智能机器人论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能机器人的发展与应用前景
摘要
本文介绍了智能机器人的发展概况、机器人的感官系统、机器人运动系统及人工智能技术在机器人中的应用,智能机器人是一个在感知-思维-效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。
关键词: 智能机器人感官仿生人工智能
1.引言
人们通常把机器人划分为三代。第一代是可编程机器人。这种机器人一般可以根据操作人员所编的程序,完成一些简单的重复性操作。这一代机器人是从60年代后半叶开始投入实际使用的,目前在工业界已得到广泛应用。第二代是“感知机器人”,又叫做自适应机器人,它在第一代机器人的基础上发展起来的,能够具有不同程度的“感知”周围环境的能力。这类利用感知信息以改善机器人性能的研究开始于70年代初期,到1982年,美国通用汽车公司为其装配线上的机器人装配了视觉系统,宣告了感知机器人的诞生,在80年代得到了广泛应用。第三代机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,因此能在非特定的环境下作业,称之为智能机器人。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能。而感知本身,就是人类和动物所具有的低级智能。因此机器的智能分为两个层次:①具有感觉、识别、理解和判断功能;
②具有总结经验和学习的功能。所以,人们通常所说的第二代机器人可以看作是第一代智能机器人。
2.智能机器人的感官系统
2.1触觉传感器
英国近几年在阵列触觉传感方面开展了相当广泛的研究。例如:Sussex大学和Shack-leton系统驱动公司研制的基于运动的介电电容传感的阵列;由威尔士大学和软件科学公司研制的采用压强技术的装在机器人夹持器上的传感器。
2.2视觉传感
在机器人视觉方面,目前市场上销售的有以下6类传感器:①隔开物体的二维视觉:双态成像;②隔开物体的二维视觉:灰度标成像;③触觉或叠加物体的二维视觉;④二维观察;⑤二维线跟踪;⑥使用透视、立体、结构图示或范围找寻技术从隔开物体中提取三维信息。在这类系统方面,它们只能做一些很简单的操作。例如:为了使机器人具有某种程度的人眼功能,已进行大量的研究工作并向如下两类系统发展:①从一维物体中提取三维信息;②活动机器人导航、探路和躲避障碍物的现场三维分析。伦敦大学目前正在研究一种双目视觉机器人的实时图像处理机。还有正在研究机器人视觉系统的教育机构有:考文垂工业大学、爱丁堡大学、格拉斯哥大学、格温特大学;而伯明翰大学则专门研究惯性传感器。另外,还有许多从事传感系统开发的单位,都进行了传感反馈研究。如米德尔塞克斯工业大学致力于使机器人能组织和使用来自不同类型传感器的数据。这种机器人能“看”、“感”和“听”,它更接近于人。
2.3听觉传感
目前用的最多的是麦克风与机器人的自然语言理解系统。
2.4运动性能
机器人通常是要在周围移动物体的,例如:机器人臂到轮子或脚的运载器已有许多结构在使用,此外还有许多其他型号在研究之中。为在空间任意点以任意方式操作一个物体,机器人臂需要有6个自由度:左/右、前/后、上/下、投、卷和左右摆转。在工业中使用的坐标已有6个:圆柱形、球形、笛卡尔坐标、旋转坐标、Scara type和并行坐标。在国际机器人市场上圆柱体坐标机器人现已有售;Unimate机器人系列为球形坐标系统,手臂可移进移出,绕其坐标移动,还可以做旋转的纵向移动。当前机器人臂的研制目标是通过现有系统的组合或利用完全不同的设计思想开发更灵活、更有适应能力的坐标系统。如伯明翰大学机械工程系研制的全交接左笛卡尔坐标系机器人Locoman,它是一种装配机器人。在该机器人上用控制设备来改进其刚性和精度。在控制装置方面,首先是完善从执行机构的元件中摄取信号以把这种信号传送给电子计算机(反馈)的装置;提高小型机械移动装置电动传感器的灵敏度、精确度和寿命;完善运动程序给定、贮存和计算及整个数字程序控制的元件;研制小型而又可靠的有感知装置,主要是动力机构和执行机构等等。在机器人的计算———逻辑装置和信息装置方面,首要问题是研制专业化的微处理机。
3.智能机器人的未来发展
智能机器人的开发研究取得了举世瞩目的成果。那么,未来智能机器人技术将如何发展呢?日本工业机器人协会对下一代机器人的发展进行了预测。提出智能机器人技术近期将沿着自主性、智能通信和适应性三个方向发展。下面我们简单介绍人工智能技术、操作器、移动技术、动力源和驱动器、仿生机构等。
3.1人工智能技术在机器人中的应用
把传统的人工智能的符号处理技术应用到机器人中存在哪些困难呢?一般的工业机器人的控制器,本质是一个数值计算系统。如若把人工智能系统(如专家系统)直接加到机器人控制器的顶层,能否得到一个很好的智能控制器?并不那么容易。因为符号处理与数值计算,在知识表示的抽象层次以及时间尺度上的重大差距,把两个系统直接结合起来,相互之间将存在通信和交互的问题,这就是组织智能控制系统的困难所在。这种困难表现在两个方面:一是传感器所获取的反馈信息通常是数量很大的数值信息,符号层一般很难直接使用这些信息,需要经过压缩、变换、理解后把它转变为符号表示,这往往是一件很困难而又耗费时间的事。而信息来自分布在不同地点和不同类型的多个传感器。从不同角度,以不同的测量方法得到不同的环境信息。这些信息受到干扰和各种非确定性因素的影响,难免存在畸变、信息不完整等缺陷,因此使上述的处理、变换更加复杂和困难。二是从符号层形成的命令和动作意图,要变成控制级可执行的指令(数据),也要经过分解、转换等过程,这也是困难和费时的工作。它们同样受到控制动作和环境的非确定性因素的影响。
由于这些困难,要把人工智能系统与传统机器人控制器直接结合起来就很难建立实时性和适应性很好的系统。为了解决机器人的智能化,组成智能机器人系统,研究者们将面临许多困难且需要做长期努力,进行若干课题的研究。例如:高级思维活动应以什么方式的机器人系统来模仿,是采取传统的人工智能符号推理的方法,还是采用别的方法?需不需要环境模型,需要怎样的环境模型;怎样建立环境模型,传统的人工智能主要依据先验知识建立环境模型。由于环境和任务的复杂性,环境的不确定性,这种建模方式遇到了挑战,于是出现了依靠传感器建模的主张,这就引出一系列新的与传感技术有关的课题。
人们为了探讨人工智能在机器人中近期的可用技术,暂时抛开人工智能中的各种带根本性的争论,如符号主义与连接主义、有推理和无推理智能等等,把着眼点放在人工智能技术中较成熟的技术上。对传统的人工智能来说,就是知识的符号表示和推理这部分技术,看一看它