-1)+...+k是一个n次多项式,其中a≠0。

如果r 是P(x)的一个根,那么根据韦达定理可知:1. P(r)=02. r_1+r_2+...+r_n=-b/a3. r_1*r_2*...*r_n=(-1)^n*k/a其中,r_1, r_2, ..., r_n分别表示P(x)的n个根。

上述公式中的第二个和第三个公式被称为韦达定理的进一步推广形式,它们可以帮助我们求得n次多项式的所有根以及与根相关的系数。

例如,对于一个二次多项式P(x)=ax^2+bx+c,如果已知P(x)的两个根为r_1和r_2,那么根据韦达定理可知:1. P(r_1)=0,P(r_2)=02. r_1+r_2=-b/a3. r_1*r_2=c/a通过上述三个公式,我们可以根据已知的根和系数求解出其他未知的根和系数。

(人教版初中数学)韦达定理

(人教版初中数学)韦达定理

判别式与韦达定理〖知识点〗一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题. 内容分析1.一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21(2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P,x 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题.在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力.考查题型1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=05.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )(A )2 (B )-2 (C )1 (D )-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =二、考点训练:1、 不解方程,判别下列方程根的情况:(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值.5、 求证:方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根.6、 求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 .7、 设x 1,x 2是方程2x 2+4x -3=0的两根,利用根与系数关系求下列各式的值:(1) (x 1+1)(x 2+1) (2)x 2x 1 + x 1x 2(3)x 12+ x 1x 2+2 x 1 解题指导1、 如果x 2-2(m+1)x+m 2+5是一个完全平方式,则m= ;2、 方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ;3、 已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ;4、 设关于x 的方程x 2-6x+k=0的两根是m 和n,且3m+2n=20,则k 值为 ;5、 设方程4x 2-7x+3=0的两根为x 1,x 2,不解方程,求下列各式的值:(1) x 12+x 22 (2)x 1-x 2 (3)x1 +x2 *(4)x 1x 22+12x 1 *6.实数s、t分别满足方程19s2+99s+1=0和且19+99t+t2=0求代数式st+4s+1t的值. 7.已知a 是实数,且方程x 2+2ax+1=0有两个不相等的实根,试判别方程x 2+2ax+1-12(a 2x 2-a 2-1)=0有无实根?8.求证:不论k 为何实数,关于x 的式子(x -1)(x -2)-k 2都可以分解成两个一次因式的积.9.实数K 在什么范围取值时,方程kx2+2(k-1)x-(K -1)=0有实数正根?独立训练(一)1、 不解方程,请判别下列方程根的情况;(1)2t 2+3t -4=0, ; (2)16x 2+9=24x, ;(3)5(u 2+1)-7u=0, ;2、 若方程x 2-(2m -1)x+m 2+1=0有实数根,则m 的取值范围是 ;3、 一元二次方程x 2+px+q=0两个根分别是2+ 3 和2- 3 ,则p= ,q= ;4、 已知方程3x 2-19x+m=0的一个根是1,那么它的另一个根是 ,m= ;5、 若方程x 2+mx -1=0的两个实数根互为相反数,那么m 的值是 ;6、 m,n 是关于x 的方程x 2-(2m-1)x+m 2+1=0的两个实数根,则代数式m n = .7、 已知关于x 的方程x 2-(k+1)x+k+2=0的两根的平方和等于6,求k 的值;8、 如果α和β是方程2x 2+3x -1=0的两个根,利用根与系数关系,求作一个一元二次方程,使它的两个根分别等于α+1 β 和β+1 α; 9、 已知a,b,c 是三角形的三边长,且方程(a 2+b 2+c 2)x 2+2(a+b+c)x+3=0有两个相等的实数根,求证:这个三角形是正三角形10.取什么实数时,二次三项式2x 2-(4k+1)x+2k 2-1可因式分解.11.已知关于X 的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=1 α+1 β,求s的取值范围. 独立训练(二)1、 已知方程x 2-3x+1=0的两个根为α,β,则α+β= , αβ= ;2、 如果关于x 的方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m 的值为 ;3、 已知方程2x 2-3x+k=0的两根之差为212,则k= ; 4、 若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5、 方程4x 2-2(a-b)x -ab=0的根的判别式的值是 ;6、 若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;7、 已知p<0,q<0,则一元二次方程x 2+px+q=0的根的情况是 ;8、 以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是 ;9、 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 210.m 取什么值时,方程2x 2-(4m+1)x+2m 2-1=0(1) 有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根;11.设方程x 2+px+q=0两根之比为1:2,根的判别式Δ=1,求p,q 的值.12.是否存在实数k,使关于x的方程9x 2-(4k-7)x -6k2=0的两个实根x 1,x 2,满足|x 1 x 2|=32 ,如果存在,试求出所有满足条件的k的值,如果不存在,请说明理由.。

韦达定理详细讲解

韦达定理详细讲解

韦达定理详细讲解韦达定理是数学中的一个重要定理,它被广泛应用于代数、几何和概率等领域。

该定理的内容较为复杂,但通过详细的讲解,我们可以更好地理解和应用韦达定理。

我们来了解一下韦达定理的基本概念。

韦达定理又称作“韦达三角定理”或“韦达方程”,它是代数中关于多项式根与系数之间的关系的一个重要定理。

韦达定理是指对于一个二次方程,其两个根的和等于系数b的相反数,而两个根的乘积等于方程的常数项c。

为了更好地理解韦达定理,我们以一个具体的例子来说明。

假设我们有一个二次方程x^2 - 5x + 6 = 0,我们可以使用韦达定理来求解该方程的根。

根据韦达定理,我们知道两个根的和等于系数b的相反数,即根的和等于5的相反数,即-5。

所以,我们可以得到一个等式:x1 + x2 = -5。

接下来,根据韦达定理,我们知道两个根的乘积等于方程的常数项c,即根的乘积等于6。

所以,我们可以得到另一个等式:x1 * x2 = 6。

通过这两个等式,我们可以得到一个由根和系数构成的方程组,进一步求解得到方程的根。

在本例中,我们可以得到x1 = 2和x2 = 3,即方程的两个根分别为2和3。

除了二次方程,韦达定理也可以扩展到高次方程。

对于一个n次方程,韦达定理可以表示为:方程的n个根的和等于系数b的相反数,而n个根的乘积等于方程的常数项c。

韦达定理在代数中的应用非常广泛。

它可以用于求解方程的根,进一步用于因式分解、求解多项式的系数和揭示方程与根之间的关系。

通过韦达定理,我们可以更好地理解和解决各种代数问题。

除了代数中的应用,韦达定理在几何和概率中也有重要的应用。

在几何中,韦达定理可以用于求解三角形的边长,利用三角形的边长关系来解决几何问题。

在概率中,韦达定理可以用于计算多个独立事件同时发生的概率,从而帮助我们进行概率分析和计算。

总结一下,韦达定理是数学中的一个重要定理,它可以用于代数、几何和概率等领域。

通过韦达定理,我们可以求解方程的根,进行因式分解,揭示方程与根之间的关系,解决几何问题和计算概率等。

一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点一站到底)知识点☀笔记韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 考点☀梳理考点1:韦达定理必备知识点:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 解题指导:适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)韦达定理拓展公式 ①x 12+x 22=(x 1+x 2)2−2x 1∙x 2②1x 1+1x 2=x 2+x 1x 1∙x 2x 2x 1+x1x 2=x 12+x 22x 1∙x 2=(x 1+x 2)2−2x 1∙x 2x 1∙x 2③(x 1−x 2)2=(x 1+x 2)2−4x 1∙x 2④|x 1−x 2|=√(x 1+x 2)2−4x 1∙x 2 ;(2)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;(3)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。

初中数学韦达定理专项

初中数学韦达定理专项

2. 二、韦达定理的推导求根公式法推导一元二次方程²的求根公式为ax ²+bx +c =0 (a≠0)的求根公式为aac b b x 242-±-= 那么两个根aac b b x 2421-+-= aac b b x 2422---=+a ac b b 242---=a b 22-=ab -×a ac b b 242---=2224)4()(a ac b b ---=ac 三、韦达定理的应用1.已知方程求两根之和与两根之积例如,对于方程2x ²-5x +3=0,这里a =2,b =-5,c =3根据韦达定理,两根之和x 1+x 2 =a b -=25232.已知两根之和与两根之积构造方程若已知两根之和为m ,两根之积为n ,则可构造方程x ²-mx +n =0。

比如,两根之和为 4,两根之积为 3,那么构造的方程为x ²-4x +3=0。

3. 不解方程求与两根有关的代数式的值例如,求(x 1-x 2)²的值。

(x 1-x 2)²=(x 1+x 2)²-4x 1x 2 ,已知两根之和与两根之积,代入即可求解。

4. 利用韦达定理判断方程根的情况由韦达定理可知,当b ²-4ac >0时,方程有两个不相等的实数根,此时两根之和与两根之积均有确定的值。

当b ²-4ac=0时,方程有两个相等的实数根,两根之和为-当b ²-4ac <0时,方程无实数根,韦达定理在这种情况下无意义。

四、韦达定理的注意事项1. 韦达定理只有在一元二次方程有实数根的情况下才成立。

2. 在应用韦达定理时,要先确定方程中a 、b 、c 的值,且a ≠0。

3. 对于一些特殊的一元二次方程,如缺项方程(如ax ²+c =0),也可以利用韦达定理求解,但要注意分析具体情况。

五、韦达定理的典型例题及讲解 1.已知方程的一根,求另一根及字母系数的值例题:关于x 的一元二次方程02)1(2=---x x m ,若x=-1是方程的一个根,求m 的值及另一个根。

韦达定理经典例题及解题过程

韦达定理经典例题及解题过程

韦达定理经典例题及解题过程韦达定理经典例题及解题过程一、概述韦达定理是初中数学中的一个重要定理,它是数学中的基本原理之一,广泛应用于初中数学和高中数学的相关知识点中。

韦达定理通过等比的概念,可以解决一些复杂的代数方程问题,具有很强的普适性和实用性。

本文将重点介绍韦达定理的相关概念、经典例题及解题过程,希望能让读者对韦达定理有更深入的理解。

二、韦达定理的相关概念1. 韦达定理的基本概念韦达定理是数学上一个重要的定理,它通过等比的概念,解决了关于代数方程的一些问题。

韦达定理的基本说法是:对于一元三次方程ax³+bx²+cx+d=0,如果它有三个不等实根,那么这三个根分别是p、q、r,那么有以下等式成立:p+q+r=-b/apq+qr+rp=c/apqr=-d/a2. 韦达定理的证明韦达定理的证明可以通过多种方式来完成,其中一种比较常见的方法是使用代数方程的解法和数学归纳法。

我们可以通过对一元三次方程的通解进行分析,最终得到韦达定理的结论。

这个过程需要一定的代数方程知识和数学推理能力。

三、经典例题及解题过程为了更好地理解韦达定理,我们将通过几个经典例题来演示解题过程。

例题一:已知一元三次方程x³-6x²+11x-6=0的根为p、q、r,求p+q+2r的值。

解题过程:根据韦达定理,我们可以得到以下等式:p+q+r=6pq+qr+rp=11pqr=6根据题目中的要求,我们需要求p+q+2r的值,所以我们可以先求出p+q+r的值,然后再将r的值替换为2r即可。

通过代数方程的解法,我们可以求得p+q+r=6,再将r替换为2r,得到p+q+2r=6+2r的值。

例题二:已知一元三次方程2x³-7x²+7x-3=0的根为p、q、r,求p²+q²+r²的值。

解题过程:同样地,根据韦达定理我们可以得到以下等式:p+q+r=7/2pq+qr+rp=7/2pqr=3/2题目中要求的是p²+q²+r²的值,我们可以通过(p+q+r)²-2(pq+qr+rp)的公式来求得。

专题 韦达定理(解析版)

专题 韦达定理(解析版)

专题02 韦达定理韦达定理虽是初二一元二次方程时的内容,但因为考试没有要求,很多学校都没怎么系统的讲过,很多学生还不是很了解韦达定理,更别提掌握和灵活运用了。

而韦达定理在高中阶段运用的非常频繁,许多知识点都要结合韦达定理来做,希望通过本章学习让学生能够理解掌握韦达定理.韦达定理实际上就是一元二次方程中根与系数的关系,韦达定理简单的形式中包含了丰富的数学内容,应用广泛,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.【例1】已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值. 【难度】★★ 【答案】见解析【解析】由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.设方程的另一个根为1x,知识梳理知识结构模块一: 运用韦达定理,求方程中参数典例剖析则5621-=x ,531-=∴x .由52)53(k-=+-,得7-=k .所以,方程的另一个根为53-.k 的值为-7.1.1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 . 【难度】★★ 【答案】5132m -<≤2.0519998081999522=++=+-b b a a 及已知,求ba的值. 【难度】★★ 【答案】58 【解析】由方程的结构可知a 、b 1是方程08199952=+-x x 的两根,由韦达定理可得58=b a【例2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值. 【难度】★★ 【答案】见解析【解析】分析:分别变形为可以利用x 1+x 2和x 1x 2来表示的形式.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,2521-=+∴x x ,2321-=x x .(1)∵|x 1-x 2|2=21x +22x -2x 1x 2=(x 1+x 2)2-4x 1x 2)23(4)25(2-⨯--=6425+=449=, 27||21=-∴x x . 对点精练模块二:运用韦达定理,求代数式的值典例剖析(2)493425)23()23(2)25()(2)(112222121221222122212221+=--⨯--=-+=⋅+=+x x x x x x x x x x x x 937=. (3)31x +32x =(x 1+x 2)(21x -x 1x 2+22x )=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]8215)]23(3)25[()25(2-=-⨯--⨯-=.评析:利用根与系数的关系求值,要熟练掌握以下等式变形:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a acb b x 2421-+-=,aacb b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=. 于是有下面的结论:【例3】已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______. 【难度】★★ 【答案】见解析【解析】分析:运用根的意义和根与系数关系解题.解:由于α、β是方程x 2+2x -5=0的实数根,∴α2+2α-5=0,αβ=-5,∴α2+2α=5 ∴α2+αβ+2α=α2+2α+αβ =5-5=0评析:注意利用变形为可以用根系关系表示的形式.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1) 恰当组合;(2) 根据根的定义降次; (3) 构造对称式.【例4】关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值. 【难度】★★ 【答案】31.已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 . 【难度】★★ 【答案】02.设a ,b 是相异的两实数,满足ab b a b b a a 2222,34,34++=+=求的值. 【难度】★★ 【答案】3100-3.设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值. 【难度】★★ 【答案】-5【例5】已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值. 【难度】★★ 【答案】见解析【解析】分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此其根的判别式应大于等于零.解:设x 1,x 2是方程的两根,由韦达定理,得对点精练模块三:利用韦达定理并结合根的判别式,讨论根的情况典例剖析x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵21x +22x -x 1·x 2=21, ∴(x 1+x 2)2-3x 1·x 2=21, 即[-2(m -2)]2-3(m 2+4)=21,化简,得m 2-16m -17=0,解得m =-1,或m =17. 当m =-1时,方程为x 2-6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m = -1.评析:在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,韦达定理成立的前提是一元二次方程有实数根.【例6】已知x 1、x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,问x 1和x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由. 【难度】★★ 【答案】见解析【解析】分析:利用判别式和根与系数关系共同解决本题. 解:由Δ=-32m +16≥0得21≤m .x 1+x 2=-m +1,041221≥=m x x . ∴x 1与x 2可能同号,分两种情况讨论:(1)若x 1>0,x 2>0,则⎩⎨⎧>>+002121x x x x ,解得m <1且m ≠0.21≤∴m 且m ≠0. (2)若x 1<0,x 2<0,则⎩⎨⎧><+002121x x x x ,解得m >1,与21≤m 相矛盾.综上所述:当21≤m 且m ≠0时,方程的两根同号.【例7】一元二次方程240x x a -+=有两个实根,一个比3大,一个比3小,求a 的取值范围.【难度】★★ 【答案】【解析】构造二次函数()a x x x f +-=42,由()03<f 即可满足题意【例8】已知一元二次方程222(9)560x a x a a +-+-+=一个根小于0,另一根大于2,求a 的取值范围. 【难度】★★ 【答案】【解析】构造二次函数()()659222+-+-+=a a x a x x f ,由()00<f 且()02<f 即可满足题意1.已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 . 【难度】★★ 【答案】m >72.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值. 【难度】★★ 【答案】见解析 【解析】3<a 382<<a 对点精练3.已知关于x 的方程:04)2(22=---m x m x .(1) 求证:无论m 取什么实数值,这个方程总有两个不相等的实根.(2) 若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 【难度】★★ 【答案】见解析【解析】分析: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手. 解:(1)△=2m 2-4m +4=2(m -1)2+2>0, ∴方程总有两个不相等的实数根;(2) ∵x 1·x 2=24m -≤0,∴1x 、2x 异号或其中一根为0,∴对212+=x x 可分两种情况讨论,去掉绝对值.当x 1≥0,x 2<0时,-x 2-x 1=2,即-(m -2)=2,解得m =0, 此时,方程为x 2+2x =0,解得x 1=0,x 2=-2; 当x 1≤0,x 2>0时,x 2+x 1=m -2=2,解得m =4, 当m =4时,x 2-2x -4=0,解得151x =-+,251x =+.4.若关于x 的方程20x x a ++=的两个根,一个大于1、另一根小于1,求实数a 的取值范围. 【难度】★★ 【答案】2a <-【例9】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 【难度】★★模块四:利用韦达定理逆定理,构造一元二次方程辅助解题等典例剖析【答案】B【解析】评析 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.【例10】解方程121193482232222=+-++-++x x x x x x x x . 【难度】★★ 【答案】-1,-4,28952895-+,. 【解析】分析:观察方程左边两式的关系,用换元法,令t x x xx =-++4322代入求解.1.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 . 【难度】★★ 【答案】11182m <≤ 【解析】提示:根据两边之和、两边之差的关系及△≥0得到.2.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根.(1) 当m =2和m >2时,四边形ABCD 分别是哪种四边形? 并说明理由;(2) 若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ=1,且AB<CD ,求AB 、CD 的长;(3) 在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan ∠BDC 和tan ∠BCD . 【难度】★★★ 【答案】见解析【解析】(1)当m =2时,x 2-4x +4=0. ∵△=0,方程有两个相等的实数根.∴AB=CD ,此时AB ∥CD ,则该四边形是平行四边形; 当m >2时,△=m -2>0,对点精练又∵AB+CD=2m >0, AB•CD=217()24m -+ >0, ∴AB≠CD . 该四边形是梯形.(2) 根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.则根据PQ=1,得CD -AB=2. 由CD -AB=||||21a x x ∆=-解得m =3 当m =3时,则有x 2-6x +8=0, ∴x =2或x =4, 即AB=2,CD=4(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC . ∴∠BCD=60°,∠BDC=30°.∵tan ∠BDC+tan ∠BCD=tan ∠BDC•tan ∠BCD=1.∴所求作的方程是y 2-+1=0. 评析:对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.3.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD=m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求:m ,n 为整数时,一次函数y =mx +n 的解析式.【难度】★★★【答案】见解析 【解析】解:易证△ABC ∽△ACD ,∴AC ABAD AC=,AC 2=AD•AB ,同理BC 2=BD•AB , ∵2221AC BC =,∴21m n = ∴m =2n …①, ∵关于x 的方程14x 2-2(n -1)x +m 2-12=0有两实数根, ∴△=[-2(n -1)]2-4×14×(m 2-12)≥0,∴4n 2-m 2-8n +16≥0,把①代入上式得n ≤2…②, 设关于x 的方程14x 2-2(n -1)x +m 2-12=0的两个实数根分别为x 1,x 2, 则x 1+x 2=8(n -1),x 1•x 2=4(m 2-2),依题意有(x 1-x 2)2<192,即[8(n -1)]2-16(m 2-12)<192, ∴4n 2-m 2-8n +4<0,把①式代入上式得n >12…③, 由②、③得12<n ≤2, ∵m 、n 为整数,∴n 的整数值为1,2,当n =1,m =2时,所求解析式为y =2x +1,当n =2,m =4时,解析式为y =4x +2.韦达定理在高中阶段是一种非常常用且重要的解题手段,同学们一定要在充分理解的基础上加以掌握及灵活运用.同学们要能掌握根与系数的关系,知道韦达定理的常见变式与常规题型,注重设而不解,注重整体,通过整体带入来解决问题.一、选择题1.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程的两根,则02=++p qx x 反思总结课后练习p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3 【难度】★★ 【答案】C2.在R t △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .23 B .25C .5D .2 【难度】★★ 【答案】B3.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p的值是 ( )A .1B .-lC .21-D .21 【难度】★★ 【答案】C4.两个质数a 、b 恰好是整系数方程x 2-99x +m =0的两个根,则baa b +的值是 ( ) A .9413 B .1949413 C .999413 D .979413【难度】★★ 【答案】B5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为 ( ) A .0232=---m x x B .0232=--+m x x C .02412=---x m x D .02412=+--x m x 【难度】★★ 【答案】D6.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( ) A .0≤m ≤1 B .m ≥43 C .143≤<m D .43≤m ≤1【答案】C二、填空题7.关于x 的一元二次方程22(1)10m x x m -++-=有一根为0,则m 的值为______ 【难度】★★ 【答案】-18.CD 是R t △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 . 【难度】★★ 【答案】69.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . 【难度】★★ 【答案】510.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 . 【难度】★★ 【答案】见解析【解析】解:设x 1,x 2是方程的两个根,则①x 1+x 2=-p ,②x 1x 2=q , ∵②-①得:p+q=28, ∴x 1x 2-x 1-x 2=28, ∴x 1x 2-x 1-x 2+1=28+1, ∴x 1(x 2-1)-(x 2-1)=29, 即(x 1-1)(x 2-1)=29, ∵两根均为正整数,∴x 1-1=1,x 2-1=29或x 1-1=29,x 2-1=1,∴方程的两个根是:x 1=2,x 2=30.或x 1=30,x 2=2. 故答案为:x 1=30,x 2=2.三、解答题11. 若关于x 的一元二次方程3x 2+3(a +b )x +4ab =0的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?【答案】见解析【解析】解:(a +b )2≤4正确.理由:原式可化为(x 1+x 2)2-=3x 1x 2+1, ∴(a +b )2=4ab +1,∵△=9(a +b )2-4×3×4ab ≥0, ∴3(a +b )2-4×4ab ≥0, ∴(a +b )2≥163ab ,即4ab +1≥163ab ∴4ab ≤3,∴4ab +1≤4,即(a +b )2≤4.12.已知关于x 的方程01)32(22=++--k x k x . (1) 当k 为何值时,此方程有实数根;(2) 若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 【难度】★★ 【答案】(1)512k ≤;(2) 0.13.设m 是不小于1-的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x . (1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值. 【难度】★★ 【答案】见解析【解析】解:∵方程有两个不相等的实数根,∴△=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1, 结合题意知:-1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2-2x 1x 2=4(m -2)2-2(m 2-3m +3)=2m 2-10m +10=6 ∴m=,∵-1≤m <1,∴m=∴当m =-1时,式子取最大值为10.14.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20xx a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.【难度】★★★ 【答案】见解析【解析】解:设x 12+ax 1+1=0,x 12+bx 1+c =0,两式相减,得(a -b )x 1+1-c =0,解得x 1=1c a b--, 同理,由x 22+x 2+a =0,x 22+cx 2+b =0,得x 2=(1)1a bc c -≠- ∴x 2=11x , 由韦达定理的两根之积的关系知,11x 是第一个方程的根, ∴x 2是方程x 2+ax +1=0和x 2+x +a =0的公共根, 因此两式相减有(a -1)(x 2-1)=0, 当a =1时,这两个方程无实根, 故x 2=1,从而x 1=1, 于是a =-2,b +c =-1, 所以a +b +c =-3.。

韦达定理初三常考题型

韦达定理初三常考题型

韦达定理初三常考题型1. 韦达定理的基本概念:韦达定理,也称为乘法定理,是指对于一个多项式函数,如果其两个根分别为a和b,那么可以通过这两个根来表示该多项式的一个因式。

具体而言,如果多项式的根为a和b,那么可以将多项式表示为(x-a)(x-b)的形式。

2. 韦达定理的应用:韦达定理在初三数学中常常用于解多项式方程和因式分解。

通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。

在考试中,常常会给出一个多项式的根,然后要求解出该多项式的其他根或进行因式分解。

3. 韦达定理的相关题型:a) 解多项式方程,考题可能给出一个多项式的一个根,然后要求解出该多项式的其他根。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程得到其他根。

b) 因式分解,考题可能给出一个多项式的一个根,然后要求进行因式分解。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后将多项式进行因式分解。

c) 综合运用,考题可能给出一个多项式的两个根,然后要求解出该多项式的其他根或进行因式分解。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程或进行因式分解。

4. 解题步骤:a) 根据题目给出的已知条件,确定多项式的一个或多个根。

b) 使用韦达定理,将已知的根代入(x-a)(x-b)的形式。

c) 根据题目要求,进行方程求解或因式分解,得到其他根或多项式的因式。

总结:韦达定理是初中数学中的一个重要定理,常常在初三的数学考试中出现。

通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。

解题时需要注意题目给出的已知条件,正确运用韦达定理,并根据题目要求进行方程求解或因式分解。

希望以上解答能够帮助到你,如果还有其他问题,请继续提问。

韦达定理公式介绍及典型例题

韦达定理公式介绍及典型例题

韦达定理公式介绍及典型例题韦达定理公式介绍及典型例题韦达定理说明了一元n次方程中根和系数之间的关系。

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

这里讲一元二次方程两根之间的关系。

一元二次方程aX&sup2;+bX+C=0﹙a&ne;0﹚中,两根X1,X2有如下关系:X1+X2=-b/a ,X1&middot;X2=c/a【定理内容】一元二次方程ax^2+bx+c=0 (a&ne;0 且△=b^2-4ac&gt;0)中,设两个根为x1 ,x2 那么X1+X2= -b/aX1&middot;X2=c/a1/X1+1/X2=X1+X2/X1&middot;X2用韦达定理判断方程的根一元二次方程ax&sup2;+bx+c=0 (a&ne;0)中,假设b&sup2;-4ac&lt;0 那么方程没有实数根假设b&sup2;-4ac=0 那么方程有两个相等的实数根假设b&sup2;-4ac&gt;0 那么方程有两个不相等的实数根【定理拓展】(1)假设两根互为相反数,那么b=0(2)假设两根互为倒数,那么a=c(3)假设一根为0 ,那么c=0(4)假设一根为1 ,那么a+b+c=0(5)假设一根为-1 ,那么a-b+c=0(6)假设a、c异号,方程一定有两个实数根【例题】p+q=198 ,求方程x^2+px+q=0的整数根. (94祖冲之杯数学邀请赛试题)解:设方程的两整数根为x1、x2 ,不妨设x1&le;x2.由韦达定理,得x1+x2=-p ,x1x2=q.于是x1&middot;x2-(x1+x2)=p+q=198 ,即x1&middot;x2-x1-x2+1=199.&there4;运用提取公因式法(x1-1)&middot;(x2-1)=199.注意到(x1-1)、(x2-1)均为整数,解得x1=2 ,x2=200;x1=-198 ,x2=0.。

初中数学的韦达定理

初中数学的韦达定理

初中数学的韦达定理一、韦达定理的内容1. 对于一元二次方程ax^2+bx + c = 0(a≠0),设它的两个根为x_{1},x_{2}。

- 韦达定理指出:x_{1}+x_{2}=-(b)/(a),x_{1}x_{2}=(c)/(a)。

二、韦达定理的推导1. 由一元二次方程ax^2+bx + c = 0(a≠0),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},设方程的两个根为x_{1}=frac{-b + √(b^2)-4ac}{2a},x_{2}=frac{-b-√(b^2)-4ac}{2a}。

2. 计算x_{1}+x_{2}:- x_{1}+x_{2}=frac{-b + √(b^2)-4ac}{2a}+frac{-b-√(b^2)-4ac}{2a}- 通分得到x_{1}+x_{2}=frac{-b+√(b^2)-4ac-b - √(b^2)-4ac}{2a}- 化简后x_{1}+x_{2}=-(b)/(a)。

3. 计算x_{1}x_{2}:- x_{1}x_{2}=frac{-b + √(b^2)-4ac}{2a}×frac{-b-√(b^2)-4ac}{2a}- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=-b,b=√(b^2)-4ac,则x_{1}x_{2}=frac{(-b)^2-(√(b^2)-4ac)^2}{4a^2}- 进一步化简x_{1}x_{2}=frac{b^2-(b^2-4ac)}{4a^2}=(4ac)/(4a^2)=(c)/(a)。

三、韦达定理的应用1. 已知方程的一个根,求另一个根- 例如,已知方程x^2-3x - 4 = 0的一个根为x_{1}=4,设另一个根为x_{2}。

- 对于方程x^2-3x - 4 = 0,这里a = 1,b=-3,c=-4。

- 根据韦达定理x_{1}+x_{2}=-(b)/(a)=3,因为x_{1}=4,所以x_{2}=3 - 4=-1。

初中数学韦达定理

初中数学韦达定理

初中数学韦达定理韦达定理是初中数学中的重要内容之一,它被广泛应用于代数求解和几何问题中。

韦达定理又称为韦达三角法则,它的基本思想是通过构造一个带有重心的三角形,利用各边与重心的连线之间的比例关系来求解未知量。

本文将详细介绍韦达定理的定义、原理以及应用实例。

一、定义和原理韦达定理是指在一个三角形中,确定三个顶点所对应边的长度和重心之间的关系。

其中,重心是指三角形三条中线的交点,它将全部三条中线按照长度等分。

韦达定理表示如下:设在一个三角形ABC中,AD为三角形的一条中线,将其分为两条相等的线段,由D可以构造三条平行于三边的线段BE、CF和AG,那么有以下关系成立:AB + AC = 2ADBC + BA = 2BECA + CB = 2CF二、韦达定理的证明我们来证明一下韦达定理。

设三角形ABC的重心为G,连接GD,并且延长至与AB相交于E,与AC相交于F。

由于G是三条中线的交点,所以AG=2GD。

同样的,通过类似的角度对应关系可以得到BE=2AB、CF=2AC。

根据平行线原理,我们知道三角形AGB与三角形GCF是相似的,所以可以写出一个比例等式:AB/AG = GC/CF将AG和CF的值代入后,我们得到:AB/2GD = GC/2AC通过移项可以得到:AC/GD = GC/AB同理,可以得到:AB/GD = GB/AC将这两个等式相加,我们得到:AC/GD + AB/GD = GC/AB + GB/AC化简后得到:(AB + AC)/GD = (GC + GB)/AB再次移项可得:AB + AC = 2GD同样的方法可以得到BC + AB = 2BE和CA + CB = 2CF,证明韦达定理成立。

三、韦达定理的应用实例韦达定理在代数求解和几何问题中具有广泛的应用。

下面给出几个具体的应用实例。

1. 已知三边长求重心若已知一个三角形的三条边的长度为a、b、c,可以利用韦达定理求解重心的坐标。

设重心的坐标为(x, y),我们可以得到以下关系:x = (ax1 + bx2 + cx3)/(a + b + c)y = (ay1 + by2 + cy3)/(a + b + c)其中,(x1, y1)、(x2, y2)、(x3, y3)分别是三个顶点的坐标。

七年级多元方程解法韦达定理学习材料

七年级多元方程解法韦达定理学习材料

一元二次方程根与系数关系(韦达定理),多元方程解法,高次方程解法一元二次方程根与系数的关系现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.一)、一元二次方程的根的判断式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:(1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=-【例1】不解方程,判断下列方程的实数根的个数:(1) 22310x x -+=(2) 24912y y +=(3) 25(3)60x x +-=说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.二)、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:1222b b bx x a a a-+--+=+=-,12244ac cx x a a⋅====定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:说明:所以通常把此定理称为”韦达定理”.【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.说明:利用根与系数的关系求值,要熟练掌握以下等式变形:*【例5】一元二次方程042=+-a x x求a 的取值范围。

韦达定理知识点及应用解析

韦达定理知识点及应用解析

一元二次方程的根与系数的关系(韦达定理)知识点与应用解析1、定义:若x 1,x 2 是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则有x 1 + x 2 = -a b , x 1·x 2 = ac 。

对于二次项系数为1的一元二次方程x2+px+q=0,则有x 1 + x 2 =-p ,x 1·x 2 =q2、应用的前提条件:根的判别式△≥0 ⇔方程有实数根。

3、若一个方程的两个为x 1,x 2 ,那么这个一元二次方程为a[x 2+(x 1+x 2)x+ x 1·x 2]=0(a ≠0)4、根与系数的关系求值常用的转化关系:①x 12+x 22=(x 1+x 2)2-2x 1x 2=a c a 2b -2-⎪⎭⎫ ⎝⎛=222a ac b - ②cb x x x x x x -=+=+21212111 ③(x 1+a)(x 2+a)= x 1x 2 +a(x 1+x 2) +a 2 =a c -b +a 2 ④(x 1-x 2)2 =(x 1+x 2)2-4x 1x 2 =2a4ac -b 2 5、方法归纳:(1)一元二次方程的根与系数的关系的运用条件条件为一元二次方程,即a ≠0,且必须有实数根,即△≥0;(2)运用一元二次方程的根与系数的关系时,一元二次方程应化为一般形式,若系数中含字母要注意分类讨论;(3)一元二次方程的根与系数的关系有时与一元二次方程根的定义综合运用,注意观察所求代数式是特点。

(4)解题思路:将含有根的代数式变形成含有两根和与两根积的式子,再通过韦达定理转化成关于系数的式子,同时要注意参量的值要满足根的实际意义。

6、一元二次方程的根与系数的关系的应用:(1)不解方程,判别一元二次方程两根的符号。

(判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,判别式判定根的存在与否,若<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

多次方程的韦达定理定律

多次方程的韦达定理定律

多次方程的韦达定理定律引言:多次方程是数学中的重要概念之一,它在各个领域都有广泛的应用。

而韦达定理则是解多次方程的一种常用方法。

本文将介绍韦达定理的原理和应用,并通过实例演示其解题过程。

一、韦达定理的原理:韦达定理是基于多次方程的根与系数之间的关系。

对于一个m次多次方程a0x^m + a1x^(m-1) + ... + am-1x + am = 0,其根为x1、x2、...、xm,韦达定理可以表示为以下形式:x1 + x2 + ... + xm = -a1/a0x1x2 + x1x3 + ... + x1xm + x2x3 + ... + x2xm + ... + xm-1xm = a2/a0...x1x2...xm = (-1)^m * am/a0二、韦达定理的应用:韦达定理可以帮助我们求解多次方程的根,尤其是当方程次数较高时,使用韦达定理可以简化计算过程。

下面通过一个实例来说明韦达定理的应用。

实例:假设有一个三次方程2x^3 - 5x^2 + 3x - 1 = 0,我们可以使用韦达定理来计算其根。

根据韦达定理,我们可以得到以下等式:x1 + x2 + x3 = 5/2x1x2 + x1x3 + x2x3 = 3/2x1x2x3 = 1/2通过观察方程系数,我们可以猜测方程的根为1、1/2和-1/2。

将这些根代入韦达定理的等式中,可以验证等式的成立。

我们得到了方程的三个根。

在实际应用中,我们可以通过韦达定理来找到多次方程的根,从而解决各种问题。

三、总结:韦达定理是解多次方程的一种常用方法,它通过根与系数之间的关系,简化了多次方程的求解过程。

通过本文的介绍和实例演示,我们了解了韦达定理的原理和应用。

在实际应用中,我们可以灵活运用韦达定理来解决各种与多次方程相关的问题。

结语:多次方程的韦达定理定律是数学中的重要知识点,通过学习和应用韦达定理,我们可以更好地理解和解决多次方程相关的问题。

希望本文能够对读者有所启发,加深对韦达定理的理解和运用能力。

韦达定理

韦达定理

韦达定理长清一中初中部 董淑娟一、预习内容(1)写出一元二次方程的一般形式和求根公式(2)解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?⑴ x 2+2x = 0 ⑵ x 2+3x -4= 0 ⑶ x 2-5x +6= 02. 尝试探索,发现规律:完成上表猜想一元二次方程的两个解的和、积与原来的方程有什么联系?请与小组中的同学交流你的看法,并总结你们的观点。

二、学习内容推导验证:设x 1、x 2是方程ax 2+bx+c=0(a≠0)的两个根.x 1+x 2= x 1.x 2=由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系) 如果ax 2+bx+c=0(a≠0)的两个根是x 1,x 2,那么x 1+x 2=_____________x 1.x 2=_______★注意:一元二次方程的根与系数的关系的应用有两大前提一、它是____________方程即条件为_______;二、方程必须_____________即条件为____________. 三、知识点梳理:1、韦达定理 如果一元二次方程ax 2+bx+c=0(a ≠0)的两个实数根是21,x x ,那么ac x x a b x x =-=+2121, 知识点剖析:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系。

韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系. 2、应用:(1)验根,不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求另一根及未知系数的值;(3)已知方程的两根满足某种关系,求方程中字母系数的值或取值范围; (4)不解方程可以求某些关于21,x x 的对称式的值,通常利用到:2122122212)(x x x x x x -+=+212212214)()(x x x x x x -+=- ()|a |x x 4x x ||2122121∆=-+=-x x当21x x +=0且21x x ≤0,两根互为相反数; 当⊿≥0且21x x =1,两根互为倒数。

浅析韦达定理的应用与拓展

浅析韦达定理的应用与拓展

浅析韦达定理的应用与拓展摘要:“韦达定理”在中学教材中称为“一元二次方程根与系数的关系”,在求解一元二次方程的参数的值或代数式的值时有着重要作用,同时也可以反过来构造一元二次方程,将相关问题转化为一元二次方程问题,另辟蹊径,化繁为简。

关键词:韦达定理,方程,构造一、定理概叙韦达,1540年出生于法国的波亚图,他对数学有浓厚的兴趣,韦达是第一个系统地使用字母的人,使人类对代数学理论的认识产生了质的飞跃。

韦达解决了45次方程根的问题,消息传开,数学界为之震惊。

在此基础上韦达研究了方程根与系数的关系,在一元二次方程中存在两根的和,两根的积与其系数之间的代数关系---韦达定理。

韦达定理:实系数一元二次方程≠0),当根的判别式时,存在实数解,那么,这是在初中时韦达定理的概述,随着数系扩充,由代数基本定理可推得:任何一元 n 次方程在复数集中必有根。

因此,该方程的左端可以在复数范围内分解成一次因式的乘积,两端比较系数即得韦达定理,所以韦达定理在复数范围内同样适用,而对于高次方程,韦达定理更有妙用。

这里我们只谈谈在初中学习阶段中韦达定理的应用。

二、定理证明求根公式法:根据将≠0)配方得到的可得三、韦达定理的应用在初中数学的学习中,韦达定理及其逆定理的应用是很广泛的,主要有如下的应用:1.两根和、积1.求代数式的值2.知方程的一根,求另一根3.其他对称式的值韦达定理应用 2.求待定系数3.构造新方程4.整体思想求解二元二次方程组5.与判别式的综合应用下面就简要地应用韦达定理解决相关问题(设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,如何用两根和(x1+x2)与两根积(x1·x2)来表示某些关于x1,x2的代数式是用韦达定理解题的重要环节。

如:不解方程,求两根之和与两根之积。

解析:根据韦达定理可知:,。

如:(求另一根,求待定系数).已知3是关于x的方程的一个根,求另一个根和的值。

是否另一根解析:i)经判断另一根不同为3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的根与系数的关系(韦达定理)知识点及应用解析
1 、定义:若 x 1 , x
2 是一元二次方程ax 2 +bx+c=0 (a ≠ 0) 的两个根,则有 x 1 + x 2 = - ,
x 1 · x 2 = 。

对于二次项系数为 1 的一元二次方程 x2+px+q=0 ,则有 x 1 + x 2 =-p , x 1 · x 2 =q
2 、应用的前提条件:根的判别式△≥ 0 方程有实数根。

3 、若一个方程的两个为 x 1 , x 2 ,那么这个一元二次方程为 a[x 2 +(x 1 +x
2 )x+ x 1 · x 2 ]=0(a ≠ 0)
4 、根与系数的关系求值常用的转化关系:
① x 1 2 +x 2 2 =(x 1 +x 2 ) 2 -2x 1 x 2 = =

③ (x 1 +a)(x 2 +a)= x 1 x 2 +a(x 1 +x 2 ) +a 2 = -b +a 2
④ (x 1 -x 2 ) 2 =(x 1 +x 2 ) 2 -4x 1 x 2 =
5 、方法归纳:( 1 )一元二次方程的根与系数的关系的运用条件条件为一元二次方程,即a ≠ 0 ,且必须有实数根,即△≥ 0 ;
( 2 )运用一元二次方程的根与系数的关系时,一元二次方程应化为一般形式,若系数中含字母要注意分类讨论;
( 3 )一元二次方程的根与系数的关系有时与一元二次方程根的定义综合运用,注意观察所求代数式是特点。

( 4 )解题思路:将含有根的代数式变形成含有两根和与两根积的式子,再通过韦达定理转化成关于系数的式子,同时要注意参量的值要满足根的实际意义。

6 、一元二次方程的根与系数的关系的应用:
( 1 )不解方程,判别一元二次方程两根的符号。

(判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,判别式判定根的存在与否,若
< 0 ,所以可判定方程的根为一正一负;倘若> 0 ,仍需考虑的正负,方可判别方程是两个正根还是两个负根。


例:不解方程,判别方程两根的符号。

解:∵ ,∴△=—4 × 2 × (—7) = 65 > 0
∴方程有两个不相等的实数根。

设方程的两个根为,
∵ < 0
∴原方程有两个异号的实数根。

( 2 )已知一元二次方程的一个根,求出另一个根以及字母系数的值。

例:已知方程的一个根为 2 ,求另一个根及的值。

解:设方程的另一个根为,
根据题意,利用韦达定理得:

∵ ,∴把代入,可得:
∴把代入,可得:


解得
∴方程的另一个根为 4 ,的值为 3 或—1 。

( 3 )运用判别式及根与系数的关系解题。

例:已知、是关于的一元二次方程的两个非零
实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,
解:因为关于的一元二次方程有两个非零实数根,
∴则有

又∵ 、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得:
假设、同号,则有两种可能:
( 1 )( 2 )
若,则有:;
即有:
解这个不等式组,得
∵ 时方程才有实树根,∴此种情况不成立。

若,则有:
即有:
解这个不等式组,得;
又∵ ,∴当时,两根能同号
(4) 运用根与系数的关系求代数式的值
例 : 已知一元二次方程 2x 2 -3x+1=0 的两个根分别为 x 1 , x 2 ,求( x 1 -x 2 ) 2 的值
解:由题意及韦达定理得: x 1 +x 2 = - ( - ) = , x 1 x 2 =
∴ (x 1 -x 2 ) 2 =(x 1 +x 2 ) 2 -4x 1 x 2 = () 2 -4 × =
∴ ( x 1 -x 2 ) 2 的值是
(5) 运用根与系数的关系解决几何问题
例:在△ ABC 中,若∠ C=90 ° , AB=5 , AC 、 BC 的长是关于 x 的一元二次方程x 2 -(2k+3)x+k 2 +3k+2=0 的两个实数根,求 k 的值和△ ABC 的面积
解:∵ AC 2 +BC 2 =25
∴ (AC+BC) 2 -2AC · BC=25
∵ AC+BC=2K+3,AC · BC=K 2 +3K+2
∴ (2K+3) 2 -2(K 2 +3K+2)=25
整理,得 k 2 +3k-10=0
解得 k 1 =-5,k 2 =2
∵ AC+BC=2K+3 ﹥ 0
∴ k ﹥ -1.5, ∴ k=2
∴ S △ ABC = AC · BC= (K 2 +3K+2)=6。

相关文档
最新文档