结构的稳定计算全解

合集下载

混凝土结构的稳定性计算原理

混凝土结构的稳定性计算原理

混凝土结构的稳定性计算原理一、前言混凝土结构的稳定性计算是建筑学中的重要组成部分。

混凝土结构的稳定性是指在荷载作用下,结构不发生破坏或者失稳的能力。

计算混凝土结构的稳定性是为了保证结构的安全性,避免人员和财产的损失。

本文将对混凝土结构的稳定性计算原理进行详细的阐述。

二、混凝土结构的稳定性计算的基本原理混凝土结构的稳定性计算基本上是按照以下步骤进行的:1. 确定结构的荷载2. 确定结构的内力3. 确定结构的稳定性4. 确定结构的尺寸和构造三、确定结构的荷载在建筑设计中,荷载是指对于结构体系所施加的所有重力和外力的合力。

荷载的种类包括自重、活载、风载、地震载、温度载等。

在计算荷载时,需要根据国家有关规定和标准,对各种荷载进行分类和确定。

四、确定结构的内力在确定结构的内力时,需要根据荷载作用下结构的受力特点,进行弹性力学分析计算。

弹性力学分析计算包括静力学、动力学、弹性理论、塑性理论等。

其中,静力学是最常用的分析方法。

在静力学分析中,通常采用平衡方程和受力平衡方程进行计算。

五、确定结构的稳定性在确定结构的稳定性时,需要分析结构的承载能力和稳定性能力。

承载能力是指结构在荷载作用下的破坏承载能力,稳定性能力是指结构在荷载作用下的稳定能力。

结构的稳定性分析包括弯曲稳定性、剪切稳定性、压缩稳定性、扭转稳定性、屈曲稳定性等。

在计算稳定性时,要考虑结构的材料和断面性质、受力形式和结构的几何形状等因素。

六、确定结构的尺寸和构造在确定结构的尺寸和构造时,需要根据结构的荷载和内力计算结果,确定结构的尺寸和构造。

结构的尺寸和构造要满足强度、刚度、稳定性和经济性的要求。

在设计时,还需要考虑施工的可行性和建筑的使用要求等因素。

七、混凝土结构的稳定性计算的具体方法混凝土结构的稳定性计算的具体方法包括以下几个方面:1. 计算结构的荷载:根据建筑设计规范和标准,确定结构所受的各种荷载。

2. 计算结构的内力:根据荷载作用下结构的受力特点,运用弹性力学分析方法,计算结构的内力。

《结构的稳定计算》课件

《结构的稳定计算》课件

基本原理和计算方法
平衡方程
根据平衡条件,通过计算 外力和内力的关系得到系 统的稳定性状况。
能量方法
稳定计算可以用势能公式 表示。计算稳定性参数之 间的关系,以判断系统的 稳定性。
叠加法
有些结构失稳问题很难直 接求解,可以用叠加法把 问题拆分பைடு நூலகம்多个方面,逐 步求解。
应用案例分析
1
框架结构的稳定分析
结论
稳定性计算是建筑结 构计算不可或缺的环 节
只有确保结构的稳定性, 才能确保建筑物的安全和 稳定。
稳定性计算的应用会 越来越广泛
随着市场需求的不断增加 和技术的不断发展,稳定 性计算会被广泛应用于各 种建筑物的设计和修建中。
稳定性计算需要不断 创新完善
新材料、新工艺的引入和 新建筑物的设计、建造, 都需要我们不断完善和创 新本领域的计算方法。
常见问题和解决方案
如何准确预测结构失稳 状况?
可以通过大量的实验数据和 成熟的计算方法对新的结构 问题进行预测,尽可能发现 并纠正失稳问题。
如何提高稳定计算的准 确度?
在计算过程中应尽可能准确 地输入计算参数,包括荷载、 材质参数、节点位移等,同 时精确地模拟结构失稳形式。
如何解决结构失稳问题?
可以通过增加材料、加强固 定等方式,对结构弱化部位 进行加固,从而提高稳定性。
参考文献和附件
1. 《结构工程师手册》 2. 《结构体系稳定性计算手册》 3. 《建筑结构》 4. 专业计算软件:AutoCAD, Revit, Midas NFX等 附件:稳定性失效模式图、相应的数学公式
我们通过一个实际的框架结构来介绍稳定性计算方法。结合研究对象的特点,阐 明失稳形式、计算方法和解决方案。

结构的稳定计算

结构的稳定计算
在无限自由度体系中,平衡方程是微分方程而不是代数方程,这是与有 限自由度体系不同的。
图所示为一等截面压杆,下端固定,上端有水平支杆, 现采用静力法求其临界荷载。
柱顶有未知水平反力FR,弹性曲线的微分方程为 将上式展开,得到如下的超越方程式:
或改写为 由于
=4.493,故得
上式的解为
常数A、B和未知力FR可由边界条件确定。
本节作业
1试用能量法求图示变截面 杆的临界荷载FPcr。
2试用能量法求图示排架的 临界荷载FPcr。
I
I0
1 sin
x l
y
1
cos
x 2H
其中
当x=0时,y =0,由此求得A=0。 当x=l时,y=0和y=0,由此得
例题 试求图所示排架的临界荷载和柱AB的计算长度。
弹性支座的刚度系数 在柱顶处有未知的水平力FR,弹性曲线的微分方程为
得到如下的超越方程
为了求解这个超越方程,需要事先给定k值(即给出I1/I2的比值)。下面讨论三种情形的解:
根据小挠度理论,其平衡方程为
由于弹性支座的反力矩MA=
,即得
为了得到非零解,齐次方程的系数应为零,即
上式称为特征方程,或者稳定方程 分支点相应的荷载即为作重量, 体系的势能EP为弹簧应变能 与荷载势能VP之和。弹簧应变能为
由此可见,能量法与静力法都导出同样的方程。换句话说, 势能驻值条件等价于用位移表示的平衡方程。

设压杆有任意可能位移,变形曲线为
令 弯曲应变能
体系的势能为
其中
荷载势能
例题 如图所示两端简支的中心受压柱,试用能量法求其临界荷载。
解 简支压杆的位移边界条件为 当x=0和x=l时, y=0 在满足上述边界条件的情况下,我们选取三种不同的 变形形式进行计算。 (1)假设挠曲线为抛物线

结构力学-稳定计算

结构力学-稳定计算

1. (不稳定)
θ=0,Fp为任意值
2.
θFp>0,
l
k
sin
单自由度非完善体系的稳定问题
6. 按大挠度理论
x
Δ Fp
B
θ
l
l sin( )
M AB k
F1.4 p 1.2
平衡方程
k /1l
M AB Fp
0.8
0.6
ε=0.0 1 ε=0.0
5
代入得
0.4
A y
MAB= kθ
k Fpl sin( ) 0.2
sin(
)
0.05 0.1 0.15 0.2 0.25 0.3 0.35
23
Fpcr kl(1 sin 3 )2
极值点之后,位移增大而承载力反而减 小,所以位移增大的过程是不稳定的
临界荷载(极值点)和初
位移e有关
单自由度非完善体系的极值点失稳
4.按小挠度理论
Fp
kl
cos
1
sin sin(
生了性质上的突变,带有突然性。
临界状态
P
P>Pc r
分支点
P
临界荷载
新平衡
l
l
Δ
l/2
(a)直线平衡状态 (b) 弯曲平衡状态
C B
P2 Pc r P1
A
D 大挠度理论
D'
小挠度理论
O
Δ
(c) 荷载—位移曲线(P—Δ 曲线)
2、第二类失稳(非完善体系极值点失稳):虽不出现新 的变形形式,但结构原来的变形将增大或材料的应力超过其 许可值,结构不能正常工作。
单自由度体系静力法求临界荷载例
Fp

结构的稳定计算全解共87页

结构的稳定计算全解共87页
结构的稳定计算全解
31、园日涉以成趣,门虽设而常关。源自32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

稳定性分析结构的稳定性判断与计算方法

稳定性分析结构的稳定性判断与计算方法

稳定性分析结构的稳定性判断与计算方法稳定性分析在结构工程中具有重要的意义,它用于评估结构在受力情况下的稳定性和可靠性。

本文将讨论结构的稳定性判断和计算方法,并介绍一些常用的工程实践。

一、稳定性判断方法1. 静力刚度法静力刚度法是最简单且常用的稳定性判断方法之一。

该方法基于结构在稳定状态下,受力平衡和变形满足静力学方程的假设。

根据结构的初始几何形状和受力情况,可以得到结构的初始刚度矩阵。

通过判断结构的刚度矩阵的特征值是否为正,可以确定结构的稳定性。

2. 弹性屈曲分析法弹性屈曲分析法是一种精确的稳定性判断方法,适用于具有复杂几何形状和较大位移的结构。

该方法基于弹性力学原理,通过对结构的弹性刚度矩阵进行特征值分析,得到结构的屈曲荷载和屈曲模式。

如果结构在设计荷载下的实际荷载小于屈曲荷载,那么结构就是稳定的。

3. 极限平衡法极限平衡法是一种基于能量平衡原理的稳定性分析方法。

该方法通过建立稳定状态下结构的能量平衡方程,利用极限状态下的能量变化来判断结构的稳定性。

当结构受到外力作用时,如果能量平衡方程能够满足,那么结构就是稳定的。

否则,结构将失去稳定性。

二、稳定性计算方法1. 弯曲稳定性计算在结构设计中,弯曲稳定性是最常见的稳定性问题之一。

弯曲稳定性计算可以通过欧拉公式进行。

欧拉公式是计算压杆稳定性的经典方法,它可以用来计算弯曲后的截面失稳荷载。

根据欧拉公式,弯曲稳定性计算可以通过截面惯性矩、截面形状和截面材料的参数来进行。

2. 局部稳定性计算除了弯曲稳定性,局部稳定性也是一个重要的考虑因素。

局部稳定性通常涉及到薄弱的结构构件,如薄壁构件和薄板。

局部稳定性计算可以通过截面失稳计算、临界载荷计算和局部屈曲分析来进行。

这些方法可以帮助设计人员确定结构是否足够抵抗局部失稳的力量。

三、工程实践1. 结构稳定性设计在结构设计中,稳定性是一个基本的要求。

设计人员需要根据结构的空间几何形状、荷载情况和材料特性,综合考虑弯曲稳定性和局部稳定性。

结构力学——结构的稳定计算1 34页PPT文档

结构力学——结构的稳定计算1 34页PPT文档

例:求图示刚的临界荷载.
P
PP
PP
P
I1 2I
lI
I
l
正对称失稳时
P
k
正对称失稳
k
1
P
k
2EI4EI/l l/2
反对称失稳
tannl nl 1 EI (nl)2 kl
nl 1 (nl)2 / 4
nl3.83 P crn2E I1.6 4E 7/lI2
例:求图示刚的临界荷载.
§4. 能量法
一. 势能原理
1.应变能
弯曲应变能
拉压应变能
Ve
P/2

1 2
l Mdx
0
Ve P/2
1 2
l Ndx
0
剪切应变能
Ve P/2
1 2
l Qdx
0
2.外力势能
外力从变形状态退回到无位移的 原始状态中所作的功.
y(x)A co n sxB sinn xQ (lx) P
由边界条件
cosnl sin nl 0 稳定方程
n cln o s lsn i n 0 l
y (0 ) 0 ,y (0 ) 0 ,y (l) 0
tanlnl
y
y(nl)nl y(n)ltanl
x
P
P
Q
Q
l
EI
§2. 静力法
一.一个自由度体系
P
l EI
A k
k
1
k
MA0
kPslin0
小挠度、小位移情况下:
sin
(k P)l0
0
k Pl0
----稳定方程(特征方程)
抗转弹簧
Pcr k /l ---临界荷载

结构力学 结构的稳定计算

结构力学 结构的稳定计算

0
简写为:
([K][S]){a} {0}
K S 0
这就是计算临界荷载的特征方程,其展开式是关于P的n 次线性方程组,可求出n个根,由最小根可确定临界荷载。
第14章
14.3 弹性支承等截面直杆的稳定计算
具有弹性支承的压杆的稳定问题。一般情况下有四类
x Δ
B EI y
Pc r kΔ
l x
y
x Δ Pc r
一、临界状态的静力特征
1、体系失稳前在弹性阶段工作
(1)应力、应变成线性关系。 (2)挠曲线近似微分方程成立。
2、采用小挠度理论分析
y
x
M0, 0
y M 或:EIy M EI
(1)无论采用小挠度理论,还是大挠度理论,所得临界荷载值 是相同的。
(2)大挠度理论可以反映体系屈曲失稳后平衡路径的变化,而 小挠度理论则欠缺,采用简化假定的原因。
0
sinαi cosαo 0
tanl l 3EI
k
(14-21)
第14章
二、一端自由、另一端为弹性抗转支座
x Δ Pc r
EI B y
x
平衡方程: 边界条件:
稳定方程:
M P( y )
(1) x 0: y 0
( 2 ) x 0 : y P
k
A
y MA= kθ θ
l tanl k
条件求稳定方程。 (4)解稳定方程,求临界荷载。
第14章
3、举例 (1)试求图示结构的临界荷载。
p
pcr
EI l x
x
y
pcr
解:建立坐标系、取隔离体、写平衡方程
R
M p y R (l x) (1)
l-x

第11章_结构的稳定计算

第11章_结构的稳定计算

M A k
k Pl 0 ---稳定方程(特征方程)
Pcr k / l ---临界荷载
§11-2 有限自由度体系的稳定 ——静力法和能量法
讨论:
1.小挠度理论计算结果:Pcr k / l
2.大挠度理论计算:
P
C 大挠度理论
由Pl sin k 0 k Pcr l sin
例11.3 求失稳时的临界荷载。已知:k1=k, k2=3k。
解:取B’C’为隔离体, M B, 0
P ( y2 y1 ) k1 y1l 0
P
由整体平衡MA=0,得:
k1 y1 2l k2 y2 l Py1 0
P
y1、y2不能全为零,故:
k1 l P P 2 k1 l P k 2 l
经试算: (l )min 4.493
2 Pcr min EI
y
y(l ) l
y(l ) tan l
4.493 2 EI ( ) EI 20.19 2 l l
2
3 2
5 2
l
§11-3 无限自由度体系的稳定——静力法
例11.8 求体系的临界荷载Pcr 。 P P
•随遇平衡状态——经抽象简化,可能出现结构受干扰后
在 任何位置保持平衡的现象,此现象称为
“随
遇平衡状态”。
§11-1 两类稳定问题概述
二、失稳的概念及分类
失稳: 结构在荷载作用下其原始平衡状态可能由 稳定平衡状
态过渡到不稳定平衡状态,称原始平衡状态丧失稳定 性、简称“失稳”。
结构失稳的分类:根据结构失稳前后变形性质是否改变,
U 解:体系应变能:
P P

结构力学教学课件-11结构的稳定计算-1

结构力学教学课件-11结构的稳定计算-1

k 0, 0 悬臂杆
对于k 也即 时, y u与y tan u交点的最小值为4.493
FPcr

EI 2

u l
2

EI

2EI
2.046 l 2
=
2EI
0.7l 2
对于k 0也即 0时,tan u , 因而u / 2
第11章 结构的稳定计 算
11.1 稳定问题的基本概念
材料力学——单根压杆的稳定问题; 结构力学——杆件组成的以受压为主的结构的稳定问题
三种不同性质的平衡 稳定平衡——干扰撤销,能自动恢复原有的平衡状态; 随遇平衡(中性平衡)——干扰撤销,不能自动恢复原有 的平衡状态,但可以在新的状态下保持平衡。 不稳定平衡——干扰撤销,不能自动恢复原有的平衡状态 ,也不能在新的状态下保持平衡。
11.1.3 两种不同精度的稳定理论 FP
l/2
小挠度理论(近似解)
大挠度理论(精确解)

l/2
压杆的抗弯刚度为 EI,M (x) FP y EIy
y 2 y 0 2 FP / EI
(a) (b)
微分方程的一般解为 y C1 sinx C2 cosx
三种平衡状态:
(a) (b)
稳定平衡 当FP FPcr 不稳定平衡 当FP FPcr 随遇平衡 当FP FPcr
受横向干扰可转入弯曲状态 干扰撤销可恢复到单纯受压状态 受横向干扰可转入屈曲状态 干扰撤销不能恢复到单纯受压状态 受干扰后转入压弯状态,干扰 撤销后仍维持这一临界状态
第11章 结构的稳定计 算
FPcr

EI 2 =0.25 2
EI l2

结构的稳定计算-PPT精品

结构的稳定计算-PPT精品
位形图
0.367
22
例题:静力法求图示体系的临界荷载FPcr.
解:体系的失稳形态可用B,C处的位移y1,y2确定,从临界平衡
状态的两重性出发列平衡方程。
A EI= B EI= C EI= D
k
k
FP
l
l
l
y1
y2
FxA=FP
k
k
FP
FyA=FPy1/l FRB=ky1
FRC=ky2
FyD=FPy2/l
EP 12k(y12 y22)FP1l(y12y1y2y22) 31
EP 0 y1 EP 0 y2
势能驻值条件
(k l2 F P )y 1 F P y 2 0 kl2FP
FP 0
F P y 1 (k l2 F P )y 2 0 FP kl2FP
例题:用能量法求图示结构的临界荷载FPcr
解:从临界平衡状态的能量特征出发
D FP
EI1=

D
FP


D
FP

h
表能B 明 的ElI势 二A能 阶为 变ElI驻 分值为C 且零B位的移内有力A非准零则解在C的本能质3 E量 上lI 特 是A征 相与 同3势 的ElI
δEP 0
dEP
d
2
所谓结构的稳定性是指它所处的平衡状态的稳定性。
如小球受到干 扰后仍能恢复 到原先的平衡 位置,则称该 状态为
稳定平衡
球在三个位置都能 处于平衡,但受到 干扰后表现不同:
如小球受到干 扰后可停留在 任何偏移后的 新位置上,则 称该状态为
随遇平衡
如小球受到干 扰后失去回到 原先的平衡位 置的可能性, 则称该状态为

结构力学 结构稳定计算

结构力学 结构稳定计算
杆件伸长量 杆件轴力
2 F p1 / 2 45 45 FN 1l 2 F p1l 杆件伸长量 EA 2 EA l l A Fp1l A点竖向位移 1 2 FP1 EA 2 Fp1l * 外力势能 Ve Fpi i Fp11 E 2 EA F p1l 1 Fp21l Ve FN 1 2 应变能 2 2 EA 2 2 2 Fp1l Fp1l Fp1l 2 EA * EP Ve VP 结构势能 1 2 EA EA 2 EA
第十五章《结构的稳定计算》
§15-1 两类稳定问题概述
稳定分析的几点预备知识:
1、三种平衡状态:稳定平衡状态、不稳定平衡状态、中性平衡状 态。 2、两种分析理论:小挠度理论、大挠度理论。
3、两种失稳状态:分支点失稳、极值点失稳。
4、 计算要在结构变形后的几何形状和位置上进行, 属几何非线性,叠加原理已不再适用。两种方法 :静力 法和能量法
EI 1 (l ) 2 k l l 1 (l ) 2 / 4
l 3.83
FPcr 2 EI 14.67 EI / l 2
例:求图示刚的临界荷载.
Fp
I1 2I
Fp
I
Fp
Fp
Fp
Fp
l
I
l
反对称失稳时
正对称失稳 反对称失稳
Fp
k
k
1
l tanl
k l EI
tan l

l
EI 1 (l ) 2 k l

解此方程可得 l 最小正根
F p cr EI
2
k 0
k
FP
EI
FP
l
EI
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ε= 0
0.8
FPcr kl
θ
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
17
A
0.0
分析结论
• 结构的初始缺陷影响临界荷载,对稳定性是不利的。
• 当结构缺陷逐渐减小并趋于消失时,极值点的临界荷 载将随之增大并趋于分支点失稳的临界荷载。
• 非线性理论分析表明存在极值点失稳,与实际吻合。 实际结构不可避免地存在构件的初始缺陷,严格地说 失稳都属于第二类失稳。
10
§16.2 有限自由度体系的临界荷载
确定体系失稳时的位移形态所需要的独立的几何参数的数目 称为体系失稳的自由度。 FP FP
EI= k
FP
EI=
EI= EI=

k
DOF = 1
DOF = 2
DOF =
11
主要计算方法: 静力法——根据临界状态的静力特征(即平衡形式 的二重性),寻找平衡路径交叉的分支 点,可精确得到理论上的临界荷载值。 能量法——依据能量特征来确定体系失稳时临界荷 载。体系取得平衡的充要条件是任意可 能位移和变形均使势能取得驻值。
3
结构随荷载逐渐增大可能由稳定的平衡状态转变为不 稳定的平衡状态,称为失稳。保证结构在正常使用的 情况下处于稳定平衡状态是结构稳定分析的目的。 第一类失稳(分支点失稳) 结构的失稳类型 第二类失稳(极值点失稳)
4
第一类失稳的基本特征 结构失稳前后平衡状态所对应的变形性质发生改变,分支 点处平衡形式具有两重性,分支点处的荷载即为临界荷载, 称分支点失稳。 FP FP FP < FPcr时,杆件仅产生压 缩变形。轻微侧扰,杆件微 II 不稳定 弯;干扰撤消,状态复原 FPcr 0 (平衡路径唯一)。
15
(1) 大挠度理论
FP sinε cosθ ε 1 kl sin θ ε
求极值点处的临界荷载
d FP 0 d
FP/kl
1.00 0.695 0.536
sin ( θ) sin
2 3 FPcr 3 (1 sin ) 2 kl
12
一、静力法
在原始平衡状态附近的新的位移状态上建立静力平衡方程, 并以新位移形态取得非零解的条件确定失稳的临界荷载。
1、单自由度完善体系的分支点失稳 FP FP FR MO 0 B B k k x F lsin θ F
EI1=
P
R
lcosθ 0
FR kΔ klsin θ
q FP FP
他们的共同特点是从加载到失稳过程中结构变形的 性质不发生突变,而是平衡路径产生了极值点。
8
扁平拱式结构的跳跃失稳的基本特征 当荷载、变形达到一定程度时,可能从凸形受压的结构 翻转成凹形的受拉结构,这种急跳现象本质上也属极值 点失稳(跳跃屈曲)。 FP
Δ f
FP
FPcr
O

l
l
由极值点的失稳问题突然转化为受拉的强度问题
9
稳定性分析有基于小变形的线性理论和基于大变 形的非线性理论。非线性理论考虑有限变形对平 衡的影响,分析结果与实验结果较吻合,但分析 过程复杂。不管是第一类稳定问题,还是第二类 稳定问题,它们都是一个变形问题,稳定计算都 必须根据其变形状态来进行,有时还要求研究超 过临界状态之后的后屈曲平衡状态。
14 结构的稳定计算
1
§16.1 两类稳定问题概述
结构中的某些受压杆件, 当荷载逐渐增大时,除 了可能发生强度破坏外, 还可能在材料抗力未得 到充分发挥之前就因变 形的迅速发展而丧失承 载能力,这种现象称失 稳破坏,其相应的荷载 称为结构的临界荷载。 压杆的实际承载能力应 为上述两种平衡荷载中 的最小者。
2
所谓结构的稳定性是指它所处的平衡状态的稳定性。
球在三个位置都能 处于平衡,但受到 干扰后表现不同:
如小球受到干 扰后仍能恢复 到原先的平衡 位置,则称该 状态为 稳定平衡 如小球受到干 扰后可停留在 任何偏移后的 新位置上,则 称该状态为 随遇平衡 如小球受到干 扰后失去回到 原先的平衡位 置的可能性, 则称该状态为 不稳定平衡
FP

FPcr
O
非完善体系

初始缺陷使得开始加载杆件 便处于微弯状态,挠度引起 附加弯矩。随荷载增加侧移 和荷载呈非线性变化,且增 长速度越来越快。荷载达到 一定数值后,增量荷载作用 下的变形引起的截面弯矩的 增量将无法再与外力矩增量 相平衡,杆件便丧失原承载 能力。
7
l
发生第二类失稳的情况:
FP FP
2、单自由度非完善体系的极值点失稳
FP F R
B k k
FP B
MO 0
FP lsin ( θ ) FR l cos( θ) 0
x
l

A


l
FR kl sin θ ε sin ε
y
O A
Hale Waihona Puke sinε FP klcos θ ε 1 sin θ ε
• 第二类失稳属于几何非线性问题,而当结构变形达到 一定程度时通常伴有材料非线性的出现,因此计算比 较复杂,但却是精确解。

FP klcosθ lsinθ 0
第一解: θ 0
l
A
O A y
第二解: FP klcos
13
FP II 不稳定
FPcr
大、小挠度理论 临界荷载相同
FP kl FP klcos

(2) 小挠度理论 (1) 大挠度理论 临界荷载:
I 稳定
θ0
FPcr kl
14
1 3
ε=0
FP/kl
0.695 0.536 0.415
ε= 0
θ
0.38 0.42 1.37 1.47 1.57 0.1 0.2 0.3
ε
16
O
(2) 小挠度理论
ε FP kl 1 kl θ ε θε
FP B
FP/kl
1.0
ε= 0
k


l
0.6 0.4 0.2

l
I 稳定 O
0
完善体系

FP ≥FPcr时,杆件既可保持 原始的直线平衡状态,又可 进入弯曲平衡状态(平衡路 径不唯一)。
5
发生第一类失稳的还有:
q
FP
FP
他们的共同特点是从加载到失稳过 程中结构变形的性质发生突变,产 生了两种性质截然不同平衡路径。
6
第二类失稳的基本特征 是结构由于初始缺陷的存在,荷载与位移间呈非线性变化。 失稳前后变形性质没有变化,力-位移关系曲线存在极值点, 该点对应的荷载即为临界荷载,称极值点失稳。 FP
相关文档
最新文档