人教版数学《全等三角形》专家课件-ppt

合集下载

人教版数学《全等三角形》_完美课件

人教版数学《全等三角形》_完美课件

小组合作
小组长组织小组学会44页 8题、9题 不正确的在作业本上修改 待会展示并检测
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
效果检测 55页3题
独立思考 10、11题说思路 黑板上有图展
示11题的过程
证明:∵AB∥DE 在△ABC和△DEF
∴∠B=∠E ∵AC∥FD
∠B=∠E BC=EF
∴∠ACB=∠DFE
∠ACB=∠DFE ∴△ABC≌△DEF
∵FB=CE
∴AB=DE,AC=DF
∴BC=EF
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形Байду номын сангаас_ 完美课 件2-课 件分析 下载
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
课本习题12.2 师生互动
公共边
公共角
对顶角
按下面的格式回答
你找到的三个条件是
根据
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
得三角形 与三角形 。
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
【 获 奖 课 件 ppt】人 教版数 学《全 等三角 形》_ 完美课 件2-课 件分析 下载
当堂检测 课本45页 12题或56页8题 小结 图上条件 等式性质的应用 小心无关条件的干扰

人教版数学《三角形全等的判定》_课件-完美版

人教版数学《三角形全等的判定》_课件-完美版

变形题:
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
已知AB=CD,AD=CB,求证:∠B=∠D
证明:连接AC, 在△ABC和△ ADC中 A
AB=CD(已知)
BC=AD(已知)
AC=AC(公共边)
B
∴ △ ABC≌ △ CDA(SSS)
D C
∴ ∠B=∠D(全等三角形对应角相等)
A
证明:在△ABC和△ADC中
B
D
AB=AD (已知)
BБайду номын сангаас=CD (已知)
AC = AC (公共边)
C
∴ △ABC ≌ △ADC(SSS)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
你能说明AB∥CD,AD∥BC吗?
• 证明:在△ABD和△CDB中 D
C
AB=CD(已知)
AD=CB(已知) A
BD=DB (公共边)
B
∴△ABD≌△ACD(SSS)
∴ ∠ A= ∠ C (全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
∴∠B=∠C(全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
1、如图,在四边形ABCD中,AB=CD,AD=CB, 求证:∠ A= ∠ C.

人教版初中数学《三角形全等的判定》优秀PPT

人教版初中数学《三角形全等的判定》优秀PPT

_C_O_=_D_O___ (已知)
∠C=∠D (已知) ∴△AOC≌△BOD( AAS )
O D
A
人教版初中数学《三角形全等的判定 》优秀P PT
人教版初中数学《三角形全等的判定 》优秀P PT1
看看谁最棒?
B
如图,应填什么就有△AOC≌△BOD?
解法三:∠A=∠B(已知)
C
_A_O_=_B_O__(已知)
人教版初中数学《三角形全等的判定 》优秀P PT1
第十二章 全等三角形
12.2三角形全等的判定(ASA及AAS)
1.掌握三角形全等的“角边角”“角角边”判定方法. 2.能运用全等三角形的条件,解决简单的推理证明问题.
一、知识回顾
1.什么是全等三角形? 能够完全重合的两个三角形叫做全等三角形. 2.我们已经学过了哪几种判定两个三角形全等的方法? 边边边(SSS)和边角边(SAS)
接BE、DF,∠1=∠2 , ∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
A
D
1 4
E
3
F 2
B
C
G
人教版初中数学《三角形全等的判定 》优秀P PT1
人教版初中数学《三角形全等的判定 》优秀P PT1
看看谁最棒?
【解析】 (1)∵四边形ABCD是正方形,∴AB=AD.
解法一:∠A=∠B(已知)
_A_C_=_B_D__(已知) ∠C=∠D(已知)
O D
∴△AOC≌△BOD( ASA )
A
人教版初中数学《三角形全等的判定 》优秀P PT
人教版初中数学《三角形全等的判定 》优秀P PT
看看谁最棒?

人教版八年级数学上册优质课《全等三角形第一课时》PPT课件

人教版八年级数学上册优质课《全等三角形第一课时》PPT课件
Please Criticize And Guide The Shortcomings
讲师:XXXXXX
XX年XX月XX日
19
思考
∆ABC≌ ∆DEF,对应边有什么关系? 对应角呢?
全等三角形的性质: 全等三角形的对应边相等 全等三角形的对应角相等
图形参考 13
填一填

AB=DF

AC=DE

BC=EF
角 ∠A=∠D
角 ∠B=∠F
角 ∠ACB=∠DEF
问题: ∆ABC通过怎样的变化得到∆DFE?
14
填一填

AM=BM

MC=MD

AC=BD

∠A=∠B
△_AM_C_≌△_B_MD_ 角
∠C=∠D
角 ∠AMC=∠BMD
15
试一试
1。如果∆ABC≌ ∆ADC,AB=AD, ∠B=70°,BC=3cm,那么
∠D=_7_0_°_,DC=__3__cm
2.如果 ∆ABC≌ ∆DEF,且∆ABC的周长为 100cm,A、B分别与D 、E对应,
• 其中点A和_点_D ,点B和_点_E,点C和_点_F是 对应顶点。
• AB和_DE_,BC和_EF_,AC和_DF_是对应边。
• ∠A和_∠_D ,∠B和_∠E_, ∠C和∠_ F_ 是对 应角。 你能否直接从记作 ∆ABC≌C ∆DEF中判断出 F 所有的对应顶点、对应 边和对应角?
A
B
D
E
12
AB=30cm,DF=25cm,则BC的长为( A)
A.45cm B.55cm C.30cm D. 25cm
16
3.如图,矩形ABCD沿AM

人教版初中数学《全等三角形》_PPT-优秀版

人教版初中数学《全等三角形》_PPT-优秀版

证明:(1)∵BD⊥m,CE⊥m,
∴∠ADB=∠CEA=90°,
∴∠ABD+∠BAD=90°.
∵AB⊥AC,
∠ADB=∠C
∠ABD=∠CAE.
AB=AC,
在△BDA和△AEC中, ∴△BDA≌△AEC(AAS).
【获奖课件ppt】人教版初中数学《全 等三角 形》_p pt-优 秀版1- 课件分 析下载
归纳总结
两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
B
C
A′
AC=A′C ′(已知),
∴ △ABC≌△ A′ B′ C′ (AAS). B ′
C′
【获奖课件ppt】人教版初中数学《全 等三角 形》_p pt-优 秀版1- 课件分 析下载
C
A
B
E
D
C
C′
A
B
A′
B′
作法:
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,
A'D,B'E相交于点C'.
想一想:从中你能发现什么规律?
知识要点
“角边角”判定方法
u文字语言:有两角和它们夹边对应相等的两个三角 形全等(简写成“角边角”或“ASA”). A
A
D
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知)B,
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

人教版教材《全等三角形》课件ppt1

人教版教材《全等三角形》课件ppt1
全等三角形的判定
全等三角形的判定
CC/CAB来自A/ABB/ M
探究3的结果反映了什么规律?
两边和它们的夹角对应相等的两 个三角形全等.
(可以简写成“边角边”或 “SAS”)
全等三角形的判定
全等三角形的判定小结:用上面的结论可以判断两个三角形全等。判断两 个三角形全等的推理过程,叫做证明三角形全等.
DB=DC (已知)
AD=AD (公共边)
D
∴△ABD≌△ACD (SSS) B
C
∴ ∠B =∠C (全等三角形的对应角相等)
全等三角形的判定
全等三角形的判定
小1.边结边:边公理:有三边对应相等的两个三角形全等
简写成“边边边”(SSS)
2.边边边公理发现过程中用到的数学方法(包括画图、猜想、分析、归纳等.)
复习提问: 1、三角形全等的性质是什么?找找其中相等的边与角
2、如果两个三角形满足三条边对应相等,三个角对应相等, 那么,这两个三角形全等吗?
3、如果两个三角形满足上述六个条件中的一部分,是否 也能保证两个三角形全等呢?
探究1 先任意画出一个△ABC,再画一 个 △A/B/C/,使△ABC与△A/B/C/满 足上述六个条件中的一个或两个。 你画出的△A/B/C/与△ABC一定全 等吗?
分析:要证明两个三角形全等,
A
需要那些条件?
证明:∵D是BC的中点
B
C
∴BD=CD
D
在△ABD与△ACD中 AB=AC(已知) BD=CD(已证) AD=AD(公共边)
若要求证: ∠B=∠C,你 会吗?
∴△ABD≌△ACD(SSS)
全等三角形的判定
全等三角形的判定
练习: 已知:如图,AB=AD,BC=CD,

人教版八年级数学上册《全等三角形》PPT优质课件

人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐

标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△

重合,则△△

;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.

人教版八年级上册数学第十二章课件PPT

人教版八年级上册数学第十二章课件PPT

形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
E
A PC M
D
A
BN
B
C
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B
D
A
B
C
D
C
E
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
点重B合和的点角E叫,做点对C和应点角F。;
A
D
B
CE
F
“全等”你用能符否号直“接≌ 从”记表作示
图∆A中B的C△≌A∆BDC和EF△中DE判F全断等出,所 记读有对作作的应::△△对角AA应 ?BBCC顶≌全点△等D于、E△F对D应EF边和
记两个三角形全等时,通常 注意 把表示对应顶点的字母写在
△ABC≌△DCB
O
B
C
如图, △ABD ≌ △EBC
1、请找出对应边和对应角。
AB 与 EB、BC BD、AD EC,
C
∠A ∠BEC、∠D ∠C、∠ABD ∠EBC
2、如果AB=3cm,BC=5cm,
求BE、BD的长.
DE
B
解:∵△ABD ≌ △EBC
∴AB=EB,BC=BD
A
∵AB=3cm,BC=5cm
第十二章 全等三角形
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
下列各组图形的形状 与大小有什么特点?

《全等三角形》PPT优质课件

《全等三角形》PPT优质课件
D A
O
C B
AD
O
B
C
A
B D
E C
A
E
D
B
C
1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
探究新知
找一找下列全等图形的对应元素?
A
D
A
2 B E CF
A
3 21 4
B E
CF
B
D CF
A
D
1
23 4
B
C
探究新知
全等的表示方法
“全等”用符号“≌”表示,读作“全等于”.
A
F
B
CD
E
△ABC≌△FDE
记两个三角形全等时,通常把表示对应顶点的字母写在 对应的位置上.
探究新知
全等的性质
全等三角形的对应边相等,对应角相等.
A
D
B
C
E
∠A=∠F,∠B=∠D,∠C=∠E. (全等三角形对应角相等)
探究新知
素养考点 1 识别全等三角形的对应元素
例1 如图,若△BOD≌△COE,∠B=∠C,指出这两个全 等三角形的对应边;若△ADO≌△AEO,指出这两个三角 形的对应角.
解:△BOD与△COE的对应边为: BO与CO,OD与OE,BD与CE; △ADO与△AEO的对应角为:
课堂检测
拼接的图形展示
课堂小结
全等 三角形
定 义 能够完全重合的两个三角形叫做全等三角形
基本 性质

人教版《全等三角形》优秀课件

人教版《全等三角形》优秀课件

全等三角形的性质的运用
边AB 与DE、边BC 与EF、
∠ABC=∠DBC,
已知:如图,△ABC ≌△DEF. ∴相等的边为:OC=OB,OA=OD,
3 cm,求MN和HG的长度.
请观察下面两组图形,它们是不是全等图形?为什么?与同伴进行交流。
(1)若DF =10 cm,则AC 的长为 (1)写出相等的线段与角.
∴相等的边为:AB=DB,BC=BC,
∠A 与∠D、∠B 与∠E、
∠AOC=∠DOB. (3)有对顶角的,对顶角是对应角.
AC=DC.
解:∵△ABC≌△DBF.
∴相等的角为:∠BAC=∠BDC, ∠C 与∠F 重合,称为对应角.
活动一:请同学们和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?
∠ACB=∠DCB.
的度数为
能够完全重合 的两个图形叫做全等形.
___5_0_°________. C.58° D.50°
如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是( )
如图,已知△EFG≌△NMH,∠F与∠M
点A 与点D、点B 与点E、 解:∵△ABC≌△DBC.
A
D
∵ △ABC ≌△DEF,
注意:书写全等式时要求把对应顶点字母放在对应的位置上。
全等三角形的定义: 能够完全重合的两个三角形叫做全等三角形.
点A 与点D、点B 与点E、
A
点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、
B
C
边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、
∠C 与∠F 重合,称为对应角.
D
你能用符号表示出这两个全等三角形吗?

人教版八年级数学上册全等三角形精品课件PPT

人教版八年级数学上册全等三角形精品课件PPT


2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件

《全等三角形》PPT课件

《全等三角形》PPT课件
A
△ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角
D
△AOD≌△COD
A O
C
B
找出下列全等三角形的对应边、对应角 A △ABC≌△ADE
B D
E C
找出下列全等三角形的对应边、对应角
△ADE≌△CBF
A
E
B
D
F
C
找出下列全等三角形的对应边、对应角 A △△AABBNM≌≌△△AACCMN
• 形状、大小相同的图形放在一起 能够完全重合。
• 能够完全重合的两个图形叫做全 等形
• 能够完全重合的两个三角形叫做 全等三角形
全等形包括规则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
D
B
CE
F
2、把对对两应应个角边三是是角∠A形AB和重和∠合DD到E,,一起.
重∠A合BC和的和∠顶DE点F,∠,叫CB和做C∠对和F应EF顶; 点,
对重应合顶的点边是叫点做A对和应点边D,,
点重B合和的点角E叫,做点对C和应点角F。;
A
D
B
CE
F
“全等”你用能符否号直“接≌ 从”记表作示
图∆A中B的C△≌A∆BDC和EF△中DE判F全断等出,所 记读有对作作的应::△△对角AA应 ?BBCC顶≌全点△等D于、E△F对D应EF边和
∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°, 说出△ACE中各角的大小?

人教版数学《全等三角形》(完整版)课件

人教版数学《全等三角形》(完整版)课件
人教版数学《全等三角形》教学实用 课件(P PT优秀 课件)
人教版数学《全等三角形》教学实用 课件(P PT优秀 课件)
解:BE=DF.理由:连接 BD.在△ABD 和△CDB 中,AABD==CCDB BD=DB
,∴△
ABD≌△CDB(SSS).∴∠A=∠C.∵AD=CB,DE=BF,∴AD+DE=CB
BE,在△CDF 和△BAE 中,C∠FC=FBDE=∠BEA DF=AE
, ∴ΔCDF≌ΔBAE,∴
Байду номын сангаас
CD=BA,∠C=∠B,∴CD∥BA.
人教版数学《全等三角形》教学实用 课件(P PT优秀 课件)
人教版数学《全等三角形》教学实用 课件(P PT优秀 课件)
12.如图,已知 A、D、E 三点共线,C、B、F 三点共线,AB=CD,AD =CB,DE=BF,那么 BE 与 DF 之间有什么数量关系?请说明理由.
C.AC=A′C′,BC=B′C′,∠A=∠A′
D.AB=A′B′,AC=A′C′,∠B=∠B′
3.如图所示,有一块三角形镜子,小明不小心将它打破成①、②两块,现
需配成同样大小的一块,为了方便起见,需带上第 ① 块,其理由是
两边及夹角对应相等的两个三角形全等
.
人教版数学《全等三角形》教学实用 课件(P PT优秀 课件)
2018秋季
数学 八年级 上册•R
第十二章 全等三角形
12.2 三角形全等的判定 第2课时 边角边
人教版数学《全等三角形》教学实用 课件(P PT优秀 课件)
用“SAS”判定两个三角形全等 两边和它们的夹角对应相等的两个三角形 全等 (可以简写成“边角边”或 “SAS”). 自我诊断 1. 如图,AB=AC,∠1=∠2,则△ABD 和△ACD 的关系是 全等 , 依据是 SAS .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B E
D
C
A
人教版数 学《全 等三角 形》全 文课件1
课堂总结 人教版数学《全等三角形》全文课件1
证明两个三角形全等的基本思路:
(1):已知两边
找第三边 (SSS) 找夹角 (SAS)
找是否有直角 (HL)
找这边的另一个邻角(ASA) 已知一边和它的邻角 找这个角的另一个边(SAS
(2):已知一边一角
∴ ∠ABC=∠ADC (全等三角形的对应角相等)
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
我能行
如图,CD=CA,∠1=∠2,EC=BC. 求证:DE=AB.
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
能力提高
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE. 求证:△ACD≌△CBE.
人教版数 学《全 等三角 形》全 文课件1
我能行
“三月三,放风筝”下图是小东同学自己做
的风筝,他根据AB=AD,BC=DC,不用度
量,就知道∠ABC=∠ADC。请用所学的
知识给予说明。
解: 连接AC
在△ABC和△ADC中, AB=AD(已知) BC=DC(已知)
AC=AC(公共边)
∴△ADC≌△ABC(SSS)
B ED C
在AEB和ADC中,
AB=AC
AE=AD
BE=CD
∴ △AEB ≌ △ ADC (sss)
牛刀小试
如图,AC=BD,∠CAB=∠DBA,你能 判断BC=AD吗?说明理由。
C 证明: 在△ABC与△BAD中
AC=BD
A
∠CAB=∠DBA
AB=BA
∴△ABC≌△DEF(SAS)
D B
人教版数 学《全 等三角 形》全 文课件
找这边的对角 (AAS)
已知一边和它的对角 找一角(AAS)
(3):已知两角
找两角的夹边(ASA)
已知角是直角,找一边 (HL)
找夹边外的任意边(AAS)
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
交流平台
本节课你还有不理解的地方吗?
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
布置作业:P56页 8题 9题
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件
牛刀小试
已知,如图,∠1=∠2,∠C=∠D
求证:AC=AD
D
证明:在△ABD和△ABC中
∠1=∠2 (已知)
1
∠D=∠C(已知)
A2
B
AB=AB(公共边)
∴△ABD≌△ABC (AAS)
∴AC=AD
(全等三角形对应
C
边相等)
人教版数 学《全 等三角 形》全 文课件
牛刀小试
如图,已知点D在AB上,点E在AC上,BE和CD相
交于点O,AB = AC,∠B = ∠C.
A
求证:BE = CD
证明 :在△ADC和△AEB中
∠A=∠A(公共角)
D
AC=AB(已知) ∠C=∠B(已知)
O B
∴△ADC≌△AEB(ASA)
∴BE=CD(全等三角形的对应边相等)
E C
人教版数 学《全 等三角 形》全 文课件
第12章 全等三角形(复习)
教学目标:
1、通过基本训练,巩固第十二章所学的基本内容.
2、通过练习题的学习和综合运用,加深理解第十二章所学的基 本内容,发展能力.
牛刀小试
如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC。
A
证明:∵BD=CE
Hale Waihona Puke ∴ BD-ED=CE-ED, 即BE=CD。
人教版数 学《全 等三角 形》全 文课件
人教版数 学《全 等三角 形》全 文课件
知识总结:
包括直角三角形
一般三角形 全等的条件:
1.定义(重合)法;
2.SSS;
解题中 3.SAS;
常用的4
种方法 4.ASA;
不包括其它形 状的三角形
5.AAS.
直角三角形 全等特有的条件:HL.
人教版数 学《全 等三角 形》全 文课件
人教版数 学《全 等三角 形》全 文课件
牛刀小试
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD,垂足分别为C,D,AD=BC,
求证: BD=AC.
证明:∵ AC⊥BC, AD⊥BD ∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) ∴BD=AC
相关文档
最新文档