第12章 光的衍射
光的衍射理论
矩孔夫琅禾费衍射的积分形式:
衍射零点条件:
半角宽度为:
圆孔的夫琅禾费衍射
圆孔的衍射场存在一中心光斑,称为艾里斑。艾里斑的宽度d为 ,半角宽度 为:
8.瑞利判据
设相邻两个艾里斑中心间的角间距为 ,将 与艾里斑半角宽度 进行比较,二者相等时 ,为能分辨的最小角间距 ,即当第一个像的主极大和另一个像的第一极小重合时,这两个像刚好能分辨,称为瑞利判据。
光栅的色散范围: ,色散范围只与波长和衍射级有关。
12.闪耀光栅
两种照明方式:
入射光垂直光栅平面时的光栅方程:
入射光垂直沟槽面时的光栅方程:
13.菲涅耳波带
第m个波带边界半径为:
波带的面积为:
菲涅耳数: ,a为圆孔半径。
菲涅耳波带片:菲涅耳波带片等效透镜,其焦距为
分别表示入射光方向和场点相对曲面Q面元的法线方向的方位角; 为倾斜因子,表示次级波源发射的各向异性性。
3.亥姆霍兹-基尔霍夫积分定理
在满足定态波亥姆霍兹方程的无源空间取闭合曲面,通过格林公式,推导出曲面内任一点P的场满足: ,该场可由包围这点的任一闭合球面的场确定。
4.巴比涅原理
当两个屏透光部分加起来时,正好是整个平面,这时衍射场与没有衍射屏时的场 相等
第
本章从惠更斯-菲涅耳原理出发,一步步的阐述了光的衍射理论及相关应用,大概思路如下:
惠更斯-菲涅耳原理→亥姆霍兹-基尔霍夫积分定理
1.惠更斯原理
一个波阵面的每个面元,可各看做是一个产生球面子波的次级扰动中心,以后任何时刻的波阵面是所有这些子波的包络面。
2.惠更斯-菲涅耳原理
波阵面上每一个面元可看做次级波源,波场中任一点的光场,是所有次级波源发射的次级波在该场点的相干叠加。当波阵面 上面元dS足够小时,面元dS可认为是点光源,产生的次级波为球面波,那么惠更斯-菲涅耳原理可以将P点的总场表示为
第11-2章光的衍射作业-答案
第11-2章光的衍射作业-答案第11-2章光的衍射作业答案⼀.选择题1. 在单缝衍射实验中,⽤单⾊平⾏光垂直⼊射后,在光屏上产⽣衍射条纹,对于屏上的第⼆级明条纹中⼼,相应的单缝所能分成的半波带数⽬约为( C )(A) 2 (B) 3 (C) 5 (D) 62.⼀束平⾏单⾊光垂直⼊射在光栅上,当光栅常数b+b’为下列情况(b 代表每条缝的宽度) k = 2 、4 、6 等级次的主极⼤均不出现?( A )(A) b+b'=2b (B) b+b'=3b (C) b+b'=4b (D) b+b'=6b3.根据惠更斯-菲涅⽿原理,若已知光在某时刻的波阵⾯为S,则S 的前⽅某点P 的光强度决定于波阵⾯S 上所在⾯积元发出的⼦波各⾃传到P 点的( B )(A)振动振幅之和;(B)振动的相⼲叠加;(C)振动振幅之和的平⽅(D)光强之和。
4.关于光学仪器的分辨率,下列说法正确的是( C )A.与⼊射光波长成正⽐,与透光孔径成正⽐;B.与⼊射光波长成反⽐,与透光孔径成反⽐;C.与⼊射光波长成反⽐,与透光孔径成正⽐;D.与⼊射光波长成正⽐,与透光孔径成反⽐。
5.某元素的特征光谱中,含有波长分别为1450nmλ=和2750nmλ=的光谱线,在光栅光谱中,这两种波长的光谱线有重叠现象,重叠处1λ的谱线级数是( C )(A)3 、6 、9 (B)2 、4 、6( C)5 、10 、15 (D)4 、8 、126. 在图⽰的夫琅和费单缝衍射装置中,将单缝宽度a稍微变窄,同时使会聚透镜L沿y轴正⽅向作微⼩位移,则屏幕C上的中央衍射条纹将( A )(A) 变宽,同时向上移动(B) 变宽,同时向下移动(C) 变宽,不移动(D) 变窄,同时向上移动7. ⽤单⾊光垂直照射光栅,测得第⼀级主极⼤的衍射⾓为030,则在衍射⾓π?π2121<<-范围内能观察到的全部主极⼤的条纹数为 ( B ) (A) 2条 (B) 3条 (C) 4条 (D) 5条⼆.填空题1. 在复⾊光照射下的单缝衍射图样中,某⼀波长单⾊光的第2级明纹位置恰与波长λ=400nm 的单⾊光的第3级明纹位置重合,这光波的波长__560nm__。
光的衍射
sinu sinu A nA1 A0 u u I A2 sin2 u 2 I 0 A0 u2
a u sin
17
讨论: (1) 0处, I I0
I sin2 u I0 u2
a u sin
中央明纹位置(零级主极大)
a si n (2) u 0, si nu 0即si n k 时, 为暗纹位置 a
d si n2 u (3) ( ) 0即 tan u u时 , 为明纹位置 2 du u
解 得u1 1.43即 si n 1 1.43 u2 2.46即 si n 2 2.46 u3 3.47即 si n 3 3.47
a a a
光的衍射(2)
光在传播过程中遇到 ?的障碍物时发生明显的光线 偏离直线传播的现象-------光的衍射。
本章主要内容: 一、光的衍射理论 (1)惠更斯-费涅耳原理。 (2)费涅耳半波带法。 二、几种典型的衍射 (1)单缝夫琅和费衍射。 (2)光栅衍射。 (3)圆孔衍射,光学仪器的分辨本领。 (4)晶体衍射,布喇格公式。
9
3、菲涅尔半波带法
缝平面 透镜L 透镜L A S a f Bδ 观察屏
·
p 0
S: 单色光源
*
: 衍射角
AB a (缝宽)
f
下面研究屏上P点的光强,它是由衍射角均为 的 一束平行光叠加而成。
10
G
B 由于透镜本身的性质,到达P点各光线 的光程差由波面AB到波面AC的光程差决 定。相邻两半波带上每一对应点G、G/到 AC(或P点)的相位差均为,相互抵消。
xk f tan k a sin k k 暗 纹 中 心 a sin ( 2k 1) 明 纹 中 心 k 2 (5)衍射效应与缝宽 a、入射光的波长 密切相关:
11--光的衍射
P1
x f tg 1 f sin 1 f a
l0 2 x 2 f
1
f
x O
a
5 mm
(2)第一级明纹宽度为第一级暗纹和第二级暗纹间的距离
2 f l f sin 2 f sin 1 f ( ) 2.5 mm a a a
A
1BC b sin 2
2
2个波带
bO
B
C
AO和OB波带上对应点发出的子波到达Q
点时的位相差为,相互干涉抵消----Q点 为暗纹
2 BC b sin 3
2
A
3个波带
b
A1 A2
剩余有一个波带未被抵消----Q点为明纹
B
C
3BC b sin n n 1,2n个波带
P
S
I
2 b b
2
b b
sin
2. 衍射图像的分布规律----菲涅尔半波带法
A
Q
b
A1
A2 A3
C
O
B
f
P
B点和A点的子光线的光程差: BC b sin
K t r E C cos 2 dS r T
P
P
S
S
二、惠更斯-菲涅尔原理
惠更斯原理可以定性地解释波的衍射现象,但是其不能够 定量地给出衍射波在空间各点波的强度 从同一波面上各点发出的子波是相干波,在传播到空间某 一点时,各子波进行相干叠加的结果,从而决定了该处的 波的振幅------子波想干叠加----惠更斯-菲涅尔原理 P点光矢量E的大小:
《大学物理》第十二章 光学
h
结束 返回
解:
=a
acos2
+
2
=
2asin2
=
2
asin =h
sin =4h
a 2
h
结束 返回
12-5 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与700nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
第二级明纹的宽度为
Δx
´=
Δx 2
=2.73 (mm)
结束 返回
12-15 一单色平行光束垂直照射在宽 为 1.0mm 的单缝上,在缝后放一焦距为 20m的会其透镜,已知位于透镜焦面处的 屏幕上的中央明条纹宽度为2.5mm。求入 射光波长。
结束 返回
解:
=
aΔx 2D
=
1.0×2.5 2×2.0×103
sinj
=
k (a+b)
sin =0.1786k-0.5000
在 -900 < j < 900 间,
对应的光强极大的角位置列表如下:
k
sinj j
k
sinj j
0
-0.500 -300
1
2
-0.3232 -0.1464
-18051’ -8025’
3
4
0.0304 0.2072
1045’ 11057’
结束 返回
12-22 一光栅,宽为2.0cm,共有
6000条缝。如用钠光(589.3nm)垂直入射,
中央明纹的位置? 共有几级?如钠光与光
工程光学习题参考答案第十二章-光的衍射
第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。
解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为λθ∆=图12-50 习题3图解:设直径为a ,则有f d aλ=4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。
∴P 当(12449416a ca ⎫-=⎪⎭ ∴()()09016aI I = (2)第一暗纹有()()22110a J ka b J kb ka kb θθθθ-= 查表可有 3.144ka θ=4. (1)一束直径为2mm 的氦氖激光(632.8nm λ=)自地面射向月球,已知地面和月球相距33.7610km ⨯,问在月球上得到的光斑有多大?(2)如果用望远镜用作为扩束器将该扩展成直径为4m 的光束,该用多大倍数的望远镜?将扩束后的光束再射向月球,在月球上的光斑为多大? 解:(1)圆孔衍射角半宽度为0.61aλθ=∴传到月球上时光斑直径为(2)若用望远镜扩束,则放大倍数为2000倍。
第十二章衍射详解
2
2
k 0,1,2
例题8
8.一个双缝,缝间距(a+b)0.1mm,缝宽(a)0.02mm,用波 长480nm的平行单色光垂直入射该双缝,双缝后放一焦距 为50cm的透镜,试求:(1)透镜焦平面处屏幕上干涉条 纹的间距;(2)单缝衍射中央亮纹的宽度;(3)单缝衍 射的中央包线内有多少条干涉主极大。
角(-p/2,p/2)范围内可能观察到的全部主极大的级次。
第二级主极大满足:
(a b)sin p 2
6
d a b 2.4103 mm
第三级缺级:
a b 3k a
am in
a
3
b
0.810 3 mm
( p , p )
22
(a b) sin p k (a b) sin p k
光栅方程d sin k d 0.2 2 d 6000nm
第四级缺级:d k 4, k取整数,k 0 a
am in
d 4
k m in
1500nm
k d sin p k 10
2 kmax 9
例题12
12.以波长400~760nm的白光垂直照射在光栅上,在它的 衍射光谱中,第2级和第3级发生重叠,问第2级光谱被重 叠地波长范围是多少?
双缝干涉的条纹宽度:
x f 2.4mm
d
单缝衍射的中央明纹 :
x 2 f 2.4cm
a
单缝衍射中央包线:sin ,
a a
d sin j
d j d
a
a
j 0,1, 2, 3, 4,共9条。
例题9
9.以波长为λ=500nm的单色光平行光垂直入射在 d=2.10mm光栅上,缝宽a =0.70mm,求能看到哪几级 衍射谱线。
大学物理 第十二章 波动光学2
2 又,明纹所在处x满足: x tg 1.5 0.003 , f 500
2 0.5 1.5 3 104 2ax / f 107 m A λ (2k 1) 500 2k 1 2k 1
白光波长范围4000—7000Å,满足上式的波长值即为所求:
• • • •
例题:已知单缝宽a=0.5mm,透镜焦距f=50cm,今以白光垂直照 射狭缝,在观察屏上x=1.5mm处看到明纹极大,求: (1)入射光的波长及衍射级数; (2)单缝所在处的波阵面被分成的波带数目。
[解]: (1)由明纹条件: a sin (2k 1)
x 很小 。 sin ≈ tg f
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称次极大。
2、明暗纹中心位置坐标
(1)中央明纹中心位置 x=0
xk t g k f
tgk sin k
x xk
k
中 O 央 明 纹
k2
k 1
(1)
(2)
f
(2)暗纹中心位置坐标
由 a sin k k 及式(1)、(2) 得
二、光学仪器的分辨本领
1.22 1 D
D
瑞 利 判 据
定义
分辨本领
D R 1.22
1
刚可分辨
非相干叠加
不可分辨
瑞利判据 : 对于两个等光强的非相
干物点,若其中一点的象斑中心恰好落 在另一点的象斑的边缘(第一暗纹处), 则此两物点被认为是刚刚可以分辨。
当 再 , =3/2时,可将缝分成三个“半波带”,
B a A θ a B θ
_04.光的衍射
a sin k,k 1,2,3„
——暗纹
A
λ / 2
a sin ( 2k 1) , k 1,2,3 „ 2 ——明纹(中心)
——中央明纹(中心) 上述暗纹和中央明纹(中心)位置是准确的,
a sin 0
其余明纹中心的位置较上稍有偏离。
10
三. 振幅矢量法、光强公式
( 2)
在 例如 N = 4, 0 级和 1 级亮纹之间 k 可取 1、2、3,即有三个极小: 1 2 3 sin , ,
4 d 4 d 4 d k 1 , k 2 , k 3
3 4 2 1
3 , , 2 2
光强曲线
二. 光栅的夫琅禾费衍射 1. 多光束干涉(multiple-beam interference)
先来分析多光束的干涉。
缝平面 G 观察屏 透镜 L
明纹(主极大)条件:
d
p 0
d sin k
(k = 0,1,2,„) —正入射光栅方程
29
dsin
焦距 f
光栅方程是光栅的基本方程。
时, 可将缝分为两个“半波带”
1 2 1′ 1 2′ 2 1′ 2′
半波带 半波带
A
λ /2
两个“半波带”发的光在p处干涉相消形成暗纹。 3 ▲当 a sin 时,可将缝分成三个
2
B a A λ /2 θ
P处为明纹中心(近似)
9
▲当a
sin 2
时,可将缝分成四个
B θ a
形成暗纹。 一般情况:
波动光学 :
物点 物(物点集合)
不可分辨
( 经透镜 )
九年级物理12章所有知识点
九年级物理12章所有知识点在九年级物理课程中,学生将学习到许多不同的知识点,其中包括十二个章节。
本文将对这十二个章节进行深入的探讨和阐述,以提供给读者一个全面了解的视角。
然而,在开始之前,我们需要了解一些基础知识以便更好地理解这些章节。
物理是自然科学的一个分支,它研究物质的运动、力、能量和相互作用。
对于九年级的学生来说,理解这些基础概念对于学习本科目至关重要。
接下来,我们将深入探讨九年级物理12个章节的知识点。
第1章:光的直线传播本章的重点是光的直线传播和反射。
学生将了解到光线的传播路径,并通过实验和观察发现光线在不同介质中的传播特性。
他们还将学习到折射和反射定律,并了解到这些定律在日常生活中的应用。
第2章:光的折射现象光的折射现象是我们日常生活中常见的现象之一。
在这章中,学生将通过实验和观察了解到折射的原理和规律。
他们将学习折射率的概念,并了解到不同介质之间的折射率差异对光线的传播路径产生的影响。
第3章:光的反射现象本章的重点是光的反射现象和镜面反射。
学生将学习光线在平面镜和曲面镜上的反射规律,并了解到这些规律在成像中的应用。
同时,他们还将了解到反射角和入射角之间的关系,并学习到反射定律的数学表达式。
第4章:色散现象光的色散现象是我们在生活中经常遇到的现象之一。
在这章中,学生将学习到白光在经过透明介质时的色散现象,并了解到不同频率光波在介质中的传播速度和折射率之间的关系。
他们还将学习到棱镜的工作原理,并探讨色彩的生成和组成。
第5章:光的衍射现象衍射现象是光在经过缝隙或边缘时出现的现象。
在这章中,学生将学习到光的衍射原理和规律,并了解到波前和波阵面的概念,以及它们如何影响衍射图样的形成。
第6章:电流强度和电路这章主要介绍了电流强度和电路的基本概念。
学生将学习到电流的定义、测量方法和单位,并了解到电流的方向和大小对电路中其他元件的影响。
他们还将学习到串联和并联电路之间的区别,并能够计算电路中的总电阻和总电流。
2019-2020年人教版高中物理选修3-4教学案:第十二章 第4节 波的衍射和干涉含答案
第4节波的衍射和干涉一、波的衍射1.定义:波绕过障碍物继续传播的现象。
2.两种衍射现象(1)在水波槽中,在波源的前方放一个障碍物,使波源振动产生水波。
当障碍物较大时波被阻挡,在靠近障碍物后面没有波,只是在障碍物较远处,波才稍微有些绕到“影子”区域里,如图12-4-1甲所示,虽然发生衍射现象,但不明显。
图12-4-1当障碍物较小时发现波能绕过障碍物继续前进,如同障碍物不存在一样,如图乙所示,衍射现象明显。
(2)在水波槽中,在波源前方放一个有孔的屏,使波源振动产生水波。
当孔较大时发现水波经过孔后在连接波源与孔的两边的两条直线所限制的区域里传播,如图丙所示。
当孔较小时发现孔后的整个区域里传播着以孔为中心的圆形波,如图丁所示,衍射现象明显。
3.发生明显衍射现象的条件只有当缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象。
二、波的叠加1.波的叠加原理1.波绕过障碍物继续传播的现象叫做波的衍射。
2.发生明显衍射的条件:缝孔的宽度或障碍物的尺寸跟波长差不多,或者比波长小。
3.波的干涉是指频率相同的两列波叠加,使某些区域的振幅加大,某些区域的振幅减小。
几列波相遇时能够保持各自的运动状态,继续传播,在它们重叠的区域里,介质中的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和。
图12-4-2表示了分别向右、向左传播的两列波1和2在相遇区域内的叠加过程。
2.波的叠加原理是波具有独立传播性的必然结果,由于总位移是两个位移的矢量和,所以叠加区域的质点的位移可能增大,也可能减小。
两列同相波的叠加,振动加强,振幅增大。
(如图12-4-2所示)两列反相波的叠加,振动减弱,振幅减小。
(如图12-4-3所示)图12-4-2 图12-4-3三、波的干涉1.定义频率相同的两列波叠加时,某些区域的振幅加大、某些区域的振幅减小的现象。
2.稳定干涉条件(1)两列波的频率必须相同。
工程光学习题参考答案第十二章 光的衍射
第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。
解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。
大学物理第12章光的衍射
光通过狭缝后,会向四周扩散,形成 衍射现象。衍射图样的形状和大小与 狭缝的宽度和光波长有关。
多缝干涉与衍射的应用
光学仪器设计
干涉和衍射原理被广泛应用于光学仪器设计,如望远镜、显微镜 等,以提高成像质量和分辨率。
物理实验研究
多缝干涉和衍射实验是研究光波性质的重要手段,有助于深入理解 光的波动性和相干性。
光源
圆孔
选择单色光源,如激光, 以产生相干性好的光束。
制作一个具有特定直径 的圆孔,作为衍射的障
碍物。
屏幕
放置在圆孔后方,用于 接收衍射后的光束。
测量工具
测量衍射图案的直径、 形状和强度分布。
圆孔衍射的规律
中央亮斑
通过圆孔衍射形成的中央亮斑是各向同性的,其 直径与圆孔的直径成正比。
衍射角
衍射角与波长和圆孔直径有关,随着波长的增加, 衍射角减小。
该理论可以解释光的干涉、衍射和散射等现象,是光学领域的重要理论之一。
03 单缝衍射
单缝衍射实验装置
01
02
03
光源
使用单色光作为光源,如 激光,以保证光的相干性。
单缝
单缝的宽度决定了衍射的 程度,缝宽越窄,衍射现 象越明显。
屏幕
用于接收衍射光斑,记录 衍通过单缝后,会在屏幕中央形成最亮的光斑。
夜空中星星发出的光在穿过大气层时, 由于大气的密度和温度变化,使得星 光发生衍射,产生了闪烁现象。
02 光的衍射理论
惠更斯-菲涅尔原理
惠更斯-菲涅尔原理是光的衍射理论的基础,它指出波前上的 每一点都可以被视为新的波源,这些波源发出的波在空间中 相互叠加,形成衍射现象。
该原理可以解释光的直线传播、反射和折射等现象,是光学 领域的重要理论之一。
工程光学:第十二章 光的衍射3
3、爱里斑的半角宽度: 半角宽度指爱里斑对透镜中心张角的一半角宽
度。式中D为圆孔的直径,大多数情况应为物镜前光 欄的直径。
3
sin 1.22
D
1.22
D
d
D
圆孔衍射中央爱里斑半角宽 单缝衍射中央明纹半角宽
θ=1.22/D Φ=/a
两相对比:说明二者除在反映障碍物几何形状的系 数不同以外,其在定性方面是一致的。
光的衍射 限制了光学 仪器的分辨 本领。
6
2、分辨率 两光强相同的非相干物点,其象点相互靠近,
瑞利提出了一个可分辨的标准。
瑞利判据:如果某一物点斑象(即爱里斑)的中心恰 好落在另一物点斑象的边缘,这样所定出的两物点的 距离作为光学仪器所能分辨的最小距离。
成像系统
S2’
S1
S2
S1’
7
S1
S2
能分辨
S1
S2
恰能分辨
不能分辨
S1
S2
8
两物点对透镜光心的张角称为光学仪器的最小分
辨角,用θ0表示,它正好等于每个爱里斑的半角宽度,
即
0
1.22
D
成像系统
S1
S2
S2’ S1’
最小分辨角的倒数1/θ0 称为光学仪器的分辨率。
9
由爱里斑半角公式,得光学仪器的分辨率
1 D
0 1.22
因此,为提高仪器分辨率,或说为提高成象质量, 方法之一 使透镜镜头直径加大。 方法之二 降低入射光的波长。
解 (1)以 D1 表示光斑的直径,L表示月球到地球的
距离,d1 是激光束的直径,λ为波长,则
D1 1.22 L
第12章 光的衍射
第十二章 光的衍射一、选择题12.1 一束波长为λ的平行单色光垂直射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长为[ ] (A )λ (B )2λ (C )23λ (D )λ212.2 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为6πθ±=,则狭缝的大小为[ ](A )2λ (B )λ (C )λ2 (D )λ312.3 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单缝上,对应于衍射角为︒30的方向,单缝处波阵面可分成的半波带数目为[ ] (A )2个 (B )4个 (C )6个 (D )8个二、填空题12.4 一单色平行光垂直入射一单缝,其衍射第三级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,则该单色光波长 。
12.5 一块光栅,每毫米有400条刻痕线,用波长范围在400nm~590nm 的复色光垂直照射,可以测得 级不重叠的完整光谱。
12.6 光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是。
12.7 单缝宽度mm a 02.0=,用平行光的纳黄光(nm 3.589=λ)垂直照射到狭缝上,一级暗纹的衍射角=1φ 弧度;若将此装置全部浸入折射率为62.1=n 的溶液中,一级明纹的衍射角将为 弧度。
P D12.8 单色平行光垂直射向缝数足够多的透射光栅,此时将在屏幕上得到一组光栅谱线。
现将光栅的奇数(或偶数)号缝遮住,则将看到屏幕上相邻谱线的间距变为原来的 倍。
12.9 一束平行光垂直入射在光栅上,若光栅的透明部分a 是不透明部分b 宽度的一半,则衍射光谱缺级的可能级次为 。
12.10 若X 射线以掠射角︒=300α入射,已知晶体原子层的间距nm d 275.0=,则第三级谱线的波长是 nm 。
二、计算题12.11 使波长为480nm 的单色光垂直入射到每毫米有250条狭缝的光栅上,光栅常数为一条缝宽的3倍,求(1)第一级谱线的角位置; (2)总共可以观察到几条光谱线?12.12 用白光(白光所含光波波长范围为400~760nm )照射一光栅,通过透镜将衍射光谱聚焦于屏幕上,透镜与屏幕距离为0.8m ,(1)试说明第一级光谱能否出现完整的不重叠的光谱; (2)第二级光谱从哪一个波长开始与第三级光谱发生重叠?(3)若第二级光谱被重叠的部分长度为2.5cm ,求这光栅每cm 有多少条刻痕?12.13 在宽度mm b 6.0=的单缝后有一薄透镜,其焦距cm f 40=,在焦平面处有一个与狭缝平行的屏,以平行光垂直入射,在屏上形成衍射条纹。
大学物理第三版上海交大出版社答案光的衍射
a
0.437 ×10−3
19-2.在单缝夫琅禾费衍射实验中,波长为 λ 的单色光的第三极亮纹与波长 λ ' = 630 nm 的
单色光的第二级亮纹恰好重合,求此单色光的波长 λ 。
解:单缝衍射的明纹公式为: a sinϕ = (2k +1) λ , 2
当 λ ' = 630 nm 时, k ' = 2 ,未知单色光的波长为 λ 、 k = 3 ,重合时 ϕ 角相同,所以有:
辨。
解:最小分辨角为:θ
= 1.22 λ
550 ×10−9 = 1.22 ×
= 2.2 ×10−4 rad
D
3 ×10−3
如果窗纱上两根细丝之间的距离为 2.0 mm ,人在 s 远处恰能分辨,则利用:
θ = l = 2.2×10−4 rad ,当 l = 2mm 时, s = 9.1m 。 s
19-5.波长为 500nm 和 520nm 的两种单色光同时垂直入射在光栅常数为 0.002cm 的光栅 上,紧靠光栅后用焦距为 2m 的透镜把光线聚焦在屏幕上。求这两束光的第三级谱线之间的
19-7.如能用一光栅在第一级光谱中分辨在波长间隔 ∆λ = 0.18nm ,发射中心波长为 λ = 656.3nm 的红双线,则该光栅的总缝数至少为多少?
解:根据光栅的分辨本领: ∆λ = kN −1,令 k = 1 ,有: λ
N = ∆λ +1 = 653.3 +1 = 3646 + 1 = 3647 (条)。
射;(2)光线以入射角 30� 入射时,最多能看到几级条纹?
解:(1)正入射时,光栅常数为: a + b
10−3 =
=
2 ×10−6
光的衍射
E a b p
o
f
d k k 4k 4,8 a
屏上实际呈现 0,±1,±2,±3,±5,±6,±7,±9共8 级,15条亮纹(±10在无穷远处,看不见)。
21
例题11-5 一光栅每厘米有200条狭缝,透光缝缝宽 a=2.5×10-5m,所用透镜焦距f =1m,波长l=6000Å的光垂 直入射。求:(1)单缝衍射的中央明纹宽度x=? (2)在此中央明纹宽度内共有几个主极大? 解(1)由中央明纹宽度公式
d
l
sin 2 sin 1
=10l=6×10-6m
(2)因第4级缺级,由缺级公式:
d k k =4,取k´=1(因要a最小) a
20
求得:a=d/4 =1.5×-6m (3)屏上实际呈现的 全部级别和亮纹条数: 由光栅方程: dsin =kl 最大k对应 =90°,于是 kmax=d /l=10 缺级:
设平行单色光垂直入射。当衍射角 =0时,平行 于主轴的光线都会聚于o点,且没有光程差,故它们相 互干涉加强,在o点处形成一平行于缝的明条纹,称为中 央明纹。 对衍射角,两边缘光线A、B的光程差是 =BC=asin 下面用菲涅耳半波 p 带法来说明,单缝上发 A 出的无穷多条光线(衍射 S a o 光线)在观察屏上相干叠 * 加,出现明暗条纹的条 C 件就取决于两边缘光线 B 的光程差。 f 5
瑞利判据: 若一个点光源的衍射图样的中央最大 处恰好与另一点光源衍射图样的第一极小处相重合, 则这两个点光源恰能被分辨。
27
光学仪器的最小分辨角—两光点对透镜中心所张 的角(即为爱里斑的半角宽度): l 透镜L 1.22 D S1 分辨率为 S2 1 D R 透镜直径D 1.22l 对望远镜,l不变,尽量增大透镜孔径D,以提 高分辨率。现在最大的天文望远镜直径已达5米以上。 对显微镜主要通过减小波长来提高分辨率。荣获1986 年诺贝尔物理学奖的扫描隧道显微镜最小分辨距离已 达0.01Å,能观察到单个原子的运动图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
§12.9 光学仪器的分辨本领
1.圆孔的夫琅禾费衍射
衍射屏 L
相对光 强曲线
1
I / I0
观察屏
0 1.22(/D) sin
1
中央亮斑 (爱里斑)
爱里斑
f
圆孔孔径为D
sin 1 1.22
D
D
爱里斑变小
瑞利判据: 当一个点光源的衍射图样的中央最亮 处刚好与另一个点光源的衍射图样的第一最暗处相 重合,则正常眼睛恰能分辨出这是两个部分重叠的 爱里斑,此时,这两个点光源恰好能被分辨。
一般情况 a sin k,k 1,2,3…
——偶数个半波带,暗纹
B θ a A
a sin ( 2k 1) , k 1,2,3… 2
λ /2
——奇数个半波带,明纹(中心) a sin 0 ——中央明纹(中心)
明纹宽度 A. 中央明纹
当 a 时, 1 级暗纹对应的衍射角
在波阵面上截取一个条状带,使它上下两边缘发的 光在屏上p处的光程差为 λ ,此带称为半波带 。 /2 当 a sin 时,可将缝分为两个“半波带”
B 半波带 θ
1 2 1′ 1 2′ 2 1′ 2′
a
半波带 半波带
半波带
A
λ /2
两相邻半波带上对应点发的光在P 处干涉相消形成暗纹。
3 •当 a sin 时,可将缝分成三个“半波带” 2
B a A λ /2 θ
*
f
S
a
B
Aδ
p · 0
f (P 处近似为明纹中心)
•当 a sin 2 时,可将缝分成四个“半波带”
B a A (P处干涉相消形成暗纹)
θ
λ /2
一般情况 a sin k,k 1,2,3…
——偶数个半波带,暗纹
B θ a A λ /2
a sin ( 2k 1) , k 1,2,3… 2
12-7 光的衍射 惠更斯-菲涅耳原理
一、 光的衍射现象 屏幕 屏幕
阴 影
缝较大时,光是直线传播的
缝很小时,衍射现象明显
衍射屏 S
观察屏 S
衍射屏 L L
观察屏
*
a
*
10 - 3 a
线 光 源 点 光 源
在限制方向扩展
二、菲涅耳衍射和夫琅和费衍射
菲涅耳衍射
菲涅耳衍射是指当光源和观察屏,或两者之一离
2θ1:一个相斑的角宽度
<1
1
1
D sin
a、不能分辨
b、恰能分辨
c、能分辨
S1 * * S2
D
0 I
最小分辨角 分辨本领
1 1.22
1
D
D R
D R 1.22
• 已知天空中两颗星相对一望远镜的角距 离为 4.84107 rad 它们发出的光的波长是 5500A,问望远镜的直径至少要多大,才 能分辨这两颗星?
B. 次极大
a
a
f 1 x x0 a 2
前提仍然是很小
例:在一单缝夫琅禾费衍射中,缝宽为5个波长,缝后透镜焦 距为40cm,试求中央条纹和第一级条纹的宽度 一级暗纹所在位置
x1 f tan1
f sin 1 f
a
2 f sin 2 f a 中央条纹宽度
障碍物(衍射屏)的距离为有限远时,所发生的衍 射现象。
光源
· 观察屏
衍射屏
菲涅耳衍射
夫琅禾费衍射
夫琅禾费衍射指光源和观察屏离障碍物的距离 均为无限远时,所发生的衍射现象。
1
p ·
*
光源 衍射屏 观察屏
S
夫琅禾费衍射
12.8 单缝的夫琅禾费衍射
光路图:
缝平面 透镜L 观察屏 透镜L
*
f
S
B Aδ
2 f x0 2 x1 a
x2 f tan 2
*
缝平面 透镜L 透镜L B S a f
观察屏 p · 0
Aδ
衍射屏 透镜 观测屏 f x2 x1 Δx Δ x0
λ
1
0
第一级亮纹条纹宽度
0
Байду номын сангаас
I
f x1 x2 x1 a
f
§12.9 光学仪器的分辨本领
——奇数个半波带,明纹(中心) a sin 0 ——中央明纹(中心)
衍射图样 衍射图样中各级条纹的相对光强如图所示.
相对光强曲线
0.017 0.047
1
I / I0
0.047
0.017
-2( /a) -( /a) 0 /a 2( /a)
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。 中央极大值两侧的各极小值称暗纹。
光栅的分类
物理光栅和计量光栅
栅线密度 物理光栅 较高(103/mm)
应用 原理 光谱分析 光衍射
计量光栅 较低(100/mm) 位移测量 ?
二、光栅的衍射规律
p · 0
a
f
S: 单色线光源
AB a:缝宽
: 衍射角
光程差的计算 单缝的两条边缘光束 A→P 和B→P 的光程差,可 由图示的几何关系得到:
a sin 0, 0 —— 中央明纹(中心)
S B p · 0 f Aδ f
*
a
衍射图样的讨论
1. 菲涅耳半波带法
1 sin 1
由 得:
衍射屏 透镜
观测屏 x2 x1
λ
Δx
Δ x0
a sin k
1
0
0
I
1
a
f
明纹宽度
衍射屏 透镜
观测屏 x2 x1 Δx
角宽度为
λ
0 21 2
线宽度为
a
1
0
0
Δ x0
I
f
x0 2 f tan 1 2 f 1 2 f
S1 * * S2
7
D
最小分辨角
1.22
D
0
I
4.8410
D=1.39m
哈勃望远镜直径:主反射镜2.54m
§12−10光栅衍射
一. 光栅
1. 光栅—大量等宽等间距的平行狭缝(或反射面) 构成的光学元件。
2. 种类:
透射光栅 d b a
反射光栅 d
3. 光栅常数 a是透光(或反光)部分的宽度 b 是不透光(或不反光)部分的宽度 d=a+b 光栅常数
2.透镜的分辩本领
( 经透镜 )
物点
象斑
瑞利判据:对于两个等光强的非相干物点,如果其一个象斑的中心 恰好落在另一象斑的边缘(第一暗纹处),则此两物点被认为是刚 刚可以分辨。 S1 * * S2 D
1
0
I δθ:两相斑中心的角距离
最小分辨角 1 1.22
D
θ1:一个相斑的半角宽度