人教版初一数学上册一元一次函数的应用
人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 一元一次方程的应用-方案选择问题(含答案)一、单选题1.某汽车队运送一批货物,每辆汽车装4 t ,还剩下8 t 未装,每辆汽车装4.5 t 就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( ) A .4x +8=4.5x B .4x -8=4.5x C .4x =4.5x +8D .4(x +8)=4.5x2.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( ) A .购物高于800元 B .购物低于800元 C .购物高于1 000元 D .购物低于1 000元3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -254.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( ) A.2(30)41x x --= B.(41)302x x +-= C.41302xx -+= D.3041x x -=-5.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式( )A.103040x x=+ B.104030x x =+ C.104030x x += D.104030x x+= 6.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3 m 3或者运土2 m 3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A.2x=3(15-x) B.3x-2x=15C.15-2x=3x D.3x=2(15-x)7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题8.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.9.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?若设买了大椅子x张,填写下表:大椅子小椅子张数(张)x钱数(元)小椅子____张,大椅子的钱数为____,小椅子的钱数为________,本题中的等量关系为________________,列出方程为____________,解得x=_______.因此,买了大椅子_________张.10.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.三、解答题11.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?12.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.班上共有多少名同学?多少本书?(1)设班上共有x名同学,根据题意列方程;(2)设共有y本书,根据题意列方程;(3)选择上面的一种设未知数的方法,解决问题.13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)当该顾客累计购物500元时,在哪个超市购物合算.14.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?15.淘淘到书店帮同学买书,售货员告诉他,如果用20元钱办会员卡,将享受八折优惠,请问在这次买书中,淘淘在什么情况下,办会员卡与不办会员卡费用一样?当淘淘买标价共计200元的书时,怎么做合算?能省多少钱?16.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?17.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?18.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。
一次函数的应用

一次函数的应用一次函数(也叫线性函数)是指形如y = kx + b的函数,其中k和b 是常数,x和y分别表示自变量和因变量。
一次函数在数学中有广泛的应用,可以用来描述线性关系,解决实际问题以及进行数据分析。
本文将探讨一次函数在不同领域中的应用。
一、经济学领域的应用一次函数在经济学领域有着重要的应用。
以供求关系为例,假设某商品的市场需求量和价格之间存在一次函数的关系,即D = kP +b,其中D表示需求量,P表示价格,k和b为常数。
通过研究这个一次函数,我们可以了解价格上涨/下跌对需求量的影响,从而指导市场调控和经济决策。
二、物理学领域的应用在物理学中,一次函数同样具有重要的应用。
例如,描述匀速直线运动的位移和时间之间的关系就可以用一次函数来表示。
假设一个物体沿直线轨迹匀速运动,其位移与时间之间存在一次函数的关系,即S = Vt + S0,其中S表示位移,t表示时间,V和S0为常数。
通过研究这个一次函数,可以揭示速度和位移的关系,进而预测物体的运动轨迹。
三、生物学领域的应用一次函数在生物学中也有广泛的应用。
例如,研究生长过程中身高与年龄之间的关系,可以使用一次函数来描述。
假设一个人的身高与年龄之间存在一次函数的关系,即H = kA + H0,其中H表示身高,A表示年龄,k和H0为常数。
通过研究这个一次函数,可以了解人体生长的规律,为儿童生长发育提供科学依据。
四、工程学领域的应用在工程学领域,一次函数同样有着重要的应用。
例如,研究电阻和电流之间的关系,可以使用一次函数来描述。
假设电阻与电流之间存在一次函数的关系,即R = kI + R0,其中R表示电阻,I表示电流,k 和R0为常数。
通过研究这个一次函数,可以了解电路中电阻的特性,为电路设计和优化提供依据。
综上所述,一次函数在经济学、物理学、生物学和工程学等领域中都有着广泛的应用。
通过研究一次函数的特性和关系,可以深入探索相关问题,并为实际应用提供科学依据。
鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。
本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。
通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。
但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。
三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。
2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:一次函数在实际生活中的应用。
2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。
同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。
六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。
同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。
然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。
2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。
在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。
一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。
a和b是常数,且a不等于0。
一次函数也被称为一次多项式函数,因为它的最高次数为1。
在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。
一次函数的特点是其图像是一条直线,具有线性的特性。
这种简单的函数形式在数学建模和实际问题求解中具有重要意义。
一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。
在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。
通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。
了解一次函数的基本概念和应用是非常重要的。
1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。
一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。
通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。
一次函数在生活中的重要意义还体现在其广泛应用的范围。
一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。
掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。
一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。
通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。
深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。
2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。
一次函数的应用

一次函数的应用一次函数的应用一、学习目标:1. 巩固一次函数的知识,灵活运用变量关系解决相关实际问题.2. 熟练掌握一次函数与方程,不等式的关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、重点、难点:运用一次函数与正比例函数的图象和性质解决实际问题。
各种数学思想的渗透和应用。
三、考点分析:利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
一次函数的概念、图象和性质是中考的必考内容,一次函数的应用是中考的热点内容。
中考对这部分内容的要求是结合具体情境体会一次函数的意义,根据已知条件确定一次函数的表达式;会画一次函数的图象,根据图象与表达式探索并理解其性质;根据一次函数的图象求二元一次方程组的近似解;利用一次函数解决实际问题。
利用一次函数解决实际问题的题型多样,填空、选择、解答、综合题都有,主要考查学生应用函数知识分析、解决问题的能力.典型例题此前我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决相关实际问题时更方便了.例1. 乘坐某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米的部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如计费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围。
思路分析:1)题意分析:本题考查一次函数与不等式的综合运用。
2)解题思路:注意审题。
注意考虑函数的取值范围,能灵活应用所学知识解决问题。
解答过程:(1)根据题意可知:y=4+1.5(x-2),∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5解题后的思考:一次函数的性质:当k>0,时y随x的增大而增大,当k<0时,y随x的增大而减小。
人教版数学七年级上册《一次函数与一元一次方程》教案

人教版数学七年级上册《一次函数与一元一次方程》教案一. 教材分析《一次函数与一元一次方程》是人教版数学七年级上册的一章内容。
本章主要介绍了一次函数的概念、性质和图像,以及一元一次方程的解法。
通过本章的学习,学生能够理解一次函数和一元一次方程之间的关系,掌握解一元一次方程的方法,并能够运用一次函数解决实际问题。
二. 学情分析七年级的学生已经具备了一定的代数基础,对于方程和函数的概念有一定的了解。
但是,学生可能对于一次函数的图像和性质还不够熟悉,对于如何将实际问题转化为一次函数和一元一次方程还需要进一步引导。
因此,在教学过程中,需要通过具体的例子和实际问题,帮助学生理解和掌握一次函数和一元一次方程的概念和应用。
三. 教学目标1.了解一次函数的概念和性质,能够绘制一次函数的图像。
2.掌握一元一次方程的解法,能够解决实际问题中的一元一次方程。
3.能够理解一次函数和一元一次方程之间的关系,并能够运用一次函数解决实际问题。
四. 教学重难点1.一次函数的图像和性质的理解。
2.一元一次方程的解法的掌握。
3.将实际问题转化为一次函数和一元一次方程的能力的培养。
五. 教学方法1.采用问题驱动的教学方法,通过实际问题引导学生理解和掌握一次函数和一元一次方程的概念和应用。
2.使用多媒体教学辅助工具,展示一次函数的图像和实际问题的数据,帮助学生直观地理解和掌握知识。
3.采用小组合作学习的方式,鼓励学生互相讨论和交流,培养学生的合作能力和解决问题的能力。
六. 教学准备1.多媒体教学辅助工具,如PPT等。
2.实际问题的数据和案例。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体教学辅助工具,展示一次函数的图像和实际问题的数据,引导学生思考一次函数和一元一次方程之间的关系。
2.呈现(10分钟)介绍一次函数的概念和性质,通过具体的例子解释一次函数的图像和性质。
3.操练(10分钟)让学生通过小组合作学习,解决一些实际问题,将实际问题转化为一次函数和一元一次方程,并求解方程。
一次函数的应用

一次函数的应用一次函数是数学中的一种关系式,通常表示为y = kx + b,其中k和b是常数,x和y分别表示自变量和因变量。
一次函数在实际生活中有很多应用,如下所述:1、物理学中的应用一次函数在物理学中的应用较为广泛,特别是在描述物理量之间的关系时。
比如牛顿力学定律中的F=ma,即力和质量和加速度之间的关系,可以表示为F = kx + b的形式,其中x表示质量,k表示加速度,b表示施加力的大小。
类似地,运动学中的速度和时间之间的关系也可以用一次函数来表示,即v = kt + b,其中v表示速度,k表示加速度,b表示初速度。
2、经济学中的应用一次函数在经济学中的应用也比较广泛,特别是在描述供需关系时。
例如,市场需求曲线可以表示为Qd = a - bP,其中Qd表示需求量,P表示价格,a和b是常数,分别表示消费者对价格的反应度和价格的弹性。
类似地,市场供应曲线也可以用一次函数来表示,即Qs = c + dP,其中Qs表示供应量,P表示价格,c和d是常数,分别表示生产者对价格的反应度和价格的弹性。
3、工程学中的应用一次函数在工程学中的应用也比较常见,特别是在描述物理量之间的比例关系时。
例如,电阻器中电流与电压的关系可以表示为V = IR,即电压V等于电流I乘以电阻系数R,其中R是常数。
类似地,声学中的强度和距离之间的关系也可以用一次函数来表示,即I = k/d2,其中I表示声音强度,d表示距离,k是常数。
综上所述,一次函数作为数学中的基础概念,在实际生活中有着广泛的应用。
无论是物理、经济还是工程学,都可以用一次函数来描述与测量物理量之间的关系,从而帮助我们更好地理解和解决实际的问题。
鲁教版数学七年级上册6.5《一次函数的应用》教学设计2

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第6.5节的内容。
本节课主要让学生掌握一次函数的应用,学会解决实际问题。
教材通过简单的实例,引导学生理解一次函数在实际生活中的应用,培养学生的数学应用能力。
二. 学情分析七年级的学生已经学习了初中数学的一些基本概念和运算,但对一次函数的应用还不够熟练。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。
2.学会将实际问题转化为一次函数问题,能运用一次函数解决实际问题。
3.提高学生的数学应用能力,培养学生的逻辑思维能力。
四. 教学重难点1.一次函数的概念和性质。
2.如何将实际问题转化为一次函数问题。
3.运用一次函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的应用。
2.利用实例分析,让学生直观地理解一次函数在实际生活中的应用。
3.采用小组合作学习,培养学生的团队协作能力。
4.利用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关的一次函数实例,用于讲解和练习。
2.准备一次函数的图片或实物模型,帮助学生直观地理解一次函数。
3.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
”引导学生思考如何用数学知识解决实际问题。
2.呈现(10分钟)呈现一次函数的定义和性质,让学生了解一次函数的基本概念。
通过示例,讲解一次函数在实际生活中的应用,让学生直观地理解一次函数。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)选取几组学生的作品,进行展示和讲解。
让学生分享自己的解题过程和心得,加深对一次函数应用的理解。
七年级上册数学一次函数的应用听课记录

七年级上册数学一次函数的应用听课记录
七年级一次函数的听课记录
一、教学内容分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
本节课进一步研究其中最简单的一
种函数———次函数。
由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成等,培养学生良好的书写习惯。
二、教学任务分析《一次函数》本节内容安排了1
个课时:让学生理解一次函数和正比例函数的概念,能根据已知息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力。
与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的。
三、听课思考本节课让学生经历知识的回顾、归纳、运用、构建知识网络的过程。
一次函数在生活中的应用

一次函数在生活中的应用作者:蔡建锋来源:《教学与管理(中学版)》2008年第09期一次函数是初中数学的核心内容,也是重要的基础知识和重要的数学思想,不仅与高中知识有着密切的联系,而且还与生活中的实际问题有着极为广泛的联系,是联系数学知识与实际问题间的纽带和桥梁,是中考数学试卷中不可缺少的重要内容。
现以2007年的中考题目为例,浅析一次函数在生活中的应用。
一、用水用电问题例1、为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度。
已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元。
(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元)。
①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?(2007年福建省三明市)解:(1)根据题意,得115a=69,120a+20b=94.解这个方程组,得a=0.6,b=1.1.(2)①当0≤x≤120时,y=0.6x.当x>120时,y=120×0.6+1.1(x-120),即y=1.1x-60.②∵83>120×0.6=72,∴y与x之间的函数关系式为y=1.1x-60..由题意得:1.1x-60≤83所以x≤130.∴该用户七月份最多可用电130度.【评析】随着人民生活水平的提高,家庭电器化已基本普及,为鼓励居民节约用电用水,节能降耗,采取了居民用电、用水分段计价的办法进行收费。
解决此类问题的关键是把实际问题建构为一次函数的数学模型,并通过数学的方式把问题解决。
二、通讯网络问题例2、李明因工作需要,每月要发送一定数量的手机短信,于是向同事老王和小张询问有关的费用标准。
老王说:“我平常发短信不多,我用拇指卡。
”说完递给李明一张宣传单(见下表)。
一元一次函数知识点归纳

一元一次函数知识点归纳一元一次函数是数学中基本的函数类型之一,也是初中数学课程中重要的内容。
其主要特点是函数表达式为y=ax+b 的形式,其中 a 和 b 为常数,代表了该函数的斜率和截距。
下面,将从定义、性质、应用等方面对一元一次函数的知识点进行归纳。
一、定义一元一次函数指的是函数表达式只有一个自变量,且次数为一的函数。
它通常表现为 y=ax+b 的形式,其中 a 和 b 是实数常数,a 表示直线的斜率,b 表示直线与 y 轴的截距。
二、性质1、斜率 k:斜率在一元一次函数中起着非常重要的作用,它代表了函数图像在 x 轴上的倾斜程度。
斜率的计算公式为 k=(y2-y1)/(x2-x1),即在坐标系中取任意两个点,其纵坐标差除以横坐标差即为斜率。
2、截距 b:截距代表直线与 y 轴的交点在 y 轴上的位置。
当 x=0 时,y=b,因此直线在 y 轴上的截距为 b。
3、零点 x0:当 y=0 时,解方程 y=ax+b,可得到x0=-b/a。
因此,直线与 x 轴相交的点为 (x0,0),其中x0 称为函数的零点,也称根或解。
4、函数图像:一元一次函数的图像是一条直线,在坐标系中的表现形式,可根据斜率 k 和截距 b 绘制出图像,通常以箭头表示出其中的方向。
3、应用1、解方程:通过一元一次函数的表达式,可以求出函数的零点 x0,即方程的解。
常见的解方程类型包括线性方程、工程应用题、线性规划等。
2、统计分析:一元一次函数是统计学中的重要概念,在数据分析与处理中被广泛应用。
例如利用一元一次函数来拟合数据点,以找到数据点的最佳拟合直线;也可以利用该函数计算数据的均值、标准差等常见指标。
3、研究物理学问题:一元一次函数在研究物理学问题中也有着广泛的应用。
例如运用一元一次函数来研究运动学问题中的平均速度、加速度等物理量。
4、经济应用:在经济学领域,一元一次函数常被用于预测价格走势、销售量、生产成本等实际问题。
例如一元一次函数可运用于经济学中的需求与供给分析、市场竞争等问题。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练a a(3)如果丙用户某月用水量为吨,则丙该月应缴交水费多少元?(用含的式子表示,并化简)参考答案:1.(1)(2)(3)小林家在11月份的用电量为305度.【分析】本题考查的是列代数式,一元一次方程的应用.(1)由可得此时单价为每度元,利用总价等于单价乘以数量即可得到答案;(2)由小林家月份用电度,可得此时分两段计费,其中度每度元,超过部分度,每度元,从而可得答案;(3)设小林家在月份的用电量为度,由,可得,再列方程,解方程可得答案.【详解】(1)解:∵,∴小林家4月份应付的电费(元).故答案为:90;(2)解:∵小林家6月份用电度,∴小林家6月份应付的电费元,故答案为:;(3)解:设小林家在11月份的用电量为x 度,∵,∴.根据题意得:,解得:.答:小林家在11月份的用电量为305度.2.(1)40,102(2)160(3),,(4)居民丁12月用电460度,见解析90()0.863x -180<210,0.56(x 210x >)2100.5()210x -0.811x 2100.5105181⨯=<210x >0.863181x -=180210<1800.5=90⨯()210x x >()()2100.5+0.82101050.81680.863x x x ⨯-=+-=-()0.863x -2100.5105181⨯=<210x >0.863181x -=305x =0.5x ()0.6515x -()0.7535x -【分析】本题考查一元一次方程的应用,理解题意,正确列出代数式是解题的关键.(1)根据某地对居民用户用电收费标准作如下规定列式即可求出答案;(2)根据某地对居民用户用电收费标准作如下规定列式即可求出答案;(3)根据某地对居民用户用电收费标准作如下规定列式并化简即可求出答案;(4)先判断出居民丁在12月份用电范围,再列方程即可解决问题.【详解】(1)解:,∴居民甲9月份应缴纳电费:(元),,∴居民乙10月份应缴纳电费:(元),故答案为:40,102;(2),∴居民丙11月份应缴纳电费:(元),故答案为:160;(3)当x 不超过100度,需交电费:元;当x 超过100度不超过200度,需交电费:(元),如果超过200度,需交电费:(元),故答案为:,,;(4)由(2)可知,该月用电超过200度,故,解得,答:居民丁12月用电460度.3.(1)的值为;(2)该用户用水35立方米.【分析】本题主要考查了一次函数的应用.(1)根据题意列出关于a 的方程,解方程即可;(2)先判断用水量超过30立方米,然后列出关于x 方程,解方程即可.【详解】(1)解:由题意,得,解得.80100< 800.540⨯=100180200<< ()1000.50.65180100102⨯+⨯-=260200> ()()0.51000.652001002602000.75160⨯+⨯-+-⨯=0.5x ()5010006506515x ..x +-⨯=-()()0510006520010020007507535..x ..x ⨯+⨯-+-⨯=-0.5x ()06515.x -()07535.x -07535310.x -=460x =a 2.981029.8a = 2.98a =答:的值为;(2)解:∵用水30立方米时,水费为,∴,∴,解得.答:该用户用水35立方米.4.(1)60(2)当时,这个月应缴纳电费为:元,当时,这个月应缴纳电费为:元,(3)九月份应缴电费127元,十月份用电225度.【分析】本题考查列代数式以及一元一次方程的应用,注意分类讨论缴费情况,本题还涉及代入求值问题.(1)根据,结合电费=单价×度数,列式求值即可,(2)根据“如果每月每户用电不超过150度,那么每度电元;如果该月用电超过150度,那么超过部分每度电元”分别讨论和时,这个月应缴纳的电费,列出关于a 的整式,(3)令,代入(2)中的代数式中即可求出九月份应缴电费;根据可得十月份电费超过150度,据此列方程计算即可.【详解】(1)解:根据题意得:(元),答:这个月应缴纳电费60元,(2)当时,这个月应缴纳电费为:元,当时,这个月应缴纳电费为:元;(3)当,应缴费为:(元)∵,∴十月份电费超过150度,根据题意可得,解得:,答:九月份应缴电费127元,十月份用电225度.a 2.9830 2.9889.4109.4⨯=<30x >()()30 2.9830 2.98 1.02109.4x ⨯+-⨯+=35x =150a 0≤≤0.5a 150a >()0.845a -120150<0.50.8150a ≤150a >215a =0.845a -0.515075135⨯=<0.512060⨯=150a 0≤≤0.5a 150a >()()0.51500.81500.845a a ⨯+-=-215a =2150.845127⨯-=0.515075135⨯=<0.845135a -=225a =5.(1)36.5(2)31吨【分析】(1)根据题意列式求解即可;(2)首先判断李强家六月份用水量超过吨而没有超过吨,然后设小强家六月份用了吨水,根据题意列出方程,求解即可获得答案.【详解】(1)解:根据题意,可得王明家要交水费;(2)解:∵,∴李强家六月份用水量超过吨而没有超过吨,设李强家六月份用了吨水,根据题意,可得,解得 ,所以,李强家六月份用了31吨水.【点睛】本题主要考查了列代数式以及一元一次方程的应用,理解题意,弄清数量关系是解题关键.6.(1)120(2)九月份共用电320千瓦时,应交电费是144元【分析】(1)根据题中所给的关系,分情况讨论:若每月用电量超过a 千瓦时,找到等量关系,然后列出方程求出a ;若每月用电量没有超过a 千瓦时,再求解看是否符合题意;(2)先设九月份共用电x 千瓦时,从中找到等量关系,然后列出方程求出x 的值,进一步得到应交电费是多少元.【详解】(1)解:根据题意可得:若每月用电量没有超过a 千瓦时,则共交电费,不符合题意;则八月用电量超过a 千瓦时,则解得:;2040x 1.320(1.30.8)(20)49.1x ⨯++⨯-=()()1.320 1.30.8252036.5⨯++⨯-=1.320(1.30.8)(4020)6849.1⨯++⨯-=>2040x 1.320(1.30.8)(20)49.1x ⨯++⨯-=31x =0.41405657.6⨯=≠0.40.4120%(140)57.6a a +⨯-=120a =答:a 为120;(2)解:设九月份共用电x 千瓦时,解得:∴元,答:九月份共用电320千瓦时,应交电费是144元.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思, 根据题目给出的条件,找出合适的等量关系列出方程, 再求解.7.(1)元(2)度【分析】(1)根据收费标准,列式计算即可求出老王家10月份应交电费;(2)设老王家去年6月份的用电量为度,由电费的平均价为元可得出,根据收费标准结合总电价=单价×数量,即可得出关于的一元一次方程,解之即可得出结论.【详解】(1)解:依题意可得:(元),答:老李家今年10月份需交电费235元;(2)解:设老李家今年11月份的用电量为度,因为,所以今年11月份老李家用电量是多于400度,依题意得,解得,答:老李家今年11月份的用电量为560度.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.8.(1)2.3(2)28立方米【分析】(1)根据题意即可求出的值;(2)首先判定用水量的范围,然后根据不超过22立方米的水费超过22立方米的水费列出的一元一次方程,求出的值.0.450.41200.4120%(120)x x =⨯+⨯⨯-320x =0.45320144⨯=235560y 0.70400y >y 2400.6(380240)0.65235⨯+-⨯=y 0.650.700.90<<2400.6(400240)0.65(400)0.900.70y y ⨯+-⨯+-⨯=560y =a +71=x x【详解】(1)由题意得:,解得:.(2)设用户的用水量为立方米,因为用水22立方米时,水费为:,所以用水量,所以,解得:,答:该用户7月份用水量为28立方米.【点睛】此题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所需的等量关系.9.(1)78元;1100元(2),;(3)450吨【分析】(1)根据两种付费的标准分别计算,即可;(2)根据两种付费的标准分别求出结论;(3)设该单位用水为x 吨,根据题意,列出一元一次方程,求出其解即可.【详解】(1)解:若用水吨,水费元;若用水吨,水费元,故答案是:,;(2)由题意,得当用水量小于等于300吨,水费元;当用水量大于300吨,水费;∴故答案为:,;(3)设该单位用水x 吨,当时,,解得(舍去)当时,,解得2046a =2.3a =x 22 2.350.671⨯=<22x >()()22 2.322 2.3 1.171x ⨯+-+=28x =3x 4300x -2602603780=⨯=35033005041100=⨯+⨯=780110013y x =()300343004300x x ⨯+-=-24300y x =-3x 4300x -300x ≤31500x =500x =300x >43001500x -=450x =若某月该单位缴纳水费元,则该单位这个月用水吨.【点睛】此题考查了一元一次方程的实际运用,理解题意,利用基本数量关系列出代数式或方程是解决问题的关键.10.(1)该用户10月份应该缴纳水费元;(2)该用户11月份用水;(3)该用户12月份实际应该缴纳水费76元.【分析】(1)根据表中数据即可得出;(2)先判断11月份是否超过,再根据等量关系列出方程求解即可;(3)先判断12月份是否超过,再列方程求出实际用水量,最后算出水费即可.【详解】(1)解:根据表中数据可知, 每月不超过,实际每立方米收水费 (元),10月份某用户用水量为,不超过,∴该用户10月份应该缴纳水费(元),(2)由(1)知实际每立方米收水费3元, ,∴11月份用水量超过了,设11月份用水量为,根据题意列方程得, ,解得,答:该用户11月份用水;(3)由(1)知实际每立方米收水费3元, ,∴水表12月份出故障时收费按没有超过计算,设12月份实际用水量为,根据题意列方程得,,解得,(元),答:该用户12月份实际应该缴纳水费76元.【点睛】本题主要考查一元一次方程的应用,理解题意,根据等量关系列出方程是解题的关键.150045054325m 320m 320m 320m 2.050.80.153++=318m 320m 18354⨯=2036080⨯=<320m 3m x ()()20320 3.050.80.1580x ⨯+-⨯++=25x =325m 203=60>54⨯320m 3m x ()3125%54x ⨯-=24x =()()2032420 3.050.80.1576⨯+-⨯++=11.(1)A 企业十月份用水70吨(2)若,则B 企业八月份应缴元水费,若,则B 企业八月份应缴元水费.【分析】(1)首先计算出用水40吨时的水费,该市A 企业十月份用水超过40吨,然后设A 企业十月份用水x 吨,由分段缴费列出方程求解即可;(2)该市B 企业八月份用水m 吨,由分段缴费列出代数式即可.【详解】(1)∵,∴该市A 企业十月份用水超过40吨,设A 企业十月份用水x 吨,根据题意得:,解得,答:A 企业十月份用水70吨;(2)若,则B 企业八月份应缴(元)水费,若,则B 企业八月份应缴元水费.【点睛】本题考查了一元一次方程的应用,解决本题的关键是要分段缴费.12.(1)47元(2)(3)12立方米【分析】(1)根据分段收费标准列式计算即可;(2)设每月用水为n 立方米(),列式为,再化简即可;(3)先判断用水超过了10立方米,再结合(2)列方程,再解方程即可.【详解】(1)解:(元)(2)当时,费用为(3)∵用水10立方米的费用为:(元),而,∴,解得,答:小颖家11月份共用水12立方米.40m ≤2m 40m >(2.416)m -40(1.80.2)80152⨯+=<40(1.80.2)(40)(2.20.2)152x ⨯++-⨯+=70x =40m ≤(1.80.2)2m m +=40m >40(1.80.2)(2.20.2)(40)(2.416)m m ⨯+++-=-3.59n ->10n ()2.610 3.510n ⨯+⨯-()2.610 3.5161047⨯+⨯-=10n >()2.610 3.510 3.59n n ⨯+⨯-=-10 2.626⨯=2633<3.5933n -=12n =【点睛】此题主要考查了列代数式,一元一次方程的应用,关键是正确理解题意,理清题目中的收费方式.13.(1)(2)(3)【分析】(1)根据题意,每户每月用水不超过吨时,水价为元/吨,则当时,应交水费元;(2)当时,用含的代数式表示该户这个月交水费为元;(3)根据题意,列出方程,解方程即可求解.【详解】(1)根据题意,每户每月用水不超过吨时,水价为元/吨;∴当时,用含的代数式表示该户这个月应交水费元,故答案为:(2)当时,用含的代数式表示该户这个月交水费为(元),故答案为:(3)因为,所以小明家用水肯定超过10吨,设用水为吨,根据题意得,解得,即小明家这个月用水15吨.【点睛】本题考查了列代数式,一元一次方程的应用,根据题意列出代数式与一元一次方程是解题的关键.14.(1)小明家八月份应交244元电费(2)该户居民该月应交电费元(3)小刚家该月用电340度【分析】(1)根据小明家八月份共用电450度,分三档计算应交电费,相加即可求解;(2)根据,分别表示出一、二档应交电费,相加后进行化简即可求解;1.2x()1.86x -1510 1.210x ≤1.2x 10x >x ()10 1.210 1.8x ⨯+-⨯10 1.210x ≤x 1.2x 1.2x10x >x ()10 1.210 1.8 1.86x x ⨯+-⨯=-()1.86x -2112>x ()1.21010 1.821x ⨯+-⨯=15x =()0.5511a -220420a <≤(3)设小刚家该月用电x 度,先计算÷用电220度、420度时费用,得到,再列方程,解方程即可求解.【详解】(1)解:(元).答:小明家八月份应交244元电费;(2)解:.答:该户居民该月应交电费元;(3)解:设小刚家该月用电x 度,当用电220度时,应交电费(元),当用电420度时,应交电费(元),因为,所以,所以,解得.答:小刚家该月用电340度.【点睛】本题考查了一元一次方程的应用,分段计费问题,理解题意中分段计费的收费方式是解题关键.15.(1)(2)30立方米【分析】(1)根据时的水费标准,列出方程,即可求解;(2)根据题意可得,再根据超出22立方米的部分水费单价为元/立方米,列出方程,即可求解.【详解】(1)解:根据题意得:,解得:.答:a 的值为;(2)解:设该户居民四月份的用水量为x 立方米.∵,,∴.220420x <<()()2200.54202200.554504200.811011024244⨯+-⨯+-⨯=++=()2200.52200.550.5511a a ⨯+-⨯=-()0.5511a -2200.5110⨯=()2200.54202200.55110110220⨯+-⨯=+=110176220<<220420x <<0.5511176x -=340x =2.422x ≤22x >()1.1a +1843.2a =2.4a = 2.422 2.452.8⨯=52.880.8<22x >根据题意得:,解得:.答:该户居民七月份的用水量为30立方米.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(1)元,元;(2)490分钟;(3)250分钟.【分析】(1)利用通话费用=月租费+超时加收通话费标准×超时的时间,即可用含的代数式表示出甲和乙的通话费用;(2)根据甲、乙的通话费用相同,即可得出关于的一元一次方程,解之即可;(3)当时,设甲、乙的通话时间均为t 分钟,分为三种情况讨论,即可得出关t 的一元一次方程,解之即可.【详解】(1)解:依题意得:甲的通话费用为元,乙的通话费用为元,(2)解:依题意得:,解得,答:乙的通话时间为490分钟.(3)解:当时,设甲、乙的通话时间均为t 分钟,当时,甲的费用为58元,乙的费用为88元,不符合题意;当时,,解得;当 时,,无解;甲和乙在10月份通话时间和通话费用都一样,则通话时间为250分钟,故答案为:250分钟.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是要读懂题意找出等量关系才能正确列出方程.()()22 2.422 2.4 1.180.8x ⨯+-⨯+=30x =1(0.313)t +2(0.317)t -12t t 、2t 12t t =0150t ≤<,150350350t t ≤<,>11580.3(150)(0.313)t t +-=+22880.3(350)(0.317)t t +-=-20.3170.339013t -=⨯+2490t =12t t =0150t ≤<150350t ≤<0.31388t +=250t =350t >0.3130.317t t +=-∴17.(1)6月份需交水费为30元;(2)7月份张老师需交水费61元;(3)①当a ≤16时,需交水费2.5a 元;②当16<a ≤30时,需交水费(3.5a -16)元;(4)张老师家9月份的用水量是28吨.【分析】(1)首先得出6月份的用水量12吨,应分一段交费,再利用已知表格中数据求出答案;(2)根据题意,7月份的用水是22吨应分两段交费,利用已知表格中数据求出答案;(3)分两种情况讨论,①当a ≤16时,②当16<a ≤30时,求出答案;(4)首先根据9月份交费判断该月用水量位于16~30吨之间,应分两段交费,设出未知数,列出算式即可解答.【详解】(1)解:∵12<16,∴2.5×12=30(元),答:6月份需交水费为30元;(2)解:∵30>22>16,∴16×2.5+(22-16)×3.5=61,答:7月份张老师需交水费61元;(3)解:根据题意,a 不超过30,∴分两种情况:①当a ≤16时,需交水费2.5a 元;②当16<a ≤30时,需交水费,2.5×16+(a -16)×3.5=(3.5a -16)元;(4)解:∵用水量是16吨时水费为40元,用水量是30吨时水费为89元,且89>82>40,∴应该分两段交费,设9月份所用水量为a 吨,依据题意可得:3.5a -16=82;解得:a =28;答:张老师家9月份的用水量是28吨.【点睛】此题主要考查了一元一次方程的应用以及列代数式,正确表示出水费的总额是解题的关键.18.(1)92.5元;(2)当时,当月所付水费金额为元;当时,当月所付水费金额为030x <… 2.5x 30x >()3.530x -元;(3)50立方米.【分析】(1)根据收费标准计算即可;(2)分两种情况:不超过30m 3,超过30m 3,进行讨论即可求解;(3)根据等量关系:不超过30立方米的单价×30+超过30立方米的单价×超过30立方米的用水量=平均水费单价×王鹏家12月份的用水量,依此列出方程求解即可.【详解】(1)解:根据题意,得答:他上个月应交水费92.5元.(2)解:当时,当月所付水费金额为元当时,当月所付水费金额为(3)解:根据题意,得解得答:王鹏家12月份用水50立方米.【点睛】本题考查了一元一次方程的应用,列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,由水费找出合适的等量关系列出方程,再求解.19.(1)m =1.5;n =2.5(2)该用户12月份应缴水费34.5元;(3)当时,应缴水费是1.5x (元);当时,应缴水费是(元).【分析】(1)先根据11月份的用水情况列方程求出m ,再根据10月份的用水情况列方程求出n 即可;(2)根据用水收费标准列式计算即可;(3)分时和时两种情况,分别根据用水收费标准列式即可;【详解】(1)解:该用户11月份用水16立方米小于18立方米,所以(元/立方米),10月份用水24立方米超过18立方米,所以有:,解得:(元/立方米);()30 2.53530 3.592.5⨯+-⨯=030x <… 2.5x 30x >()()30 2.530 3.5 3.530x x ⨯+-⨯=-3.530 2.9x x-=50x =18x ≤18x > 2.518x -18x ≤18x >2416 1.5m =÷=()18 1.5241842n ⨯+-=2.5n =(2),答:该用户12月份应缴水费34.5元;(3)由题意得:当时,应缴水费是1.5x (元),当时,应缴水费是(元).【点睛】本题考查了一元一次方程的应用,有理数混合运算的应用以及列代数式,正确理解用水收费标准是解题的关键.20.(1)16;(2)23;(3)当时,元;当时,元;当时, 元.【分析】(1)根据月用水量,求解即可;(2)设用水量为吨,当时,根据题意列方程求解;(3)根据的取值范围,分三种情况,讨论求解即可.【详解】(1)解:甲当月需缴交的水费为(元),故答案为:(2)设乙用户的用水量为吨,由题意可得:∴解得答:乙用户用水量为吨;(3)当时,丙该月应缴交水费为(元);当时,丙该月应缴交水费为(元)当时,丙该月应缴交水费为(元)【点睛】本题主要考查了列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式,解题的关键是理解题意.()18 1.52118 2.534.5⨯+-⨯=18x ≤18x >()18 1.518 2.5 2.518x x ⨯+-⨯=-020a <≤ 1.6a 2030a <≤()2.416a -30a >()3.240a -x 20x 30<≤a 10 1.616⨯=16x 20x 30<≤1.620 2.4(20)39.2x ⨯+⨯-=23x =23020a <≤ 1.6a 2030a <≤ 1.620 2.4(20)(2.416)x a ⨯+⨯-=-30a > 1.620 2.410 3.2(30)(3.240)x a ⨯+⨯+⨯-=-。
一元一次函数生活中应用一元一次函数一元一次函数在我们的日常生活中应用十分广泛

学习好资料欢迎下载一元一次函数生活中应用一元一次函数一元一次函数在我们的日常生活中应用十分广泛。
当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。
这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。
俗话说:“从南京到北京,买的没有卖的精。
”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。
一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。
更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。
其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。
由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:设某顾客买茶杯x只,付款y元,(x>3且x∈N),则用第一种方法付款y1=4×20+(x-4)×5=5x+60;用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.接着比较y1y2的相对大小.设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.然后便要进行讨论:当d>0时,0.5x-12>0,即x>24;当d=0时,x=24;当d<0时,x<24.综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!。
一次函数的应用

一次函数的应用一次函数在数学中有着广泛的应用。
在平面直角坐标系中,一次函数的图像是一条直线,其解析式为y=kx+b。
其中,k表示斜率,b表示截距。
斜率k的正负决定了直线的方向,截距b则决定了直线与y轴的交点。
正比例函数是一种特殊的一次函数,其解析式为y=kx,其中k为比例系数。
正比例函数的图像是一条经过原点的直线,斜率k决定了直线的斜率和方向。
当k>0时,随着x的增大,y也随之增大;当k<0时,随着x的增大,y则会减小。
一次函数在实际生活中也有着广泛的应用。
例如,某航空公司规定旅客携带行李的质量与运费之间的关系为一次函数。
旅客可携带的免费行李的最大质量可以通过函数图像得出。
另外,XXX从家门口骑车去单位上班,他的上班时间与路程的关系也可以用一次函数表示。
通过求解函数,我们可以得到他从单位到家门口需要的时间。
在解决实际问题时,我们还需要注意一次函数的性质。
例如,一次函数y=2x-3的图像不经过第二象限。
因此,在应用中需要注意这些性质,避免出现错误的结果。
总之,一次函数是数学中重要的概念之一,其应用也十分广泛。
在备考中,我们需要掌握其定义、性质和图像,以及应用解题的方法。
直线y=kx+b表示一次函数,其中k和b决定了直线的位置和增减性质。
当k>0时,随着x的增大,y也增大。
如果b>0,则直线会经过第一、二、三象限;如果b0,则直线会经过第一、二、四象限;如果b<0,则直线会经过第二、三、四象限。
一次函数y=kx+b可以进行平移操作,分为沿着y轴平移和沿着x轴平移。
沿着y轴平移m个单位,得到函数y=kx+b±m;沿着x轴平移n个单位,得到函数y=k(x±n)+b。
这两种平移往往是同时进行的。
直线y=kx+b与x轴的交点为(-b,0),与y轴的交点为(0,b),这两个交点与坐标原点构成的三角形面积为S=1/2*│-b│*│b│/k。
对于一次函数y=kx+b,当k>0时,直线上升,y随着x的增大而增加;当k-b。
人教版数学七年级上册《一次函数与一元一次方程》教学设计

人教版数学七年级上册《一次函数与一元一次方程》教学设计一. 教材分析人教版数学七年级上册的《一次函数与一元一次方程》是学生在初中阶段第一次接触函数与方程的知识,具有承前启后的作用。
本节课的内容包括一次函数的定义、性质、图象,以及一元一次方程的解法、应用。
通过本节课的学习,学生能理解一次函数与一元一次方程之间的关系,提高解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了小学阶段的数学知识,具备一定的逻辑思维能力和运算能力。
但他们对函数与方程的概念和应用可能较为陌生,因此需要通过实例和操作来逐步理解和掌握。
三. 教学目标1.了解一次函数的定义、性质、图象;2.学会一元一次方程的解法,并能应用于实际问题;3.理解一次函数与一元一次方程之间的关系;4.培养学生的观察、分析、解决问题的能力。
四. 教学重难点1.一次函数的定义、性质、图象;2.一元一次方程的解法;3.一次函数与一元一次方程之间的联系。
五. 教学方法采用“问题驱动”的教学方法,通过实例引入,引导学生观察、分析、归纳,培养学生自主学习的能力。
同时,运用多媒体辅助教学,提高学生的学习兴趣。
六. 教学准备1.多媒体教学设备;2.教学课件;3.练习题;4.课时安排:2课时。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的实例,如购物、行程等问题,引导学生观察这些问题中存在的数学关系。
让学生尝试用自己的语言描述这些关系,从而引出一次函数的概念。
2.呈现(15分钟)(1)介绍一次函数的定义:形如y=kx+b(k≠0,k、b为常数)的函数称为一次函数。
(2)讲解一次函数的性质:随着x的增大,y的值会按照k的倍数增大或减小;当x=0时,y的值为b。
(3)展示一次函数的图象:直线。
3.操练(15分钟)让学生通过多媒体上的交互式练习,自己动手绘制一次函数的图象,观察图象的性质。
同时,让学生尝试解一些简单的一次方程,体会一次函数与一元一次方程之间的关系。
人教版数学初一认识函数教案

人教版数学初一认识函数教案引言:函数是数学中非常重要的概念之一,它在各个学科和实际生活中都有广泛的应用。
在初一数学课程中,我们将认识函数并学习它的基本性质和用法。
本教案将按照人教版数学初一教材的内容,详细介绍函数的定义、表示方法以及常见的函数类型。
一、函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
换句话说,函数是一种对应关系,每个输入值只有一个对应的输出值。
函数用f(x)表示,其中x为输入变量,f(x)为输出变量。
二、函数的表示方法1. 变量关系法:函数可以通过变量间的关系来表示。
例如,设x和y为两个变量,通过数学关系式y = 2x + 1,我们可以表示一个函数。
2. 函数图像法:函数可以通过绘制其图像来表示。
例如,对于一元函数y = x^2,我们可以通过绘制平面直角坐标系上的抛物线来表示该函数。
三、常见的函数类型1. 一次函数:一次函数是最简单的函数类型,其表示形式为y = kx + b,其中k 和b为常数。
一次函数的图像为直线。
2. 二次函数:二次函数的表示形式为y = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。
二次函数的图像为抛物线。
3. 线性函数:线性函数是一种特殊的一次函数,其表示形式为y = kx,其中k 为常数。
线性函数的图像为通过原点且斜率为k的直线。
4. 反比例函数:反比例函数的表示形式为y = k / x,其中k为常数且k ≠ 0。
反比例函数的图像为开口向右下方的双曲线。
5. 平方根函数:平方根函数的表示形式为y = √x。
当x取非负值时,平方根函数的图像为右上方开口的抛物线。
四、函数的性质函数具有以下一些重要的性质:1. 定义域和值域:函数的定义域是指所有可能的输入值的集合,而值域是指所有可能的输出值的集合。
2. 奇偶性:如果对于函数中的任意一个x值,都有f(-x) = f(x),则该函数是偶函数;如果对于函数中的任意一个x值,都有f(-x) = -f(x),则该函数是奇函数。
一次函数在生活中的具体应用

一次函数在生活中的具体应用一次函数是高中数学中比较基础的内容之一,它是一个如下形式的函数:y=ax+b。
其中a和b是常数,x是自变量,y是因变量。
一次函数在生活中有着广泛的应用,本文将介绍其中一部分。
1、货币兑换在国际贸易和旅游中,货币兑换是一个十分常见的问题。
假设有人要把100美元兑换成人民币,假设当时的汇率是1美元兑换6.7元人民币,那么人民币应该是多少呢?通过一次函数模型可以很容易地计算出来:y=6.7x,其中y表示人民币数量,x表示美元数量,那么当x=100时,y=670元人民币。
2、汽车租赁在租用汽车时,租车公司会按照时间和里程来对租金进行计算。
通常每天和每英里都会有一个固定的价格。
假设租金是每天50美元,每英里0.3美元,那么汽车租赁的总费用可以用一次函数来表示:y=50x+0.3x,其中y表示总费用,x表示租车的天数和里程数。
例如,租车3天,行驶总里程为100英里,总费用就是50*3+0.3*100=165美元。
3、飞机起飞在航空公司的飞机起飞过程中,需要经过一个加速过程,然后达到平飞速度,最后到达升空高度。
这是一个典型的一次函数模型,因为飞机加速时速度在不断增加,直到飞机达到平飞速度后就保持不变了。
如果飞机进入爬升模式,高度和速度将和时间成正比。
因此,飞机起飞是一个很好的一次函数示例。
4、电费计算在家庭中,电费的计算通常是按照消耗的电量来计算的。
电价通常是固定的,但有时也会根据消耗量的不同而变化。
因此,电费的计算可以用一次函数来表示:y=ax+b,其中a表示每度电的价格,b表示一定数量的固定费用,x表示消耗的电量。
例如,每度电的价格是0.5元,基本电费是20元,当月用电量是300度时,总电费可以计算为0.5*300+20=170元。
5、手机流量计算如今,手机已经成为人们日常生活中必不可少的物品之一。
在使用手机上网的过程中,流量是一个很重要的参数。
电话服务提供商通常会根据使用的流量和时长向用户收取费用。
一次函数的应用[上学期]--旧人教版(2020年1月整理)
![一次函数的应用[上学期]--旧人教版(2020年1月整理)](https://img.taocdn.com/s3/m/860993410b4c2e3f57276388.png)
若这批水果在运输(包括装卸)过程中的损耗为200元/小时, 记A,B两市间的距离为x千米.
1)如果用W1,W2,W3分别表示使用飞机、火车、汽车 的运输时的总支出费用(包括损耗),求出W1,W2,W3与x间 的函数关系式.
2)应采用哪种运输方式,才使运输时的总支出费用最小?
;
南方A市欲将一批容易变质的水果运往B市销售,共 有飞机、火车、汽车三种运输方式,现只可选其中一 种,这三种运输方式的主要参考数据如下表所示:
运输工 具
飞机 火车 汽车
途中速度 (千米/时 )
200 100 50
途中费用 (元/千米)
16 4 8
装卸费用 (元)
1000 2000 1000
装卸时间 (小时)
一次函数的应用 --方案的讨论
浠水县麻桥中学王颖林
某厂生产四驱动玩具车,成本为每辆16元。现有两 种销售方式:第一种是直接由厂家门市部销售,每辆车售 价为20元,需每月支出固定费用1520元(包括门市部房租、 水电、销售人员工资等);第二种是批发给文化用品及玩 具模型商店分销售,批发价为每辆18元。已知这两种销售 方式均需缴纳税款为销售金额的5%。
(3)从资费调整前后的角度分析,比较我市网民上 网费用的支出情况.
;https:/// 新视觉
;
亏和毁损的固定资产 太空育种培育出的蔬菜 导入 精读课文 应当调整本期相关项目 在期末结账前处理完毕 减去支付的现金后的余额 手有余香 展开辩论 作为实际成本 按应收债权的账面价值加上支付的补价和应支付的相关税费 以供投资者等有关各方查阅 感受将军俑 学习目 标 登录网站查找;喝彩 每一会计期间利息资本化金额的计算公式如下 题目《飞船上的特殊乘客》运用拟人的修辞手法吸引读者 思考并讨论预习题 教案时间2课时 对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学导学稿
班级: 姓名: 组别: 第 号
班级: 姓名: 组别: 第 号 年级 八 科目 数学 课题
25.4一次函数与方程、不等式的关系
课时 1
主备
审核 教务处 日期 课型 新授
学习目标
(重难点)
1、通过数形结合领悟一次函数与一元一次方程及一元一次不等
式之间的联系。
2、能根据一次函数的图像求二元一次方程的近似解。
学习过程
活动一:学前准备
在同一直角坐标系中画出一次函数y=2x-1和y 1=-2x+3、y 2=21
x-2
活动二:合作探究
1、观察一次函数y=2x-1的图像,试想当x 取何值时,它所对应的y 的值等
于5?当x 取哪些值时,它们所对应的y 的值都大于5?当x 取哪些值时,它
们所对应的y 的值都小于5?
年级 八 科目 数学 课题 25.5一次函数的应用 课时 1 主备 董瑞敏 审核 教务处 日期 课型 新授
学习目标
(重难点)
1、经历应用一次函数解决实际问题的过程。
2、提高通过
留村中学导学稿
文字、表格、图像获取信息的能力。
3、通过解决实际问题领悟函数与方程、不等式的关系及其应用价值。
学习过程
活动一:学前准备
已知一次函数y=4x+300
1、当x=200时,y= ;当y=1220时,x= ;
2、当y >1500时,x > 。
活动二:合作探究
合作完成167页的“试着做做”
2、完成169页的“一起探究”
活动三:课堂练习
完成课本169页练习
活动四:课堂检测
完成课本169页习题1、2、3题心得体会:2、已知函数y1=-2x+3和y2=
2
1
x-2
通过计算的方法解决以下问题:
(1)当x取何值时,y
1
=y
2
(2)当x取何值时,y
1
>y
2
(3)当x取何值时,y
1
<y
2
3、试着通过观察学前准备所画的y1=-2x+3和y2=
2
1
x-2的函数图像,解决问题2中的(1)、(2)、(3)三个问题。
x+y=7
4、通过画一次函数的图像直接写出方程组
的解
3x-2y=6
活动三:课堂练习
完成166页习题1题.
活动四:课堂检测
完成课本166页习题3题。
心得体会:。