2光波在介质中界面上的反射及透射特性的仿真
光波在介质界面上的反射和折射 菲涅耳公式
在讨论过程中,不计吸收、散射等能量损耗,因此, 入射光能量在反射光和折射光中重新分配,而总能 量保持不变。
2. 3 反射率和透射率 (Reflectivity and transmissivity) 若有一个平面光波以入射角1 斜入射介质分界面, 平面光波的强度为 Ii,则每秒入射到界面上单位面积 的能量为
sin (1 2 ) rs =sin (1 2 )
(134)
(Eis Ers )n1cos1 Ets n2 cos 2 (133)
3. 菲涅耳公式 利用类似方法,可以推出 p 分量的反射系数和透射系 数表示式, 这就是著名的菲涅耳公式:
sin(1 2 ) n1 cos 1 n2 cos 2 rs = sin(1 2 ) n1 cos 1 n2 cos 2 2 cos 1 sin 2 2n1 cos 1 ts = sin(1 2 ) n1 cos 1 n2 cos 2
Ers sin ( 2 1 ) Eis sin ( 2 1 )
(ki kr ) r 0 (121)
(134)
m s, p
( 128)
E0 rm rm E0 im
(129)
3. 菲涅耳公式 由 (134)式和(133)式消去 Ers,经运算整理得
2n1 cos 1 ts =n1 cos 1 n2 cos 2 (135)
(145) (146)
n2 cos 2 2 sin 21 sin 2 2 Ts ts n1cos1 sin 2 (1 2 )
(147)
n2 cos 2 2 sin 21 sin 2 2 Tp tp 2 n1cos1 sin (1 2 ) cos 2 (1 2)
光波在分界面上的反射和折射
❖ 利用全反射时的能量特性,改变光的传播方向、传递能量。 ❖利用倏逝波特性产生的受抑全反射效应能制成光调制器或光输出耦 合器。 ❖ 利用全反射时的位相变化,选取适当的折射率和入射角,可改变 入射光的偏振状态。
(b)
玻璃菱体(n=1.51),当 1=54037 (或48037) 时,有Δ =450。
因此,垂直菱体入射的线偏振光,若其振 动方向与入射面的法线成450角,则在菱体内上 下两个界而进行两次全反射后,s 分量和 p 分 量的相位差为900,因而输出光为圆偏振光。
See TIR from a fingerprint valley and FTIR from a ridge.
利用倏逝波特性产生的受抑全反射效应能制成光调制器或 光输出耦合器。
在斜面间的空气隙内的隐失波场的耦合作用下,光波可以从 一块棱镜透射到另一块棱镜,透射量的多少与间隔有关
棱镜波导耦合器:可以用来将光信号方便有效地耦合进薄膜波导中,或者将 在薄膜波导中传播的光信号引出波导。
利用全反射时的位相变化,选取适当的折射率和入射角,可改变 入射光的偏振状态。
k2xxt
沿x方向传播
等位相面( 为x;: t) t0
k2xxk2xsint
c
倏逝波波长 : 2 k2x sini
(2n)
光波的等相位面为一系列平行于z轴的等距直线
k1
’
④倏逝波等振幅面
等振 A 2幅 ex p z 面 ] [C : zC 等相面 y
光波的等振幅面为一系列平行于x轴的等距直线
x 等 幅 面
透射波是一个沿x方向传播,振幅在z方向按指数规律衰减的复杂波; 其振幅在介质表面法向方向作指数迅速衰减的波,这就是倏逝波。 其等位相面为一系列平行于z轴的等距直线。 其等振幅面与等位相面垂直。
光课程设计——光波在介质中界面上的反射及透射特性的仿真教学提纲
光课程设计——光波在介质中界面上的反射及透射特性的仿真西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。
三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。
由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以p s m E Et E E r imtm m im rm m ,,,0000===分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。
菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。
(1)s 分量和p 分量垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E Et E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。
绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。
(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。
西安邮电大学光学实验matlab仿真结果分析与程序
光学实验实验报告课程名称:光学实验*名:***学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:********指导教师:**2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。
二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。
现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。
进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。
折射定律又称为斯涅耳(Snell)定律。
2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。
为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。
图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。
光波在介质中界面的反射及透射的特性仿真实验题
1. 如何确定入射面?答:入射光与反射光以及法线共同构成的平面即入射面2.什么是临界角?临界角是光疏到光密,还是光密到光疏时发生?答:临界角就是全反射角,他指的是光线由光密介质入射到光疏介质时正好发生全反射时的入射角。
3.利用全反射现象能否产生圆偏振光?答;利用全反射现象可以产生圆偏振光,一个偏振光在一定角度上经过两次全反射可以产生圆偏振光,菲涅耳棱镜就是利用这个原理所制成的。
4.解释反射系数及透射系数的概念。
答:当电磁波由一个磁导率为μ1、介电常数为ε1的均匀介质,进入另一个具有磁导率为μ2、介电常数为ε2的均匀介质时,一部分电磁波在界面上被反射回来,另一分电磁波则透射过去。
反射波与透射波的振幅同入射波振幅之比,分别称之为反射系数与透射系数。
5.根据仿真曲线解释反射及透射光的相位变化规律。
答:图中反应了他们的相位的变化规律,例如图三所示在布儒斯特角处它的相位发生了π的跃变,而根据一个确定的波的表达式来看它是由余弦函数的的变化来确定的,而rp在菲涅耳表达式中是两个确定的余弦函数之比,所以rp由正变为负的时候,其中有一个余弦函数肯定相位发生了变化(奇变偶不变,符号看象限),且在布儒斯特角处,而在全反射角处也会发生变化,而且是逐渐变化的,这是因为当入射角逐渐增大的时候,它满足一个公式tan(fai/2)=-√((sin θ)^2-n^2)/cosθ),从公式可以看出相位会随着入射角的变化而渐变,当θ=π/2时,tan(fai/2)为无穷,所以fai=π。
6.试说明布儒斯特角的概念。
答:布儒斯特角,又称偏振角,是自然光经电介质界面反射后,反射光为线偏振光所应满足的条件。
7.试分析布儒斯特角与临界角哪个大。
答:临界角大于布儒斯特角,我们从它们的公式可以简单的推导出来,布儒斯特角为arctan(n2/n1),全反射角为arcsin(n2/n2), 假设n2/n1=x,因为有光密入射到光疏,所以n2>n1,因此x>1,此时布儒斯特角为arctan(x),全反射角为arcsin(x),我们对它两个同时求导得到:(arctan(x))’=1/(1+x^2),而(arcsin(x))’=1/√(1+x^2),由此我们可以得出全反射角公式的倒数大,也就是说,在相同变量的情况下它的数值大,从而我们也就说明了临界角大于布儒斯特角。
光波在介质界面上的反射和折射 PPT课件
(2) 大小
i t / 2 n1 sini n2 sint
tan B
n2 n1
n21
(3) 应用
3、全反射
•
设光波从光密介质射向光疏介质(n1>n2),
折射角θ2大于入射角θ1。当sinθ1=n2/n1时,θ2
为90o,这时折射角沿界面掠过。若入射角再增
大,使sinθ1>n2/n1 ,这时不能定义实数的折射 角。使θ2=90o的入射角θ1称为临界角,记作θc 即
E0ip cosi E0rp cosr=Et0 p cost
2、反射系数和透射系数
rp
E0rp E0ip
n2 cos1 n1 cos2 n2 cos1 n1 cos2
tan(1 2 ) tan(1 2 )
tp
E0tp E0ip
2n1 cos1 n2 cos1 n1 cos2
2 cos1 sin 2 sin(1 2) cos(1 2)
RT 1
四、反射率和透射率
3、反射率随入射角变化关系
R随入射角θ1的变化关系
11日出生于苏格兰杰德伯勒,1800年毕业于爱
丁堡大学,曾任“爱丁堡杂志”、“苏格兰杂 志”、“爱丁堡百科全书”编辑,爱丁堡大学
教授、校长等。1815年被选为皇家学会会员, 1819年获冉福德奖章。
•
布儒斯特主要从事光学方面的研究。1812
年发现当入射角的正切等于媒质的相对折射率 时,反射光线将为线偏振光(现称为布儒斯特
Ets Eis Ers
n H2 H1 0
n Htp cost Hip cosi Hrp cosr 0
Hip cosi H rp cosr Htp cost
7
§1-7光在两个介质分界面上的反射和折射
一、 内容回顾 二、折、反射波性质的进一步讨论:
§1-8全反射
一、内容回顾: 1.电磁场的边值关系 是研究光在两个介质分界面上的反射和折 射规律的基础。 电磁场的边值关系总结为:尽管两种介质 的分界面上,电磁场量整个的是不连续的, 但在界面上没有自由电荷和面电流时,磁 感应强度矢量和电位移矢量法向分量与电 场强度和磁场强度的切向分量是连续的。
§1-7光在两个介质分界面上的 反射和折射
在规定了电场、磁场的正方向后可以得 到一组关于入射波、反射波、折射波电 场的振幅之间的关系——菲涅尔公式。
rs ts sin( i t ) sin( i t )
rp tp tg ( i t ) tg ( i t ) 2 sin t cos i sin( i t ) cos( i t )
n1 cos i in2 n1 cos i in2
r
s
exp( i
2
rs
)
n r n
p
2
2
cos
cos
i i
i n1 i n1
r
p
exp( i
rp
)
可知:
tg
rs
2
sin i n cos i
2
tg
rp
2
sin i n
rs n1 cos i n2 cos t n1 cos i n2 cos t
n2 cos
2
r0
t
n1 n2 n1 n2
光波在介质界面上的反射和折射 菲涅耳公式
( ki k r ) r 0 ( ki k t ) r 0
(123) (124)
n1 n2 O
kr ki kt
r
B
分界面
(121) (122)
i
t
A C
2.1 反射定律和折射定律 又因为 k n / c ,可将上二式改写为
H ip cos1 H rp cos1 H tp cos 2 (132)
利用
H E ,上式变为
(Eis Ers )n1cos1 Ets n2 cos 2 (133)
3. 菲涅耳公式 再利用折射定律,并由(131)式和(133)式消去 Ets,经整理可得
Ers sin ( 2 1 ) Eis sin ( 2 1 )
sin (1 2 ) rs =sin (1 2 )
(134)
(Eis Ers )n1cos1 Ets n2 cos 2 (133)
3. 菲涅耳公式 利用类似方法,可以推出 p 分量的反射系数和透射系 数表示式, 这就是著名的菲涅耳公式:
O
kr
2
Ers k t
1.s 分量和 p 分量
E p1
H s1
z
1 Hs
E p2 H s2
y
o
E p1
x
2. 反射系数和透射系数 假设介质中的电场矢量为
El E0l e-i(l t-kl r ) l i, r, t ( 127)
其 s 分量和 p 分量表示式为
Elm E0lm e-i(l t-kl r ) m s, p ( 128)
2. 反射系数和透射系数 则定义 s 分量、p 分量的反射系数、透射系数分别为
光波在金属表面的透射和反射
r
柱面波的波函数
E A 1ex i(k p r t)
柱面波的复振幅
E ~ A r 1 e xipk)(r
r
§1-5光波的辐射
辐射能: 电场的能量密度 磁场的能量密度为 两者之间的关系
E m E1 2 1 2 H E D B m 2 1 2 1B E 2 2 ( ( J J // m m 3 3 ))
§1-9光波在金属表面的 透射和反射
故:通常光波只能透入金属表面很薄的一 层内,金属是不透明的。
由于在金属内部: =0, jE
麦克斯韦方程变为:
• E 0
•B
E
0
B
t
H E
D t
§1-9光波在金属表面的 透射和反射
由此 ,2 E 得 到波 动E t 方 程 为 2 tE 2 : 0
“均匀”和 “各项同性”意味,着,
是与位置无关的标量。
透明意味着 0 和 j 0
无源是指 0
第二节 电磁场的波动性
麦克斯韦方程的形式变为 :
E
B t
D
B 0
H j
D t
jE
DE
E
0
B 0 E
B
B
t
E
t
电导率
介电常数
H
1
B
磁导率
(1) (2) (3)
( (67))式式表表明明::磁磁场感没应有强起度止点; • E B 0 B
( 6 )
(7 )
( 磁(通8密)度式)表的明变:化位会移引电起流环和行传电导场; H jt D (8 )
电流一样都能产生环行磁场。
t
第二节 电磁场的波动性
讨论在无限大的、各向均匀、透明、无源 媒质中的电磁波。
光波在各向同性介质界面的反射和折射 ppt课件
ppt课件
17
(2)大角度入射(掠射)的反射特性
由图1-24(a),有
n1<n2,光疏到光密。θ 1≈900的掠射情况。
rs 0, rp 0
在入射点处,反射光矢量Er与入射光矢量Ei方向近似相 反,将产生半波损失。 n1>n2,光密到光疏。掠射θ 1≈900>θ c。全反射。 在入射点处,反射光产生半波损失的条件:
ki sin i kr sin r , ki sin i kt sin t n1 sin i n1 sin r , n1 sin i n2 sin t
反射定律
T 1-21
折射定律
描述光在介质面上的传播方向
ppt课件 3
1.2.2 菲涅耳公式
描述入射光、反射光和折射光 之间的振幅、相位关系。 1.s分量和p分量 垂直入射面的振动分量- -s分量 T 1-23 平行入射面的振动分量- -p分量 规定分量和分量的正方向如图所示 2.反射系数和透射系数 定义:s分量、p分量的反射系数、透射系数分别为
① n1<n2,光疏到光密。先考察θ 1=00的正入射情况。 由图1-24(a),有
rs 0, rp 0
考虑P30 T1-23,有关光场振动正方向的规定,则有
可见:在入射点处,合成的反射光矢量Er相对入射光场Ei反 向,相位发生π突变,或半波损失。 对于θ 1非零、小角度入射时,都将近似产生π相位突变,或 半波损失。
入射光中s分量和p分量的透射率(不相同)为
n2 cos 2 2 sin 21 sin 2 2 Ts ts n1 cos1 sin 2 (1 2 )
n2 cos 2 2 sin 21 sin 2 2 Tp tp 2 n1 cos1 sin (1 2 ) cos2 (1 2 )
平面光波在电介质表面的反射特性仿真研究
1 Байду номын сангаас— 1
《 电子设 计 工程 ) 0 2年 第 1 21 1期
透射波 : E= ,x k(i —o )【 , o pi 2s cs Ee [ n 一o 胡 () 4
12 8 3年 ) 。其 中 , ( 1 和 式 ( 3 是 反 射 公 式 , ( 2 和 式 式 1) 1) 式 1)
E epi 1s 0 — O0y一 t ; x k(i r CSr)t】 [ nx O
() 3
基 金 项 目: 军队 重 点科 研 项 目( J 5 3 ) K 0 18 作 者 简 介 : 昊 鹏 (9 7 ) 男 , 宁 沈 阳人 , 士 研 究 生 。研 究 方 向 : 确 制 导 武 器 的作 战 使 用与 仿 真 。 王 18 一 , 辽 硕 精
c s 矿c s o 0悱 cs 0 o ( 6)
失问题 。
2 平面 光 波在 电 介质 表 面 的 反射 和 折 射
21 电矢 量 平行 入 射 面 .
平 面 光 波 的 电 矢 量 平 行 于入 射 面 , 此 其 电场 只有 P分 因 量 , 磁 场 垂 直 于 入 射 面 , 此 只 有 S分 量 , 面 光 波 传 输 其 因 平 方 向矢 量 | 在 入 射 面 内 , 与 : 平 行 。 以 、 和 曰所 确定 j } 轴 E
csi epi ii0- cs E0 pi ii0-t oO  ̄x ks nr I一 o ,x k s c 】 E [ s ( ) e [s n o = o0  ̄x ksiO- t cs, epi 2 nro] E [ s t 再 结 合 j=  ̄ l 和 k=  ̄ J 代 人 ( ) 简 可 得 : } 2r 1 n 22 n A, 5化
光波在介质界面上的反射和折射 菲涅耳公式
m s , p ( 1 2 8 )
Ers sin(2 1) Eis sin(2 1)
(k ik r)r0 (1 2 1 )
rm
E0rm E0im
(129)
3. 菲涅耳公式 由 (134)式和(133)式消去 Ers,经运算整理得
ts=-n1co2 sn11con s2 c1os2
(135)
rs=-ssiinn((1122))
(134)
( E i s E r s ) n 1 c o s 1 E t s n 2 c o s2( 1 3 3 )
3. 菲涅耳公式
利用类似方法,可以推出 p 分量的反射系数和透射系 数表示式, 这就是著名的菲涅耳公式:
rs
sin(12)=n1cos1n2cos2 sin(12) n1cos1n2cos2
2.1 反射定律和折射定律 (Reflection law and refraction
law)
现假设二介质为均匀、透明、各向同性,分界面为 无穷大的平面,入射、反射和折射光均为平面光波, 其电场表示式为
E l E 0 le - i( lt- k lr) l i,r,t(1 1 9 )
z
ki 1 2
(ki kr)r0 (121) (ki kt)r0 (122)
kr
B
r
n1 O
n2
ki 分界面
kt
i A
t
C
2.1 反射定律和折射定律 又因为 k n/c ,可将上二式改写为
nisini nrsinr (125) nisini ntsint (126)
这就是介质界面上的反射定律和折射定律,折射定 律又称为斯涅耳(Snell)定律。
n
光波在介质中界面上的反射及透射特性的仿真
西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。
三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。
由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。
菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。
(1)s分量和p分量p s m E Et E E r imtm m im rm m ,,,0000===垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E E t E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。
绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。
(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。
光学课程设计 光波在介质中界面上的反射及透射特性的仿真
西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律三、课程设计原理根据麦克斯韦电磁理论,利用电矢量和磁矢量来分析光波在两介质表面的反射特性,把平面光波的入射波、反射波和折射波的电矢量分成两个分量:一个平行于入射角,另一个垂直于入射角,对平面光波在电介质表面的反射和折射进行分析,推导了菲涅尔公式,并结合MATLAB研究光波从光疏介质进入光密介质,以及光波从光密介质进入光疏介质时的反射率、透射率、相位等随入射角度的变换关系。
同时对光波在不同介质中传播时的特性变化进行仿真研究,根据仿真结果分析了布鲁斯特角、全反射现象及相位变化的特点。
有关各量的平行分量与垂直分量依次用指标p和s来表示,s分量、p分量和传播方向三者构成右螺旋关系。
假设界面上的入射光,反射光和折射光同相位,根据电磁场的边界条件及S分量,P分量的正方向规定,可得Eis+Ers=Ets. 由著名的菲涅耳公式:rs=E0rs/E0is=-(tanθ1-tanθ2)/(tanθ1+tanθ2);rp=E0rp/E0ip=(sin2θ1-sin2θ2)/ (sin2θ1+sin2θ2);ts=E0ts/E0is=2n1cosθ1/n1cosθ1+n2cosθ2;tp=E0tp/E0ip=2n1cosθ1/n2cosθ1+n1cosθ2;反射与折射的相位特性1.折射光与入射光的相位关系S分量与P分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。
2.反射光与入射光的相位关系1)光波由光疏介质射向光密介质n1<n2时,反射系数rs<0,说明反射光中的s分量与入射光中的s分量相位相反,即存在一个π的相位突变。
光课程设计——光波在介质中界面上的反射及透射特性的仿真设计
邮电大学光学报告学院:电子工程学生:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。
三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。
由于平面光波的横波特性,电矢量可在垂直传播方向的平面的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。
菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。
(1)s分量和p分量p s m E Et E E r imtm m im rm m ,,,0000===垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E E t E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。
绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。
(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ围,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0); 在1θ>B θ围,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的围,s 分量的反射系数s r >0。
MATLAB光学模拟仿真实训报告模板(1)(1)
MATLAB光学模拟仿真一、实训目的1、熟悉matlab绘图和仿真功能2、复习物理光学等相关知识3、掌握运用matlab软件的仿真等功能与专业知识相结合二、实训内容(一)MATLAB基础训练及光波在介质分界面的反射和折射1、相关原理当一个单色平面波射到两种不同介质的分界面时,将分为两个波,一个折射波一个反射波。
从电磁场的边值关系可以求出它们的传播方向和入射波的振幅关系相位关系。
2、实训任务已知界面两侧的折射率n2、n1和入射角,绘出在n1<n2(光由光疏介质射向光密介质)和n1>n2(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角的变化曲线。
程序如下:clear; %清空disp('请输入介质折射率n1和n2'); %在显示括号内语句n1=input('n1='); %接受键盘任意输入合适的折射率n1n2=input('n2='); %接受键盘任意输入合适的折射率n2theta=0:0.1:90; %入射角范围范围0~90,步距0.1a=theta*pi/180; %角度化为弧度rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a )).^2)); %p分量振幅反射率rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a) ).^2)); %s分量振幅反射率tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); %p分量振幅透射率ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); %s分量振幅透射率figure(1); %创建一个窗口subplot(1,2,1); %作图rp,rs,|rp|,|rs|随入射角的变化曲线plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2); %用‘-’、‘--’,‘:’、‘-.’符号标注对应曲线legend('rp','rs','|rp|','|rs|'); %标注曲线图例xlabel('入射角/theta_i'); %命名x轴ylabel('振幅'); %命名y轴title(['n_1=',num2str(n1),',n2=',num2str(n2),'时反射系数随入射角的变化曲线']); %命名图像axis([0 90 -1 1]); %设定作图区间grid on; %添加网格subplot(1,2,2); %tp,ts,|tp|,|ts|随入射角的变化曲线plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-','LineWidth',2); %用‘-’、‘--’,‘:’、‘-.’符号标注对应曲线legend('tp','ts','|tp|','|ts|'); %标注曲线图例xlabel('入射角/theta_i'); %命名x轴ylabel('振幅'); %命名y轴title(['n_1=',num2str(n1),',n2=',num2str(n2),'时透射系数随入射角的变化曲线']); %命名图像if n1<n2 %如果此时从光疏到光密axis([0 90 0 1]); %设定作图区间else %否则axis([0 90 0 3.5]); %设定作图区间end %结束grid on; %添加网格(二)光波的叠加1、相关原理光波在空间某一区域相遇时,发生光波叠加现象。
(整理)光电课程设计_光学仿真.
概述:一、光源在光纤通信系统中,光源器件可实现从电信号到光信号的转换,是光发射机以及光纤通信系统的核心器件,它的性能直接关系到光纤通信系统的性能和质量指标。
光纤通信系统要求光源具有合适的发射波长,处在光纤的低损耗窗口之中;有足够大的输出功率,从而有较长的传输距离;有较窄的发光谱线,可以减少光纤的色散对信号传输质量的影响;易于与光纤耦合,确保更多的光功率进入光纤;易于调制,响应速度要快,调制失真小,带宽大;在室温下能连续工作,可靠性高,寿命至少在10万小时以上。
下面简单介绍已广泛应用的两类半导体光源:半导体发光二极管(LED )和半导体激光二极管(LD )。
1 发光二极管(LED )发光二极管(LED )是低速、短距离光波通信系统中常用的光源。
其寿命很长,受温度影响较小,输出光功率与注入电流的线性关系较好,价格也比较便宜。
驱动电路简单,不存在模式噪声等问 题。
发光二极管结构简单,是一个正向偏置的PN 同质结,电子-空穴对在耗尽区辐射复合发光,称为电致发光。
发出的部分光耦合进入光纤供传输使用。
LED 所发出的光是非相干光,具有较宽的谱宽(30~60nm )和较大的发射角(≈100°)。
自发辐射产生的功率是由正向偏置电压产生的注入电流提供的,当注入电流为I ,在稳态时,电子-空穴对通过辐射和非辐射复合,其复合率等于载流子注入率I/q ,其中发射电子的复合率决定于内量子效率ηint ,光子产生率为(I ηint/q),因此LED 内产生的光功率为()int int /P w q η= (2.1)式中,ω 为光量子能量。
假定所有发射的光子能量近似相等,并设从LED 逸出的功率占内部产生功率的份额为ηext ,则LED 的发射功率为()int int /e ext ext P P w q I ηηη== (2.2) ηext 亦称为外量子效率。
由上式可知,LED 发射功率P 和注入电流I 成正比。
光波场在2种介质界面反射时的半波损失
文章编号:1004 5694(2004)06 0036 03 光波场在2种介质界面反射时的半波损失庹有康,陈希明(重庆邮电学院,重庆400065)摘 要:在波动光学中常常会遇到光波场在2种介质分界面上反射时的半波损失问题,而大多数教科书并未能从理论上阐明半波损失产生的条件和原因。
从电磁场的基本理论出发,分析和讨论了光波场在两种界面上反射时的半波损失问题,从本质上全面、合理地解释了在实验中产生半波损失的实验结果。
关键词:菲涅耳公式;半波损失;反射能力;相位中图分类号:O431 1 文献标识码:A0 引 言在物理光学中常常会遇到光波场在2种介质分界面上反射时的相位突变问题(或叫半波损失),在牛顿环实验中,干涉花样中心为暗斑而不是亮斑;在洛埃镜实验中,干涉中心为暗条纹。
这些现象皆是由于入射光束从光疏介质进入光密介质在分界面上反射时引起相位突变的结果。
而大多数教科书并未从理论上阐明半波损失产生的条件和原因。
我们将从电磁场理论出发,利用边界条件导出光学中的一个重要公式 菲涅耳公式,并在此基础上讨论了反射光的相位突变问题,从而在本质上解释了在实验中出现的半波损失现象。
1 菲涅耳公式的推导当光波通过2种透明介质的分界面时,将发生反射和折射现象。
入射光分为反射光和折射光2部分,此两光束传播方向之间的关系虽可由反射和折射定律决定,但反射光、折射光和入射光的振幅和方向之间的关系,则需由光的电磁理论来分析。
这一关系可由菲涅耳公式来表达。
在如图1所示的光的反射和折射过程中,图1中画出了平行于入射面的电矢量E p和垂直于入射面的磁矢量H s。
由电磁场理论可知[1,2],在入射点O处各光波场的分量应满足下列电磁场边界条件。
E1t=E2t(1)在界面上O点处有E p1cos i1-E p1cos i1=E p2cos i2mod E(2)H s1+H s1=H s2(3)将平面电磁波关系式 E p= H s(见文献[3])和透明均匀各向同性光学介质的特性 0= 1= 2, n= r(见文献[4])代入式(3)得n1E p1+n1E p1=n2E p2(4)应用折射定律:n1sin i1=n2sin i2将式(2)和式(4)化简,可得平行于入射面的p分量的振幅反射比和透射比:r p=E p1E p1=tan(i1-i2)tan(i1+i2)(5) t p=E p2E p1=2sin i2cos i1sin(i1+i2)cos(i1-i2)(6)用完全类似的方法,可得出S分量的振幅反射比和第16卷第6期2004年12月重庆邮电学院学报Journal of Chongqing University of Posts and TelecommunicationsVol.16 No.6Dec.2004收稿日期:2003 11 17 修订日期:2004 04 25作者简介:庹有康(1960 ),男,四川广安人,副教授,主要从事物理教学和强光光学的研究。
《电动力学》第27讲§5.2电磁波在介质界面上的反射和折射
3
2. 时谐电磁波
研究时谐情形下的麦氏方程组。在一定频率下,有 D = ε E , B = μ H , 消去共同因子 e−iωt 后得
E(x, t) E(x)eit
B(
x,
t
)
B(
x)eit
D(
x,
t
)
D(
x)eit
H(x, t) H(x)eit
E iH H iE
gE 0 gH 0
山东大学物理学院 宗福建
13
可以看出,合成波的振幅不是常数,而是波:
2E0 cos(dgt dkgz)
位相传播速度: t kz 0
zt
k
z
vp t k
振幅传播速度:dgt dkgz 0
z d t
dk
vg
z t
d
dk
山东大学物理学院 宗福建
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安邮电大学光学课程设计课程设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。
三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。
由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。
菲p s m E Et E E r imtm m im rm m ,,,0000===涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。
(1)s 分量和p 分量垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为m E E t E E r imtmm im rm m ,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。
绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。
(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。
反射光中的s 分量与入射光中的s 分量同相位,rs ϕ=0;入射角1θ>C θ时,发生全反射,1212cos sin 2tan θθϕn rs--=(21/n n n =); p 分量的反射系数p r :在1θ<B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);在B θ<1θ<C θ范围内,p r >0,反射光中的p 分量与入射光中的p 分量相位相同(rp ϕ=0);入射角1θ>C θ时,发生全反射,12122cos sin 2tan θθϕn n rp--=; 四、课程设计步骤(流程图)(1)定义变量n1,n2,f1.(2)给变量赋值,其中n1=1,n2=1.52,还有一种情况其中n1=1.52,n2=1(3)设计for循环,使f1每循环一次加 /1000,实现在f1每变化一次下,得出相应的反射系数,透射系数的值,从而得出程序的循环(4)根据程序仿真结果五、仿真结果分析102030405060708090-1-0.500.51Fn1<n2s/p 分量与相位的关系010203040506070809001234Ff r s010203040506070809001234Ff r p0102030405060708090-11234n1>n2s/p 分量与相位的关系F01020304050607080901234Ff r s01020304050607080901234Ff r p结论:光在介质面上的反射、透射特性有三个因素决定:入射光的偏振态,入射角,界面两侧介质的折射率。
(1)光波由光疏介质射向光密介质(n1<n2)a.n1<n2时,反射系数rs<0,说明反射光中的s 分量与入射光中的s 分量相位相反。
(即frs=π)b.而p 分量的反射系数rp 在f1<fb 范围内,rp>0,说明反射光中的p 分量与入射光中的p 分量相位相同。
(即frp=0)c.在f1>fb 范围内,rp<0,说明反射光中的p 分量与入射光中的p 分量π相位突变。
(即frp=π)(2)光波由光密介质射向光疏介质(n1>n2)a.入射角f1在0到fc 的范围内,s 分量的反射系数rs>0,说明反射光中s 分量与入射光中的s分量同相位。
(即frs=0)b.P分量的反射系数rp在f1<fb范围内,rp<0,说明反射光中的p分量相对入射光中的p分量有π相位突变。
(即frp=π)c.在fb<f1<fc范围内,rp>0,说明反射光中的p分量与入射光中的p分量相位相同。
六、仿真小结光在介质界面上的反射、透射特性由三个因素决定:(1)入射光的偏振态;(2)入射角;(3)界面两侧介质的折射率。
由rs、rp、ts、tp随入射角的变化曲线可知,在入射角从0度到90度的变化范围内,不论光波以什么角度入射至界面,也不论界面两侧折射率大小如何,s分量和p分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。
通过本次实验,掌握了反射系数及透射系数的概念,反射光与透射光振幅和相位的变化规律,布儒斯特角和全反射临界角的概念。
七、程序clear all;%n1=1;%n2=1.52;n1=1.52;n2=1;n=n2./n1;if n1<n2subplot(1,3,1)qa=0:pi/100:pi/2;qb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);rp=tan(qa-qb)./tan(qa+qb);ts=2.*cos(qa).*sin(qb)./sin(qa+qb);tp=2.*cos(qa).*sin(qb)./sin(qa+qb)./cos(qa-qb);plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')legend('rs','rp','ts','tp')%rssubplot(1,3,2)for qa=0:pi/1000:pi/2qb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);if rs<=0Frs=pi;elseFrs=0;endplot(qa*180./pi,Frs,'r')hold onendlegend('Frs')%rpsubplot(1,3,3)for qa=0:pi/1000:pi/2qb=asin(n1.*sin(qa)./n2);rp=tan(qa-qb)./tan(qa+qb);if rp<=0Frp=pi;elseFrp=0;endplot(qa*180./pi,Frp,'b')hold onendlegend('Frp')elsesubplot(1,3,1)qc=asin(n2./n1);qa=0:0.0001:qc;qb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);rp=tan(qa-qb)./tan(qa+qb);ts=2.*cos(qa).*sin(qb)./sin(qa+qb);tp=2.*cos(qa).*sin(qb)./sin(qa+qb)./cos(qa-qb);plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')hold onqa=qc:0.0001:pi/2;tp=0;ts=0;rs=1;rp=1;plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')hold onlegend('rs','rp','ts','tp')%rsqc=asin(n2./n1);subplot(1,3,2)for qa=0:pi/1000:qcqb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);if rs<=0Frs=pi;elseFrs=0;endplot(qa*180./pi,Frs,'r')hold onendqa=qc:pi/1000:pi/2;Frs= 2.*atan(sqrt(sin(qa).^2-(n.^2))./cos(qa));plot(qa*180./pi,Frs,'r')hold onlegend('Frs')%rpsubplot(1,3,3)for qa=0:pi/1000:qc;qb=asin(n1.*sin(qa)./n2);rp=tan(qa-qb)./tan(qa+qb);if rp<=0Frp=pi;elseFrp=0;endplot(qa*180./pi,Frp,'b')hold onendqa=qc:pi/1000:pi/2;Frp= 2.*atan(sqrt(sin(qa).^2-(n.^2))./cos(qa)./n.^2); plot(qa*180./pi,Frp,'b')hold onlegend('Frp')end。