七年级数学下册《单项式乘以多项式》典型例题课时训练(含答案)
2.1.4_第1课时_单项式与多项式相乘+同步练习课件++2023—2024学年湘教版数学七年级下册
a2ሻ ⋅ b + −2a2 ⋅ 3
= −ab2 + 6a2 + 2a2b − 2ab2 − 2a2b − 6a2
= −3ab2.
当a = − 1,b = −4时,
3
原式= −3 ×
−1
3
×
−4 2 = 16.
易错提示 去括号时,要正确运用去括号法则,在化简−2a2 ⋅ b + 3 时, 不要错误地得出−2a2b + 6a2.
3
的值为_2_.
在多项式中不含某一项,即该项的系数为0. 提示:原式= −2x2 ⋅ 3x2 + −2x2 ⋅ −ax + −2x2 ⋅ −6 − 3x3 + x2 = −6x4 + 2ax3 + 12x2 − 3x3 + x2 = −6x4 + 2a − 3 x3 + 13x2. 因为不含x的三次项,所以2a − 3 = 0.解得a = 32.
= 10x3 − 15x2 + 20x.
(2)
− 1 m2n − 1 mn + 1
2
3
⋅
−6m3n .
解:原式= − 1 m2n ⋅ −6m3n − 1 mn ⋅ −6m3n + 1 ⋅ −6m3n
2
3
= 3m5n2 + 2m4n2 − 6m3n.
17
6.已知多项式 −2x2 3x2 − ax − 6 − 3x3 + x2中不含x的三次项,则a
3
课前自测
1.计算2a ⋅ 5a + 3a2 的结果是( B ) .
A.10a + 6a3
B.10a2 + 6a3
单项式乘多项式练习题(含标准答案)
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试卷解读一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点: 整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?考点: 单项式乘多项式.专题: 应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方M;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方M.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点: 单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点: 单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点: 单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点: 单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
湘教版初中七年级下册数学课时同步练习 第2章 整式的乘法 第1课时 单项式与多项式相乘 同步课时练习
2.1.4 第1课时单项式与多项式相乘1.计算2x(3x2+1),正确的结果是( )A.5x3+2xB.6x3+1C.6x3+2xD.6x2+2x2.[邵阳] 以下计算正确的是( )A.(-2ab2)3=8a3b6B.3ab+2b=5abC.-33.若2x(x-2)=ax2+bx,则a,b的值为( )A.a=1,b=2B.a=2,b=-2C.a=2,b=4D.a=2,b=-44.要使(x2+ax+1)(-6x3)的展开式中不含x4项,则a应等于( )A.6B.-1C.D.05.[贵阳] 化简x(x-1)+x的结果是.6.一个长方体的长、宽、高分别是3x-4,2x和x,则它的体积是.7.[教材例10变式] 计算:(1)a(3+a)-3(a+2);(2)2a2b;(3)·(-12y);(4)x2(x-1)-x(x2+x-1).8.一块边长为宽的长条,剩余部分的面积是多少?9.当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.110.已知a=2,b=1,则代数式a(2a-b)-b(3b-a)的值为.11.[教材例11变式] 先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.12.今天数学课上,老师讲了单项式乘多项式,放学后,小明回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现:-3xy·(4y-2x-1)=-12xy2+6x2y+ ,横线上的内容被污损了,你认为横线上应填写 ( )A.3xyB.-3xyC.-1D.113.代数式yz(xz+2)-2y(3xz2+z+x)+5xyz2的值( )A.只与x,y的取值有关B.只与y,z的取值有关C.与+5)=3+n的值是.15.[教材练习第2题变式] 先化简,再求值:-x[-2x2y+3y(x2-1)],其中x=-2,y=.16.解方程:x(3x-4)+2x(x+7)=5x(x-7)+90.17.若n为自然数,试说明:整式n(2n+1)-2n(n-1)的值一定是3的整数倍.18.化简:2[(m-1)m+m(m+1)][(m-1)m-m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?19.某同学在计算一个多项式乘-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?参考答案1.C2.D [解析] (-2ab2)3=-8a3b6,选项A错误;3ab+2b不能合并同类项,选项B 错误;-x2·(-2x)3=8x5,选项C错误.故选D.3.D [解析] 2x(x-2)=2x2-4x.因为2x(x-2)=ax2+bx,所以a=2,b=-4.故选D.4.D [解析] (x2+ax+1)(-6x3)=-6x5-6ax4-6x3.因为(x2+ax+1)(-6x3)的展开式中不含x4项,所以-6a=0,解得a=0.故选D.5.x2[解析] x(x-1)+x=x2-x+x=x2.故答案为x2.6.6x3-8x27.解:(1)a(3+a)-3(a+2)=3a+a2-3a-6=a2-6.(2)2a2b=2a2b·ab+2a2b·(-3ab2)=a3b2-6a3b3.(3)·(-12y)=x·(-12y)+·(-12y)=-4xy+9xy2.(4)原式=x3-x2-x3-x2+x=-2x2+x.8.[解析] 根据题意列出代数式,再进行化简.解:剩余部分为一个长方形,其长不变,为,那么剩余部分的面积为x(x-2)=(2.答:剩余部分的面积是(2.9.B [解析] 原式=8x5-x2-8x5=-x2=-4.故选B.10.5[解析] a(2a-b)-b(3b-a)=2a2-ab-3b2+ab=2a2-3b2,当a=2,b=1时,2a2-3b2=2×22-3×12=5.11.解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×4-9×2=-98.12.A13.A [解析] 原式=xyz2+2yz-6xyz2-2yz-2xy+5xyz2=-2xy,所以代数式的值只与+5)=3+1+15x=3x n+5n+n=5.15.解:-x[-2x2y+3y(x2-1)]=-x(-2x2y+3x2y-3y)=-x3y+3xy.当x=-2,y=时,-x3y+3xy=-(-2)3×+3×(-2)×=4-3=1.16.解:x(3x-4)+2x(x+7)=5x(x-7)+90,去括号,得3x2-4x+2x2+14x=5x2-35x+90,移项,得3x2-4x+2x2+14x-5x2+35x=90,合并同类项,得45x=90,系数化为1,得x=2.17.[解析] 本题中要说明一个整式的值是3的整数倍,就是按照单项式乘多项式的法则展开,合并同类项,结果是3与一个整式的积.解:n(2n+1)-2n(n-1)=2n2+n-2n2+2n=3n.因为n为自然数,所以3n一定是3的整数倍.[点评] 单项式乘多项式的应用非常广泛,如图形的面积、体积的计算,解方程,判断整除性等,解决这些问题的关键是注意法则的正确应用.18.解:原式=2(m2-m+m2+m)(m2-m-m2-m)=-2·2m2·2m=-8m3.观察-8m3,可以发现原式表示一个能被8整除的数(答案合理即可).19.[解析] 用错误结果减去-3x2,得出原多项式,再乘-3x2得出正确结果. 解:这个多项式是(x2-4x+1)-(-3x2)=4x2-4x+1.正确的计算结果是(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.。
七年级数学下册《单项式乘以多项式》典型例题.课时训练(含答案)
《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)
9.2单项式乘多项式一、选择题1.化简,结果正确的是()A. B. C. D.2.计算:的结果是()A. B.C. D.3.化简的结果为()A. B. C. 9 D.4.计算的结果是()A. B. C. D.5.要使的展开式中不含项,则k的值为()A. B. 0 C. 2 D. 36.一个多项式除以,其商为,则该多项式为()A. B.C. D.7.下列计算中:;;;,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有();;;.A. B. C. D.9.若,则的值为()A. 216B. 246C.D. 17410.若与的值永远相等,则m、n、k分别为()A. 6,3,1B. 3,6,1C. 2,1,3D. 2,3,1二、填空题11.计算:_______________.12.已知,那么______.13.若多项式与单项式的积是,则该多项式为______.14.一个长方体的长、宽、高分别是、、x,则它的表面积为______.15.已知,则的值为______.16.若,则__________,__________.17.一个矩形的面积为,一边长为2ab cm,则它的周长为________cm.18.要使成立,则a和b的值分别为.三、计算题19.计算:;.四、解答题20.先化简,再求值:,其中.21.阅读:已知,求的值.解:.你能用上述方法解决以下问题吗试一试已知,求的值.22.某同学在计算一个多项式乘以时,因抄错运算符号,算成了加上,得到的结果是,那么正确的计算结果是多少?答案和解析1.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:故选B.2.【答案】A【解析】【分析】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:.故选:A.3.【答案】C【解析】解:原式.故选:C.直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:原式,故选C.【分析】原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则求出答案.【解答】解:的展开式中不含项,中不含项,,解得:.故选C.6.【答案】D【解析】【分析】本题考查了多项式除以单项式,弄清被除式、除式、商三者之间的关系是求解的关键.根据被除式商除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式.故选D.7.【答案】C【解析】【分析】此题考查了单项式乘多项式和完全平方公式,熟练掌握公式及运算法则是解本题的关键.各项计算得到结果,即可作出判断.【解答】解:,故错误;,故错误;,故错误;,故正确,错误的有3个.故选C.8.【答案】D【解析】解:表示该长方形面积的多项式正确;正确;正确;正确.故选:D.根据图中长方形的面积可表示为总长总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.9.【答案】B【解析】解:原式,当时,原式,故选:B.将原式变形为,再将代入计算可得.本题主要考查单项式乘多项式,解题的关键是熟练掌握单项式乘多项式的运算法则.10.【答案】A【解析】【分析】本题考查的是单项式乘以多项式有关知识,首先对该式进行相乘,然后再利用等式两边的式子相等进行解答即可.【解答】解:,,,,解得:,,.故选A.11.【答案】【解析】解:故答案为:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.12.【答案】【解析】解:,,解得.故答案为:.根据单项式与多项式相乘的运算法则进行计算,使结果对应相等,得到关于x的方程,解方程得到答案.本题考查的是单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】【解析】解:多项式与单项式的积是,该多项式为:.故答案为:.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.【答案】【解析】解:表面积是,故答案为:.先根据题意列出算式,再求出即可.本题考查了整式的混合运算,能根据题意列出算式是解此题的关键.15.【答案】16【解析】解:,,即,则,故答案为:16.将已知等式去括号、合并可得,整体代入到原式可得答案.本题主要考查代数式的求值,解题的关键是掌握去括号、合并同类项的法则及因式分解的应用、整体代入思想的运用.16.【答案】;.【解析】【分析】这是一道考查单项式乘以多项式的题目,解题关键在于掌握法则,根据对应相等,即可求出M和N.【解答】解:,,,即,,故答案为;.17.【答案】【解析】【分析】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.先根据矩形的面积公式求出另一边的长,再根据矩形的周长长宽列式,通过计算即可得出结果.解:,.故答案为.18.【答案】2,【解析】【分析】【分析】先将等式左边去括号合并同类项,再根据多项式相等的条件即可求出a与b的值.此题考查了整式的混合运算,涉及的知识有:去括号法则,合并同类项法则,以及多项式相等的条件,熟练掌握法则是解本题的关键.【解答】解:因为,所以,,解得,.19.【答案】解:原式;原式.【解析】本题考查了单项式乘以多项式,按照单项式乘以多项式法则进行计算即可;本题考查了幂的乘方与积的乘方、单项式乘以多项式,先算幂的乘方与积的乘方再算单项式乘以多项式即可求得答案.20.【答案】解:原式,,当时,原式.【解析】本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.21.【答案】解:,,,,,.【解析】本题考查了单项式乘多项式,整体代入是解题关键.根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.22.【答案】解:这个多项式是,正确的计算结果是:.【解析】用错误结果减去已知多项式,得出原式,再乘以得出正确结果.。
(完整版)单项式乘多项式练习题(含答案)
单项式乘多项式练习题一.解答题(共18小题)1. 先化简,再求值:2 (a 2b+ab 2)- 2 (a 2b - 1)- ab 2 - 2,其中 a=-2, b=2.2. 计算:2 (1) 6x ?3xy 23. (3x 2y - 2x+1 ) (- 2xy )4. 计算:2 2 1 2 2(1) (- 12a b c ) ? (- pabc ) = ________________ ;(2) (3a 2b - 4ab 2- 5ab - 1) ? (- 2ab 2) =_____________________ .1^-1 25. 计算:-6a?(-专耳-£a+2)6. - 3x? (2x - x+4)2 27.先化简,再求值 3a ( 2a 2- 4a+3)- 2a 2 (3a+4),其中 a=- 29.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽(a+2b )米,坝高米.(1)求防洪堤坝的横断面积; 2(2) ( 4a - b ) (- 2b )(2)如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?16.计算: (-2a 2b ) 3 (3b 2- 4a+6)17.某同学在计算一个多项式乘以-3x 2时,因抄错运算符号,算成了加上- 3x 2,得到的结果是x 2- 4x+1,那么正确的计算结果是多少? 18.对任意有理数 x 、y 定义运算如下:x △ y=ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及 乘法运算,如当 a=1, b=2, c=3时,I △ 3=1 X +2 X 3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求a 、b 、c 、d 的值. 210. 2ab (5ab+3a b ) 11•计算:(一斗瓷/)° (3砂-4,+1)212 .计算:2x (x - x+3) 13. (- 4a 3+12a 2b - 7a 3b 3) (- 4a 2) = ________________14 .计算:xy 2 (3x 2y - xy 2+y )15 . (- 2ab ) (3a 2- 2ab - 4b 2)参考答案与试题解析一.解答题(共18小题)1. 先化简,再求值:2 (a2b+ab2)- 2 (a2b- 1)- ab2- 2,其中a=-2, b=2.考点:整式的加减一化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并冋类项,最后将字母的值代入求出原代数式的值. 解答:解:原式=2a2b+2ab2- 2a?b+2 - ab2- 22 2 2 2=(2a b- 2a b) + (2ab - ab ) + (2 - 2)2=0+ab=ab2当a=- 2, b=2 时,原式=(-2)疋2= - 2^4O点评:一 8.本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并冋类项的法则和方法.2. 计算:(1)6x2?3xy(2)(4a- b2) (- 2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1) 6x ?3xy=18x y;2 3(2) (4a- b2) (- 2b) = - 8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23. (3x y - 2x+1 ) (- 2xy)考点:单项式乘多项式.分析:解答:点评:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.2 32 2解:(3x y- 2x+1 ) (- 2xy) =- 6x y +4x y - 2xy .本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4. 计算:2 2 2、2 '445(1) (- 12a b c) ? (—abc ) = -— a b e4 4(2) (3a2b - 4ab2- 5ab- 1) ? (- 2ab2) = - 6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幕相乘;单项式乘单项式,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解: (1) (- 12a2b2e) ? (- gabc2) 2,4=(-12a2b2c) ?舄廿|16=—3 J 4 5.故答案为:-上a4b4c5;42 2 2(2) (3a2b —4ab2—5ab—1) ? (—2ab2),=3a2b? (—2ab2)—4ab2? (—2ab2)—5ab? (—2ab2)—1? (—2ab2),=—6a3b3+8a2b4+10a2b3+2ab2.故答案为:-6a b +8a b +10a b +2ab .点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5. 计算:—6a? (― 2^2 —ga+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:—6a? ( —2 '—丄a+2) =3a3+2a2—12a.2 3点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.26. —3x? (2x —x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:-3x? (2x2—x+4),=—3x?2x2—3x? (—x)—3x?4, =-6x3+3x2—12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7•先化简,再求值3a ( 2a2—4a+3)—2a2(3a+4),其中a=—2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并冋类项,最后代入已知的数值计算即可.解答:解:3a (2a2- 4a+3)—2a2(3a+4)3 2 3 2 2=6a —12a +9a - 6a —8a = - 20a +9a, 当a=—2 时,原式=—20 >4 —9 >2= —98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并冋类项,这是各地中考的常考点.8 计算:(-=a2b)(二b2-二a+二)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.31 2.3 3. 1 2. =——a b +—a b — — a b. 3 战本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a+2b )米,坝高米.(1) 求防洪堤坝的横断面积; (2) 如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积 >坝长.解答:解:(1)防洪堤坝的横断面积 S=_[a+ (a+2b ) ] J a2 2=^a (2a+2b ) 4= ^a 2+」ab .2 2故防洪堤坝的横断面积为(ga 2+gab )平方米;(2)堤坝的体积 V=Sh= (ga 2』ab ) J 00=50a 2+50ab .故这段防洪堤坝的体积是(50a 2+50ab )立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积 >长度,熟练掌握单项式乘多项式的运算法则是解题的关键.2 10. 2ab (5ab+3a b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab ( 5ab+3a 2b ) =10a 2b 2+6a 3b 2;故答案为:10a 2b 2+6a 3b 2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:(.一 2〔3勒- + l )考点: 单项式乘多项式.分析: 先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(—丄xy 2) 2 ( 3xy — 4xy 2+1)」x 2y 4 (3xy — 4xy 2+1)4解答: 解:「甕)嚕飞叫),(-丄 a2b )匕, 点评: =(- 驴(—护)(4a )3 6 124 y +才 y • 点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.212 .计算:2x (x 2- x+3) 考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:2x (x 2- x+3)=2x?x 2 - 2x?x+2x?33 2=2x - 2x +6x .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理. 13. (- 4a 3+12a 2b -7a 3b 3) (- 4a 2) = 16a 5- Ag/b+ZBa 'b 3考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-4a 3+i2a 2b -7a 3b 3) (- 4a 2) =16a 5- 48a 4b+28a 5b 3.故答案为:16a 5- 48a 4b+28a 5b 3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14 .计算:xy 2 (3x 2y - xy 2+y )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:原式=xy 2 (3x 2y )- xy 2?xy 2+xy 2?y33 v 2 4 3=3x y - x y +xy .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215. (- 2ab ) (3a - 2ab - 4b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-2ab ) (3a 2- 2ab - 4b 2)2 2=(-2ab ) ? (3a 2)- (- 2ab ) ? (2ab )- (- 2ab ) ? (4b 2)c 3’ ,2’ 2 c ’ 3=-6a b+4a b +8ab .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16 .计算:(-2a 2b ) 3 (3b 2- 4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(- 2a 2b ) 3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式 的每一项,再把所得的积相加计算即可.解答:解:(-2 a 2 b ) 3 (3b 2- 4a+6) = - 8a 6b 3? (3b 2- 4a+6) =-24a 6b 5+32a 7b 3 - 48a 6b 3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的 处理.Jx 3y 5- x417.某同学在计算一个多项式乘以- 3x2时,因抄错运算符号,算成了加上- 3x2,得到的结果是x2- 4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以- 3x2得出正确结果.解答:解:这个多项式是(x2- 4x+1) -( - 3x2) =4x2- 4x+1 , (3 分)正确的计算结果是:(4x2-4x+1) ? (- 3x2) = - 12x4+12x3- 3x2. (3 分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△ y=ax+by+cxy ,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2, c=3时,I△ 3=1 X+2 X3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 , 并且有一个不为零的数d使得对任意有理数x△ d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:—1 —ij由*△ d=x,得ax+bd+cdx=x,即(a+cd - 1)x+bd=0,得J ①,由2=3,得a+2b+2c=3②,[bd=O2△ 3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:T %△ d=x, /• ax+bd+cdx=x ,(a+cd - 1) x+bd=0 ,•/有一个不为零的数d使得对任意有理数x △ d=x,则有Lbd=O•••〔△ 2=3 , ••• a+2b+2c=3 ②, •/ 2^ 3=4 , • 2a+3b+6c=4 ③,1=0•有方程组a+2c=3詔亦址二4护5解得_1卫二4故a的值为5、b的值为0、c的值为-1、d的值为4.点评: 本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x △ d=x ,得出方程(a+cd - 1)x+bd=0,得到方程组fa+cd- 1=0\bd=0,求出b的值.。
北师大版2019-2020年七年级数学下册同步分层练 4 第2课时单项式乘多项式(含答案)
第2课时 单项式乘多项式1.(2019·广西柳州中考)计算:x (x 2-1)=( B )A .x 3-1B .x 3-xC .x 3+xD .x 2-x2.(2019·浙江宁波海曙区期中)把2a (ab -b +c )化简后得( D )A .2a 2b -ab +acB .2a 2-2ab +2acC .2a 2b +2ab +2acD .2a 2b -2ab +2ac3.计算(-2x +1)(-3x 2)的结果为( C )A .6x 3+1B .6x 3-3C .6x 3-3x 2D .6x 3+3x 2 4.(2019·辽宁鞍山中考)下列运算正确的是( A )A .(-a 2)3=-a 6B .3a 2·2a 3=6a 6C .-a (-a +1)=-a 2+aD .a 2+a 3=a 55.(2019·江苏盐城东台期中)计算:2x (x -3y )= 2x 2-6xy .6.计算:(-2x )(x 3-x +1)= -2x 4+2x 2-2x .7.若a 2b =2,则代数式ab (a +a 3b )= 6 .8.计算:(1)-4x 2·(3x 2+2x +1);(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·32a ; (3)x 2(x -1)-x (x 2+x -1);(4)2x 2-x (2x -5y )+y (2x -y ).解:(1)-4x 2·(3x 2+2x +1)=-12x 4-8x 3-4x 2.(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·32a =a 2b 2-3a 2b . (3)x 2(x -1)-x (x 2+x -1)=x 3-x 2-x 3-x 2+x =-2x 2+x .(4)2x 2-x (2x -5y )+y (2x -y )=2x 2-2x 2+5xy +2xy -y 2=7xy -y 2.9.先化简,再求值:x 2(3-x )+x (x 2-2x )+1,其中x =3.23322把x=3代入,得原式=10.10.(2018·广西贺州昭平期中)一个长方形的长、宽分别是2x-3,x,则这个长方形的面积为(B)A.2x-3 B.2x2-3xC.2x2-3 D.3x-311.要使(x2+ax+1)·(-6x3)的展开式中不含x4项,则a应等于(D)A.6 B.-1C.16D.012.已知梯形的上底为a,下底为2b,高为12a,则梯形的面积为14a2+12ab .13.今天数学课上,老师讲了单项式乘多项式.放学回到家后,小明拿出课堂笔记本复习,发现这样一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写 3xy .14.某中学扩建教学楼,测量地基时,量得地基的长为2a m,宽为(2a-24)m,试用a表示出地基的面积,并计算当a=25时地基的面积.解:根据题意,得地基的面积为2a·(2a-24)=(4a2-48a)m2.当a=25时,4a2-48a=4×252-48×25=1 300(m2).易错点结果出现漏乘项的情况15.下列运算中,正确的是(D)A.-2x(3x2y-2xy)=-6x3y-4x2yB.2xy2(-x2+2y2+1)=-2x3y2+4xy4C.(-x)(2x+x2+1)=-x3-2x2+1D.(-3x2y)(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y16.一个长方体的长、宽、高分别为3x-4,2x和x,则它的体积为(C)A.3x3-4x2B.6x3-8C.6x3-8x2D.6x2-8x17.计算:x(y-z)-y(z-x)+z(x-y)的结果是(A)A.2xy-2yz B.-2yzC.xy-2yz D.2xy-xz18.(2019·湖南邵阳中考)以下计算正确的是(D)A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)·(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m319.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是(C)A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b220.已知a2+a-3=0,那么a2(a+4)的值是(C)A.-18 B.-12C.9 D.以上答案都不对21.定义三角表示3abc,方框x wy z表示xz+w y,则×4 n52m的结果为(B)A.72m2n-45mn2B.72m2n+45mn2C.24m2n-15mn2D.24m2n+15mn222.计算:(-3x+1)·(-2x)2=-12x3+4x2 .23.若-2x2y(-x m y+3xy3)=2x5y2-6x3y n,则m= 3 ,n= 4 . 24.(2019·江苏苏州期中)计算:2m2·(m2+n-1)= 2m4+2m2n-2m2 . 25.(2019·北京昌平区月考)计算:(3x2y-5xy)·(-4xy2)=-12x3y3+20x2y3 .26.计算:(1)6m ·⎝ ⎛⎭⎪⎫3m 2-23m -1; (2)2a 2⎝ ⎛⎭⎪⎫12ab 2-b -(a 2b 2-ab )·(-3a ). 解:(1)6m ·⎝ ⎛⎭⎪⎫3m 2-23m -1=18m 3-4m 2-6m . (2)2a 2⎝ ⎛⎭⎪⎫12ab 2-b -(a 2b 2-ab )·(-3a ) =a 3b 2-2a 2b -(-3a 3b 2+3a 2b )=a 3b 2-2a 2b +3a 3b 2-3a 2b=4a 3b 2-5a 2b .27.已知有理数a ,b ,c 满足|a -b -3|+(b +1)2+|c -1|=0,求(-3ab )·(a 2c -6b 2c )的值. 解:由|a -b -3|+(b +1)2+|c -1|=0,得⎩⎨⎧a -b -3=0,b +1=0,c -1=0,解得⎩⎨⎧a =2,b =-1,c =1.(-3ab )·(a 2c -6b 2c )=-3a 3bc +18ab 3c ,当a =2,b =-1,c =1时,原式=-3×23×(-1)×1+18×2×(-1)3×1=24-36=-12.28.已知(m -x )·(-x )+n (x +m )=x 2+5x -6,对于任意数x 都成立,求m (n -1)+n (m +1)的值.解:(m -x )·(-x )+n (x -2)=-mx +x 2+nx -2n =x 2+(n -m )x -2n .由题意,得⎩⎨⎧n -m =5,-2n =-6,解得⎩⎨⎧m =-2,n =3,则m (n -1)+n (m +1)=-2(3-1)+3(-2+1)=-7.。
单项式乘多项式练习题及答案
单项式乘多项式练习题一.解答题〔共18小题〕1.先化简,再求值:2〔a 2b+ab 2〕﹣2〔a 2b ﹣1〕﹣ab 2﹣2,其中a=﹣2,b=2.2.计算:〔1〕6*2•3*y 〔2〕〔4a ﹣b 2〕〔﹣2b 〕3.〔3*2y ﹣2*+1〕〔﹣2*y 〕4.计算:〔1〕〔﹣12a 2b 2c 〕•〔﹣abc 2〕2=_________; 〔2〕〔3a 2b ﹣4ab 2﹣5ab ﹣1〕•〔﹣2ab 2〕=_________.5.计算:﹣6a •〔﹣﹣a+2〕 6.﹣3*•〔2*2﹣*+4〕7.先化简,再求值3a 〔2a 2﹣4a+3〕﹣2a 2〔3a+4〕,其中a=﹣2 8.〔﹣a 2b 〕〔b2﹣a+〕9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽〔a+2b 〕米,坝高米. 〔1〕求防洪堤坝的横断面积;〔2〕如果防洪堤坝长100米,则这段防洪堤坝的体积是多少立方米?10.2ab 〔5ab+3a 2b 〕 11.计算:. 12.计算:2*〔*2﹣*+3〕 13.〔﹣4a 3+12a 2b ﹣7a 3b 3〕〔﹣4a 2〕=_________.14.计算:*y 2〔3*2y ﹣*y 2+y 〕 15.〔﹣2ab 〕〔3a 2﹣2ab ﹣4b 2〕16.计算:〔﹣2a 2b 〕3〔3b 2﹣4a+6〕17.*同学在计算一个多项式乘以﹣3*2时,因抄错运算符号,算成了加上﹣3*2,得到的结果是*2﹣4*+1,则正确的计算结果是多少?18.对任意有理数*、y 定义运算如下:*△y=a*+by+c*y ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l △3=1×l+2×3+3×1×3=16,现所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d 使得对任意有理数*△d=*,求a 、b 、c 、d 的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.假设3k 〔2k-5〕+2k 〔1-3k 〕=52,则k=____ ___.4.如果*+y=-4,*-y=8,则代数式的值是cm 。
2024冀教版七年级下册第八章 整式的乘法课堂练习题及答案第2课时 单项式乘多项式
− = ,
= −.
所以m(n-1)+n(m+1)=mn-m+mn+n=n-m+2mn=5+2×(-6)=-7.
11
12
13
14
15
第2课时 单项式乘多项式
基础通关
能力突破
素养达标
素养达标
16.阅读下列文字,并解决问题.
已知x2y=3,求2xy(x5y2-3x3y-4x)的值.
×xy=2x2y+xy2,则
B.x+2y
基础通关
能力突破
素养达标
内应填的式子是( A )
C.2xy+2y
D.xy+2
4.今天数学课上,老师讲了单项式乘多项式,放学回到家,嘉琪拿出课堂笔
记复习,发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+
水弄污了,你认为
A.3xy
B.-3xy
,
的地方被钢笔
=-8x4y3-2x2y3.
1
2
3
45Biblioteka 6789
10
第2课时 单项式乘多项式
基础通关
能力突破
素养达标
8.先化简,再求值:2xy(x-3y-1)-y(2x2-6xy-3x),其中x=-3,y=2.
解:2xy(x-3y-1)-y(2x2-6xy-3x)
=2x2y-6xy2-2xy-2x2y+6xy2+3xy
解:2xy(x5y2-3x3y-4x)
=2x6y3-6x4y2-8x2y
=2(x2y)3-6(x2y)2-8x2y
=2×33-6×32-8×3
=-24.
七年级数学下册 第9章 9.2 单项式乘多项式同步练习(含解析)苏科版(2021年整理)
七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版的全部内容。
第9章 9.2单项式乘多项式一、单选题(共9题;共18分)1、一个长方体的长,宽,高分别是5x﹣2,3x,2x,则它的体积是( )A、30x3﹣12x2B、25x3﹣10x2C、18x2D、10x﹣22、m(a2﹣b2+c)等于()A、ma2﹣mb2+mB、ma2+mb2+mcC、ma2﹣mb2+mcD、ma2﹣b2+c3、下列计算中正确的是( )A、(﹣3x3)2=9x5B、x(3x﹣2)=3x2﹣2xC、x2(3x3﹣2)=3x6﹣2x2D、x(x3﹣x2+1)=x4﹣x34、计算a(1+a)﹣a(1﹣a)的结果为()A、2aB、2a2C、0D、﹣2a+2a5、化简﹣3a•(2a2﹣a+1)正确的是( )A、﹣6a3+3a2﹣3aB、﹣6a3+3a2+3aC、﹣6a3﹣3a2﹣3aD、6a3﹣3a2﹣3a6、一个三角形的底为2m,高为m+2n,它的面积是()A、2m2+4mnB、m2+2mnC、m2+4mnD、2m2+2mn7、已知:(x4﹣n+y m+3)•x n=x4+x2y7 , 则m+n的值是()A、3B、4C、5D、68、要使(x3+ax2﹣x)•(﹣8x4)的运算结果中不含x6的项,则a的值应为()A、8B、﹣8C、D、09、下列说法正确的是( )A、多项式乘以单项式,积可以是多项式也可以是单项式B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C、多项式乘以单项式,积的系数是多项式系数与单项式系数的和D、多项式乘以单项式,积的项数与多项式的项数相等二、解答题(共1题;共5分)10、先化简,再求值:。
苏科版七年级下册 9.2 单项式乘多项式 同步练习(含答案)
(苏科版)七年级下册第9章整式乘法与因式分解9.2单项式乘多项式同步练习一、单选题1.下列运算正确的是( )A .236428m m m ⋅=B .()326m m -=-C .2(2)2m m m m --+=--D .236m m m += 2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,其运算的实质为( ) A .同底数幂的乘法法则B .乘法交换律C .乘法结合律D .乘法分配律 3.计算231232x y xy y ⎛⎫⋅-+ ⎪⎝⎭的结果是( ) A .2242x y x y -+ B .2432223x y x y x y -+C .322462x y x y -+D .2423226x y x y x y +- 4.已知31222828a7m n a b b b +÷=,则m ,n 的值分别为( ) A .m=4,n=3 B .m=4,n=2C .m=2,n=2D .m=2,n=3 5.数学课上,老师讲了单项式与多项式相乘,放学后,小丽回到家拿出课堂笔记,认真地复习老师课上讲的内容,她突然发现一道题-3x 2(2x -█+1)=-6x 3+3x 2y -3x 2中有一项被污损了,那么被污损的内容是( )A .-yB .yC .-xyD .xy6.计算2x(9x 2-3ax+a 2)+a(6x 2-2ax+a 2)等于( )A .18x 3-a 3B .18x 3+a 3C .18x 3+4ax 2D .18x 3+3a 37.某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( )A .241x x -+B .21x x -+C .4321233x x x -+-D .无法确定8.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-9.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( )A .3xyB .-3xyC .-1D .110.设a 、b 是实数,定义@的一种运算如下:@a b a b ab =++,则下列结论:①若1a =,2b =-,则@3a b =-. ②若(2)@3x -=-,则1x =.③@@a b b a =. ④(@(@@))@a b c a b c =.其中正确的是( )A .①②③B .①③④C .②③④D .①②③④11.若a 3(3a n -2a m +4a k )=3a 9-2a 6+4a 4,则m ,n ,k 的值分别为( )A .6,3,1B .3,6,1C .2,1,3D .2,3,112.已知边长分别为a 、b 的长方形的周长为10,面积4,则ab 2+a 2b 的值为( )A .10B .20C .40D .80二、填空题13.计算 ()()36x y x --= _______.14.已知233m n -=-,则代数式()()46m n n m ---的值为______.15.图中的四边形均为长方形,根据图形,写出一个正确的等式:_____.16.已知2A ab =-,()4B ab a b =-,则A B ⋅=______.17.如果一个长方体的长为3a -4,宽为2a ,高为a ,那么它的体积是________.18.计算()2242a a 9a 39⎛⎫--⋅- ⎪⎝⎭的结果是____________.19.若B 是一个单项式,且223(4)82B a b a b ab -=-+g ,则B =__.20.若规定一种运算a c b d =ad -bc ,则化简1x x - 4x x+=______. 21.若x=2019567891×2019567861,y=2019567881×2019567871,则x__y (填>,<或=).三、解答题22.计算:2223335()(2)()53xy x y x y x -+÷-23.计算:2x (12x ﹣1)﹣3x (13x ﹣53)24.先化简,再求值:32212232x x x x ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,其中4x =.25.若23()3265x x a x b x x -+-=-+成立,请求出a 、b 的值.26.先化简,再求值:A =3a 2b ﹣ab 2,B =ab 2+3a 2b ,其中a =12,b =13.求5A ﹣B 的值.27.已知长方体的高为cma,宽是高的2倍,长是高的3倍少5cm,求长方体的体积.28.根据等式和不等式的性质,可以得到:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式5m2-4m+2与4m2-4m-7的值之间的大小关系;(2)已知A=5m2﹣4(7142m ),B=7(m2﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.29.请先阅读下列解题过程,再仿做下面的题.已知x2+x-1=0,求x3+2x2+3的值.解:x3+2x2+3=x3+x2-x+x2+x+3=x(x2+x-1)+x2+x-1+4=0+0+4=4如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8的值.参考答案1.B2.D3.D4.B5.B6.B7.C8.A9.A10.D11.B12.B 13.2618x xy -+14.615.m (a +b )=ma +mb .16.233288a b a b -17.6a 3-8a 218.-18a 3+6a 2+4a .19.22ab -.20.-5x21.<22.339x y -23.3x .24.218233x x +-;14. 25.9a =,52b =- 26.2.3 27.()323610cm a a -. 28.(1)代数式5m 2﹣4m+2大于代数式4m 2﹣4m ﹣7;(2)A <B. 29.0。
3.2 单项式乘以多项式 浙教版数学七年级下册基础知识讲与练基础篇(含答案)
专题3.11 单项式乘以多项式(基础篇)(专项练习)一、单选题1.计算:()A.B.C.D.2.已知,,则代数式的值是()A.12B.C.7D.3.若,则代数式的值是()A.1B.6C.-6D.-14.若计算的结果中不含有项,则a 的值为()A.B.0C.2D.5.要使成立,则,的值分别是()A.,B.,C.,D.,6.下列计算正确的是()A.B.C.D.7.若三角形的底边为5m,对应高为,则此三角形的面积为()A.B.C.D.8.计算:□,□内应填写()A.-10xy B.C.+40D.+40xy9.在一次数学课上,学习了单项式乘多项式,小刘回家后,拿出课堂笔记本复习,发现这样一道题:2x(﹣3x2﹣3x+1)=﹣6x3﹣□+2x,“□”的地方被墨水污染了,你认为“□”内应填写( )A.﹣6x2B.6x2C.6x D.﹣6x10.如图所示,边长分别为和的两个正方形拼接在一起,则图中阴影部分的面积为()A.B.C.D.二、填空题11.计算:____________.12.一个矩形的边长分别为与,则这个矩形的面积为_____________.13.一个多项式除以,商为,则这个多项式是_____________.14.某同学在计算多项式A乘时,因抄错运算符号,算成了加,得到的结果是,那么正确的计算结果是________.15.已知,则代数式的值为______.16.若,求_____.17.如果多项式可以分解为,那么m=______.18.边长分别为m和2m的两个正方形如图的样式摆放,则图中阴影部分的面积为_____.三、解答题19.计算:(1) (2)\20.计算:(1);(2);(3);21.先化简,再求值:,其中a,b满足a=2,.22.先化简,再求值:,其中x=﹣2,y=﹣.23.符号“”称为二阶行列式.规定它的运算法规为:.(1) 计算:=_________;(直接写出答案)(2) 化简二阶行列式:24.某校要用36米长的围栏搭建一个长方形花圃,花圃一边靠足够长的墙,中间用一道围栏隔开,并在如图所示的两处各留1米宽的门(门不用围栏制作),设长方形花圃的宽为x米.(1) 用含x的代数式表示长方形花圃的长__________米.(2) 用含x的代数式表示长方形花圃的面积.(3) 当时,求长方形花圃的面积.参考答案:1.B【分析】根据单项式乘以多项式法则计算即可.解:,故选∶B.【点拨】本题考查了单项式乘以多项式法则,掌握相关运算法则是解题的关键.2.A【分析】先根据可得,再将已知式子的值作为整体代入求值即可得.解:因为,,所以,所以,故选:A.【点拨】本题考查了代数式求值、整式的乘法、合并同类项,熟练掌握整体思想是解题关键.3.D【分析】根据,求出,然后根据单项式乘以多项式法则计算,再整体代入求值即可.解:∵,∴,.故选D.【点拨】本题考查单项式乘以多项式计算,代数式求值,掌握单项式乘以多项式计算法则,代数式求值方法是解题关键.4.A【分析】利用单项式乘多项式的法则进行求解,再结合不含项,则其项的系数为0,从而求解.解:,结果中不含有项,,解得,故选:A.【点拨】本题主要考查了单项式乘多项式,合并同类项,解题的关机是熟练掌握相应的运算法则.5.C【分析】根据整式的乘法展开,根据对应系数相等得到a,b的关系式,即可求解.解:∵∴a+3=5,-2b=4∴,故选C.【点拨】此题主要考查整式运算的应用,解题的关键是熟知整式乘法的运算法则.6.D【分析】根据单项式乘以多项式可进行求解.解:A、,原计算错误,故不符合题意;B、,原计算错误,故不符合题意;C、,原计算错误,故不符合题意;D、,原计算正确,故符合题意;故选D.【点拨】本题主要考查单项式乘以多项式,熟练掌握单项式乘以多项式是解题的关键.7.D【分析】根据三角形的面积公式列出式子,然后根据单项式乘多项式运算法则进行计算即可.解:此三角形的面积为:.故选:D.【点拨】本题主要考查了三角形的面积公式、单项式乘多项式运算法则,熟练掌握单项式乘多项式法则,是解题的关键.8.D【分析】运用单项式乘以多项式法则展开,再根据对应项相等,即可求解.解:∵-10xy2-5x2y□=-5xy(2y+x-8)=-10xy2-5x2y+40xy,∴□=+40xy,故选:D.【点拨】本题考查单项式乘以多项式,熟练掌握单项式乘以多项式法则是解题的关键.9.B【分析】直接利用单项式乘多项式运算法则计算得出答案.解:∵2x(-3x2-3x+1)=-6x3-6x2+2x=-6x3-□+2x,∴“□”的地方被墨水污染的式子是:6x2.故选:B.【点拨】此题主要考查了单项式乘多项式,正确掌握相关运算法则是解题关键.10.A【分析】先将原图形补成一个大的长方形,再用大长方形的面积减去阴影周围三个直角三角形的面积即可求解.解:如图,图中阴影部分的面积为,故选:A.【点拨】本题考查单项式乘多项式的几何应用,会利用割补法求解不规则图形的面积是解答的关键.11.【分析】根据整式的乘法法则计算即可.解:.故答案为:【点拨】本题考查单项式乘多项式,解题关键是熟练掌握计算法则.12.【分析】直接根据矩形的面积公式计算即可.解:该矩形的面积为:,故答案为:.【点拨】本题考查了单项式乘以多项式,熟练掌握运算法则是解题的关键.13.【分析】根据被除数等于除数乘以商,即可得出结果.解:根据题意得:.∴这个多项式是.故答案为:.【点拨】本题考查整式的乘法.熟练掌握单项式与多项式的乘法运算是解题的关键.14.【分析】根据抄错运算符号后的结果为,可求出多项式A,再根据多项式乘单项式的运算法则计算即可.解:由题意可知多项式A为,∴.故答案为:【点拨】本题考查整式的加减运算,多项式乘单项式.掌握运算法则是解题关键.15.-5【分析】先用单项式乘以多项式法则展开,利用已知代数式的值整体代入计算即可.解:∵,∴故答案为:-5.【点拨】本题主要考查了求代数式的值,掌握代数式的求值方法,解题的关键是会利用整体代入法求值.16.##0.4【分析】先把等式左边去括号,再利用对应项系数相等即可求解.解:,,,,.故答案为.【点拨】本题考查了整式的乘法,多项式相等对应项系数相等进解题的关键.17.4【分析】先去括号得:2x+4,再和2x+m进行对比即可得到m的值.解:∵=2x+4,∴2x+m=2x+4,∴m=4.故答案是:4.【点拨】考查了单项式乘多项式,解题关键是熟记其运算法则.18.【分析】将图形补全为边长为的长方形,进而根据阴影部分面积等与长方形面积的一半减去小正方形的面积即可求解解:如图,图中阴影部分的面积为故答案为:【点拨】本题考查了整式的乘法与图形面积,添加辅助线求解是解题的关键.19.(1) (2)【分析】(1)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相交;即可得出结论;(2)有乘方先算乘方,再根据单项式与多项式相乘的法则即可求解.解:(1)(2).【点拨】本题主要考查了整式的混合运算,正确掌握解题的方法是解题的关键.20.(1);(2);(3)【分析】(1)(2)(3)根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解:(1).(2).(3).【点拨】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.21.【分析】先计算单项式乘以多项式与积的乘方运算,再计算单项式乘以单项式,再合并同类项即可得到化简后的答案,再把代入化简后的代数式进行计算即可.解:,原式【点拨】本题考查的是积的乘方运算,单项式乘以单项式,单项式乘以多项式,熟悉以上运算的运算法则是解本题的关键.22.,7【分析】去括号,合并同类项即可化简,再代入求值即可.解:,将x=-2,y=代入,则原式.【点拨】本题考查了代数式的化简求值,掌握多项式去括号的基本计算法则是解答本题的关键.23.(1) (2)【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,去括号合并即可得到结果.(1)解:根据题中的新定义得:原式;故答案为:;(2)解:根据题中的新定义得:原式.【点拨】此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1) (2) 平方米(3) 112平方米【分析】(1)长方形花圃的宽为x米,根据在如图所示的两处各留1米宽的门,可得长方形花圃的长为米,即可求解;(2)根据长方形的面积公式计算,即可;(3)把代入(2)中的结果,即可.(1)解:设长方形花圃的宽为x米,则长方形花圃的长为米;故答案为:(2)解:根据题意得:长方形花圃的面积为平方米;(3)解:当时,平方米.【点拨】本题主要考查了列代数式,整式乘法的应用,求代数式的值,明确题意,准确得到长方形花圃的长是解题的关键.。
初一数学下第九章 9.2 单项式乘多项式练习题(附答案)
9.2 单项式乘多项式1.下列运算正确的是()A.b5÷b3=b2B.(b5)2=b7C.b2•b4=b8D.a•(a﹣2b)=a2+2ab2.计算6x•(3﹣2x)的结果,与下列哪一个式子相同()A.﹣12x2+18x B.﹣12x2+3 C.16x D.6x3.计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣14.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4B.2x6+12x5+6x4C.x2﹣6x﹣3 D.2x6﹣12x5﹣6x4 5.已知ab2=﹣2,则﹣ab(a2b5﹣ab3+b)=()A.4 B.2 C.0 D.146.已知M,N分别表示不同的单项式,且3x(M﹣5x)=6x2y3+N()A.M=2xy3,N=﹣15x B.M=3xy3,N=﹣15x2C.M=2xy3,N=﹣15x2D.M=2xy3,N=15x27.计算x(y﹣z)﹣y(z﹣x)+z(x﹣y),结果正确的是()A.2xy﹣2yz B.﹣2yz C.xy﹣2yz D.2xy﹣xz8.一个长方形的周长为4a+4b,若它的一边长为b,则此长方形的面积为()A.b2+2ab B.4b2+4ab C.3b2+4ab D.a2+2ab9.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2D.(a+b)(a﹣b)=a2﹣b210.要使(x2+ax+1)(﹣6x3)的展开式中不含x4项,则a应等于()A.6 B.﹣1 C.D.011.已知7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,则这个多项式是()A.4x2﹣3y2B.4x2y﹣3xy2C.4x2﹣3y2+14xy2D.4x2﹣3y2+7xy312.下列各题中,计算正确的个数是()①(a﹣3b)(﹣6a)=﹣6a2+18ab;②(﹣x2y)(﹣9xy+2)=3x3y2+2;③(﹣4ab)(﹣a2b)=2a3b2;④(﹣ab)(﹣ab2﹣2ab)=ab2﹣2ab.A.1 B.2 C.3 D.413.计算:2x(x2﹣x+5)=.14.5m2n(2n+3m﹣n2)的计算结果是次多项式.15.﹣2a(3a﹣4b)=.16.计算:•ab=.17.﹣2x2y(3xy2﹣2y2z)=.18.(﹣x2y)•(x2﹣2xy+)=.19.一个多项式与﹣8x2的积是多项式﹣16x3+40x2y,则这个多项式是.20.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab 成立,根据图乙,利用面积的不同表示方法,仿照上边的式子写出一个等式.答案与解析1.下列运算正确的是()A.b5÷b3=b2B.(b5)2=b7C.b2•b4=b8 D.a•(a﹣2b)=a2+2ab【分析】根据整式的除法和乘法判断即可.【解答】解:A、b5÷b3=b2,正确;B、(b5)2=b10,错误;C、b2•b4=b6,错误;D、a•(a﹣2b)=a2﹣2ab,错误;故选A【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.2.计算6x•(3﹣2x)的结果,与下列哪一个式子相同()A.﹣12x2+18x B.﹣12x2+3 C.16x D.6x【分析】根据单项式乘以多项式法则可得.【解答】解:6x•(3﹣2x)=18x﹣12x2,故选:A.【点评】本题主要考查整式的乘法,熟练掌握单项式乘以多项式的法则是解题的关键.3.计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3x C.﹣6x3+15x2D.﹣6x3+15x2﹣1【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:(﹣3x)•(2x2﹣5x﹣1)=﹣3x•2x2+3x•5x+3x=﹣6x3+15x2+3x.故选B.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.4.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4B.2x6+12x5+6x4C.x2﹣6x﹣3 D.2x6﹣12x5﹣6x4【分析】先算积的乘方,单项式乘多项式,再合并同类项即可求解.【解答】解:(2x2)3﹣6x3(x3+2x2+x)=8x6﹣6x6﹣12x5﹣6x4=2x6﹣12x5﹣6x4.故选:D.【点评】考查了积的乘方,单项式乘多项式,合并同类项,关键是熟练掌握计算法则正确进行计算.5.已知ab2=﹣2,则﹣ab(a2b5﹣ab3+b)=()A.4 B.2 C.0 D.14【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:﹣ab(a2b5﹣ab3+b)=﹣a3b6+a2b4﹣ab2=﹣(ab2)3+(ab2)2﹣ab2,当ab2=﹣2时,原式=﹣(﹣2)3+(﹣2)2﹣(﹣2)=8+4+2=14故选:D.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.6.已知M,N分别表示不同的单项式,且3x(M﹣5x)=6x2y3+N()A.M=2xy3,N=﹣15x B.M=3xy3,N=﹣15x2C.M=2xy3,N=﹣15x2D.M=2xy3,N=15x2【分析】根据单项式乘多项式,可得答案.【解答】解:由题意得3xM﹣15x2=6x2y3+N,即N=﹣15x2,M=2xy3,故选:C.【点评】本题考查了单项式乘多项式,利用单项式乘多项式是解题关键.7.计算x(y﹣z)﹣y(z﹣x)+z(x﹣y),结果正确的是()A.2xy﹣2yz B.﹣2yz C.xy﹣2yz D.2xy﹣xz【分析】根据单项式乘以多项式的运算法则即可求出答案、【解答】解:原式=xy﹣xz﹣yz+xy+xz﹣yz=2xy﹣2yz故选(A)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.8.一个长方形的周长为4a+4b,若它的一边长为b,则此长方形的面积为()A.b2+2ab B.4b2+4ab C.3b2+4ab D.a2+2ab【分析】首先利用周长的一半减去一边长即可求得另一边长,则面积即可求解.【解答】解:因为一个长方形的周长为4a+4b,若它的一边长为b,则另一边长=2a+2b﹣b=2a+b,面积=(2a+b)b=b2+2ab,故选A【点评】本题考查了整式的乘法,以及整式的加减运算,正确求得另一边长是关键.9.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2D.(a+b)(a﹣b)=a2﹣b2【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.【解答】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:B.【点评】本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.10.要使(x2+ax+1)(﹣6x3)的展开式中不含x4项,则a应等于()A.6 B.﹣1 C.D.0【分析】直接利用单项式乘以多项式运算法则结合已知得出a的值.【解答】解:∵(x2+ax+1)(﹣6x3)的展开式中不含x4项,∴(x2+ax+1)(﹣6x3)=﹣6x5﹣6ax4﹣6x3,中﹣6a=0,解得:a=0.故选:D.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.11.已知7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,则这个多项式是()A.4x2﹣3y2B.4x2y﹣3xy2C.4x2﹣3y2+14xy2D.4x2﹣3y2+7xy3【分析】根据乘法与除法的互逆关系,可得整式的除法,根据整式的除法,可得答案.【解答】解:由7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,得(28x7y3+98x6y5﹣21x5y5)÷7x5y3=4x2+14xy2﹣3y2,故选:C.【点评】本题考查了单项式乘多项式,利用了整式的除法:用多项式的每一项除以单项式,把所得商相加.12.下列各题中,计算正确的个数是()①(a﹣3b)(﹣6a)=﹣6a2+18ab;②(﹣x2y)(﹣9xy+2)=3x3y2+2;③(﹣4ab)(﹣a2b)=2a3b2;④(﹣ab)(﹣ab2﹣2ab)=ab2﹣2ab.A.1 B.2 C.3 D.4【分析】根据单项式乘以多项式、单项式乘以单项式分别求出每个式子的值,再判断即可.【解答】解:∵(a﹣3b)(﹣6a)=﹣6a2+18ab,∴①正确;∵(﹣x2y)(﹣9xy+2)=3x3y2﹣x2y,∴②错误;∵(﹣4ab)(﹣a2b)=2a3b2,∴③正确;∵(﹣ab)(﹣ab2﹣2ab)=a2b3+a2b2,∴④错误;即正确的有2个,故选B.【点评】本题考查了单项式乘以多项式、单项式乘以单项式等知识点,能正确求出每个式子的值是解此题的关键.13.计算:2x(x2﹣x+5)=2x3﹣3x2+10x.【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:2x(x2﹣x+5)=2x3﹣3x2+10x.故答案为:2x3﹣3x2+10x.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.5m2n(2n+3m﹣n2)的计算结果是五次多项式.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:5m2n(2n+3m﹣n2)=10m2n2+15m3n﹣5m2n3,则计算结果是五次多项式,故答案为:五【点评】此题考查了单项式乘多项式,以及多项式,熟练掌握运算法则是解本题的关键.15.﹣2a(3a﹣4b)=﹣6a2+8ab.【分析】根据单项式乘以多项式,用单项式乘以多项式的每一项,再把所得的积相加,计算即可.可表示为m(a+b)=ma+mb.【解答】解:﹣2a(3a﹣4b)=﹣6a2+8ab.【点评】本题主要考查单项式乘以多项式的运算法则,熟练掌握运算法则是解题的关键,一定要注意符号的处理.16.计算:•ab=a2b3﹣a2b2.【分析】利用单项式乘多项式的计算方法直接计算出结果即可.【解答】解:•ab=ab2•ab﹣2ab•ab=a2b3﹣a2b2.故答案为:a2b3﹣a2b2.【点评】此题考查利用乘法分配律把单项式乘多项式转化为单项式乘单项式.17.﹣2x2y(3xy2﹣2y2z)=﹣6x3y3+4x2y3z.【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.【解答】解:﹣2x2y(3xy2﹣2y2z)=﹣6x3y3+4x2y3z.故答案为:﹣6x3y3+4x2y3z.【点评】考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.18.(﹣x2y)•(x2﹣2xy+)=﹣x4y+x3y2﹣x2y.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=﹣x4y+x3y2﹣x2y.故答案为:﹣x4y+x3y2﹣x2y.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.19.一个多项式与﹣8x2的积是多项式﹣16x3+40x2y,则这个多项式是2x﹣5y.【分析】直接利用多项式除以单项式运算法则计算得出答案.【解答】解:∵一个多项式与﹣8x2的积是多项式﹣16x3+40x2y,∴这个多项式是:(﹣16x3+40x2y)÷(﹣8x2)=2x﹣5y.故答案为:2x﹣5y.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.20.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab 成立,根据图乙,利用面积的不同表示方法,仿照上边的式子写出一个等式(a+b)(a+2b)=a2+3ab+2b2.【分析】根据多项式乘多项式,利用第一个多项式的每一项乘以第二个多项式的每一项,把所得积相加,可得答案.【解答】解:由图示,得(a+b)(a+2b)=a2+3ab+2b2,故答案为:(a+b)(a+2b)=a2+3ab+2b2.【点评】本题考查了多项式乘多项式,熟记法则并根据法则计算是解题关键.。
单项式乘多项式练习题(含答案)
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣(﹣a+a b(﹣a(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaba aba+10.2ab(5ab+3a2b)11.计算:.(﹣x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.①∴有方程组.,得到方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《单项式乘以多项式》典型例题
例1 计算:
(1))123()4(2-+⋅xy x xy
(2))478()2
1(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----
例2 计算题:
(1))1944)(3(22+--x x x ; (2)ab b a ab m m 3
2)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .
例4 化简
(1))323(5132n n n n n n y y x y x y x +-⋅--++;
(2)])2(3)2[(2222ab b ab b ab ab -+-.
例5 设012=-+m m ,求2000223++m m 的值.
例6 计算:
(1))123()4(2-+⋅xy x xy
(2))478()2
1(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----
例7 计算题:
(1))1944)(3(22+--x x x ; (2)ab b a ab m m 3
2)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简
(1))323(5132n n n n n n y y x y x y x +-⋅--++;
(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案
例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy
xy y x y x 4812223-+=
(2)原式4)2
1()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 22
7424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=
323242b ab a +-=
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 9
4-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式1)3()9
4()3(432222⋅-+⋅-+⋅-=x x x x x 24433
412x x x -+-= (2)ab ab b a ab m m 3
232)1353(11+⋅++-- .3
22523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3 解:原式n n n n n y y y y y 129129112+--+=++
n y 2=
当2,3=-=n y 时,
81)3()3(4222=-=-=⨯n y
说明:求值问题,应先化简,再代入求值.
例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.
解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x
(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=
323322222222222282)4(22]
4[2]
334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=
例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.
解: 2000223++m m
2000223+++=m m m
2001
2000120002000)(2000
22222=+=++=+++=++⋅+⨯=m m m m m m m m m m m
说明:整体换元的数学方法,关键是识别转化整体换元的形式.
例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy
xy y x y x 4812223-+=
(2)原式4)2
1()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 22
7424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=
323242b ab a +-=
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简。
例7 分析:(1)中单项式为23x -,多项式里含有24x ,x 9
4-,1,乘积结果为三项,特别是1这项不要漏乘。
(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加。
解:(1)原式1)3()9
4()3(432222⋅-+⋅-+⋅-=x x x x x 24433
412x x x -+-= (2)ab ab b a ab m m 3
232)1353(11+⋅++-- .3
22523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负。
例8 解:原式n n n n n y y y y y 129129112+--+=++
n y 2=
当2,3=-=n y 时,
81)3()3(4222=-=-=⨯n y
说明:求值问题,应先化简,再代入求值。
例9 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号。
解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x
(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=
323322222222222282)4(22]
4[2]
334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=
例10 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的
形式,整体代入求解。
解: 2000223++m m
2000223+++=m m m
2001
2000120002000)(2000
22222=+=++=+++=++⋅+⨯=m m m m m m m m m m m
说明:整体换元的数学方法,关键是识别转化整体换元的形式。