一次函数的“最值”

合集下载

一次函数中的最值问题

一次函数中的最值问题

一次函数中的最值问题问题1 如图,要在燃气管道l 上修建一个泵站,分别向A ,B 两城镇供气.泵站修在什么地方,可使所用的输气管线最短?问题2 如图,已知点A (4,3),点B (0,1)。

(1)求一次函数解析式; (2)若点C 是x 轴上一动点,当AC +BC 的值最小时,求C 点坐标。

问题3 如图,已知点A (4,3),点B (0,-1)。

若点C 是x 轴上一动点,当BC AC 的值最大时,求C 点坐标.问题4 如图,已知点A (4,3)。

若点C 是直线y=-x+4上一点,B 是直线x=5上一点,当△ABC 的周长最小时,求C 、B 两点的坐标.问题5 如图,已知点A (4,3),B (1,2)。

若点C 是y 轴上点,D 是x 轴上一点,当四边形ABCD 的周长最小时,求C 、D 两点的坐标.问题6 如图,平面直角坐标系中A (1,4),B (3,2),C. D 为x 轴上两动点,且CD =1,试求四边形ACDB 周长最小时,C. D 两点的坐标。

问题7 已知直角坐标系内的点A (4,1)、B (3,2),试分别在直线y =x 和x 轴上找点C. D 使得四边形ABCD 的周长最短。

(1)作图(并写出作法) (2)写出C. D 两点坐标。

问题8如图,已知点A (2,0)、B (−1,1),点P 是直线y =−x +4上任意一点。

(1)当点P 在什么位置时,△P AB 的周长最小?求出点P 的坐标及周长的最小值;(2)在(1)的条件下,求出△P AB 的面积。

B问题2(1)把点A、B的坐标代入一次函数解析式y=kx+b(k≠0)列出关于k、b的方程组,通过解该方程组即可求得它们的值;(2)利用轴对称--最短距离来求点C的坐标.作点A (4,3)关于x轴的对称点A′(4,-3),连接BA′交x轴于点C,则此时AC+BC取得最小值.然后利用待定系数法求得直线BA′的解析式,然后将y=0代入求得的直线的解析式即可求得点C的坐标.解答:(1)设直线AB的解析式为y=kx+b(k≠0).依题意,得{4k+b=3b=1,解得,⎧⎩⎨k=12b=1,所以,该一次函数的解析式为:y=1/2x+1;(2)如图,作点A(4,3)关于x轴的对称点A′(4,−3),连接BA′交x轴于点C,则此时AC+BC取得最小值。

一次函数的应用

一次函数的应用
(2)设 CD 段的函数解析式为 y=kx+b,将 C(2.5,80),D(4.5,300) 两点的坐标代入,运用待定系数法即可求解;
(3)设货车从甲地出发 x 小时后再与轿车相遇,根据轿车(x-4.5)小时 行驶的路程+货车 x 小时行驶的路程=300 千米列出方程,解方程即可.
考点聚焦
归类探究
回归教材
例 1 [2013·山西] 某校实行学案式教学,需印制若干份数学 学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用 y(元)与印刷份数 x(份)之间的关系如图 11-1 所示:
考点聚焦
归类探究
回归教材
(1)填空:甲种收费方式的函数关系式是__y_甲__=__0_.1_x_+___6; 乙种收费方式的函数关系式是___y_乙_=__0_._1_2_x.
段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段 函数的分界点;(2)针对每一段函数关系,求解相应的函数解析式; (3)利用条件求未知问题.
考点聚焦
归类探究
回归教材
探究三 利用一次函数解决其他生活实际问题
命题角度: 函数图象在实际生活中的应用.
例 3 甲、乙两地相距 300 千米,一辆货车和一辆轿车先后 从甲地出发向乙地,如图 11-3,线段 OA 表示货车离甲地距 离 y(千米)与时间 x(小时)之间的函数关系;折线 BCD 表示轿车 离甲地距离 y(千米)与 x(小时)之间的函数关系.请根据图象解 答下列问题:
度上升和下降阶段 y 与 x 之间的函数关 系式.
图 11-4
考点聚焦
归类探究
回归教材
解:(1)由图象知,服药后 3 小时血液中药物浓度最高. (2)当 0≤t≤3 时,函数为正比例函数,设关系式为 y=kx(k≠0),

5 一次函数与二次函数-函数的最值--李惟峰

5 一次函数与二次函数-函数的最值--李惟峰

5.函数的最值对于一次函数,)(b kx x f y +==当k>0时,y 随着x 的增大而增大,则在给定的b x a ≤≤上,有最大值f (b),最小值f (a ).当k<0时,y 随着x 的增大而减小,则在给定的b x a ≤≤上,有最大值f(a),最小值f(b).对于二次函数),0()(2=/++==a c bx ax x f y 取最值的情况如下.1.若自变量为任意实数,则有两种情况:(1)当abx a 2,0-=>时,有 ⋅-⋅=ab ac y 442最小值(2)当abx a 2,0-=<时,有⋅-=ab ac y 442最大值2.若自变量x 的取值范围为).(n m n x m =/≤≤时,则要结合二次函数的对称轴与给定范围的三种位置来分析:(1)对于a>0.①当abn m 2-≤<时,因对称轴的左侧y 是随x 的增大而减小的,即单调递减,所以最大值为f(m),最小值为f(n);②当n a b m <-<2时,因范围过了抛物线的对称轴,所以最小值为),2(abf -而最大值为)()(n f m f 、的较大者;③当n m ab<≤-2时,因对称轴的右侧y 是随x 的增大而增大的.即单调递增,所以最大值为f(n),最小值为f (m ). (2)对于a<0.①当a bn m 2-≤<时,对称轴的左侧是单调递增的,所以最大值为f(n),最小值f (m); ②当n a b m <-<2时,最大值为),2(a bf -最小值为f(m)、f(n)的较小者;③当n m ab<≤2-时,对称轴的右侧是单调递减的,所以最大值为f(m),最小值为f(n). 例1 设),0)(1(1)(>-+=a x aax x f 求f(x)在10≤≤x 时的最小值g (a ).分析 函数f (x)是一次函数,而⋅-=a a k 1由于aa 1-不知是大于O ,还是小于0,故需对其进行分段讨论,解 原函数化为⋅+-=ax a a x f 1)1()( 当a>l 时,,01>-aa 则函数f(x)为单调递增,这时f(x)在≤≤x 01上的最小值应在0=x 处取到,即;1)0(af =当O<a<l 时,,01<-aa 则函数f(x)为单调递减,这时f(x)在≤01≤x 上的最小值应在x=l 处取到,即;)1(a f =当1=a 时,ax f 1)(=是常量函数, 所以有 ⎪⎩⎪⎨⎧<<⋅≥=).10(),1(1)(a aa aa g例2 已知函数4)2.(2)3()(2--+-=x a x a x f 的最大值小于,21a 的取值范围, 解 4)2(2)3()(2--+-=x a x a x f⋅-+-+----=3168)32)(3(22a a a a a x a因为f(x)有最大值,且最大值小于,21故有 ⎪⎩⎪⎨⎧<-+-<-,23168,032i a a a a解得.527<<a 例3 设m 是不小于-1的实数,使得关于X 的方程+-+x m x )2(220332=+-m m 有两个不相等的实数根⋅21x x 、(1)若,62221=+x x 求m 的值;(2)求22212111x mx x mx -+-的最大值. (全国初中数学竞赛)解 因为方程有两个不相等的实数根,所以)33(4)2(422+---=∆m m m44+-=m,0>则 ,1<m 结合题设知 .11<≤-m(1) 因为 2221x x +212212)(x x x x -+=)33(2)2(422+---=m m m ,101022+-=m m所以 ,6101022=+-m m 即 ,041022=+-m m解得 ⋅±=2175m 由于 ,11<≤-m 所以 ⋅-=2175m (2)因为 22212111x mx x mx -+- )1)(1()]1()1([21122221x x x x x x m ---+-=212121212221)(1)]([x x x x x x x x x x m ++-+-+=)33()42(1)]42)(33()10102[(222+-+-+-+-++-=m m m m m m m m m m m m m m m --+-=223)2882( ,)1()13)(1(22-+--=m m m m m m可设 )13(22+-=m m y,25)23(22--=m由y 在-1≤m<l 上是递减的,所以当1-=m 时,原式有最大值为10.例4 设p 是实数,二次函数P Px x y --=22的图象与x 轴有两个不同的交点).0,()0,(21x B x A 、(1)求证:;032221>++P x Px(2)若A 、B 两点之间的距离不超过|2p-3 |,求p 的最大值.(全国初中数学联赛)解 (1)因为二次函数与x 轴有两个不同的交点,则,044)(4)2(22>+=---=∆P P P P所以 P x Px 32221++P P Px Px 32221+++= P x x P 4)(221++=P P P 4)2(2+= .0442>+=P P(2)因为 ||||21x x AB -=212214)(x x x x -+=,442P P +=由题意得 |,32|44-≤+P P P 两边平方得 ,91244422+-≤+P P P P所以 ,169≤P 即p 的最大值为⋅169 例5 a 、b 是正数,并且抛物线b ax x y 221++=和++=bx x y 222a 都与x 轴有公共点,求22b a+ 的最小值, 解 由题意得⎪⎩⎪⎨⎧≥-=∆≥-=∆,044,082221a b b a 即 ⎪⎩⎪⎨⎧≥≥.,822a b b a又因为a 、b 都为正数,所以有,646424a b a ≥≥ 即 .4≥a同理有 ,42≥≥a b即 .2≥b因此 ,2,4min min ==b a故 .20416)(22=+=+n m r b a例6 已知a 、b 为实数,求b a b ab a 2.22--++的最小值.解 设,222b a b ab a y --++=整理成关于a 的一元二次方程为.02)1(22=--+-+y b b a b a因为a 为实数,即方程有实根,则,0)2(4)1(22≥----=∆y b b b整理得 .014632≤---y b b上式表示函数 14632---=y b b u 有非正值,于是函数的判别式应大于或等于O ,即,0)14(3436≥+⨯+y解得 .1-≥y当1-=y 时,得,1=b 从而求得.0=a所以当1,0==b a 时,有最小值-1.说明 注意列式子中含有ab 项,所以通常可考虑换元.令,v u a +=,v u b -=则可消去ab 项,转化为u 、v 的式子,即)(2)()())(()(22zJ u v u v u zJ u v u v u y --+--+-+++=v u v u +-+=33221)21()21(322-++-=v u,1-≥当且仅当21=u 且21-=v 时,有最小值-1. 例7 求函数x x y 21-+=的最大值,解 令,21x t -=则,0,212≥-=t t x 于是有t t y +-=212),0(21212≥++-=t t t对称轴为t=l ,由函数的图象知,当t=l 时,即x=0时,y 有最大值1.评注 形如e dx c b ax y +++=的函数,通常设,0≥+=e dx t 化原函数为关于t 的一元二次函数形式,再配方求最值.例8 求函数|]211[1|)(+-=x x x f 的最大值,并求此时的x 值,其中[a]表示不超过a 的最大整数. 解 设211,]211[+=+ x n x 的小数部分为a(O≤a<1),则有 ,211α+=+n x由题意得⋅-=-⋅=+-=|21||1||]211[1|)(αn x x x x f 又因为 ,212121<-≤-α所以 ⋅≤21)(x f故当a=0,即122-=k e x (k∈Z)时,f(x)的最大值为⋅21例9 已知1)(2-+=ax x x f 在区间[0,3]上有最小值-2,求a 的值,分析 因函数的对称轴为,2ax -=区间[0,3]和对称轴的位置关系不知,故应根据图象,分三种情况加以讨论.解 由题意,对称轴为⋅-=2a x (1)当02⋅≤-a时,即a≥0时,区间[0,3]在对称轴的右侧,则f(x)的最小值为 ,1)0(-=f不合题意,舍去.(2)当320<-<a时,即06<<-a 时,则f(x)的最小值为 ,21)2()()2(2-=--+-=-aa a f解得 .2±=a因为,06<<-a 所以取.2-=a(3)当32≥-a时,即6-≤a 时,区间在对称轴的左侧,则f(x)的最小值为 ,2139)3(-=-+=a f解得 ,310-=a 又因为,6-≤a 故舍去.综上所述,得.2-=a 例10 若函数21321)(2+-=x x f 在区间[a ,b]上的最小值为2a ,最大值为2b.求a 、b 的值, 解 函数的对称轴为x-0,下面分三种情况加以讨论:(1)若b a <≤0时,即函数f(x)在区间[a ,b]上单调递减,有⎩⎨⎧==,2)(,2)(a b f b a f即 ⎪⎪⎩⎪⎪⎨⎧=+-=+-,221321,22132122a b b a解得 ⎩⎨⎧⋅==.3,1b a(2)若a<O<b 时,则由函数图象知,f(x)在[a ,0]上单调递增,在[O ,b]上单调递减,即区间过了对称轴,因此f(x)在0=x 处有最大值2b,即,2132=b 得 ⋅=413b而函数的最小值在a x =或b x =处取得,又由于a<O ,并且,03239213)413(21)(2>=+-=b f故函数的最小值在a x =处取得,即,2)(a a f =则有,2132122+-=a a解得 172--=a 或172+-=a (舍去).从而 ⎪⎩⎪⎨⎧⋅=--=413,172b a (3)当a<b≤O 时,即f(x)在区间[a, b]上单调递增,有⎪⎪⎩⎪⎪⎨⎧=+-=+-.221321,22132122b b a a 由于a 、b 是方程x x 2213212=+-的两个根,又因为两根之积为负数,即两根异号,这与 0≤<b a 矛盾,故不存在,综合上述,得⎩⎨⎧==,3,1b a 或⎪⎩⎪⎨⎧⋅=--=413,172b a 例11 已知函数,1)1(2)2(22+--+=x a x a y 其中自变量x 为正整数,a 也是正整数,求x 为何值时,函数值最小.解 由题意,得,2)1(1)21)(2(2222+--++--+=a a a a x a y其对称轴为 ,212+-=a a x 即 ⋅++-=23)2(a a x 因为a 为正整数,故,1230≤+<a ,12122-≤+-<-a a a a因此,函数的最小值只可能在x 取21,1,22+---a a a a 时达到.(1)当1212-=+-a a a 时,即,1=a 此时1=x 时函数取得最小值. (2)当12122-<+-<-a a a a 时,即a>l ,由于x 为正整数,而212+-a a 为小数,故212+-=a a x 不能达到最小值.当2-=a x 时,则;1)2)(1(2)2)(2(22+----+=a a a a y i当1-=a x 时,则.1)1)(1(2)1)(2(222+----+=a a a a y故 .421a y y -=-(i)当,04>-a 即,.41<<a 且a 为正整数时,x 取,1-a y 有最小值;2y (ii)当,04=-a 即4=a 时,有,21y y =此时x 取2或3,y 有最小值; (iii)当,04<-a 即4>a 时,且a 为正整数时,x 取y a ,2-有最小值⋅1y 综上可得,当⎪⎪⎩⎪⎪⎨⎧>⋅-=<<-==)4(2),4(32),41(1),1(1a a a a a a x 或(其中a 为正整数)时,函数值最小.习 题 51 如果,22||≤x 求函数12++-=x x y 的最小值, 2 设x 、y 、z 为三个非负实数,且满足.132,523=-+⋅=++z y x z y x 求x y x u 73-+=的最大值和最小值.3 二次函数x a x y )1(22++=的图象永远在二次函数b x x y -+=2的图象的上方,求点(a ,b )所处的范围.4 求函数132)(+-+=x x x f 的值域.5 已知二次函数42)3(22++++=a x a x y 的图象与x 轴的两个交点的横坐标分别为α、β,当实数α变动时,求22)1()1(-+-βα的最小值.6 已知,1222=+y x 求252y x +的最大值和最小值.7 求143322++++=x x x x y 的最大值,8 已知函数),0(12)(2=/+-=a ax ax x f 求f(x)在闭区间[-1,2]上的最值. 9 已知不等式b x x a ≤+-≤642的解为a≤x≤b,求a 与b 的值.10 已知函数)(x f y =表示 1-x 与|34|2+-x x 两者中较大的一个,求在50≤≤x 内函数x x f -)(的取值范围.11 把一张边长为a 的正方形纸ABCD 折起来,使B 点落在AD 上,问B 点落在AD 什么位置上时,使折起来的面积最小,并求出这最小面积的值.12 设x 、y 都是正整数,且使⋅=++-y x x 110116求y 的最大值.13 已知函数.42)4()(2+--+=k x k x x f(1)若对于任意0)(],1,1[>-∈x f k 恒成立,求x 的取值范围; (2)若对于任意0)(],1,1[>-∈x f x 恒成立,求k 的取值范围.参考答案。

一次函数的“最值”

一次函数的“最值”

一次函数的“最值”一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.一次函数的“最值”由一次函数的性质决定,与其k值、自变量的取值范围密切相关:⑴k>0时,y随x增大而增大.因此,x取最小值时,y有最小值;x取最大值时,y 有最大值.⑵k<0时,y随x增大而减小.因此,x取最小值时,y有最大值;x取最大值时,y 有最小值.求一次函数的最大、最小值,一般都是采用“极端值法”.即用自变量的端点值,根据函数增减性,对应求出函数的端点值(最值).请看以下实例.例1.已知一次函数y=kx+b中自变量x的取值范围是-2≤x≤6,相应的函数取值范围是-11≤y≤9.求此函数的解析式.解析:x的取值范围与函数y的取值范围的对应情况,由k值的符号确定.故应分类讨论.⑴k>0时,y随x增大而增大.x=-2时,y=-11;x=6时,y=9.∴解得∴y=x-1⑵k<0时,y随x增大而减小.x=-2时,y=9;x=6时,y=-11.∴解得∴y=-x+14例2.康乐公司在A、B两地分别有同型号的机器17台和15台,现在运往甲地18台、乙地14台.从⑴如果从x(台)的函数解析式;⑵若康乐公司请你设计一种最佳调运方案,使总的费用最少,则该公司完成以上调运方案至少需要多少费用?为什么?解析:⑴y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300⑵由①x≥0;②17-x≥0;③18-x≥0;④x-3≥0 ∴3≤x≤17∵k=500>0,∴y随x增大而增大,x取最小值时,y有最小值.∴x=3时,y最小值=500×3+13300=14800(元)故该公司完成以上调运方案至少需14800元运费.调运方案为:由A地运往甲地3台,运往乙地14台;由B地运往甲地15台.。

一次函数绝对值和最值问题

一次函数绝对值和最值问题

含绝对值函数综合问题一、含绝对值函数的最值1、含一个绝对值的一次绝对值函数的最值、单调性、对称性(1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值“(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x =(2)()||(0)f x kx b k =+≠图像是以(,0)b k-为顶点的“V ”字形图像;在顶点取得最小值:“()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k=- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值:“()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =-0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值:“()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =-2、含两个绝对值的一次绝对值函数的最值、单调性、对称性(1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的“平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2m n x +=。

(2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在(,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。

八年级数学-一次函数最值的应用例说

八年级数学-一次函数最值的应用例说

八年级数学-一次函数最值的应用例说在经济问题中,常会遇到求函数的最大值和最小值问题,如求最大利润、最小成本、确定最优的生产方案等问题,以图达到最经济、最节约和最高的经济效率.谈到最值问题,人们关心的是二次函数的最值问题.而对一次函数最值的应用问题却很少了解,但在实际问题中,一次函数的最值的应用极为广泛.一次函数y=kx+b(k≠0)的自变量x的取值范围是一切实数,所以一次函数没有最大(小)值,但是,当自变量在某个闭区间a≤x≤b内取值时(a,b为实数),一次函数y =kx+b却存在着最大(小)值.例1 20个农场职工种50亩地,这些地可以种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的职工和预计的产值如下:问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?解设种蔬菜、棉花、水稻的土地分别为x亩、y亩、z亩,预计总产值为w元.根据已知条件,得:x+y+z=50, (1)W=1100x+750y+600z. (3)由(1)、(2)可得:y=90-3x (4)z =2x-40 (5)把(4)、(5)代入(3)得:W=50x+43500.由x≥0,y =90-3x≥0,z=2x-40≥0得:20≤x≤30.所以当x=30时,W取最大值45000元此时y =0,z =20.即种30亩蔬菜,20亩水稻才能使预计总产值最高,可达45000元.例2 48人划船,每只小船坐3人,租金2元;每只大船坐5人,租金3元,最少要付租金多少元?解设用x只大船,y只小船;要付租金W元.由题意可知:5x+3y =48, (1)W =3x+2y. (2)把(3)代入(2)得:W=3x+2y由于人数是48人,每只大船坐5人,由此可知:0<5x<48,得0<x<10,要使W最小,x 应取最大整数值.即当x =9时,W的值最小.答:最少要付租金29元.例3 在边防沙漠地带,巡逻车每天行驶200公里,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,仅留足自己返回驻地所必须的汽油,将多余的汽油留给另外三辆使用,问其它三辆车可行进的最远距离是多少公里?(1995年河北省初中数学联合竞赛试题)解设巡逻车行驶到途中B处时用了x天,其中的三辆车从B到最远处用y天,则有2[3(x+y)+2x]=14×5,即 5x+3y=35。

八年级数学一次函数中的最值问题专题解答

八年级数学一次函数中的最值问题专题解答

【总结】此题主要考查轴对称﹣﹣最短路线问题,综合运用了一次函数的知识.
4.如图所示,四边形 OABC 为正方形,边长为 6,点 A、C 分别在 x 轴,y 轴的正半轴上,点 D 在 OA 上,
且 D 点的坐标为(2,0),P 是 OB 上的一个动点,试求 PD+PA 和的最小值是 2

【思路点拨】作出 D 关于 OB 的对称点 D′,则 D′的坐标是(0,2).则 PD+PA 的最小值就是 AD′的
考点二 坐标内的线段和(差)最值问题
【方法点拨】运用“将军饮马”模型和最小,差最大 1.如图,已知点 A 的坐标为(0,1),点 B 的坐标为( ,﹣2),点 P 在直线 y=﹣x 上运动,当|PA﹣PB|
最大时点 P 的坐标为( )
A.(2,﹣2)
B.(4,﹣4)
C.( , )
D.(5,﹣5)
【解题思路】根据轴对称的性质及待定系数法可求得答案. 【解析】解:作 A 关于直线 y=﹣x 对称点 C,易得 C 的坐标为(﹣1,0);连接 BC,可得直线 BC 的方
,得到∠PBA=90°,由勾股定理求出 PM 即可
【解析】解:取 AB 的中点 M,连 OM,PM,
,另两边长度不
在 Rt△ABO 中,OM
1,在等边三角形 ABP 中,PM ,
无论△ABP 如何运动,OM 和 PM 的大小不变,当 OM,PM 在一直线上时,P 距 O 最远,
∵O 到 AB 的最大值是 AB=1,
【总结】本题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含 30 度角的直角三角形 性质的应用,关键是求出 P 点的位置,题目比较好,难度适中. 3.如图所示的平面直角坐标系中,点 A 的坐标是(﹣4,4)、点 B 的坐标是(2,5),在 x 轴上有一动点 P,

初中数学一次函数的最值问题 学法指导

初中数学一次函数的最值问题 学法指导

初中数学一次函数的最值问题一次函数)0k (b kx y ≠+=在自变量x 允许取值范围(即全体实数)内,它是没有最大或最小值的。

但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。

一般地,有下面的结论:(1)如果m x n ≤≤,那么b kx y +=有最大值或最小值(如图1):当0k >时,b km y +=最大,b kn y +=最小;当0k <时,b kn y +=最大,b km y +=最小。

图1(2)如果n x ≥,那么b kx y +=有最小值或最大值(如图2):当0k >时,b kn y +=最小;当0k <时,b kn y +=最大。

图2(3)如果m x ≤,那么b kx y +=有最大值或最小值(如图3)当0k >时,b km y +=最大;当0k <,b km y +=最小。

图3(4)如果m x n <<,那么b kx y +=既没有最大值也没有最小值。

凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。

下面是一道利用一次函数的最小值的决策问题,供同学们参考:某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A 楼,B 楼,C 楼,其中A 楼与B 楼之间的距离为40m ,B 楼与C 楼之间的距离为60m ,已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站距离之和。

(1)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?(3)在方案二的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由。

实际应用中一次函数的最值

实际应用中一次函数的最值
法: 裁 法 一 裁 法 二 裁 法 三 型 板 材 块 数 B型 板 材 块 数 l 2 2 O N
75 .
答: Q= 一
1o N = 0时 , 的最 小 值 是 15 8; 9 Q 6
张 ; 时 , 裁法一 裁 了 9 此 按 0张 , 裁 法 二 裁 了 7 按 5张 , 按
实 际 应 用 数 的最 值

兰~拳 } 帮 谁 ,l —薅 ~
堕曼 叠查蕉 鱼鲨墨堕 煎望兰焦… 复工 …堕堕 .
( ) + z 3 Q= Y+

次 函数 Y=k x+b的 定 义 域 和 值 域 都 是 全 体 实

● 一
数 , 次 函数 是 不 存 在 最 值 的. 是 , 实 际 应 用 中 , 一 但 在 在

解这个不等式组 , 得
2≤m ≤4 .
( 2手・
的整数解是 l ,0 2 . 9 2 ,1
。+ 。+ ; + .+ 。 + 。+ 。. ; + 。+ ; + .+ 。. ; . .
8 0元 . 5
答: 田大 伯 可 享 受 补 贴 5 2元 . 7
2 2 x+1 0 ( 0~  ̄ 8 0 0 30 9 0 4 ) 5 0 , <
( ) 租用 甲 型 车 辆 , 租 用 乙 型 车 ( 2设 则 6一m) . 辆
乙 型 车 的 费 用 为 Y元 , 由题 意 , 得
r +2y =25 0 , 0
Y = 一

+ 1 0. 2
2 +3 z= 1 O. 8

【 + 2 5 . 2 Y= 4 0
f 一8 0 x -v vv, 0
z= 一专 +6 . 0

关于一次函数的最大值和最小值_韦深培

关于一次函数的最大值和最小值_韦深培

【学法指导】关于一次函数的最大值和最小值韦深培(广西宜州市洛西中学,广西宜州546306)摘要:一次函数y=kx+b(k≠0)在一般情况下是单调函数,没有最大值和最小值,但在某些特定情况下,比如对于一些特定的定义域,一次函数却存在最大值或最小值,尤其是应用题,常常附加某些特定条件,使一次函数附加了特定的定义域,于是,一次函数在特定的定义域内就有了最大值和最小值了,因此,对于一次函数的最值问题,切切不可等闲视之。

关健词:一次函数;最值;中学数学中图分类号:G633.6文献标志码:A文章编号:1674-9324(2012)06-0144-02我们知道,一次函数的解析式为y=kx+b(k≠0)在不同的定义域范围具有不同的最值。

一、一次函数在定义域内最值的判别法则(1)如果定义域是(-∞,+∞)则不管是k>0或者是k<0,函数都没有最大值,也没有最小值(2)如果定义域是[x0,+∞),且k>0,则函数在定义域内为增函数,于是函数在点x0有最小值y0=f(x0),函数没有最大值,函数值域是[f(x0),+∞](3)如果定义域是[x0,+∞),且k<0,则函数在定义(x0)函数域内为减函数,于是函数在点x0有最大值y0=f(fx0)]没有最小值,函数值域是[-∞,(4)如果定义域是(-∞,x0],且k>0,则函数在定义(x0),函数域内为增函数,于是函数在x0有最大值y0=f没有最小值,函数值域是[-∞,(fx0)](5)如果定义域是(-∞,x0],且k<0,则函数定义域(x0),函数没内是减函数,于是函数在x0有最小值y0=f有最大值,函数值域是[f(x0),+∞](6)如果定义域是[x1,x2],且k>0,则函数在定义域内是增函数,于是函数在x1有最小值y1=f(x1),在x2有最大值y2=f(x2),函数值域是[f(x1),(fx2)](7)如果定义域是[x1,x2],且k<0,则函数定义域内是减函数,于是函数在x1有最大值y1=f(x1),在x2有最小值y2=f(x2),函数值域是[f(x2),(fx1)]这些判别法则无需死记硬背,只要把定义域以及函数的增减性构造一个大致的图形框架,做到心目中有个图谱,那么,一次函数的最值就一目了然了。

中考 函数专题13 一次函数-最值问题(老师版)

中考 函数专题13 一次函数-最值问题(老师版)

专题13 一次函数-最值问题本专题是一次函数背景下的最值问题,题型上有三个方面,(1)函值性质中的最值问题;(2)几何图形中的最值问题;(3)利用一次函数性质解决生活中的最值问题;通过本专题的学习,让学生对最值问题的认知更全面,从而全面提升学生的分析和解决问题的能力。

本专题适合教师对学生进行专题教学,也适合教师对学生进行个体辅导。

题型一:一次函数性质(增减性)最值问题一、单选题1.(2019·合肥寿春中学 )设20k -<<,关于x 的一次函数()31y kx x =++,当01x ≤≤时的最小值是( )A .kB .3k +C .6k +D .3【答案】D【解析】把一次函数()31y kx x =++整理,得()()3133,y kx x k x =++=++判断出30k +>,根据一次函数的性质即可得到当01x ≤≤时的最小值. 【详解】()()3133,y kx x k x =++=++20,k -<< 30k ∴+>故0x =取最小值为3,故选:D.【考点】一次函数()0y kx b k =+≠的性质,当0k >时,y 随x 的增大而增大.当k 0<时,y 随x 的增大而减小.2.(2018·余姚市梁辉初级中学中考模拟)设0<k <2,关于x 的一次函数y=(k -2)x+2,当1≤x≤2时,y 的最小值是( )A .2k -2B .k -1C .kD .k+1【答案】A【解析】先根据0<k <2判断出k -2的符号,再判断出函数的增减性,根据1≤x≤2即可得出结论.【详解】∵0<k <2,∴k -2<0,∴此函数是减函数,∵1≤x≤2,∴当x=2时,y 最小=2(k -2)+2=2k -2.故选A .【考点】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k <0,y 随x 的增大而减小。

3.(2018·广东初二学业考试)一次函数()y k 1x k =--的大致图象如图所示,关于该次函数,下列说法错误的是( )A .k 1>B .y 随x 的增大而增大C .该函数有最小值D .函数图象经过第一、三、四象限【答案】C 【解析】根据一次函数的增减性确定有关k 的不等式组,求解即可. 【详解】观察图象知:y 随x 的增大而增大,且交与y 轴负半轴,函数图象经过第一、三、四象限,所以,k - 1> 0 , - k<0 , 解得:k 1>,该函数没有最小值,故选C .【点拨】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.二、填空题4.(2020·辽宁初二期末)已知一次函数2y x =-+,当31x -≤≤-时,y 的最小值是________.【答案】3【解析】根据一次函数的性质得出当31x -≤≤-时,y 的取值范围即可.【详解】∵k=-1<0,∴y 随x 的增大而减小,∴当31x -≤≤-时,∴x = - 1 时,函数值最小,最小值为3. 故答案为:3.【点拨】本题考查了一次函数的性质,掌握一次函数的增减性是解题的关键.5.(2019·安徽省桐城市黄岗初中初二月考)在一次函数23y x =+中,当 05x ≤≤时,y 的最小值为____________.【答案】3【详解】k =2>0,∴y 随x 的增大而增大,∴当x =0时,y 有值小值,把x =0代入y =2x +3得y =0+3=3.故答案为3.【点拨】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降;当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.6.(2019·江西初二期末)已知一次函数y =﹣2x +5,若﹣1≤x ≤2,则y 的最小值是_____.【答案】1【详解】解:∵一次函数y =﹣2x +5,k =﹣2<0,∴y 随x 的增大而减小,∵﹣1≤x ≤2,∴当x =2时,y 的最小值是1,故答案为:1【点拨】此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键. 7.(2018·梅州市梅县区松口中学初二月考)在一次函数23y x =+中,y 随x 的增大而____________(填“增大”或“减小”),当 05x ≤≤时,y 的最小值为____________.【答案】增大 3【解析】由题意得:∵一次函数y=2x+3中,k=2>0,∴y 随x 的增大而增大,∵此函数为增函数,∴当0≤x≤5时,y 的最小值为x=0时,y 最小=3.8.(2019·北京市第十一中学初二月考)在一次函数y =﹣2x +3中,y 随x 的增大而_____(填“增大”或“减小”),当﹣1≤x ≤3时,y 的最小值为_____.【答案】减小 ﹣3【解析】根据一次函数的性质得一次函数23y x =+﹣,y 随x 的增大而减小;然后计算3x =时得函数值即可得到y 的最小值.【详解】∵k =﹣2<0,∴一次函数y =﹣2x +3,y 随x 的增大而减小;当x =3时,y =﹣2x +3=﹣3.∴当﹣1≤x ≤3时,y 的最小值为﹣3.故答案为减小,﹣3.【点拨】本题考查了一次函数的性质:0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减少,函数从左到右下降.题型 二:几何图形中最值问题;一、选择题9.(2019·广东红岭中学初二期中)一次函数y kx b =+的图象与x 轴、y 轴分别交于点(2,0)A ,(0,4)B ,点C ,D 分别是OA ,AB 的中点,P 是OB 上一动点.则DPC ∆周长的最小值为( )A .4B C . D .2【答案】D 【解析】作C 点关于y 轴的对称点C ',连接'DC ,与y 轴的交点即为所求点P ,用勾股定理可求。

一次函数的最大值和最小值

一次函数的最大值和最小值


42
数 学 通 讯 2001 年第 20 期
直 线 系

赵小云
曲 线 系
( 杭州师院数学系 , 浙江 杭州 310036)
1 直线系
保留一个参数 , 而使另一个为 1 , 即为 l 4 :
A 1 x + B 1 y + C1 + λ( A 2 x + B 2 y + C2 ) = 0 .
F 处达到 .
图1 例1图
1 μ ). ab (λ+ μ - λ 2
证 由例 1 可知 , 当 △PQ R 面积最大时 , P , Q 是矩形 A ′ B′ C′ D′ 的顶点 , R 是矩形 A B CD 的顶点 . ①设 R = A , 则
S △PQR = S △PQA ≤
1 S 2
AB′ C′ D′=
50 x + 20 y ≤ 2000 ,
1 μab < 1 ab (λ+ μ - λ μ) . 2 2 最后 , 当 P = A , Q = C′ 时,
S △PQR =
1 1 μ) . | λ- μ | ab < ab (λ+ μ - λ 2 2 下面的例 3 初看很难 , 但如果把它当作一次函
S △PQR =
数的最值问题来求解 , 问题的解决也就不太困难了 . 例3 设 x 1 , x 2 , …, x n ( n ≥ 2) 的绝对值都不超 过 1 , 试求所有可能的两两乘积之和 S 的最小值 . 解 记 S = S ( x 1 , x 2 , …, x n ) = x 1 x 2 + x 1 x 3 + …+ x 1 x n + x 2 x 3 + … + x 2 x n + … + x n - 1 x n , 固定

函数的最大值最小值

函数的最大值最小值

1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以 p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.函数的最大值和最小值2007-08-18 11:25例1.设x是正实数,求函数的最小值。

一次函数中的最值问题

一次函数中的最值问题

学校北师大三附中教师习富云时间课题一次函数中的最值问题教学目标知识与技能由实际问题中的最值问题建立数学模型引入,然后利用图形变换和一次函数在直角坐标系中确定最值点,巩固一次函数的知识并进一步体会数形结合思想.过程与方法体会图形变换在解决问题中的转化作用,利用一次函数的解析式求直线的交点,增强数学的应用意识.情感价值观在解决问题的过程中,帮助学生认识数学,体验探索的快乐与成功的喜悦.教学重点图形变换和一次函数的应用.教学难点如何通过图形变换进行转化,确定对称点坐标然后求解析式进而求得最值点教学过程活动内容师生活动设计意图一、问题探究1.提出问题问题1 如图,要在燃气管道l上修建一个泵站,分别向A,B两城镇供气.泵站修在什么地方,可使所用的输气管线最短?2.实际问题数学化如图,已知点A、B在直线l的同侧.在l上找点P,使P A+PB最小.提问:1).线段和的最小值的理论依据是什么2).如何将两条线段的和转化到一条线段上3.几何问题代数化学生独立思考,教师巡视.观察学生是否作数学化,同时对转化正确的同学给予肯定,并指出实际问题转化为数学问题是解决实际问题的第一步...学生会回答:利用两点之间线段最短;利用图形变换实现问题的转化选用“西气东输”作为背景,引导学生了解数学来源于生活.让学生明确用数学方法解决实际问题,BAlBB C B'二、拓展问题2 如图,已知点A (4,3)。

若点C 是直线y=-x+4上一点,B 是直线x=5上一点,当△ABC 的周长最小时,求C 、B 两点的坐标.分析:先找点A 关于两条直线的对称点1A (1,0)、2A (6,3),连接 1A 2A 分别较两条直线于B 、C从而将△ABC 的周长转化为线段1A 2A 的长设1A 2A 所在直线的解析式为y=kx+b ,将1A (1,0)、2A (6,3)两点坐标代入⎩⎨⎧=+=+360b k b k 求得,k=53,b=-53∴'AB 所在直线的解析式为y=53x-53∴⎪⎩⎪⎨⎧-=+-=53534x y x y∴点C 坐标为⎪⎭⎫ ⎝⎛89,823,B 的坐标为⎪⎭⎫⎝⎛512,5。

专题14 一次函数中的最值问题(解析版)

专题14 一次函数中的最值问题(解析版)

2 m 2 专题十四 一次函数中的最值问题考点一 坐标系中两点之间的距离最值问题【方法点拨】①点到直线的垂线段最短;②两点之间线段最短。

1.如图,点 P 的坐标为(2,0),点 B 在直线 y =x +m 上运动,当线段 PB 最短时,PB 的长度是 2 + 2. 【思路点拨】当线段 PB 最短时,PB 与直线 y =x +m 垂直,根据解析式即可求得 C 、D 的坐标,然后根据勾股定理求得 CD ,然后根据三角形相似即可求得 PB 的最短长度.【解析】解:当线段 PB 最短时,PB ⊥CD ,如图所示:由直线 y =﹣x +m 可知,直线与坐标轴的交点为 C (﹣m ,0),D (0,m ),∴OC =m ,OD =m ,∴CD = 2m ,∵点 P 的坐标为(2,0),∴PC =2+m ,∵∠PCB =∠DCO ,∠PBC =∠DOC =90°,∴△PBC ∽△DOC ,PB ∴OD = PC PB ,即 = 2+n , CD n ∴PB = 2 + 2 . 2 m故答案为: 2 + 2m . 【点睛】本题考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,三角形相似2n3 5 2 的判定和性质,熟知垂线段最短是解题的关键.2.如图,点 P 在第一象限,△ABP 是边长为 2 的等边三角形,当点 A 在 x 轴的正半轴上运动时,点 B 随之在 y 轴的正半轴上运动,运动过程中,点 P 到原点的最大距离是 1+ ;若将△ABP 的 PA 边长改为 2 2,另两边长度不变,则点 P 到原点的最大距离变为 1+ .1【思路点拨】根据当 O 到 AB 的距离最大时,OP 的值最大,得到 O 到 AB 的最大值是2AB =1,此时在 斜边的中点 M 上,由勾股定理求出 PM ,即可求出答案;将△ABP 的 PA 边长改为 2 2,另两边长度不变,根据 22+22= (2 2)2,得到∠PBA =90°,由勾股定理求出 PM 即可【解析】解:取 AB 的中点 M ,连 OM ,PM ,在 Rt △ABO 中,OM = AB=1,在等边三角形 ABP 中,PM = 3,无论△ABP 如何运动,OM 和 PM 的大小不变,当 OM ,PM 在一直线上时,P 距 O 最远,1 ∵O 到 AB 的最大值是2 AB =1, 此时在斜边的中点 M 上,由勾股定理得:PM = 22 — 12 = 3,∴OP =1+ 3,将△AOP 的 PA 边长改为 2 2,另两边长度不变,∵22+22= (2 2)2,∴∠PBA =90°,由勾股定理得:PM = 12 + 22 = 5,∴此时 OP =OM +PM =1+5. 故答案为:1+ 3,1+ 5.【点睛】本题主要考查对直角三角形斜边上的中线性质,坐标与图形性质,三角形的三边关系,勾股定理的逆定理等边三角形的性质等知识点的理解和掌握,能根据理解题意求出 PO 的值是解此题的关键.2 , 考点二 坐标内的线段和(差)最值问题【方法点拨】运用“将军饮马”模型和最小,差最大31. 如图,已知点 A 的坐标为(0,1),点 B 的坐标为(2,﹣2),点 P 在直线 y =﹣x 上运动,当|PA ﹣PB | 最大时点 P 的坐标为()A .(2,﹣2)B .(4,﹣4)C .( 5 — 5)D .(5,﹣5)2 【思路点拨】根据轴对称的性质及待定系数法可求得答案.【解析】解:作 A 关于直线 y =﹣x 对称点 C ,易得 C 的坐标为(﹣1,0);连接 BC ,可得直线 BC 的方程为 y =— 4x — 4;5 5求 BC 与直线 y =﹣x 的交点,可得交点坐标为(4,﹣4);此时|PA ﹣PB |=|PC ﹣PB |=BC 取得最大值,其他 BCP 不共线的情况,根据三角形三边的关系可得|PC ﹣PB |<BC ;故选:B .【点睛】本题考查轴对称的运用,有很强的综合性,难度较大.2. 如图,在平面直角坐标系中,Rt △OAB 的顶点 A 在 x 轴正半轴上,顶点 B 的坐标为(3, 3),点 C 的13 31 3+ 19 22 1坐标为(2,0)点 P 的斜边 OB 上一个动点,则 PC +PA 的最小值为()A. 2 B . 2 C . 2 D .2 7【思路点拨】作 A 关于 OB 的对称点 D ,连接 CD 交 OB 于 P ,连接 AP ,过 D 作 DN ⊥OA 于 N ,则此时PA +PC 的值最小,求出 AM ,求出 AD ,求出 DN 、CN ,根据勾股定理求出 CD ,即可得出答案.【解析】解:作 A 关于 OB 的对称点 D ,连接 CD 交 OB 于 P ,连接 AP ,过 D 作 DN ⊥OA 于 N , 则此时 PA +PC 的值最小,∵DP =PA ,∴PA +PC =PD +PC =CD ,∵B (3, 3),∴AB = 3,OA =3,∵tan ∠AOB = AB = 3,OA 3∴∠AOB =30°,∴OB =2AB =2 3,由三角形面积公式得:1 ×OA ×AB = 1×OB ×AM , 2 2∴AM = 3, ∴AD =2× 3 =3,∵∠AMB =90°,∠B =60°,∴∠BAM =30°,∵∠BAO =90°,∴∠OAM =60°,∵DN ⊥OA ,∴∠NDA =30°,31 2 3 ∴AN = 1AD = 3,由勾股定理得:DN =3 3, 22 21 ∵C (2,0), ∴CN =3— 1 — 3=1, 2 2在 Rt △DNC 中,由勾股定理得:DC = 31 2 ,即 PA +PC 的最小值是.故选:B .【点睛】本题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含 30 度角的直角三角形性质的应用,关键是求出 P 点的位置,题目比较好,难度适中.3. 如图所示的平面直角坐标系中,点 A 的坐标是(﹣4,4)、点 B 的坐标是(2,5),在 x 轴上有一动点 P ,要使 PA +PB 的距离最短,则点 P 的坐标是 ( — 4 ,O) .【思路点拨】先作出点 A 关于 x 轴的对称点 A 1,再连接 A 1B ,求出直线 A 1B 的函数解析式,再把 y =0 代入即可得.【解析】解:作点 A 关于 x 轴的对称点 A 1(﹣4,﹣4),连接 A 1B 交 x 轴于 P ,12 + ( 323 )2 =∵B的坐标是(2,5),3.3∴直线A1B 的函数解析式为y=1.5x+2,把P 点的坐标(n,0)代入解析式可得n=—4∴点P 的坐标是( —4 ,O).【点睛】此题主要考查轴对称﹣﹣最短路线问题,综合运用了一次函数的知识.4.如图所示,四边形OABC 为正方形,边长为6,点A、C 分别在x 轴,y 轴的正半轴上,点D 在OA 上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是21O.【思路点拨】作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长,利用勾股定理即可求解.【解析】解:作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长.则OD′=2,因而AD′=O Dะ2+O A2=4+36=21O.则PD+PA 和的最小值是21O.故答案是:2 1O.22【点睛】本题考查了正方形的性质,以及最短路线问题,正确作出 P 的位置是关键.5. 如图,一次函数 y = 1x +2 的图象分别与 x 轴、y 轴交于点 A 、B ,以线段 AB 为边在第二象限内作等腰 Rt △ABC ,∠BAC =90°.( 可能 用到 的 公式 : 若 A ( x 1 , y 1 ), Bx 2 , y 2 ), ①AB 中 点坐 标为 (x 1+x 2 , y 1+y 2 ); 2 2②AB = (x 1 — x 2)2 + (y 1 — y 2)2)(1) 求线段 AB 的长;(2) 过 B 、C 两点的直线对应的函数表达式.(3) 点 D 是 BC 中点,在直线 AB 上是否存在一点 P ,使得 PC +PD 有最小值?若存在,则求出此最小值;若不存在,则说明理由.【思路点拨】(1)求出一次函数图象与 x 轴交点坐标,再利用勾股定理求出 AB 的长即可;(2) 过 C 作 CE 垂直于 x 轴,可得出三角形 ACE 与三角形 AOB 全等,进而确定出 C 坐标,利用待定系数法求出直线 BC 解析式即可;(3) 根据中点坐标公式,可得 D 点坐标,根据轴对称的性质,可得 D ′点,两点之间线段最短,可得 P点,根据解方程组,可得 E 点坐标,根据中点坐标公式,可得 D ′,根据两点间的距离,可得答案.【解析】解:(1)对于一次函数 y = 1x +2,令 x =0,得到 y =2,令 y =0,得到 x =﹣4,即 A (﹣4,0),B (0,2),∴OA =4,OB =2,则 AB = OA 2 + OB 2 =2 5;(2)过 C 作 CE ⊥x 轴,可得∠ECA +∠CAE =90°,3 3 ∵△BAC 为等腰直角三角形,∴AC =AB ,且∠BAC =90°,∴∠CAE +∠OAB =90°,∴∠ECA =∠OAB ,在△ECA 和△OAB 中,²ECA = ²OAB ²CEA = ²AOB = 9O° CA = AB∴△ACE ≌△BAO (AAS ),∴CE =OA =4,AE =OB =2,即 OE =OA +AE =6,∴点 C 的坐标为(﹣6,4).设直线 BC 解析式为 y =kx +b ,把 B (0,2)与 C (﹣6,4)代入得: b = 2 , — 6k + b = 4解得: k =— 1,b = 2 则直线 BC 解析式为 y =— 1x +2;(3) ,作出 D 关于直线 AB 的对称点 D ′,连接 CD ′,交直线 AB 于点 P ,此时 CP +DP 最小,∵点 D 为 BC 的中点,O —6 2+4∴点 D 的坐标为( 2 ,2 ),即 D (﹣3,3), ∵直线 AB 解析式为 y = 1x +2,k = 1,2 2∴直线 DD ′的 k =﹣2,设直线 DD ′的解析式为 y =kx +b ,将 k =﹣2,D (﹣3,3)代入,解得 b =﹣3,∴直线 DD ′解析式为 y =﹣2x ﹣3,( — 6 + 1)2 + (4 + 1)2 2与直线 AB 解析式联立得: 解得: x =— 2, y = 1y =— 2x — 3 y = 1 x + 2 ,即两直线交点 E 坐标为(﹣2,1).设D ′(x ,y ),由中点坐标公式,得x —3y+3 2=—2, 2 =1, 解得 x =﹣1,y =﹣1,∴D ′(﹣1,﹣1),则最小值为 CD ′==5 2.【点睛】本题考查了一次函数综合题,解(1)的关键是利用两点间的距离公式;解(2)的关键是利用全等三角形的判定与性质得出 C 点坐标,又利用了待定系数法求函数解析式;解(3)的关键是利用轴对称的性质得出 P 点坐标,又利用了对称点的中点在对称轴上得出 D ′点坐标.6. 在平面直角坐标系上,已知点 A (8,4),AB ⊥y 轴于 B ,AC ⊥x 轴于 C ,直线 y =x 交 AB 于 D .(1) 直接写出 B 、C 、D 三点坐标;(2) 若 E 为 OD 延长线上一动点,记点 E 横坐标为 a ,△BCE 的面积为 S ,求 S 与 a 的关系式;(3) 当 S =20 时,过点 E 作 EF ⊥AB 于 F ,G 、H 分别为 AC 、CB 上动点,求 FG +GH 的最小值.【思路点拨】(1)首先证明四边形 ABOC 是矩形,再根据直线 y =x 是第一象限的角平分线,可得 OB =BD ,延长即可解决问题;(2) 根据 S =S △OBE +S △OEC ﹣S △OBC 计算即可解决问题;(3) 首先确定点 E 坐标,如图二中,作点 F 关于直线 AC 的对称点 F ′,作 F ′H ⊥BC 于 H ,交 AC 于G .此时 FG +GH 的值最小;【解析】解:(1)∵AB ⊥y 轴于 B ,AC ⊥x 轴于 C ,∴∠ABO=∠ACO=∠COB=90°,∴四边形ABOC 是矩形,∵A(8,4),∴AB=OC=8,AC=OB=4,∴B(0,4),C(8,0),∵直线y=x 交AB 于D,∴∠BOD=45°,∴OB=DB=4,∴D(4,4).(2)由题意E(a,a),1 ×4×a+ 1 ×8×a—1 ×4×8=6a﹣16.∴S=S OBE+S OEC﹣S OBC=△△△ 2 2 2(3)当S=20 时,20=6a﹣16,解得a=6,∴E(6,6),∵EF⊥AB 于F,∴F(6,4),如图二中,作点F 关于直线AC 的对称点F′,作F′H⊥BC 于H,交AC 于G.此时FG+GH 的值最小.∵∠ABC=∠F′BH,∠BAC=∠F′HB,∴△ABC∽△HBF′,AC BC∴=,4 51O ∵AC =4,BC = 42 + 82 =4 5,BF ′=AB +AF ′=8+2=10,4∴F ะะ = ,∴F ′H =2 5,∴FG +GH 的最小值=F ′H =2 5.【点睛】本题考查一次函数综合题、矩形的判定和性质、三角形的面积、相似三角形的判定和性质、轴对称最短问题等知识,解题的关键是学会利用分割法求三角形的面积,学会利用轴对称解决最短问题, 属于中考压轴题.考点三 坐标系中三角形周长最小问题【方法点拨】通常已知一线段是定值,运用“将军饮马”模型求另外两线段和最小1. 如图,在直角坐标系中,点 A 、B 的坐标分别为(1,4)和(3,0),点 C 是 y 轴上的一个动点,且 A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点 C 的坐标是 (0,3) .【思路点拨】根据轴对称做最短路线得出 AE =B ′E ,进而得出 B ′O =C ′O ,即可得出△ABC 的周长最小时 C 点坐标.【解析】解:作 B 点关于 y 轴对称点 B ′点,连接 AB ′,交 y 轴于点 C ′,此时△ABC 的周长最小,∵点 A 、B 的坐标分别为(1,4)和(3,0),∴B ′点坐标为:(﹣3,0),AE =4,则 B ′E =4,即 B ′E =AE ,∵C ′O ∥AE ,∴B ′O =C ′O =3,∴点 C ′的坐标是(0,3),此时△ABC 的周长最小.故答案为(0,3).【点睛】此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C 点位置是解题关键.2.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x 轴y 轴的正半轴上,OA=3,OB=4,D 为OB 的中点,点E 为边OA 上的一个动点.(1)求线段CD 所在直线的解析式;(2)当△CDE 的周长最小时,求此时点E 的坐标;(3)当点E 为OA 中点时,坐标平面内,是否存在点F,使以D、E、C、F 为顶点的四边形是平行四边形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.【思路点拨】(1)先求出C、D 的坐标,再用待定系数法即可求出线段CD 所在直线的解析式;(2)当△CDE 的周长最小时,DE+CE 最小;作点D 关于OA 的对称点D′,连接CD′交OA 于E,DE+CE 最小,证明△OED′∽△AEC,得出比例式求出OE 即可;(3)分三种情况:①CE 为对角线时,作FM⊥x 轴于M;证明△EMF≌△CBD,得出OM=BC=3,FM =DB=2,OM=1.5+3=4.5,即可得出F 的坐标;②DE 为对角线时,作FN⊥x 轴于N,则F1N∥FM,根据平行线分线段成比例定理得出NE=ME=3,NF1=FM=2,ON=1.5,即可得出结果;③DC 为对角线时,作F1Q⊥y 轴于Q,作F2P⊥y 轴于P;同②,即可得出结果.【解析】解:(1)∵四边形OACB是矩形,∴AC=OB=4,∠OBC=90°,332∵D 为 OB 的中点,∴OD =BD =2,∴C (3,4),D (0,2),设线段 CD 所在直线的解析式为 y =kx +b ,代入 C (3,0),D (0,2)得: 3k + b = 4, b = 2解得:k = 2,b =2, ∴线段 CD 所在直线的解析式为:y = 2x +2; (2) 当△CDE 的周长最小时,DE +CE 最小;作点 D 关于 OA 的对称点 D ′,连接 CD ′交 OA 于 E ,如图 1 所示:则 D ′(0,﹣2),DE =DE ′,∴DE +CE =D ′E +CE ═CD ′,∵∠OBC =90°,BD ′=6,∵AC ∥OB ,∴△OED ′∽△AEC ,O EO D ะ2 1 ∴AE = AC = 4 = , ∴AE =2AE ,∵OA =3,∴OE =1,∴E (1,0);(3) 存在;分三种情况:①CE 为对角线时,作 FM ⊥x 轴于 M ;如图 2 所示:∵BC ∥OA ,∴∠MEC =∠BCE ,∵四边形 DEFC 是平行四边形,∴CD ∥EF ,∴∠FEC =∠DCE ,∴∠MEF =∠BCD ,在△EMF 和△CBD 中,²FะE = ²DBC = 9O°²ะEF = ²BCD ,EF = CD∴△EMF≌△CBD(AAS),∴OM=BC=3,FM=DB=2,∴OM=1.5+3=4.5,∴F(4.5,2);②DE 为对角线时,作F1N⊥x 轴于N,则F1N∥FM,如图2 所示:∵EF1=CD=EF1,∴NE=ME=3,NF1=FM=2,∴ON=1.5,∴F1(﹣1.5,﹣2);③DC 为对角线时,作F1Q⊥y 轴于Q,作F2P⊥y 轴于P,如图所示:同②得:PF2=F1Q=ON=,1.5,PD=DQ=4,∴OP=6,∴F2(1.5,6);综上所述:F点的坐标为(4.5,2),或(1.5,6),或(﹣1.5,2).【点睛】本题是一次函数综合题,考查了矩形的性质、用待定系数法确定一次函数的解析式、相似三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)、(3)中,需要证明三角形相似或三角形全等才能得出结果.3.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x 轴、y 轴的正半轴上,OA=3,OB=4,D 为边OB 的中点.(1)点D 的坐标为(0,2);(2)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标.【思路点拨】由于C、D 是定点,则CD 是定值,如果△CDE 的周长最小,即DE+CE 有最小值.为此,作点D 关于x 轴的对称点D′,当点E 在线段CD′上时,△CDE 的周长最小.【解析】解:(1)∵OB=4,D为边OB的中点,∴OD=2,∴D(0,2),故答案为:(0,2);(2)如图,作点D 关于x 轴的对称点D′,连接CD′与x 轴交于点E,连接DE.若在边OA 上任取点E′与点E 不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE 的周长最小.∵在矩形 OACB 中,OA =3,OB =4,D 为 OB 的中点,∴BC =3,D ′O =DO =2,D ′B =6,∵OE ∥BC , O E D ะO ∴Rt △D ′OE ∽Rt △D ′BC ,有B C = D ะB ,∴OE =1,∴点 E 的坐标为(1,0).【点睛】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.考点四 坐标系中四边形周长最小问题【方法点拨】已知两线段为定值,通过平移的方法,运用“将军饮马”模型求另外两线段和最小 71. 如图,当四边形 PABN 的周长最小时,a 的值为 . 4【思路点拨】作 B 关于 x 轴的对称点 C ,连结 CN ,作平行四边形 PNCD ,因为 AB 、PN 为定值 所以 PA +BN 最小即可 因为 BN =CN =PD 所以只要 AP +PD 最小 作直线 AD 交 x 轴于 Q ,当 P 与 Q 重合时,AP +PD =AD 最小.【解析】解:作 B 关于 x 轴的对称点 C ,连结 CN ,作平行四边形 PNCD ,44∵AB 、PN 为定值∴PA +BN 最小即可∵BN =CN =PD∴只要 AP +PD 最小作直线 AD 交 x 轴于 Q ,当 P 与 Q 重合时,AP +PD =AD 最小∵A (1,3)、D (2,﹣1)∴直线 AD 为:y =﹣4x +7 当 y =0 时,x = 7, 7 ∴Q 为(4,0) ∵P 、Q 重合∴a = 7. 【点睛】本题考查轴对称﹣最短问题,平行四边形的性质、一次函数的应用等知识,解题的关键是学会构建平行四边形,利用对称解决最短问题,属于中考常考题型.2. 在平面直角坐标系中,矩形 OACB 的顶点 O 在坐标原点,顶点 A 、B 分别在 x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边 OB 的中点.若 E 、F 为边 OA 上的两个动点,且 EF =2,当四边形 CDEF 的周长 1 最小时,求点 E 、F 的坐标分别为 ( 3 7 ,0),( 3,0) ,并在图中画出示意图.【思路点拨】由于 DC 、EF 的长为定值,如果四边形 CDEF 的周长最小,即 DE +FC 有最小值.为此, 作点 D 关于 x 轴的对称点 D ',在 CB 边上截取 CG =2,当点 E 在线段 D ′G 上时,四边形 CDEF 的周长最小.【解析】解:如图,作点 D 关于 x 轴的对称点 D ',在 CB 边上截取 CG =2,连接 D 'G 与 x 轴交于点 E , 在 EA 上截取 EF =2,∵GC ∥EF ,GC =EF ,∴四边形 GEFC 为平行四边形,有 GE =CF . 又∵DC 、EF 的长为定值,∴此时得到的点 E 、F 使四边形 CDEF 的周长最小,∵OE ∥BC , O E D ะO ∴Rt △D 'OE ∽Rt △D 'BG ,有B G = D ะB .∴OE = D ะO ·B G = D ะO ·(B C —C G ) = 2×1 = 1 D ะB D ะB 6 3 ∴OF =OE +EF = 1 +2= 7.3 317 ∴点 E 的坐标为( 3 1,0),点 F 的坐标为( 3 7 ,0).故答案为:(3,0),(3,0).【点睛】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.考点五 其它最值问题【方法点拨】根据具体题型求最值 1.若一次函数 y =kx +b ,当﹣2≤x ≤6 时,函数值的范围为﹣11≤y ≤9, 则此一次函数的解析式为 y = 5 x — 6 或 y =— 5 x + 4 .2 2【思路点拨】根据函数自变量的取值范围用待定系数法求函数解析式.【解析】解:∵y 是 x 的一次函数,当﹣2≤x ≤6 时,﹣11≤y ≤9.2 2 2 2 设所求的解析式为 y =kx +b ,分两种情况考虑:(1)将 x =﹣2,y =﹣11 代入得:﹣11=﹣2k +b ,将 x =6,y =9 代入得:9=6k +b ,联立解得:k = 5,b =﹣6,则函数的解析式是 y = 5x ﹣6;(2)将 x =6,y =﹣11 代入得:﹣11=6k +b ,将 x =﹣2,y =9 代入得:9=﹣2k +b ,联立解得:k =— 5,b =4,则函数的解析式是 y =— 5x +4. 综上,函数的解析式是 y = 5x ﹣6 或 y =— 5x +4. 2 2 故答案为:y = 5x ﹣6 或 y =— 5x +4 2 2【点睛】本题要注意利用一次函数自变量的取值范围,来列出方程组,求出未知数,写出解析式.2. 如图,在平面直角坐标系中,已知点 M (2,﹣3)、N (6,﹣3),连接 MN ,如果点 P 在直线 y =﹣x +1上,且点 P 到直线 MN 的距离不小于 1,那么称点 P 是线段 MN 的“疏远点”.(1) 判断点 A (2,﹣1)是否是线段 MN 的“疏远点”,并说明理由;(2) 若点 P (a ,b )是线段 MN 的“疏远点”,求 a 的取值范围;(3) 在(2)的前提下,用含 a 的代数式表示△MNP 的面积 S △MNP ,并求 S △MNP 的最小值.【思路点拨】(1)求出 A 到 MN 的距离,再判断即可;(2) 根据“疏远点”的意义求出 b 的范围,再代入求出 a 的范围即可;(3) 根据“疏远点”的意义得出 S MNP = 1 ×4×|﹣a +1﹣(﹣3)|,再去掉绝对值符号即可. △ 2【解析】解:(1)点A(2,﹣1)是线段MN的“疏远点”,并说明理由理由是:∵M(2,﹣3)、N(6,﹣3),A(2,﹣1),∴A 到直线MN 的距离为﹣1﹣(﹣3)=2>1,∵点P到直线MN的距离不小于1,那么称点P是线段MN的“疏远点”,∴点A(2,﹣1)是线段MN的“疏远点”;(2)∵点P(a,b)是线段MN的“疏远点”,M(2,﹣3)、N(6,﹣3),∴|b﹣(﹣3)|≥1,∴b≥﹣2 或b≤﹣4,代入y=﹣x+1 得:﹣a+1≥﹣2 或﹣a+1≤﹣4,解得:a≤3 或a≥5,即 a 的取值范围是a≤3 或a≥5;(3)∵M(2,﹣3)、N(6,﹣3),∴MN=6﹣2=4,∴S =1 ×4×|﹣a+1﹣(﹣3)|= — 2a + 8(a<4)△MNP 2,2a — 8(a>4)∵a≤3 或a≥5,∴S△MNP的最小值是2.【点睛】本题考查了一次函数图象上点的特征,一次函数的性质等知识点,能根据“疏远点”的意义列出算式是解此题的关键.3.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值是1.(1)函数y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围.(x — O)2 + (O — 1)2【思路点拨】(1)根据有界函数的定义即可得出函数 y =x +1(﹣4≤x ≤2)是有界函数,再代入 x =﹣4和 x =2 即可得出其边界值;(2)根据一次函数的性质可得出函数 y =﹣x +1 是单减函数,结合函数的最大值为 2 即可得出 a 的值, 再代入 b 的值结合有界函数的定义以及该函数的边界值即可得出关于 b 的一元一次不等式组,解不等式组即可得出 b 的取值范围;【解析】解:(1)根据有界函数的定义知,函数 y =x +1(﹣4≤x ≤2)是有界函数.∵﹣4+1=﹣3,2+1=3,∴y =x +1(﹣4<x ≤2)边界值为 3.(2)∵k =﹣1<0,∴函数 y =﹣x +1 的图象是 y 随 x 的增大而减小,∴当 x =a 时,y =﹣a +1=2,解得:a =﹣1;当 x =b 时,y =﹣b +1,— 2 ≤— b + 1 ≤ 2∴ b >a ,a =— 1∴﹣1<b ≤3;【点睛】本题考查了一次函数的性质、有界函数的定义以及解一元一次不等式组,解题的关键是:(1)根据有界函数的定义判断一个函数是否为有界函数;(2)找出关于 b 的一元一次不等式组.4. 请阅读下述材料,并解答问题例:说明代数式 x 2 + 1 + (x — 3)2 + 4的几何意义,并求它的最小值.解: 在平面直角坐标系中, 已知两点 P 1 ( x 1 , y 1 ), P 2 ( x 2 , y 2 ) 则这两点间的距离公式为:P 1P 2=所以原式= +如图建立直角坐标系,点 P (x ,0)是 x 轴上一点,则 (x — O)2 + (O — 1)2可以看成点 P 与点 A (0,1) (x 1 — x 2)2 + (y 1 — y 2)2(x — 3)2 + (O — 2)2(x — 1)2 + 1 的距离, (x — 3)2 + (O — 2)2可以看成点 P 与点 B (3,2)的距离,所以原代数式的值可以看成线段 PA 与 PB 的长度之和,它的最小值就是 PA +PB 的最小值.设点 A 关于 x 轴的对称点为 A ′,则 PA =PA ′, 因此,求 PA +PB 的最小值,只需求 PA ′+PB 的最小值,由两点之间,线段最短可得,PA ′+PB 的最小值为线段 A ′B 的长度.为求 A ′B 我们可以构造直角三角形 A ′CB ,因为 A ′C =3,CB =3,所以 A ′ B =3 2,即原式的最小值为 3 2解答问题:(1)代数式 + (x — 2)2 + 9的值可以看成平面直角坐标系中点 P (x ,0)与点 A (1,1)、点 B (2,3) 的距离之和(填写点 B 的坐标);(2)代数式 x 2 + 49 + x 2 — 12x + 37的最小值为 10 .【思路点拨】(1)模仿例题即可解决问题;(2)用转化的思想思考问题即可;【解析】解:(1)由题意可知,点 B 坐标为(2,3);故答案为(2,3).(2) x 2 + 49 + x 2 — 12x + 37 = x 2 + 72 + (x — 6)2 + 12,求 x 2 + 49 + x 2 — 12x + 37的最小值,相当于在 x 轴上找一点 P (x ,0),使得 P 到 A (0,7),B (6,1)的距离之和的最小值,设点 A 关于 x 轴的对称点为 A ′,则 PA =PA ′,因此,求 PA +PB 的最小值,只需求 PA ′+PB 的最小值, 由两点之间,线段最短可得,PA ′+PB 的最小值为线段 A ′B 的长度.为求 A ′B 我们可以构造直角三角形 A ′CB ,因为 A ′C =6,CB =8,所以 A ′B =10,即原式的最小值为 10.故答案为 10.【点睛】本题考查轴对称﹣最短问题,勾股定理等知识,解题的关键是学会用数形结合的思想解决问题,属于中考常考题型.5.如图1,在平面直角坐标系中,点D 的横坐标为4,直线l1:y=x+2 经过点D,分别与x、y 轴交于点A、B两点.直线l2:y=kx+b经过点D及点C(1,0).(1)求出直线l2 的解析式.(2)在直线l2 上是否存在点E,使△ABE 与△ABO 的面积相等,若存在,求出点E 的坐标,若不存在,请说明理由.(3)如图2,点P为线段AD上一点(不含端点),连接CP,一动点H从点C出发,沿线段CP以每秒2 个单位的速度运动到P,再沿线段PD 以每秒2 2个单位的速度运动到D 后停止,求P 点在整个运动过程的最少用时.【思路点拨】(1)利用C,D 两点坐标代入y=kx+b,解方程组即可解决问题;(2)存在.如图1 中,作OE∥AB 交CD 于E.由AB∥OE,可得S△ABE=S△ABO,构建方程组求出点E 坐标即可;(3)如图2 中,作DM∥AC,PH⊥DM 于H,CH′⊥DM 于H′交AD 于P′.由题意P 点在整个运2 2 2动过程的时间t = PC+ PD = 1 PC + PD MDA =∠BAO =45°,推出PH = P D t = 1PC +PH ), 2 2( 2 ),易知∠ 2,推出 2( 根据此线段最短可知,当点 P 与 P ′,点 H 与 H ′共线时,t 的值最小,最小值= 1CH ′; 【解析】解:(1)由题意 A (﹣2,0),B (0,2),D (4,6),C (1,0),则 有 k + b = O ,4k + b = 6解 得 k = 2 ,b =— 2∴直线 l 2 的解析式为 y =2x ﹣2.( 2 ) 存 在 . ① 当 点 E 在 线 段 CD 上 时 , 如 图 1 中 , 作 OE ∥ AB 交 CD 于E .∵AB ∥OE ,∴S △ABE =S △ABO ,∵直线 OE 的解析式为 y =x ,y = x 由 y = 2x — 2 ∴E (2,2).,解得 x = 2, y = 2②当点 E ′在线段 CD 的延长线上时,由 y = x + 4 ,解得 x = 6 ,∴E ′(6,10).y = 2x — 2y = 1O 综上所述,满足条件的点 E 坐标为(2,2)或(6,10).(3)如图 2 中,作 DM ∥AC ,PH ⊥DM 于 H ,CH ′⊥DM 于 H ′交 AD 于 P ′.2 2 2 22由题意 P 点在整个运动过程的时间 t =PC + PD = 1(PC + PD 2 2 2∵A (﹣2,0),B (0,2),∴OA =OB ,∴∠MDA =∠BAO =45°,∴PH =PD ∴t = 1(PC +PH ), 根据此线段最短可知,当点 P 与 P ′,点 H 与 H ′共线时,t 的值最小,最小值= 1CH ′=3s∴P 点在整个运动过程的最少用时为 3s .【点睛】本题考查一次函数综合题、待定系数法、平行线的性质、等高模型、垂线段最短等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题., ),。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的“最值”
一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.
一次函数的“最值”由一次函数的性质决定,与其k值、自变量的取值范围密切相关:
⑴k>0时,y随x增大而增大.因此,x取最小值时,y有最小值;x取最大值时,y有最大值.
⑵k<0时,y随x增大而减小.因此,x取最小值时,y有最大值;x取最大值时,y有最小值.
k值、自变量的取值范围与函数最大值、最小值的对应情况如下表:
求一次函数的最大、最小值,一般都是采用“极端值法”.即用自变量的端点值,根据函数增减性,对应求出函数的端点值(最值).请看以下实例.
例1.已知一次函数y=kx+b中自变量x的取值范围是-2≤x≤6,相应的函数取值范围是-11≤y≤9.求此函数的解析式.解析:x的取值范围与函数y的取值范围的对应情况,由k值的符号确定.故应分类讨论.
⑴k>0时,y随x增大而增大.x=-2时,y=-11;x=6时,y=9.
∴解得∴y=x-1
⑵k<0时,y随x增大而减小.x=-2时,y=9;x=6时,y=-11.
∴解得∴y=-x+14
例2.康乐公司在A、B两地分别有同型号的机器17台和15台,现在运往甲地18台、乙地14台.从A、B两地运往甲、乙两地的费用如下表;
甲地(元/台)
(18)乙地(元/台)
(14)
A地
(17)
600(x)500(17-x)
B地
(15)
400(18-x)800(x-3)
⑴如果从A地运往甲地x台,求完成以上调运所需总费用y(元)关于x(台)的函数解析式;
⑵若康乐公司请你设计一种最佳调运方案,使总的费用最少,则该公司完成以上调运方案至少需要多少费用?为什么?
解析:⑴y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300
⑵由①x≥0;②17-x≥0;③18-x≥0;④x-3≥0 ∴3≤x≤17
∵k=500>0,∴y随x增大而增大,x取最小值时,y有最小值.∴x=3时,y最小值=500×3+13300=14800(元)
故该公司完成以上调运方案至少需14800元运费.调运方案为:由A地运往甲地3台,运往乙地14台;由B地运往甲地15台.
作者简介:宋毓彬,男,44岁,中学数学高级教师.在《中学数学教学参考》、《中学数学》、《中学生数学》、《数理天地》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《数学周报》、《数学辅导报》、《数理报》、《少年智力开发报》、《学习报》、《小博士报》等报刊发表教学辅导类文章70多篇.主要致力于初中数学中考及解题方法、技巧等教学方面的研究.。

相关文档
最新文档