线代期末测试(数二三)-答案
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线代期末试题及答案解析
线代期末试题及答案解析一、选择题1. 下列哪个矩阵是零阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}2 & -2 \\ -3 & 3\end{bmatrix}$答案:B解析:零阵是所有元素都为0的方阵,选项B满足此条件。
2. 若矩阵$A$、$B$满足$AB=I$,其中$I$为单位矩阵,则矩阵$B$是矩阵$A$的:A. 逆矩阵B. 转置矩阵C. 相反矩阵D. 对角矩阵答案:A解析:若矩阵$A$的逆矩阵存在,则$A$的逆矩阵为$B$。
3. 下列哪个矩阵是对称矩阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}-1 & 2 \\ 2 & -1\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix}$答案:D解析:对称矩阵是指矩阵的转置等于自身的矩阵,选项D满足此条件。
4. 若矩阵$A$、$B$满足$AB=BA$,则矩阵$A$和$B$是:A. 可逆矩阵B. 特征矩阵C. 对角矩阵D. 可交换矩阵答案:D解析:可交换矩阵是指满足$AB=BA$的矩阵,选项D满足此条件。
5. 若行矩阵$\mathbf{u}$、$\mathbf{v}$满足$\mathbf{u}\cdot\mathbf{v}=\mathbf{0}$,其中$\mathbf{0}$为零向量,则下列哪个说法是正确的?A. $\mathbf{u}$和$\mathbf{v}$一定不相等B. $\mathbf{u}$和$\mathbf{v}$一定相等C. $\mathbf{u}$和$\mathbf{v}$可能相等也可能不相等D. 不能确定$\mathbf{u}$和$\mathbf{v}$是否相等答案:C解析:行向量的内积为零意味着两个向量正交,不一定相等,所以选项C是正确的。
长安大学《线性代数》历年期末考试真题及答案解析
目录长安大学2018-2019第一学期线性代数期末试题 (1)长安大学2018-2019第一学期线性代数期末试题解析 (4)长安大学2019-2020第一学期线性代数期末试题 (12)长安大学2019-2020第一学期线性代数期末试题解析 (14)长安大学2019-2020第二学期线性代数期末试题A (21)长安大学2019-2020第二学期线性代数期末试题A解析 (23)长安大学2019-2020第二学期线性代数期末试题B (29)长安大学2019-2020第二学期线性代数期末试题B解析 (32)长安大学2020-2021第一学期线性代数期末试题 (41)长安大学2020-2021第一学期线性代数期末试题解析 (43)长安大学2018-2019第一学期线性代数期末试题长安大学2018-2019第一学期线性代数期末试题解析长安大学2019-2020第一学期线性代数期末试题长安大学2019-2020第一学期线性代数期末试题解析长安大学2019-2020第二学期线性代数期末试题长安大学2019-2020第二学期线性代数期末试题解析长安大学2019-2020第二学期线性代数期末试题一、选择题。
(每小题4分,共16分)1.,有()无解有无穷多组解有非零解可能有无穷多组解2.设则()。
3.设向量组的秩为,则()必定向量组中任意小于个向量的部分组无关向量组中任意个向量线性无关个向量组线性相关4.()二、填空题(每小题4分,共16分)1.设齐次线性方程组为,若它有非零解,则应满足2.设矩阵是4阶方阵,矩阵是5则3.若可由,线性表示,则=4.设。
三、计算或证明下列各题(每小题8分,共16分)1.计算行列式2.设矩阵,求四、计算下列各题(每小题8分,共16分)1.写成二次型并判别其正定性。
2.设,证明是向量组的一个极大线性无关组,并把分别用该极大线性无关组线性表示。
五、(本题12分)设有方程组,问为何值时,方程组有唯一解?无解?有无穷多解?并在有无穷多解时,求出通解。
线性代数期末考试题及答案
《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
线代期末试题及答案
线代期末试题及答案一、选择题(每题3分,共30分)1. 在三维向量空间中,以下向量中线性无关的是:A) (1, 0, 0)B) (0, 1, 0)C) (0, 0, 1)D) (1, 1, 1)答案:D2. 设矩阵A = [a b; c d],若行列式det(A) = 0,则以下哪个等式成立?A) ad - bc = 0B) ab - bc = 0C) ac - bd = 0D) ad - bd = 0答案:A3. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],则A的逆矩阵为:A) [-1/6 -1/3 1/6; -1/6 2/3 -1/6; 1/6 -1/3 1/6]B) [-1 -2 -3; -4 -5 -6; -7 -8 -9]C) [1/6 1/3 -1/6; 1/6 -2/3 1/6; -1/6 1/3 -1/6]D) [1 2 3; 4 5 6; 7 8 9]答案:A4. 给定矩阵A = [2 0; 0 3],B = [1 2; 3 4],则A与B的乘积为:A) [2 4; 6 8]B) [2 0; 0 3]C) [1 2; 9 12]D) [4 6; 6 12]答案:B5. 给定向量a = (1, 2, 3)和b = (4, 5, 6),则a与b的内积为:A) 32B) 22C) 14D) 6答案:C6. 若向量a = (1, 2, 3),b = (4, -2, 5),c = (3, 1, -2),则以下哪个等式成立?A) a × b = cB) b × c = aC) c × a = bD) a × c = b答案:B7. 给定矩阵A = [1 2; 3 4],则A的特征值为:A) 1, 2B) 2, 3C) 3, 4D) 4, 5答案:A8. 设向量a = (1, 2, 3),b = (4, 5, 6),c = (2, 1, 3),则向量集合{a, b, c}的维数为:A) 1B) 2C) 3D) 4答案:C9. 给定矩阵A = [1 2; 3 4],A的转置矩阵为:A) [1 3; 2 4]B) [4 3; 2 1]C) [1 2; 3 4]D) [3 4; 1 2]答案:A10. 设矩阵A = [2 1; 3 4],则A的伴随矩阵为:A) [4 -1; -3 2]B) [2 -1; 3 4]C) [-4 1; 3 -2]D) [-2 1; -3 -4]答案:A二、计算题(共70分)1. 设矩阵A = [1 2; 3 4],求A的逆矩阵。
大学数学线性代数第二学期期末复习测试试卷含答案
线性代数第二学期期末测试试卷含答案班别_________ 姓名___________ 成绩_____________第一部分 客观题(共30分)一、单项选择题(共 10小题,每小题2分,共20分)1. 若行列式111213212223313233a a a a a a d a a a =,则212223111213313233232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d -2. 设123010111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( )(A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( )(A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( )(A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ⨯矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。
(A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,,,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(C) 存在一组数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(D) 对β的线性表达式唯一8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( )(A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解9. 设110101011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是( )。
2022年线性代数期末考试卷试题及答案2套
,考试作弊将带来严重后果!期末考试《 线性代数》试卷A1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷;单项选择题(每小题2分,共30分)。
.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有 【 】A. A=A -1B. A=-EC. A=ED. det(A)=1设A 为3阶方阵,且行列式det(A)=12-,则*A = 【 】 A. 14-B. 14C. 1-D. 1 设A 为n 阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它n-1个行向量的线性组合D. 任意一个行向量都是其它n-1个行向量的线性组合.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a 9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12. n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni in aa a aC. 121{(,,,)|1}n a a a a = D. }1|),,,{(21∑=n inaa a a14. 下列矩阵中为正交矩阵的是 【 】A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. 1 -10 -1⎡⎤⎢⎥⎣⎦ D. 1 00 -1⎡⎤⎢⎥⎣⎦15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。
线代期末综合考试及答案
线性代数期末综合练习(二)班级 姓名 学号一、 填空题 1、设1234555533325422221146523A =,则3132333435()()A A A A A ++-+= . 2、设1212,,,,ααββγ都是3维行向量,且行列式 112212122ααααββββγγγγ====,则12122ααββγ++= . 3、设A 是4阶矩阵,12,ξξ是齐次线性方程组0Ax =的两个线性无关的解,则A 的伴随矩阵A *= .4、方阵A 可表示成一个对称矩阵与一个反对称矩阵之和,其为 .5、设A 是n 阶可逆矩阵,若行列式1A n=-,则1A -= . 6、设矩阵0,0C A D ⎡⎤=⎢⎥⎣⎦若C 、D 可逆,则A 也可逆,且1A -= . 7、设α与β是4阶正交矩阵A 的前两列,则内积(,)αβ= . 8、设3阶矩阵A 的3个特征值为2,3,4,则行列式2A = .9、三阶矩阵122121330A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦有一个2重特征值,其值为3, 则它的另一个特征值为 . 二、设A 是n 阶方阵,2A I =,证明矩阵的秩的关系式:()()r A I r A I n ++-=三、 计算n 阶行列式:111111111111n n n n----四、 设矩阵A 、B 满足:AB A B =+,求A B +,其中211264213A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦五、设三维向量123(1,1,1),(,1,1),(1,2,),(2,3,4)a b αααβ====,问当a 、b取何值时,(1)β可由123,,ααα线性表示,且表法不唯一. (2)β不能由123,,ααα线性表示.六、设线性方程组123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩a) 问λ为何值时,方程组有唯一解,无解,有无穷多解? b) 当有无穷多解时求出其解.七、设12,αα是矩阵A 的分别属于不同特征值12λλ≠的 特征向量,证明12αα+不是A 的特征向量.八、对实对称矩阵A ,求一个正交矩阵P ,使1P AP -为一个对角矩阵.212151212A -⎛⎫⎪=-- ⎪⎪-⎝⎭线性代数期末综合练习(二)班级 姓名 学号 一、填空题1、设1234555533325422221146523A =,则3132333435()()A A A A A ++-+= 0 . 解析: 将3132333435()()A A A A A ++-+还原成行列式 即31323334351234555533()()1111102221146523A A A A A ++-+=--= 2、设1212,,,,ααββγ都是3维行向量,且行列式 112212122ααααββββγγγγ====,则12122ααββγ++= 16 . 解析:12122ααββγ++=1122αββγ++2112212121222222αααααββββββγγγγγ+=+++112212122222ααααββββγγγγ=+++ 3、设A 是4阶矩阵,12,ξξ是齐次线性方程组0Ax =的两个线性无关的解,则A 的伴随矩阵A *= 0 .解析:12,ξξ是齐次线性方程组0Ax =的两个线性无关的解,则0Ax =的基 础解系中至少含有两个解向量,则()22r A n ≤-=,所以A 中所有3阶子 式都为0。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。
线性代数期末试题及答案
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
线性代数期末试卷三套附答案解析
x1
x2 (1 k)x3 k.
k 取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其通解.
四 证明题(本题 6 分) 设有向量组 α1, α2 , , αn 和 β1, β2 , , βn ,且 β1 α1 α2 , β2 α2 α3 , ,
βn1 αn1 αn , βn αn α1 .若向量组 α1, α2 , , αn 线性无关,问向量组 β1, β2 , , βn 是否一定线性
附录 A-----《线性代数》期末考试试题及解答(三套)
附录 A《线性代数》期末考试试题及解答(三套)
试卷一(2014 秋)
一 填空题 (本题共 10 小题,每小题 3 分,共 30 分)
1 2 3
1
1. 设 A 2 4 6 ,则 A 2( , , ).
3
6
9
3
2. 设 A 与 B 为同阶方阵,则 ( A B)2 A2 vvvvv
8.
2 k 1
k k2
1 1
,
(k 1)2 ,
无.
1 1 0 9. 6. 10. 1 2 1 .
0 1 1
二 单项选择题(每小题 4 分,共 20 分) CBADA
三 计算题 (共 44 分)
1.(本小题 9 分) 解 由 2AB 3B XX T 知 (2A 3E)B XX T .经计算得
.
a d f
6. 设 A 0 b e .若 A 的列向量组线性相关,则 a, b, c 应满足关系式
.
0 0 c
7. 设 A 为 m n 矩阵, R( A) r .已知 Ax (1, 0, 0)T 无解, Ax (0, 1, 0)T 有唯一解,则 m
线性代数期末考试试卷+答案.pdf
一、填空题
1. 5
2.
1
3. s s , n n
4. 相关
5. A 3E
二、判断正误
1. ×
2. √
3. √
4.
√
5. ×
三、单项选择题
1. ③
2. ③
3. ③ 4.
② 5.
①
四、计算题
1.
xa b
c
d
a xb c
d
a b xc d
a
b
c xd
1b
1 xb (x a b c d)
1b
1b
xabcd b
求 B。
解 . (A 2E)B A
( A 2E) 1
2 11
2 2 1,
11 1
B (A 2E) 1 A
5 22 4 32 22 3
1 10 0
3.
设B
01 00
1 0, 11
00 0 1
求 。 X (C B)' E,
2134
C
0 0
2 0
1 2
3 1
且矩阵
0002
满足关系式
4. 问 a 取 何 值 时 , 下 列 向 量 组 线 性 相 关 ?
线性代数期末考试试卷 +答案
大学生校园网— 线性代数 综合测试题
×××大学线性代数期末考试题
一、填空题(将正确答案填在题中横线上。每小题
2
分,共 10 分)
1 31
1. 若 0 5 x 0 ,则
12 2
__________。
x1 x 2 x3 0
2.若齐次线性方程组 x1 x2 x3 0 只有零解,则 应
2 11
经济数学《线性代数》期末试卷二(含答案解析)
《线性代数》试卷二一.选择题(每题3分,共30分)1.若行列式1023145xx 中,代数余子式121A =-,则21A =( ) A.2 B.2- C.3 D.3- 【解答】由于31211(1)4545x A x =-=-=-,可解得1x =,进而有32102(1)215A =-=,故选A.2.已知A ,B 均为n 阶方阵,则必有( )A.222()2A B A AB B +=++ B.TTT()AB A B = C.n n AB O ⨯=时,A ,B 中至少有一个为零矩阵 D.以上都不对 【解答】本题考察矩阵的乘法运算的性质.在A ,B 相乘可换时,选项A 才成立;()T T T AB B A =,故选项B 是错误的;n n AB O ⨯=说明B 的列向量组均为齐次方程组0Ax =的解向量,故选项C 亦不成立.故选D.3.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且AB E =,其中E 为m 阶单位矩阵,则( ). A. ()()r A r B m == B.()(),r A m r B n == C. ()(),r A n r B m == D. ()()r A r B n ==【解答】显然有()min{(),()}max{(),()}r AB r A r B r A r B m ≤≤≤,于是由AB E =可知()()r A r B m ==.故选A.4.向量组12,,,m ααα(3≥m )线性无关的充要条件是( )A. 存在不全为零的数12,,,s k k k ,使11220s s k k k ααα+++=;B. 所给向量组中任意两个向量都线性无关;C. 所给向量组中存在一个向量,它不能用其余向量线性表示;D. 所给向量组中任意一个向量都不能用其余向量线性表示.【解答】本题考察线性无关的定义.选项A 为线性相关的定义;选项B.选项C 为必要条件;故选D.5.设向量⎪⎪⎪⎭⎫ ⎝⎛=001α,⎪⎪⎪⎭⎫ ⎝⎛=100β,下列选项中( )为βα,的线性组合.A.1B.⎪⎪⎪⎭⎫ ⎝⎛-=403ηC.⎪⎪⎪⎭⎫ ⎝⎛=022ηD.⎪⎪⎪⎭⎫⎝⎛-=010η【解答】由βα,的第二个分量均为零易知其线性组合亦必满足第二个分量为零,因此选B.6.当λ取( )时,方程组12323232132(3)(4)(2)x x x x x x x +-=-⎧⎪-=-⎨⎪-=--+-⎩λλλλλλ有无穷多解.A.1B.2C.3D.4【解答】思路同上题,欲使该方程组有无穷多解,系数行列式12131301λλ--=--必为零.故选C.7.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =必有( ).A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解 B .(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解 C .(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解 D .(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解【解答】事实上,齐次方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =为同解方程组.证明如下:一方面,显然(Ⅰ)的解是(Ⅱ)的解;另一方面,设β是(Ⅱ)的解,则T0A A β=,进而()()TT T 0A A A A ββββ==,由此可知0A β=,即β亦是(Ⅰ)的解.命题得证. 由此可知选A.8.设1λ与2λ是A 的两个互异特征值,ξ与η分别为其特征向量,则下列说法正确的是( ) A .对任意非零常数12,k k ,12k k ξη+均为A 的特征向量 B .存在非零常数12,k k ,使得12k k ξη+均为A 的特征向量C .对任意非零常数12,k k ,12k k ξη+均不是A 的特征向量D .存在唯一的一组非零常数12,k k ,使得12k k ξη+均为A 的特征向量【解答】首先易知,ξ与η线性无关.又知对于任意非零常数12,k k ,若12k k ξη+为属于特征值3λ的特征向量,则有()123132A k k k k ξηλξλη+=+,()12121122A k k k A k A k k ξηξηλξλη+=+=+同时成立,于是()()1132230k k λλξλλη-+-=进而可知123λλλ==,与题设矛盾.故12k k ξη+不是A 的特征向量.选C.9.设矩阵1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭,则A 与B ( ).A.合同且相似B.合同但不相似C.不合同但相似D.不合同且不相似【解答】易知A 为对称矩阵且其特征值为4,0,0,0,故A 必可正交对角化为矩阵B .进而A 与B 合同且相似.故选A.10.二次型()2221231231223,,244f x x x x x ax x x x x =++--经正交变换化为标准形22212325f y y by =++,则( )A.3,1a b ==B.3,1a b ==-C.3,1a b =-= D.3,1a b =-=-【解答】由题意知,矩阵12022202A a -⎛⎫⎪=-- ⎪ ⎪-⎝⎭的特征值为2,5,b ,直接计算可知3,1a b ==-,故选B.二.填空题(每题3分,共18分)1.设A 为4阶方阵,且A 的行列式13A =,则12A -= . 【解答】易知13A -=,故1412216348A A --==⨯=.2.已知1231100011000100000101n n na a a D a a ---=-,若12--=+n n n n D a D kD ,则k = .【解答】按最后一行展开,得()()121312100011000100110000011n n n n n n a a a D a D a +-----=+---()()1121211n n n n n n n n a D D a D D +-----=+--=+,所以1k =.3.若非齐次方程组123412341234 242 217411x x x x x x x x x x x x λ+-+=⎧⎪-++=⎨⎪+-+=⎩ 有解,则λ=【解答】非齐次方程组有解当且仅当增广矩阵化为行阶梯阵时,最后一个非零行不具有“有且只有最后一个元素非零”的形式,于是直接计算可知5λ=。
线性代数期末考试试题及答案
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
大学线性代数期末试卷及答案
大学线性代数期末试题一、填空题(每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3、n 阶方阵A 满足032=--E A A ,则=-1A。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( ) 三、单项选择题 (每小题仅有一个正确答案。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题5分,共25分)1.下列哪一个不是线性空间?A. 实数集RB. 矩阵的集合M(n,R)C. 正实数集R+D. 空集答案:C2.下列关于线性变换的叙述,正确的是()A. 线性变换保持向量的长度不变B. 线性变换保持向量的方向不变C. 线性变换保持向量的数量积不变D. 线性变换保持向量的线性组合关系不变答案:D3.若向量组α1,α2,α3线性无关,则向量组()A. 2α1,3α2,4α3 线性相关B. 2α1+3α2,4α3 线性无关C. α1+α2,α2+α3,α3+α1 线性无关D. α1,α1+α2,α1+α2+α3 线性相关答案:C4.设A是3阶矩阵,且|A|=5,则|2A|=()A. 10B. 25C. 50D. 125答案:D5.下列关于线性方程组的叙述,正确的是()A. 如果系数矩阵的秩小于未知数的个数,则方程组一定有解B. 如果系数矩阵的秩等于未知数的个数,则方程组一定有唯一解C. 如果系数矩阵的秩等于增广矩阵的秩,则方程组一定有解D. 如果系数矩阵的秩小于增广矩阵的秩,则方程组一定无解答案:C二、填空题(每题5分,共25分)6.若向量组α1,α2,α3线性无关,则其极大线性无关组所含向量的个数为______。
答案:37.设A是3阶矩阵,且|A|=4,则|A的逆矩阵|=______。
答案:1/48.若线性方程组Ax=b有解,则系数矩阵A的秩r(A)与增广矩阵B的秩r(B)满足关系______。
答案:r(A)=r(B)9.设A是n阶对称矩阵,则A的转置矩阵A^T______。
答案:等于A10.线性空间V的维数等于______。
答案:V中极大线性无关组所含向量的个数三、计算题(每题10分,共30分)11.已知向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),判断向量组是否线性相关,并说明理由。
答案:线性相关。
因为α3=α1+α2,所以向量组线性相关。
线性代数期末试题及答案
线性代数期末试题及答案线性代数一、填空题(每小题2分,共20分)1.如果行列式,则。
2.设,则。
3.设= 。
4.设齐次线性方程组的基础解系含有2个解向量,则。
5.A、B均为5阶矩阵,,则。
6.设,设,则。
7.设为阶可逆矩阵,为的伴随矩阵,若是矩阵的一个特征值,则的一个特征值可表示为。
8.若为正定二次型,则的范围是。
9.设向量,则与的夹角。
10. 若3阶矩阵的特征值分别为1,2,3,则。
二、单项选择(每小题2分,共10分)1.若齐次线性方程组有非零解,则().1或2 . -1或-2 .1或-2 .-1或2.2.已知4阶矩阵的第三列的元素依次为,它们的余子式的值分别为,则().5 .-5 .-3 .33.设A、B均为n阶矩阵,满足,则必有(). ..或 .或4.设是非齐次线性方程组的两个解向量,则下列向量中仍为该方程组解的是()A. B. C. D.5. 若二次型的秩为2,则(). 1 .2 . 3 . 4三、计算题 (每题9分,共63分)1.计算阶行列式2. 设均为3阶矩阵,且满足,若矩阵,求矩阵。
3.已知向量组和;已知可以由线性表示, 且与具有相同的秩,求a ,b 的值。
4. 已知向量组(1)求向量组的秩以及它的一个极大线性无关组;(2)将其余的向量用所求的极大线性无关组线性表示。
5. 已知线性方程组(1)a为何值时方程组有解?(2)当方程组有解时求出它的全部解(用解的结构表示).6. 设矩阵,矩阵由关系式确定,试求7.将二次型化为标准形,并写出相应的可逆线性变换。
四、证明题(7分)已知3阶矩阵,且矩阵的列向量都是下列齐次线性方程组的解,(1)求的值;(2)证明:。
参考答案与评分标准1. 填空题1.-16; 2. 0;3.; 4. 1; 5.-4; 6. ; 7.;8.; 9. ; 10. 24。
二. 单项选择:1.C;2. A;3. D; 4.B; 5. C.三.计算题:1. 4分9分2.3分因为显然可逆 6分则 9分3. 3分即,且 5分那么,则 6分,即 9分4. 4分5分其极大线性无关组可以取为 7分且:, 9分5.当时,线性方程组有解 4分即,特解为, 6分其导出组的一般解为,基础解系为 8分原线性方程组的通解为为任意常数) 9分6. 由,得 2分4分7分9分7.= 2分= 4分令 6分即作线性变换 8分可将二次型化成标准形 9分四.证明题:因为,所以齐次线性方程组有非零解,故其方程组的系数行列式,所以 3分(2),,因此齐次线性方程组的基础解系所含解的个数为3-2=1,故,因而。
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。
答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。
答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。
答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。
答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故若 Α 可逆,则 A 0 ,从而 B 0 ,可知 Β 可逆,①正确; 同上知,若 Β 可逆,则 Α 可逆,则 A B A B 0 ,
故 Α Β 可逆,③正确.
2020 班模考试卷解析
Β 的每个元素的余子式分别为
0 0 6 0 3 3 2 5 3
0 0 2
则 Β*
0
3
5 .
6 3 3
(8)【答案】2.
【解析】因为 r(BA 2A) r (B 2E) A r A, 又
1 2 3 4 1 2 3 4 1 1 1 1
A
2
3
4
5
1
1
1
1
0
1
2
3
,
3 4 5 6 1 1 1 1 0 0 0 0
【法 2】因为 (k1, k2 , kn )T 是 4E 3 21 6.
0 0 2
(7)【答案】
0
3
5
.
6 3 3
【解析】因为 ΑΒC D ,又由已知得 Α,C 可逆,则
2020 班模考试卷解析
1 0 01 1 10 0 1 1 1 1
Β
Α1DC 1
0
1
1
0
2
2
0
1
0
5
2
0
,
0 0 1 0 0 3 1 0 0 3 0 0
(3)【答案】B. 【解析】在(Ⅱ)是( )的一个部分组的前提下:
(Ⅱ)与( )等价 r(Ⅱ) r() 3,
但无法保证(Ⅱ)只含有 3 个线性无关向量.
(4)【答案】A.
【解析】对增广矩阵作初等行变换
1 1 0 0 1 1 1 0 0 1
A,
0 0
1 0
1 0
2
0
1
1 1 3 0 0
又
1 2 1 2 1 2 1 2
A
0
1
t
t
0
1
t
t
,
1 t 0 1 0 t 2 1 1
故 1 t t 1. t 2 1
1 2 1 2 1 0 1 0
A
0
1
1
1
0
1
1
1
,
0 0 0 0 0 0 0 0
1 0
故
Ax
0
的基础解系为
1
,
1
,则通解为
1 0
0
2020 班模考试卷解析
线性代数期末测试(数 2,3)
参考答案与解析
一、选择题
(1)【答案】D. 【解析】
( A B)2 ( A B)( A B) A2 AB BA B2 A2 BA B2.
(2)【答案】D.
【解析】因为 ΑΒ Α Β ,所以 AB A B A B ,
若 Α Β 可逆,则 A B 0 ,从而 B 0 ,可知 Β 可逆,②正确; 因为 ΑΒ Α Β ,所以
Αn E B n Cn0 E n Cn1E n1B Cn2 E B n2 2
E nB = E nαβT.
Cnn Bn
(Ⅲ)因为 E B E B E B2 E, 故
A1 E B 1 E B E αβT.
(11)【解析】因为 Ax 0 的基础解系中含有两个解向量,故 r A 4 2 2.
由 r A r A, n 1 n 知, Ax 有无穷多解.
(Ⅱ)【法 1】因为1,2 , ,n1 线性相关,故 不全为 0 的常数 l1, l2 , , ln1 ,使得
l11 l22 ln1 n1 0,
故 l1,l2, ,ln1, 0T 为 Ax 0 的一个非零解,又 r A n 1,故其为 Ax 0 的一个基
础解系.
又 1 2
n 1,2 ,
1
,
n
1
,
故
1,1,
1
,1T 为 Ax 的一个特解,
则 Ax 的通解为
x k l1,l2, ,ln1, 0T 1,1, ,1T kl1 1, kl2 1, , kln1 1,1T .
其中 k 为任意常数,显然 Ax 的任一解 (k1, k2 , kn )T 中有 kn 1.
因为 A 为正定矩阵,所以 A 可逆,且 A1 为对称阵,特征值全大于 0,故 A1 是正
定矩阵.
二、填空题
(6)【答案】6.
【解析】由 A E, A 2E, A 3E 都不可逆知, A E A 2E = A 3E 0,
故 A 的 3 个特征值为 1, 2, 3 ,从而 A 4E 的 3 个特征值为 3, 2,1,则
1 1 0,
1 a 1 0, A b a 1 0,
1 a
(10)【解析】(Ⅰ)记 B αβT , 因为 T ,得 B 的特征值全为 0,则 A 的特征值
2020 班模考试卷解析
全为 1,从而 A 1.
(Ⅱ)当 k 2 时, Bk
αβ T
k
α
βTα β k1 T O, 则
AB A B = O AB A B E = E ( A E)(B E) = E,
故 Α E 恒可逆,且 ( A E)1 B E ,④正确; 因为 ( A E)1 B E ,所以 (B E)( A E) = E BA B A E = E BA = A B,
4
5
6
7
1
1
1
1
0
0
0
0
故 r(BA 2A) r A 2.
(9)【答案】 a 1且 b 0 .
【解析】二次型的秩和正惯性指数均为 3 f 正定,二次型矩阵为
1 1 0
A
1
a
0
,
0 0 b
则 f 正定 A 的各阶顺序主子式均大于 0,即
得 a 1且 b 0. 三、解答题
1 0 1 1
2 3
,
1
0
0
a
b
0
0
0
a 1
b
6
由 Ax 无解知, r A r A, ,从而 a 1,b 6.
(5)【答案】C. 【解析】因为 A 为正定矩阵,所以 A 的特征值均大于 0,故 A 是可逆矩阵;
因为 A 为正定矩阵,所以 A 为对称矩阵,故 A 必可相似对角化;
1
1 0
x
k1
1 1
k2
1 0
,
0
1
其中 k1, k2 为任意常数.
(12)【解析】(I)因为1,2 , ,n1 线性相关,所以1,2 , ,n1,n 线性相关.
又2, ,n1,n 线性无关,故 r A n 1.
因为 1 2 n ,所以 r A, n 1.
2020 班模考试卷解析