《材料力学》课件8-4扭转与弯曲

合集下载

材料力学 ppt课件

材料力学  ppt课件

③应力分析:画危险面应力分布图,叠加;
④强度计算:建立危险点的强度条件,进行强度
计算。
PPT课件
20
2、两相互垂直平面内的弯曲
有棱角的截面
max
Mz Wz

My Wy
[ ]
圆截面
max
M
2 z

M
2 y
[ ]
W
3、拉伸(压缩)与弯曲
有棱角的截面
max

FN ,max A
(4)确定最大剪力和最大弯矩
3、弯曲应力与强度条件
(1)弯曲正应力
My
I PPT课件 z
12
M max Wz
yt,max yc,max
Oz y
PPT课件
t,max

Myt,max Iz
c,max

Myc,max Iz
13
(2)梁的正应力强度条件
M max
Wz

M
2 z

M
2 y
T
2
Mr4
M
2 z

M
2 y

0.75T
2
PPT课件
22
5、连接件的强度条件
剪切的强度条件
FS [ ]
AS
挤压强度条件
bs

Fbs Abs
[ bs ]
PPT课件

M z,max Wz

M y,max Wy
[ ]
圆截面
max
FN ,max A PPT课件

M max W
[ ]
21
4、弯曲与扭转

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学之四大基本变形 ppt课件

材料力学之四大基本变形  ppt课件

1.轴力:拉正压负。轴力图
2.横截面上的应力: N 或 = FN
A
A
3.变形公式:l Nl 或l FNl
EA
EA
4.强度条件: max [ ]
5.材料的力学性能: ~ 曲线
两个强度指标,两个塑性指标
ppt课件
3
例1-1 图示为一悬臂吊车, BC为
C
实心圆管,横截面积A1 = 100mm2, AB为矩形截面,横截面积 A2 = 200mm2,假设起吊物重为 Q = 10KN,求各杆的应力。
内径d=15mm,承受轴向载荷F=20kN作用, 材料的屈服应力σs=235MPa,安全因数ns= 1.5。试校核杆的强度。
ppt课件
8
解:杆件横截面上的正应力为
N
A


(
4F D2
d
2
)

4(20103 N )
[(0.020m)2 (0.015m)2]
1.45108 Pa 145MPa
76.4Nm
mB
9550 NB n
9550 10 500
191Nm
mC
9550 NC n
9550 6 500
114.6 Nm
计算扭矩:
mA

x
T1
MX 0
MX 0
T1 mA 0
mc T2
AB段 BC段
T1设为正的 T2设为正的
T1 mA 76.4Nm
86.6 MPa
ppt课件
5
例1-2:图示杆,1段为直径 d1=20mm的圆 杆,2段为边长a=25mm的方杆,3段为直径 d3=12mm的圆杆。已知2段杆内的应力σ 2=30MPa,E=210GPa,求整个杆的伸长△l

材料力学课件:扭转

材料力学课件:扭转

B
D
C
12 3
A P
Page4
§3-6 热应力与预应力
扭转
§4-1 引言 §4-2 圆轴扭转应力
Page5
§3-6 热应力与预应力
lT=ll T
B
C
A A’
变形不受限制(静定结构),杆内未引起应力
Page6
B lT=ll T
CB
C
A’
A
A
变形受到限制(静不定结构),杆内引起应力
热应力:因温度的变化在杆件内部引起的应力 预应力:由于实际尺寸的误差在杆件内部引起的应力

截面的扭矩。
Page20
扭矩图:外扭力矩随杆轴线变化的情况。
M 3ml
m
x
A
B
C
D
l
l/2 l/2
T1 ( x)
x
T ml
x
2ml
例:(m:单位长度的扭力偶矩)
AB段: T1 x mx
BC段: T2 ml CD段: T3 2ml
Page21
思考:
M
M’
M’
M
(1)
M’
(2)
M’
(3)
FN3
FN1
FN2
Page9
3
1
2
3
1
2
协调方程:
l3+ l1/cos()=
l3
FN3
FN1
FN2
Page10
➢ 装配应力在工程结构中的应用
1 23
P
在准确加工、装配的情况下,2杆 的应力最大。
如果能使3根杆同时达到许用应力, 将对结构更有利。
FN1 [1 ]A FN 2 [ 2 ]A FN 3 [ 3 ]A

材料力学

材料力学
F2 F1
以横截面具有两对称轴的等直杆承受距离截面形 心为 e (称为偏心距)的偏心拉力F为例,来说明.
F O1 A z (yF ,zF ) y F Mey = FzF z Mez = FyF O1 y z n O C (y ,z) n y
将偏心拉力 F 用静力等 效力系来代替。把 A 点处 的拉力 F向截面形心 O1 点 简化,得到轴向拉力 F 和 两个在纵对称面内的力偶 Mey、Mez。
前面偏心拉(压)计算的中性轴截距表达式
i a y1 , yF
2 z
az1
2 iy
zF
作一系列与截面周边相切的直线作为中性轴,由每 一条中性轴在 y、z 轴上的截距ay1、az1,即可求得 与其对应的偏心力作用点的坐标(y1,z1)。有了一系 列点,描出截面核心边界。(一个反算过程)
例8-8 试确定图示T字形截面的截面核心边界。图中 y、z轴为截面的形心主惯性轴。
z 0.2m F 0.6m G 0.2m
解:先求出截面的有关几何性质
A (0.4m 0.6m) (0.4m 0.9m) 0.6m I y 48103 m 4
2
y
D 0.6m
E
O
H
A
C
0.45m 0.45m B
3
§8-4 弯曲与扭转
• 以圆截面杆在弯扭组合时的强度计算问题
F F B
A
B
A
Me =Fa
l
Fl
_
曲拐, AB段为等直实心 圆截面杆,作受力简化, 作M、T图
M图
_
Fa T图
F力使AB杆发生弯曲,外力偶矩Me=Fa使它发生扭转
由弯矩、扭矩图知,危险截面为固定端截面A 危险截面上与弯矩和扭矩对应的正应力、切应力为

材料力学_ 组合变形_:扭转与弯曲的组合_

材料力学_ 组合变形_:扭转与弯曲的组合_

M2 T2 W
M 2 0.75T 2 W
式中W为杆的抗弯截面系数.M,T分别为危险截面的弯矩和扭 矩. 以上两式只适用于弯扭组合变形下的圆截面杆.
例题4 空心圆杆AB和CD杆焊接成整体结构,受力如图.AB杆的外
径 D=140mm,内外径之比α= d/D=0.8,材料的许用应力[] =
160MPa.试用第三强度理论校核AB杆的强度
A
C
D
F1
F2
解:将F2向AB杆的轴线简化得
400
ቤተ መጻሕፍቲ ባይዱ
400
F2 1kN Me 0.4kN m
AB为弯扭组合变形
B
A
C
D
F1
固定端截面是危险截面 F2
Mmax 0.8F1 0.4F2 0.8kN m
Tmax 0.4kN m
400
400
r3
Mm2 ax Tm2ax
W
d 38.5mm
W πd 3
32
d 44.83mm
MeC F=3F2
T=1kN·m + 1kN·m
+
例题6 F1=0.5kN,F2=1kN,[]=160MPa.
(1)用第三强度理论计算 AB 的直径 (2)若AB杆的直径 d = 40mm,并在B端加一水平力
F3 = 20kN,校核AB杆的强度.
400
400
B
对于许用拉压应力相等的塑性材
料制成的杆,这两点的危险程度是相同 的.可取任意点C1 来研究.
C1 点处于平面应力状态, 点的单元体如图示

C1
A截面
C3
C4
C2
C1
C3
T
C4

材料力学第八章-弯曲变形

材料力学第八章-弯曲变形
q0 B x 等价 MA A EI f q0 B
L
A
L
解:建立静定基 确定超静定次数 用反力代替多余约束 得新结构 —— 静定基

q0
A
B L RB
32
q0 A L B RB
几何方程——变形协调方程
f B f Bq f BRB 0
物理方程
=
A B RB q0 A B
qL RB L f Bq ; f BRB 8EI 3EI
A A 铰连接
P
C D
C
D
B
A点:f A 0, A 0
B点: f B左 f B右
C点: f C左 f C右 C左 C右
D点:f D 0
21
边界条件、连续条件应用举例
P
弯矩图分二段,
共积分常数 需4个边界条件 和连续条件
A B
C
(+)
A点: A 0 B点: f B左 f B右 , C点:f C 0
解:载荷分解如图
=
P A B
查梁的简单载荷变形表,
得到变形
Pa PA 4 EI
q B
2
Pa f PC 6 EI
3
+
A
qa qA 3EI
3
5qL f qC 24 EI24
4
P
A
C a a
q B
Pa PA 4 EI
qa 3 qA 3EI
2
Pa 3 f PC 6 EI
Differential Equation of beam deformation 1 M ( x) 已知曲率为 EI z x
M>0

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第8章组合变形

材料力学第8章组合变形

MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W

工程力学课件 第8章 圆轴的扭转

工程力学课件 第8章  圆轴的扭转

工程力学
3
二、扭矩与扭矩图
1.外力偶矩的计算
1.1.1作电用于路轴的上的组外成力偶矩,通常不是直接给出其数值,而是给出 轴的转速和传递的功率,此时需要按照理论力学中推导的功率、转 速、力矩三者的关系来计算外力偶矩的数值。
式中: Me——外力偶矩,单位为牛顿·米(N·m); P——轴传递的功率,单位为千瓦(kW); n——轴的转速,单位为转/分(r/min)。 在确定外力偶矩的方向时,应注意输入功率的齿轮、皮带轮作 用的力偶矩为主动力矩,方向与轴的转向一致;输出功率的齿轮、 皮带轮作用的力偶矩为阻力矩,方向与轴的转向相反。
1.1.1 电路的组成
若取右部分作为研究对象,如图(c)所示
用同样的方法,也可求得
方向与Mx相反。
Mx=Mx′称为截面Ⅱ-Ⅱ上的扭矩。它是作用在横截面上的内力 偶矩,是切于截面作用的内力合成的结果,大小等于截面以左(或以 右)所有外力偶矩的代数和。
工程力学
6
由于Mx与Mx′同是截面Ⅱ-Ⅱ上的扭矩,应具有相同的正负号, 因此,对扭矩的正负号做出如下规定:用右手螺旋法则将扭矩表示 为矢量,即四指弯向表示扭矩的转向,大拇指表示扭矩矢量的指向。
第二部分 材料力学
第八章 圆轴的扭转
工程力学
本章主要研究圆形截面轴的扭转变 形。主要内容有外力偶矩的计算,轴的 扭矩的计算,轴的应力与强度的计算, 轴的变形与刚度的计算。本章的重点是 圆轴扭转强度和刚度的计算
第一节 扭转的概念、扭矩与扭矩图
一、扭转的概念 1.1.1机电器中路的的轴往组往成会发生扭转变形,如汽车中由方向盘带动的操
工程力学
7
运用上述结论可得,轴AB段各截面上的扭矩为

1.1.1 电路的组成

材料力学(拉压、剪切、扭转、弯曲)

材料力学(拉压、剪切、扭转、弯曲)
拉伸实验
实验结果观察:
① 纵向线伸长、横向线缩短; ② 横向线保持直线,仍与纵向线垂直; ③ 每根纵向线的伸长都相等。
天津大学材料力学
平截面假设
轴向拉、压杆件,变形前原为平面的横截面,变形后仍保 持为平面,且仍垂直于轴线。
横截面上应力均匀分布
FN
FN
A
正应力(法向应力):沿截面法线方向。
天津大学材料力学
天津大学材料力学
§1.4 工程材料的力学性能简介
工程材料的力学性能指标要通过实验测定。 影响工程材料力学性能的因素
与材料的成份、组织结构密切相关的,同时还与工作 条件,如受力方式,加载速度,工作温度等因素有关。 在常温、静载(缓慢加载)下的力学行为。 构件变形包括——弹性变形、塑性变形 根据材料破坏前产生的塑性变形的大小,将材料分为
2F
F
A
D
FN图:
120 kN
2F
F
C B
60 kN
60 kN
天津大学材料力学
解: 1.确定杆各段的轴力。
2.计算杆各段的应力
AD段:
AD
FNAD A1
FNAD
π
d
2 1
4
4 120 103 π 402 106
95.5M Pa
BC段:
BC
FNBC A2
FNBC
π
d
2 2
4
4 60 103 π 202 106
0 .7 2 m m
LBC
FNBC LBC E A2
4 60 103 2 π 202 106 200 109
1.91m m
3.计算杆的总变形
LAC LAD LDB LBC 1.91 0.48 0.72 0.71m m

材料力学 第八章

材料力学 第八章

边界条件: x 0
xL
y1 0
y2 0
L
Fb 2 x C1 2L
x连Βιβλιοθήκη 条件:xay1 y2
Fb 3 x C1 x D1 6L
Fb 2 F x ( x a ) 2 C2 2L 2
1 2
Fb 2 C1 ( L b 2 ) C2 , 6L
yC , B
1、载荷分解
q
ql
ql2
2查表:单独载荷作用下
q
5ql yC1 384EI
yC 2
B2
4
ql3 B1 , 24EI
yC1
ql
B1
(ql)l 3 48EI
(ql) l 2 ql3 , 16EI 16EI
yC2
ql2
B2
yC 3
3ql 4 48EI
图所示。试求 ( x), y( x)

A 。
Fa L
FAy
FBy
1、求支座反力
FAy
Fb , L
FBy
2、分段列出梁的弯矩方程 AC段 (0 x a)
Fb M 1 ( x) FA x x, L
BC段 (a x L)
Fb M 2 ( x) x F ( x a), L

1 y
y '' ( x )
'2
( x)

3
2
M ( x) EI z
y ( x) ( x) 0
'
1 y ' 2 ( x) 1
故得挠曲线近似微分方程:
M ( x) y' ' EI

材料力学课件 第四章扭转

材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算

《材料力学》课件8-4扭转与弯曲

《材料力学》课件8-4扭转与弯曲

航空航天领域
举例扭转和弯曲在飞机机翼、直 升机旋翼、卫星结构等方面的应 用实例。
土木工程领域
讲解扭转和弯曲在桥梁、地基和 地下管道等土木工程中的应用实 例。
机械工程领域
举例扭转和弯曲在机械零部件、 轴承、液压机等机械工程中的应 用实例。
6. 总结
1 重要性和应用范围
总结扭转和弯曲在工程中的重要性和应用范围,以及同学们的学习收获。
2
扭转试验
介绍扭转试验的方法和流程,以及扭转试验数据的处理和分析。
3
扭转刚度的计算
讲解扭转刚度计算公式和实例,帮助同学们掌握扭转性能的评价方法。
3. 弯曲
应力和应变的概念
讲解弯曲产生的应力和应变的概 念和计算方法,以及弯曲性能的 评价方式。
弯曲试验
介绍常见的弯曲试验方法和实验 流程,讲解实验数据的处理和分 析。
材料力学:扭转与弯曲
本课件将介绍扭转和弯曲在材料力学中的概念、试验、计算和应用实例,希 望为同学们提供一定的指导和帮助。
1. 引言
扭转和弯曲的定义
了解扭转和弯曲在力学中的基本概念和区别。
背景知识
了解扭转和弯曲在工程中的实际应用和重要性。
2. 扭转
1

切应力和切应变
理解扭转产生的切应力和切应变,以及其在工程中的应用。
2 本章主要内容和知识点
总结本章的主要内容和学习重点,帮助同学们复习和梳理知识。
弯曲刚度和挠度的计算
讲解弯曲刚度和挠度的计算公式 和实例,帮助同学们深入理解弯 曲的本质和应用。
4. 扭转和弯曲的联系
对比与联系
对比分析扭转和弯曲在应力、应变、刚度、变形 等方面的区别和联系,帮助同学们深入理解。

材料力学第八章

材料力学第八章


FN F zF z F yF y A Iy Iz
式中 A为横截面面积;
C
y
Iy , Iz 分别为横截面对 y 轴和 z 轴的惯性矩;
(zF,yF ) 为力 F 作用点的坐标;
(z,y)为所求应力点的坐标.
四、中性轴的位置
FN F zF z F yF y A Iy Iz
z
z
F/A
y
FzF/Wy
z FyF/Wz y
y
FN
(a)
My
(b)
Mz
(c)
(5)对于周边具有棱角的截面,其危险点必定在截面的棱角处, 并可根据杆件的变形来确定
最大拉应力 tmax 和最大压应力 cmin 分别在截面的棱角 D1 D2 处。无需先确定中性轴的位置,直接观察确定危险点的位置 即可
i ay yF
中性轴
2 z
2 iy az zF
(3)中性轴与外力作用点分别处于截面形心的相对两侧
z (yF , zF )
O
az ay
y
z
中性轴
O
外力作用点
z
D1(y1,z1) y
中性轴
y
D2(y2,z2)
(4)中性轴将横截面上的应力区域分为拉伸区和压缩区 横截面上最大拉应力和最大压应力分别为D1 , D2 两切点
C
Fx 0 Fy 0
FNAB F
FRAx 0.866F FRAy 0.5 F
A 1.2m F
30°
B
D 1.2m
FRAy
FNAB
30°
Fy
B
AB杆为平面弯曲与轴向压缩组合变形 中间截面为危险截面.最大压应力 FRAx A 发生在该截面的上边缘 F

材料力学课件(路桥)第4章扭转

材料力学课件(路桥)第4章扭转
计算过程中需要考虑材料的弹性模量、泊松比、剪切模量等参数,以及 结构的几何尺寸和边界条件。
强度条件的工程意义
满足强度条件是保证路桥工程安全性和 稳定性的基础。
通过满足强度条件,可以防止桥梁结构 在承受外力矩和扭矩时发生破坏或过度
变形。
在路桥工程的设计、施工和运营过程中 ,需要定期进行检测和维护,以确保结
扭矩的量纲
扭矩的量纲是力和长度(L)的乘积,表示为ML^2。
量纲是描述物理量本质属性的方式,通过量纲可以判断物理量的性质和相互关系 。
03
扭转的应力分析
切应力与剪切应变的关系
切应力与剪切应变的关系是线 性的,即剪切应变与切应力成 正比。
在剪切弹性范围内,切应力与 剪切应变之间的关系可以用剪 切弹性模量来描述。
扭转过程中,杆件上各点的角位移和 剪切变形程度不同,导致杆件横截面 绕其自身轴线发生转动。
扭转的物理现象
01
杆件在扭转时,横截面上的正应 力分布不均匀,呈现出剪切变形 的特点。
02
杆件上各点的剪切变形程度与该 点到轴线的距离成正比,导致横 截面上的切向力分布不均匀。
扭转的分类
根据杆件上所受外力矩的方向, 扭转可分为左旋和右旋两种类型
构的强度和稳定性。
05
扭转的刚度条件
刚度条件的定义
刚度条件是指在材料力学中,杆件在受到扭矩作用时,其横 截面上的剪切应力和剪切变形之间的关系。
刚度条件是材料力学中一个重要的基本概念,它描述了杆件 在扭矩作用下抵抗变形的能力。
刚度条件的计算方法
根据材料力学的基本理论,刚度条件可以通过杆件的剪切 弹性模量和剪切应变来计算。
材料力学课件(路桥)第4章 扭转
目录 CONTENTS

材料力学刘鸿文第六版最新课件第八章 组合变形

材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



Fa
2 3 2
图示圆轴.已知,F=8kN,M=3kNm,[σ]=100MPa,试 用第三强度理论求轴的最小直径.
F
M max FL 4kNm
2 4 2
T 3kNm
0 .5 m
M
Mz W z
2
2 2 2 2 T M T T Mz z 4 W W W W p z z z
(6)在拉伸、弯曲和扭转组合变形圆截面杆的外边界上, 各点主应力必然是σ1 >0, σ2=0, σ3<0 。( √ )
试判断下列论述是否正确,正确的在括号内打 “√”,错误的打“×”
(7)承受斜弯曲的杆件,其中性轴必然通过横截面的形心, 而且中性轴上正应力必为零。( )√ (8)承受偏心拉伸(压缩)的杆件,其中性轴仍然通过横 截面的形心。 ( × ) (9)偏心拉压杆件中性轴的位置,取决于梁截面的几何尺 寸和载荷作用点的位置,而与载荷的大小无关。 ( √ ) (10)拉伸(压缩)与弯曲组合变形和偏心拉伸(压缩)组 合变形的中性轴位置都与载荷的大小无关。 ( × )
拉伸(压缩)+弯曲
拉伸(压缩)
斜弯曲
弯 曲
弯曲+扭转
扭转
M T
FN
M
My
ቤተ መጻሕፍቲ ባይዱ
Mz







单向应力状态
复杂应力状态
强度理论 强度条件
max
r
(3)若压力作用点离截面核心越远,则中性轴离截面越远。 ( ) ×
试判断下列论述是否正确,正确的在括号内打 “√”,错误的打“×”
(4)在弯扭组合变形圆截面杆的外边界上,各点的应力状 态都处于平面应力状态。( √ )
(5)在弯曲与扭转组合变形圆截面杆的外边界上,各点主 应力必然是σ1> σ2 ,σ2=0,σ3<0 。 ( √ )
扭转与弯曲
F
MBy B Iz
T IP
a
L
F Fa
max
M max Wz
max
T WP
2


B
x x 2 13 x 2 2
B
FL
1 3
2 4 2
1 1 2 2 2 3 2 3 1 2 2
2
Wz
M z2 T 2

5 10 m
5
3
d
3
32Wz

79.8mm
试判断下列论述是否正确,正确的在括号内打 “√”,错误的打“×”
(1)杆件发生斜弯曲时,杆变形的总挠度方向一定与中性轴向垂 直。 ( × )
(2)若偏心压力位于截面核心的内部,则中性轴穿越杆件 的横截面。 ( × )
相关文档
最新文档