考研数学:求函数渐近线的方法
考研数学求函数渐近线的方法
考研数学求函数渐近线的方法函数的渐近线是指当自变量趋近于无穷大或负无穷大时,函数值也趋近于一些确定的常数或无穷大的现象。
求函数的渐近线是数学分析和微积分中的重要知识点之一,本文将介绍几种常用的方法来求函数的渐近线。
一、水平渐近线的求解方法水平渐近线是指当自变量趋近于正无穷大或负无穷大时,函数值趋近于一些常数的现象。
对于给定的函数y=f(x),要求函数y=f(x)的水平渐近线,可以按照以下步骤进行求解:1. 首先求解函数y=f(x)的极限lim(x→±∞) f(x)。
当该极限存在时,可以得到函数的水平渐近线y=y0,其中y0为该极限的值。
2.接着需要对函数y=f(x)进行化简和变形,以便能够找到函数的水平渐近线。
常见的化简和变形方法包括分式分解、因式分解、复合函数分解等。
3.最后,通过分析函数的化简形式,找到函数的水平渐近线。
常见的情况有:如果函数的化简形式为y=a+g(x),其中a为常数,g(x)为一个关于x的函数,那么可以得到水平渐近线y=a;如果函数的化简形式为y=g(x),其中g(x)为一个关于x的函数,那么该函数没有水平渐近线。
二、垂直渐近线的求解方法垂直渐近线是指当自变量趋近于一些确定的常数时,函数值趋近于正无穷大或负无穷大的现象。
对于给定的函数y=f(x),要求函数y=f(x)的垂直渐近线,可以按照以下步骤进行求解:1. 首先求解函数y=f(x)的极限lim(x→c) f(x)。
对于一些确定的常数c,当该极限存在时,可以得到函数的垂直渐近线x=x0,其中x0为c的值。
2.然后需要对函数y=f(x)进行化简和变形,以便能够找到函数的垂直渐近线。
常见的化简和变形方法包括分式分解、因式分解、复合函数分解等。
3.最后,通过分析函数的化简形式,找到函数的垂直渐近线。
常见的情况有:如果函数的化简形式为x=x0,则可得到函数的垂直渐近线为x=x0;如果函数的化简形式中含有分母,且其限制条件表明分母为0时,函数的极限趋于正无穷大或负无穷大,则可得到函数的垂直渐近线为x=c,其中c为分母为0的点。
考研数学:求函数渐近线的方法
考研数学:求函数渐近线的方法
求函数渐近线是指求出函数在无穷大时的行为,是高等数学中一个比较重要的概念,
函数渐近线分为两种情况:一种是渐近不变线,另一种是渐近无穷大线。
求渐近不变线的方法很简单,只需要构造函数的分母和分子,然后在各自取x趋于无
穷大的情况下,分母分子相等即可求出该函数的渐近不变线值。
求渐近无穷大线的方法比较复杂,首先应该把函数分解为有理函数和无理函数,然后
依次对有理函数和无理函数进行求解:
对于有理函数,如果分母正次数比分子大,则当x趋于正无穷大时,函数渐近不变线
为零,如果分母正次数比分子小,则当x趋于无穷大时,渐近线等于分子和分母分别除以(x的正次数减分子正次数)的极限。
对于无理函数,如果分母当极限为无穷的时候,分母不可分解,则待分母分解成可数
的多项式,再将无穷小值约为0,最后求出渐近线。
求函数渐近线共有两种情况,其求解方法也有所不同,如果判断错误,其结果就会出
现偏差。
因此要想准确求出函数的渐近线,应加以先行判断,对不同的情况分别进行求解,才能得出正确的函数渐近线值。
2018考研数学基础复习知识点—渐近线
2018考研数学基础复习知识点—渐近线
渐近线也是考研数学每年必考的内容,出题形式就是填空题和选择题,考点就是:求函数渐近线的条数。
渐近线一共有三种:水平渐近线、垂直渐近线、斜渐近线。
所以,在判断函数渐近线的条数的时候,一般至少要进行3个极限的运算。
题型通常会处选择题,类似于,求函数间断点的类型和个数一样,需要同学们一一来求,比较繁琐。
但是本质上都是求极限。
或者是填空题,出题形式就是:求函数的斜渐近线。
下面是的典型的两道真题,2018考研的同学们来看一下。
1、模块名称:高等数学
章节名称:函数、极限、连续
知识点:渐近线
题型结构:填空题
题型描述:求渐近线的条数
适用阶段:基础阶段
判断渐近线的选择题一样,一般是没有办法用排除法的,尤其是在问渐近线有多少条这样的选择题当中。
其实,题目都不难,但是这样的题目,在往年
的考研当中,正确率反而不高。
希望以上整理的内容,对同学们有所帮助。
2017考研数学二之求解渐近线
凯程考研,为学员服务,为学生引路!
第 1 页 共 1 页
2017考研数学二之求解渐近线
渐近线是数二常考的一个知识点,近几年虽然不能说年年考,但可以说隔一年考一次,如2006年,2007年,2010年,2012年2014年都出过题,而今年再次出现,总之考察的频率非常之高。
虽然是一个很小的知识点,只有小小的4分,但应该对其有足够的重视。
从某个方面来讲,高等数学就是求极限,而求渐近线也属于求极限。
就概念本身来说,并不难,无非三种渐近线:水平渐近线,垂直渐近线和斜渐近线。
如果涉及函数极限的求解,有些就不是那么容易做了。
首先我们还是先说说渐近线的考法吧。
出题形式以选择题或填空题呈现,有求具体的渐近线的表达式,特别是斜渐近线的表达式;另外一种形式就是给出一个函数的具体表达式,问有几条渐近线;还有就是从选项中挑出有渐近线的表达式。
下面分别举例来说明。
对于求渐近线的条数,2007年和和201年考过,以2007年的题为例:
从以上两题可以看出,求渐近线时,抛开渐近线的概念不谈,实质就是求函数的极限(包括数列的极限)。
因此,同学们在复习的时候,把重点放在函数的极限的性质上来,特别是对于一些特殊函数的极限,如上面提到的:
等等,先判断x 的趋势,然后再判断函数的极限,这是同学们需要注意的。
1999年考研数学一真题及解析(公式及答案修正版)
(
)
(
)
2 x + y′ = 3 x 2 y + x3 y′ + cos x , 2 x +y
(B) 2.
为 f ( x ) ,则方程 f ( x ) = 0 的根的个数为(
)
(A) 1. 三、(本题满分5分) 求
(C) 3.
(D) 4.
lim
x →0
1 + tan x − 1 + sin x . x ln (1 + x ) − x 2
+∞
四、(本题满分6分) 计算
∫
1
五、(本题满分7分) 求初值问题
( x − 1)
x3
2
,求
(1)函数的增减区间及极值; (2)函数图形的凹凸区间及拐点 (3)函数图形的渐近线. 八、(本题满分 8 分)
0 , f (1) = 1 , 设 函 数 f ( x ) 在 闭 区 间 [ −1,1] 上 具 有 三 阶 连 续 导 数 , 且 f ( −1) =
f ′ ( 0 ) = 0 ,证明:在开区间 ( −1,1) 内至少存在一点 ξ ,使 f ′′′ (ξ ) = 3 .
总存在正整数 N , 当 n ≥ N 时, 恒有 xn − a ≤ 2ε ”是数列 { xn } (4) “对任意给定的 ε ∈ ( 0,1) ,
收敛于 a 的 ( ) (A)充分条件但非必要条件. (C)充分必要条件.
2018考研数学渐近线的求法
2018考研数学渐近线的求法考研数学如何取得高分?以下老师为各位同学整理了提高考研数学成绩的三个技巧,供大家参考,希望能对大家复习备考有帮助!考研数学复习是建立在对基本的东西很深刻的理解的基础上的,单纯多做题可能会多见识一些题型,但对于一些很灵活有新意的题目就可能无法应对,这和点石成金的故事是一样的道理。
而这种能力的培养却来自于老老实实地将基础打牢,这一点上要摒弃那种急功近利的想法,不论是考研还是成就一番事业,要想成功,首先要沉得住气,有一个长远的打算,而不是做一天算一天,同时要善于控制事情发展的节奏,不论太快抑或太慢都不好,你都得去考虑为什么会这样,怎样去解决。
一个人不论处于顺风还是逆风,都要学会不断的去跟自己出难题,不断地去反省自己,自己主动把握自己的命运,他才能最后成功。
在忙碌的考研复习中,或许你正在忙于大量的复习知识,或许你已投入无尽的题海,或许你还在为一道道题而苦恼,或许你还在因为复习不见成效而沮丧。
但是,不知忙于埋头复习的你有没有发现,不是你的能力不够强,而是你对如何复习还不熟练。
我们的最终目的是提高复习效果,提高复习效果的途径大致可以分为两种:一是调整数学整体的素质和能力,更好的驾驭考研;二是理解复习的每一个环节,掌握复习方法,将自己已有的潜能和水平发挥到极致。
很多同学对渐近线的求法不是很清楚,容易在求解的过程中出现遗漏。
下面我们就重点说一下渐近线的求法。
把握良好的进取心态,将长久以来复习的知识融会贯通,力争在最后的战场上保持做题的最佳能力,合理利用时间调整自己,切忌心烦气躁,忧心忡忡,让自己在最后的拼搏中赢得最后的胜利。
最后祝愿大家考研取得好成绩!凯程考研:凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
考研数学一真题解析 2005
,即
方法二:排除法
以2阶方阵为例,设
,则
由此可见,交换的第1列与第2列得,排除ABD,选C
(13)设二维随机变量 的概率分布为
X
Y
0
1
0
0.4
1
已知随机事件
与
0.1 相互独立,则
(A)
(B)
(C)
(D)
【考点分析】:二维离散型随机变量的概率分布,事件独立性定义
【求解方法】:由二维随机变量概率和为1和事件
是偶函
数
(C) 是周期函数
是周期函数 (D) 是单调函数
是单
调函数
【考点分析】:函数的奇偶性、周期性、单调性与其原函数奇偶 性、周期性、单调性的关系 【求解过程】:
方法一:排除法 令,显然是偶函数,但不是奇函数,排除B 令,显然是周期函数,但不是周期函数,排除C 令,显然是单调函数,但不是单调函数,排除D
其中为常数,所以有,即证。 (2)由(1),有,又
所以在右半平面上有
(5.19)
(5.20)
(5.21)
解得。 (20) 已知二次型的秩为. (1)求的值 (2)求正交变换,把化成标准型 (3)求方程的解 【考点】二次型与矩阵 【思路】先列出对应该二次型的矩阵,根据秩为2的条件即可求得第
一问,第二问只需将系数矩阵对角化,第三问可以在第二问的基础上先 求出标准型的解再用变换得到 的解
【考点】曲线积分
【思路】对第一问,为了应用题目给的条件,考虑过上的任意两点 作过原点的分段光滑曲线曲线,且将分成两个部分,即可用所给的条件 证明。第二问只需应用第一问的条件,令解关于的微分方程即可。
【题解】(1)如上一部分所述,作如图所示的分段光滑曲线,则 有
武忠祥教授高等数学考研第二三章
x
lim
______.
x0 f ( x02x) f ( x0 x)
【1】
【例 2】(2011年2,3)已知 f ( x) 在 x 0 处可导,且 f (0) 0,
则
lim
x0
x2
f
(
x) 2 x3
f
(
x3
)
(A) 2 f (0).
(B) f (0).
(C) f (0).
(D) 0.
【例3】(2013年,1)设函数 y f ( x) 由方程 y x e x(1 y)
2) ( x ) x 1
3) (a x ) a x ln a
5) (loga
x)
1 x lna
7) (sin x) cos x
4) (e x ) e x 6) (ln x ) 1
x 8) (cos x) sin x
9) (tan x) sec2 x
10) (cot x) csc2 x
第二章 导 数 与 微 分
2023最新整理收集 do
something
考试内容概要
(一)导数与微分的概念
1. 导数的概念
定义1(导数)
f ( x0 )
lim y lim x0 x x0
f ( x0 x) x
f ( x0 )
f ( x0 )
lim
x x0
f (x) x
f ( x0 ) x0
f ( x0 ) 0 定理9(极值的第一充分条件)
设 f ( x) 在 U( x0 , ) 内可导,且 f ( x0 ) 0(或 f ( x) 在 x0 处连续)
(1)若 x x0 时, f ( x) 0; x x0 时, f ( x) 0, 则 f 在 x0 处取极大值.
2012考研数学三【解析版】【无水印】
f ′(1) f ( f (x))
ln
f (x), f (x) ≥ 1 ,而 f (x) ≥ 1 ⇔ x ≥ e2 ,
2 f (x) −1, f (x) < 1
f (x) < 1 ⇔ x < e2
所= 以 y
f ( f= (x))
ln
f (x), x ≥ e2 =
0 0 c3 + c4
−1 1 =(c3 + c4 ) 。 c4
由于 c1, c2 , c3, c4 为任意常数,所以α1,α3,α4 线性相关。故应选(C)。
(6)【答案】B
1 0 0
【分析】考查矩阵的运算。将
Q
用
P
表示,即
Q
=
P
1
1
0
,然后代入计算
0 0 1
即可。
1 0 【详解】由于 P = (α1,α2 ,α3 ) ,所以 Q = (α1 + α2 ,α2 ,α3 ) = P 1 1
±1 ,又因为 lim y x→1
=
lim
x→1
x2 + x x2 −1
=
∞,
= lim y x→−1
xl= →im−1 xx22 +−1x
1 ,所以该曲线只有一条铅直渐近线; 2
斜渐近线:
因= 为 lim y x→∞
lxi= →m∞ xx22 +−1x
1 ,所以该曲线没有斜渐近线。
故应选(C).
(2) 【答案】A
【分析】本题考查全微分的概念与多元函数连续的定义。
【详解】由于 lim f (x, y) − 2x + y − 2 = 0 ,,所以 lim[ f (x, y) − 2x + y − 2] =0
考研数学二重点
高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显着性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验最后冲刺很多同学在做模拟题,提醒大家要学会思考着去做题。
考研数学一高等数学模拟试卷291_真题(含答案与解析)-交互
考研数学一(高等数学)模拟试卷291(总分50, 做题时间90分钟)选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f'(0)=0,且( 一1)f"(x)一xf'(x)=e x一1,则下列说法正确的是SSS_SINGLE_SELA f(0)不是f(x)的极值,(0,f(0))不是曲线y=f(x)的拐点.B f(0)是f(x)的极小值.C (0,f(0))是曲线y=f(x)的拐点.D f(0)是f(x)的极大值.分值: 2答案:B解析:(Ⅰ)由条件=1及f'(x)在x=0连续即知(x)=f'(0)=0.用洛必达法则得.因(x)=f"(0),若f"(0)≠0,则J=∞,与J=1矛盾,故必有f"(0)=0.再由f"'(0)的定义得→ f"'(0)=2.因此,(0,f(0))是拐点.选C.(Ⅱ)已知f'(0)=0,现考察f"(0).由方程得又f"(x)在x=0连续→f"(0)=3>0.因此f(0)是f(x)的极小值.应选B.解答题解答应写出文字说明、证明过程或演算步骤。
1.求曲线y= +ln(1+e x )的渐近线方程.SSS_TEXT_QUSTI分值: 2答案:正确答案:只有间断点x=0,因+ln(1+e x)]=∞,故有垂直渐近线x=0.又因此,x→+∞时有斜渐近线y=x.最后,+ln(1+ex )]=0+ln1=0,于是x→一∞时有水平渐近线y=0.2.运用导数的知识作函数y=x+的图形.SSS_TEXT_QUSTI分值: 2答案:正确答案:求渐近线.只有两个间断点x=±1.=±∞,则x=1为垂直渐近线.又=±∞,则x=一1也是垂盲渐沂终.又所以y=x是斜渐近线,无水平渐近线.综上所述,作函数图形如图4.7所示.3.在椭圆=1内嵌入有最大面积的四边平行于椭圆轴的矩形,求该矩形最大面积.SSS_TEXT_QUSTI分值: 2答案:正确答案:设椭圆内接矩形在第一象限中的顶点为M(x,y),则矩形的面积为S(x)=4xy=(0≤x≤a).下面求S(x)在[0,a]上的最大值.先求S'(x):令S'(x)=0解得x=,因S(0)=S(a)=0,S()=2ab,所以S(x)在[0,a]的最大值即内接矩形最大面积为2ab.4.在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?SSS_TEXT_QUSTI分值: 2答案:正确答案:设外切圆锥体的底半径为r,高为h.见图4.8,记∠ABO=φ,则tanφ=,于是圆锥体体积为求V(r)的最小值点等价于求f(r)=的最小值点.由于5.设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0a f(x)dx+∫b g(x)dx=ab,其中g(x)是f(x)的反函数.SSS_TEXT_QUSTI分值: 2答案:正确答案:令F(a)=∫0a f(x)dx+∫f(a) g(x)dx—af(a),对a求导得F'(a)=f(a)+g[f(a)]f'(a)一af'(a)一f(a),由题设g(x)是f(x)的反函数知g[f(a)]=a,故F'(a)=0,从而F(a)为常数.又F(0)=0,故F(a)=0,即原等式成立.解析:即证对a有函数恒等式∫0a f(x)dx+∫f(a) g(x)dx=af(a)成立.6.设f(x)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x)≥f'(x)(x>0),求证:f(x)≡0.SSS_TEXT_QUSTI分值: 2答案:正确答案:由f'(x)一f(x)≤0,得e -x [f'(x)一f(x)]=[e -x f(x)]'≤0.又f(x)e -x|x=0 =0,则f(x)e -x≤f(x)e -x|x=0=0.进而f(x)≤0(x∈[0,+∞)),因此f(x)≡0( x∈[0,+∞)).解析:因f(x)≥0,若能证f(x)≤0,则f(x)≡0.因f(0)=0,若能证f(x)单调不增或对某正函数R(x),R(x)f(x)是单调不增的,这只需证f'(x)≤0或[R(x)f(x)]'≤0.由所给条件及积分因子法的启发,应采取后一种方法.7.证明函数f(x)=(1+2 x在(0,+∞)单调下降.SSS_TEXT_QUSTI分值: 2答案:正确答案:下证2 x ln2 x一(1+2 x )ln(1+2 x )<0( x>0).令t=2 x,则x>0时t>1, 2 x ln2 x一(1+2 x )ln(1+2 x )=tlnt一(1+t)ln(1+t) g(t).由于g'(t)=lnt—ln(1+t)<0( t>0)→g(t)在(0,+∞)单调下降,又g(t)=0→ g(t)<0 (t>0).8.设f(x)在(a,b)四次可导,x0∈(a,b)使得f"(x)=f"(x)=0,又设f (4) (x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.SSS_TEXT_QUSTI分值: 2答案:正确答案:由f (4) (x)>0(x∈(a,b)),知f"(x)在(a,b)单调上升.又因f"'(x0 )=0,故 f"'(x) 从而f"(x)在[x,b)单调上升,在(a,x]单调下降.又f"(x0 )=0,故f"(x)>0(x∈(a,b),x≠x),因此f(x)在(a,b)为凹函数9.设y=y(x)是由方程2y 3—2y 2 +2xy一x 2 =1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?SSS_TEXT_QUSTI分值: 2答案:正确答案:(Ⅰ)先用隐函数求导法求出y'(x).将方程两边对x求导得 6y 2 y'一4yy'+2xy'+2y一2x=0,整理得 y'= .① (Ⅱ)由y'(x)=0及原方程确定驻点.由y'(x)=0得y=x代入原方程得 2x 3一2x 2 +2xx一x 2 =1,即 x 3一x 2 +x 3一1=0, (x一1)(2x 2 +x+1)=0.仅有根x=1.当y=x=1时,3y 2—2y+x≠0.因此求得驻点x=1.(Ⅲ)判定驻点是否是极值点.将①式化为(3y 2—2y+x)y'=x一y.② 将②式两边对x在x=1求导,注意y'(1)=0,y(1)=l,得 2y"(1)=1,y"(1)= >0.故x=1是隐函数y(x)的极小值点.10.求函数y=(x∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.SSS_TEXT_QUSTI分值: 2答案:正确答案:函数y=在定义域(0,+∞)上处处连续,先求y',y",和它们的零点及不存在的点.由y'=0得x=1;x=时y"不存在;无y"=0的点.现列下表:因此得y=单调减少区间是(0,1),单调增加区间是(1,+∞),x=1是极小值点,凹区间是是拐点.最后求渐近线.因y==0,所以无垂直渐近线.由于因此只有斜渐近线y=x.11.设a>0,求f(x)=的最值.SSS_TEXT_QUSTI分值: 2答案:正确答案:f(x)在(一∞,+∞)上连续且可写成如下分段函数由此得x∈(一∞,0)时f'(x)>0,故f(x)在(一∞,0]单调增加;x∈(a,+∞)时f'(x)<0,故f(x)在[a,+∞)单调减少.从而f(x)在[0,a]上的最大值就是f(x)在(一∞,+∞)上的最大值.在(0,a)上解f'(x)=0,即(1+a一x) 2一(1+x) 2 =0,得x= .又因此f(x)在[0,a]即在(一∞,+∞)的最大值是.由于f(x)在(一∞,0)单调增加,在(a,+∞)单调减少,又f(x)在[0,a]的最小值f(x)=0,因此f(x)在(一∞,+∞)上无最小值.12.求函数f(x)= (2一t)e -t dt的最值.SSS_TEXT_QUSTI分值: 2答案:正确答案:由于f(x)是偶函数,我们只需考察x∈[0,+∞).由变限积分求导公式得 f'(x)=2x(2一x 2 ) .解f'(x)=0得x=0与x= ,于是从而,f(x)的最大值是f( )=∫02 (2一t)e -t dt=一∫2 (2一t)de -t=(t一2)e -t|02一∫2 e -t dt =2+e -t|2 =1+e -2.由上述单调性分析,为求最小值,只需比较f(0)与f(x)的大小.由于f(x)=∫0 +∞ (2一t)e -t dt=[(t一2)e -t +e -t ]||+∞ =1>f(0)=0,因此f(0)=0是最小值.解析:f(x)的定义域是(一∞,+∞),由于它是偶函数,故只需考虑x∈[0,+∞).求f'(x)和驻点并考察驻点两侧的单调性.由于需要考察f(0)是否为最值,还需讨论极限值f(x).13.在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.SSS_TEXT_QUSTI分值: 2答案:正确答案:过椭圆上任意点(x0,y)的切线的斜率y'(x)满足分别令y=0与x=0,得x,y轴上的截距:于是该切线与椭圆及两坐标轴所围图形的面积(图4.9)为 S(x)= 问题是求:S(x)= πab(0<x<a)的最小值点,其中y= ,将其代入S(x)中,问题可进一步化为求函数f(x)=x 2 (a 2一x 2 )在团区间[0,a]上的最大值点.由f'(x)=2x(a 2—2x2)=0(x∈(0,a))得a 2—2x 2 =0,x=x= .注意f(0)=f(a)=0,f(x0 )>0,故x= 是f(x)在[0,a]的最大值点.因此为所求的点.14.设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf'(x)=f(x)+ ax 2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a 为何值,此图形绕x轴旋转而成的旋转体体积最小?SSS_TEXT_QUSTI分值: 2答案:正确答案:(Ⅰ)首先由xf'(x)=f(x)+ ax 2,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f'(x)一(取其中一个),得ax 2 +Cx,x∈[0,1],其中C为任意常数使得f(x)>0 (x∈(0,1)).(Ⅱ)确定C与a 的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2.由已知条件得2=∫1,则C=4一a.因此,f(x)= ax 2 +(4一a)x,其中a为任意常数使得f(x)>0(x∈(0,1))..又f'(x)=3ax+4一a,由此易知一8≤a≤4时f(x)>0(x∈(0,1)).(Ⅲ)求旋转体的体积.V(a)=π∫1 f 2(x)dx=π∫01ax 2 +(4—a)x] 2dx =π∫1 [ x 4 +x 2—3x 3 )a2 +(12x 3—8x 2 )a+16x 2]dx=π( ).(Ⅳ)求V(a)的最小值点.由于则当a=一5时f(x)>0(x∈(0,1)),旋转体体积取最小值.15.证明:当x>1时0<lnx+ (x一1) 3.SSS_TEXT_QUSTI分值: 2答案:正确答案:对x≥1引入函数f(x)=lnx+ 一2,则f(x)在[1,+∞)可导,且当x>1时从而f(x)在[1,+∞)单调增加,又f(1)=0,所以当x>1时,f(x)>f(1)=0,即lnx+ 一2>0.令g(x)=lnx+ (x—1) 3,则g(x)在[1,+∞)可导,且当x>0时故g(x)在区间[1,+∞)上单调减少,又g(1)=0,所以当x>1时g(x)<g(1)=0,即lnx+ (x一1) 3当x>1时成立.16.当x≥0,证明∫x (t—t 2 )sin 2n tdt≤ ,其中n为自然数.SSS_TEXT_QUSTI分值: 2答案:正确答案:令f(x)=∫x (t—t 2 )sin 2n tdt,则f(x)在[0,+∞)可导,f'(x)=(x一x 2 )sin 2n x.当0<x<1时,f'(x)>0;当x>1时,除x=kπ(k=1,2,3,…)的点(f'(x)=0)外,f'(x)<0,则f(x)在0≤x≤1单调上升,在x≥1单调减小,因此f(x)在[0,+∞)上取最大值f(1).又当t≥0时sint≤t。
2023年考研《数学二》真题及答案【解析版】
一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.y x ln e 1。
曲线的渐近线方程为()x 1A .y =x +eB .y =x +1/eC .y =xD .y =x -1/e1,x 0 22.函数f x 1 x的原函数为()。
x 1 cos x ,x 0ln 1 x 2x ,x 0A .F xx 1 cos x sin x ,x 0 ln 1 x 2x 1,x 0B .F xx 1 cos x sin x ,x 0 ln 1 x 2x ,x 0C .F xx 1 sin x cos x ,x 0 ln 1 x 2 x 1,x 0D .F xx 1 sin x cos x ,x 03.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时()。
A .x n 是y n 的高阶无穷小B .y n 是x n 的高阶无穷小C .x n 是y n 的等价无穷小D .x n 是y n 的同阶但非等价无穷小4.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则a ,b 的取值范围为(A .a <0,b >0B .a >0,b >0C .a =0,b >0D .a =0,b <0)。
2023年考研《数学二》真题及答案【解析版】5.设函数y =f (x )由x 2t t 确定,则()。
y t sin tA .f (x )连续,f ′(0)不存在B .f ′(0)存在,f ′(x )在x =0处不连续C .f ′(x )连续,f ′′(0)不存在D .f ′′(0)存在,f ′′(x )在x =0处不连续6.若函数f1x ln x12。
d x 在α=α0处取得最小值,则α0=()A .1ln ln 2B .-ln (ln2)C .1ln 2D .ln27.设函数f (x )=(x 2+a )e x ,若f (x )没有极值点,但曲线y =f (x )有拐点,则a 的取值范围是()。
考研数学-渐近线
例6.(03-2-10分)设函数
问 为何值时, 在 处连续; 为何值时, 是 的可去间断点.
【答案】 时, 在 处连续 时, 是 的可去间断点
练习
1.(01-2-7分)求极限 ,记此极限为 ,求函数 的间断点,并指出类型.
【答案】 , 是第一类间断点(可去), 是第二类间断点.
(C)既有铅直又有水平渐近线. (D)既有铅直又有斜渐近线.
练习
1.(00-2)曲线 的斜渐近线方程为 .
2.(98-2)曲线 的渐近线方程为 .
3.(04-2)曲线 的渐近线的条数为【B】
(A) 1. (B) 2. (C) 3. (D) 4.
题型5 函数的连续性与间断点(*)
一、基础知识
点连续的定义:
2.设 其中 可导,且 ,则 3.
3. (91-1) ,则 = .
4.(94-4)设方程 确定 是 的函数,则 = .
5.设 有任意阶导数,且 ,则 ( ).
6.设 ,求 .
【答案】
(三)几何意义
例17.(07-2)曲线 上对应于 的点处的法线斜率为
例18.(06-1234)设函数 具有二阶导数,且 , 为自变量 在 处的增量, 与 分别为 在点 处对应的增量与微分,若 ,则【A】
2.(98-34)设函数 ,讨论函数 的间断点,其结论为【B】
(A)不存在间断点. (B)存在间断点 . (C)存在间断点 . (D) 存在间断点 .
题型
一、基础知识
导数的定义 ;
;
.
.
几何意义曲线 在点 处切线的斜率为 .
可微的定义: ,
函数 在点 处可微,
可微、可导及连续之间的关系:
【考研数学】考研数学常考70题型通法
《高等数学部分》题型考点01极限的概念与性质【通用方法】极限与无穷小的关系:00lim (),()(1)x x f x A x x f x A o .题型考点02无穷小的比较(1)高阶无穷小、等价无穷小【通用方法】用定义转化成函数极限的计算问题.(2)无穷小排序【通用方法】利用0()lim0n x f x k x,解得n ,然后排序.题型考点03函数求极限【通用方法】(1)分析:把?x 代入极限,分析类型和化简方法(2)化简:①根式有理化②提公因子③计算非零因子④等价无穷小替换⑤拆分极限存在的项⑥幂指函数指数化⑦变量替换(尤其是倒代换)(3)计算:①洛必达法则②泰勒公式题型考点04极限的反问题(1)已知极限求另一极限【通用方法】加减乘除凑已知极限(2)已知极限求参数【通用方法】7种化简方法、泰勒公式、洛必达法则题型考点05函数的渐近线【通用方法】(1)垂直渐近线:若 )(lim x f ax ,则函数存在渐近线a x ;(2)水平渐近线:若b x f x)(lim ,则函数存在渐近线b y ;(3)斜渐近线:若b kx x f kx x f x x ])([lim )(lim ,则函数存在渐近线b kx y .题型考点06利用单调有界准则求数列极限【通用方法】(1)单调性①计算n n u u 1.若01 n n u u ,则}{n u 单调递增;若01 n n u u ,则}{n u 单调递减.②若)(1n n u f u ,构造函数)(x f ,单调数列应该有0)( x f ,若12u u ,则}{n u 单调递增;若12u u ,则}{n u 单调递减;另外,若0)( x f ,则数列不单调.(2)有界性①数学归纳法②均值不等式题型考点07求n 项和的数列极限【通用方法】①定积分定义②夹逼准则题型考点08判断函数的连续性与间断点【通用方法】①连续的定义②四种间断点的定义题型考点09一个点的导数【通用方法】一个点的导数用定义题型考点10切线方程与法线方程【通用方法】①求00(),()f x f x ②代入切线方程与法线方程.题型考点11各类函数求导(1)反函数求导【通用方法】反函数的导数等于原来函数导数的倒数.(2)复合函数求导【通用方法】从外层往内层逐层求导相乘.(3)隐函数求导【通用方法】把y 看成x 的函数,等式两边直接求导.(4)参数方程求导【通用方法】()()(),()()y t h t y h t y x t x t.(5)变限积分函数求导【通用方法】①设)()(21)()(x x dt t f x F,则)()]([)()]([)(1122x x f x x f x F ;②设xdt t xf x F 0)()(,则)()()()(00x xf dt t f dt t f x x F xx;注:被积函数中含有求导的变量时,要把变量分离出来,再求导.③设xdt t x f x F 0)()(,则令t x u , xdu u f x F 0)()(,)()(x f x F .注:被积函数中含有求导的变量但不能直接分离时,要通过换元分离,再求导.(6)分段函数求导【通用方法】分段函数分段求,分段点处定义求题型考点12求0x 处的n 阶导数【通用方法】利用泰勒公式的唯一性题型考点13判断函数的单调性、极值点与凹凸性、拐点【通用方法】求函数的一阶导数、二阶导数进行判断题型考点14不等式的证明【通用方法】利用单调性证明(1)移项到大于号一边,构造()F x (2)求()()F x F x ,,判断()F x 的单调性(3)找()F x 的最小值点,验证最小值大于等于0.题型考点15方程根的问题【通用方法】①单调性②零点定理题型考点16曲率与曲率半径(仅数一、二要求)【通用方法】曲率公式232)1(y y K,KR 1.题型考点17罗尔定理的证明题【通用方法】(1)证明一阶导等于零(0)( f ),找两个原函数的点相等;(2)证明二阶导等于零(0)( f ),找三个原函数的点相等,或者两个一阶导相等;(3)证明表达式的题目(0)](),(,[ f f G ),思路如下:草稿纸上:① 换成x 把要证明的表达式抄下来;②两边移项,目的是便于积分求原函数注:遇到)(x f 可以把它除到)(x f 下面去,积分为)(ln x f ;③两边积分,目的是构造有用的)(x F 试卷上:令 )(x F ,易知)(x F 在],[b a 上连续,),(b a 内可导,再证明)(x F 两个点相等即可.(4)双介值问题:解题思路:①分离介值,把含不同介值的表达式移到等号两边;②结合(3)的思路,分别使用微分中值定理证明左边C ,右边C 即可注:C 为某常数,需要通过其中一边C ,满足罗尔定理的情况下,求得.另外,若只是证明存在两个介值,则不需要把区间分段;若要求证明存在两个不同的介值,则必须把区间分段,证明介值分别来自两个不同的区间.题型考点18拉格朗日中值定理的证明题【通用方法】找对区间(一般需要将区间等分或者根据第一问提示点将区间分开),在各区间上使用拉氏定理,然后相加相减凑所证结论.题型考点19泰勒中值定理的证明题【通用方法】找对展开点(一般为区间中点或端点),然后写出泰勒展开式,带入端点值,相加相减凑所证结论.题型考点20不定积分的计算【通用方法】①凑微分②去根号③分部积分④有理函数积分题型考点21定积分的计算【通用方法】①牛顿莱布尼兹公式②定积分的换元法③区间再现④分段函数分段积分⑤含抽象函数的积分使用分部积分题型考点22积分不等式的证明【通用方法】①转化为函数不等式,利用单调性证明②积分中值定理题型考点23含变限积分函数的等式方程【通用方法】①初值②求导题型考点24反常积分的计算【通用方法】在瑕点处拆开,直接按定积分计算.题型考点25反常积分敛散性的判定【通用方法】根据比较审敛法的极限形式,与P 积分进行比较判断.题型考点26定积分的几何应用【通用方法】微元法(1)求平面图形的面积① dxx y x y S ba121② d r S2221③dtt t ydx S ba3(2)求旋转体的体积① dxx fV bax2②bay dxx xf V2③d y V Dx(3)求平面曲线的弧长d r r dt t y t x dxx y ds 222221(仅数一、二要求)(4)求旋转体的侧面积ydsd S 2 侧(仅数一、二要求)题型考点27定积分的物理应用(仅数一、二要求)【通用方法】微元法(1)变力沿曲线做功①FSW ②maF (2)静水侧压力①PS F ②ghP(3)引力问题①221r m m GF 万②221r Q Q kF 库题型考点28微分方程的求解【通用方法】根据各类微分方程的固定求解步骤进行即可.(1)一阶微分方程①可分离变量的方程②齐次方程③一阶线性微分方程(2)可降阶的微分方程①不显含y 的微分方程②不显含x 的微分方程(3)二阶常系数线性微分方程①二阶常系数线性齐次方程②二阶常系数线性非齐次方程(4)伯努利方程、欧拉方程(仅数一)通过换元化为常见方程求解题型考点29微分方程的物理应用(仅数一、二要求)【通用方法】从问题出发,找两个变量,列微分方程.题型考点30多元复合函数求偏导【通用方法】①画出复合函数关系图②从外往内逐层求偏导题型考点31多元隐函数求偏导【通用方法】①直接求②公式法③一阶微分形式不变性(全微分法)题型考点32偏积分【通用方法】注意对x 积分时加)(y C ,对y 积分时加)(x C .题型考点33多元函数极值【通用方法】①令偏导数等于0解得驻点②根据充分条件判断极值题型考点34多元函数条件极值【通用方法】①代入法②拉格朗日乘数法题型考点35多元函数求闭区域上的最值【通用方法】①开区域内求极值②边界上求条件极值③比大小题型考点36各类积分比大小【通用方法】①不等式性质②对称性③格林公式、高斯公式(仅数一)题型考点37二重积分的计算【通用方法】①画D②观察对称性③选择坐标系和积分次序④化为累次积分计算题型考点38数项级数敛散性的判断(仅数一、三)【通用方法】(1)正项级数①比较审敛法(极限形式)②比值(根植)审敛法(2)交错级数①加绝对值后判断是否绝对收敛②莱布尼兹判别法(3)一般级数①加绝对值后判断是否绝对收敛②级数敛散性的性质题型考点39幂级数的收敛域及和函数(仅数一、三)【通用方法】(1)收敛域比值法(2)和函数逐项积分,逐项求导(3)函数展开成幂级数①逐项积分,逐项求导②常见泰勒级数题型考点40函数展开成傅里叶级数(仅数一)【通用方法】(1)周期为 2的傅里叶级数①10sin cos 2~)(n n n nx b nx a a x f ,其中,2,1,sin )(1,)(1,2,1,cos )(1n nxdx x f b dx x f a n nxdx x f a n n.②余弦级数若)(x f 为偶函数,则10cos 2~)(n n nx a a x f ,其中.0,)(2,2,1,cos )(200n n b dx x f a n nxdx x f a③正弦级数若)(x f 为奇函数,则1sin ~)(n nnx bx f ,其中,2,1,sin )(2,2,1,0,00n nxdx x f b n a n n(2)周期为l 2的傅里叶级数10sincos 2~)(n n n lxn b l x n a a x f ,其中 l l n l l n dx lxn x f l b dx l x n x f l a sin )(1,cos )(1.(3)狄里克雷收敛定理设)(x f 是周期为 2的可积函数,且满足①)(x f 上],[ 连续或只有有限个第一类间断点;②)(x f 上],[ 只有有限个单调区间,则)(x f 的以 2为周期的傅里叶级数收敛,且2)0()0()(000x f x f x S .题型考点41空间解析几何(仅数一)【通用方法】(1)平面与直线①平面点法式②直线点向式(2)曲面与曲线①旋转曲面轨迹法②投影曲线消元法(3)空间曲面的切平面与空间曲线的切线①曲面的法向量),,(z y x F F F ②曲线的切向量))(),(),((t z t y t x 或))(),(,1(x z x y 等.题型考点42三重积分的计算(仅数一)【通用方法】①投影法②截面法③柱面坐标④球面坐标题型考点43曲线积分的计算(仅数一)【通用方法】(1)第一类曲线积分①对称性②参数法(2)第二类曲线积分①对称性②参数法③积分与路径无关④格林公式题型考点44曲面积分的计算(仅数一)【通用方法】(1)第一类曲面积分①对称性②一投二代三计算(2)第二类曲面积分①对称性②一投二代三定号③轮换投影法④高斯公式题型考点45多元积分学的应用(仅数一)【通用方法】(1)质心、形心①质心横坐标D Dd y x f d y x xf x),(),(;dVz y x f dV z y x xf x ),,(),,(;LL dsy x f ds y x xf x ),(),(;dSz y x f dS z y x xf x ),,(),,(.②形心横坐标(数二、三的同学要求掌握平面图形的形心)DDd xd x;dVxdV x ;L Ldsxds x ;dSxdSx .(2)转动惯量2mr I 题型考点46场论公式(仅数一)【通用方法】(1)方向导数①定义),()cos ,cos (lim 00000y x f y x f l.②可微函数cos cos y x f f l.(2)梯度),(),(y x f f y x gradf (3)散度zR y Q x P A div(4)旋度Qy j A rot题型考点47经济学应用(仅数三)【通用方法】(1)边际)(x f dxdy(2)弹性xdx y dy E yx《线性代数部分》题型考点01数值型行列式的计算【通用方法】边化零,边展开题型考点02抽象行列式的计算【通用方法】①化为乘法②特征值的乘积题型考点03方阵的幂【通用方法】(1)找规律(2)若1)( A r ,则A A 1n nl,其中)(A tr l .(3)若1A P ΛP ,则P ΛP A nn1.题型考点04矩阵的秩【通用方法】①化行阶梯形②利用秩的9个结论题型考点05具体方程组的求解【通用方法】①化行阶梯形②化行最简形③写出同解方程组④写出通解题型考点06抽象方程组的求解【通用方法】解的结构(1)齐次方程组的基础解系:①是解②无关③个数()n r A (2)非齐次方程组的通解: 通通特非齐非题型考点07向量组的线性相关性【通用方法】①秩②定义题型考点08向量组的线性表示【通用方法】①秩②定义题型考点09向量组的极大无关组【通用方法】①部分组②无关③个数()r A .题型考点10相似对角化【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)令123(,,) P ααα,则1P AP Λ.题型考点11正交变换法化二次型为标准形【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)正交化得:123,,βββ;(4)单位化得:123,,γγγ;(5)令123(,,) Q γγγ,则在正交变换x y Q 下,二次型的标准形为222112233y y y .题型考点12配方法化二次型为标准形【通用方法】①优先配交叉项少的变量②所用变换必须为可逆变换题型考点13二次型的正定型【通用方法】等价条件:①0,0Tx x x A ;②特征值均大于0;③正惯性指数为n ;④顺序主子式均大于0.《概率统计部分》题型考点01概率计算公式【通用方法】(1)加法公式()P A B C 加奇减偶(2)减法公式()()()P AB P A P AB (3)乘法公式()(|)()(|)()P AB P A B P B P B A P A (4)条件概率()(|)()P AB P A B P B(5)全概率公式1()(|)()nk k k P A P A B P B (6)贝叶斯公式(|)()(|)()k k k P A B P B P B A P A题型考点02概率密度与分布函数【通用方法】(1)概率密度①()1f x dx;(,)1xoyf x y d ②()0f x ;(,)0f x y (2)分布函数①规范性()0,()1F F ②右连续性00(0)()F x F x ③单调不减性题型考点03常见分布【通用方法】题型考点04二维连续型随机变量的分布【通用方法】(1)边缘概率密度()(,),()(,)X Y f x f x y dy f y f x y dx(2)条件概率密度(,)()()X Y Y f x y f x y f y(3)独立性若(,)()()X Y f x y f x f y ,则,X Y 独立(4)事件概率{(,)}(,)DP X Y D f x y d题型考点05随机变量函数的分布【通用方法】(1)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导(2)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导公式法:()(,(,))Z y f z f x y x z dx z(3)离散型+连续型随机变量函数的概率密度分布函数法:①定义②代入③全概率公式④讨论⑤求导题型考点06数字特征【通用方法】(1)随机变量的数字特征①期望 取值概率②方差性质化简,公式计算③协方差性质化简,公式计算④相关系数性质化简,公式计算(2)统计量的数字特征①E X EX②1D X DX n③2ES DX④2()E n n⑤2()2D n n题型考点07二维正态分布的性质【通用方法】若221212(,)~(,;,;)X Y N ,则:(1)边缘分布都是服从一维正态分布,即 221122~,,~,X NY N .(2)X 和Y 任意的非零线性组合aX bY 服从一维正态分布.(3)X 和Y 相互独立的充要条件是相关系数0 .(4)若12,Z Z 是,X Y 的非零线性组合,则 12,Z Z 也服从二维正态分布.题型考点08三大抽样分布【通用方法】(1)2分布:222212()nn X X X (2)F 分布:22()(,)()m mF m n n n(4)t 分布:()t n(5)若12,,,n X X X 为来自正态总体2~(,)X N 的简单随机样本,则:~(0,1)X N②222(1)~(1)n S n ~(1)X t n 题型考点09点估计【通用方法】(1)矩估计总体的矩等于样本的矩(2)最大似然估计①离散型1()()n i i L P X X ;1()ln(())ni i LnL P X X ②连续型1()()ni i L f x ;1()ln(())ni i LnL f x 题型考点10估计量的评选标准【通用方法】(1)无偏性 ()E(2)有效性若 12()()D D ,则 1 比 2更有效(3)一致性P。
2012年考研数学一真题解析
2012年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线221x xy x +=-渐进线的条数(A )0 (B)1 (C)2 (D)3【考点分析】:曲线的渐近线条数。
【求解过程】:C⏹ 方法一:利用函数图像的平移,将已知的函数的渐近线条数转化为简单的基本函数的渐进线条数。
由于22(1)111(1)(1)11x x x x x y x x x x x ++====+--+--, 可知,221x x y x +=- 的图像是由1y x=的图像向由右平移一个单位,再向上平移一个单位所得。
由于图像平移并不改变其渐进线的条数。
1y x=有两条渐进线,其中一条为水平渐近线0y =,一条为垂直渐近线0x =。
所以221x xy x +=-也有两条渐近线,选择C 。
【相关补充】:函数平移口诀:上加下减,左加右减。
例如,把函数()y f x =依次做以下四次的平移:(1)向上平移1个单位,(2)向下平移2个单位(3)向左平移1个单位(4)向右平移2个单位。
则新函数的解析式为(12)12(1)1y f x f x =+-+-=--。
⏹ 方法二:直接求解函数的渐近线。
因为 22lim 1,1x x xx →∞+=- 所以1y = 为水平渐进线。
又由于有水平渐进线,所以一定不存在同一趋向下的斜渐进线。
又因为221lim ,1x x xx →+=∞-所以1x =为垂直渐进线。
综上所述,221x xy x +=-也有两条渐近线,选择C 。
【相关补充】:斜渐进线的求解步骤:1) 考察是否有lim ()x f x →±∞=∞?若是,则转2)2) 考察是否有()limx f x a x→±∞=(常数)?,若是,则转3) 3) 是否有lim[()]x f x ax b →±∞-=存在?若是,则()y f x =有斜渐进线y ax b =+,上述任何一个步骤中,若否,则无斜渐进线。
中公考研培训之浅析如何求函数的渐近线
浅谈如何求函数的渐近线曲线的渐近线是我们考研数学必考的内容,它属于函数极限的应用部分的内容,今天我们就通过例题去求解如何函数的三类渐近线。
一、曲线的三类渐进线1、铅直渐近线)(lim )(lim x f x f cx c x +-→→与中至少有一个是无穷大,则称c x =为曲线)(x f y =的铅直渐近线.2、水平渐近线若b x f b x f x x ==+∞→-∞→)(lim )(lim 或,其中b 为常数,则称b y =为曲线)(x f y =的水平渐近线.注:水平渐近线0x x =一般都是函数)(x f 的表达式中分母为零的点。
3、斜渐近线若()lim x f x k x →-∞=存在且不为零,同时lim [()]x f x kx b →-∞-=也存在(或()lim x f x k x→+∞=存在且不为零,同时lim[()]x f x kx b →+∞-=存在),则称y kx b =+为曲线)(x f y =斜渐近线.注:(1)若0=k ,则斜渐近线变成水平渐近线。
(2)在趋于同一方向时,水平渐近线与斜渐近线不共存。
(3)若∞=k ,则无斜渐近线。
典型例题例1、(2012年真题)曲线122-+=x x x y 的渐近线条数为()(A)0(B)1(C)2(D)3解析:应选(C)因为11lim 22=-+∞→x x x x ,所以1=y 为曲线122-+=x x x y 的水平渐近线。
又因为∞=-=+-+=-+→→→1lim )1)(1()1(lim 1lim 11221x x x x x x x x x x x x ,211lim )1)(1()1(lim 1lim 11221-=-=+-+=-+→→→x x x x x x x x x x x x 所以1=x 为曲线122-+=x x x y 的垂直渐近线。
例2、(2005年真题)曲线122+=x x y 的斜渐近线为解析:应填412-=x y 因为21)12(lim )(lim 2=+==∞→∞→x x x x x f k x x 且412)(lim -=⎥⎦⎤⎢⎣⎡-=∞→x x f b x 所以曲线122+=x x y 斜渐近线为412-=x y 。
2020年考研《数学(二)》各题考点分析
xx考研《数学(二)》各题考点分析一、选择题部分:前6题是高等数学部分内容:第1题,是关于高等数学第一章的无穷小量比阶数的问题,这类题在之前的考研试题中是经常出现的,这里就要求同学们一定要在我们学第一部分内容极限的时候,把有关等价无穷小量给看一看,特别是我们通过泰勒公式总结出来的那几个常用的等价无穷小量的替换,若是同学把我们之前讲过的这种等价无情小量替换,那么这题还是可以轻松过的。
第2题是有关原函数的问题,这部分是要知道原函数的概念的,别切要求我们知道哪些函数一定有原函数(连续函数),哪些函数一定没有原函数的(含有可去、跳跃、无穷间断点的函数)。
第3题是关于一元函数积分学中的反常积分判别收敛问题,这部分是要求我们会计算反常积分和判别其收敛性的,关于反常积分的计算就把它当做定积分来计算即可,最把端点这取极限。
第4题是关于拐点和极值点的问题,此类题型我们在之前是做过的,这种给你某函数的图形问题来做题的,一定要对拐点、极值点以及渐近线问题做一个系统的总结,这样你自己会对这一部分内容有个深刻的了解,这样以后再做这种题目的时候能够很快的找到突破口,来处理相关的问题。
关于间断点、极值点、拐点以及渐近线是我们常考的小题型,希望同学们能够熟练掌握。
第5题考查的是曲率问题,此类问题属于边角问题,需要同学们在考试前一定要熟记曲率的公式,以及去曲率半径个求法等。
难度不大,主要是记忆不太方便,容易忘,这个很正常。
反复的去记住这些公式,考试时有时便会派上用场。
第6题选择题主要考察了多元函数偏导数的计算问题,本题数一般题型,算是比较基础的内容了,这个考生同学们一点那个要会。
选择题的后面两题是关于线性代数部分的内容:第7题是有关矩阵相似的问题,这题我们利用相似定义很快便可得出答案选C,关于矩阵相似的问题我们已经做过很多练习了,相对而言本题还是容易判别的。
第8题是有关二次型的问题。
一直一个一般二次型,其中有参数,结合二次型中的正负惯性指数来出题的,我们之地,求正负惯性指数可以通过配方法来做,也可以通过求其二次型矩阵的特征值来做。
考研数学高等数学知识点总结渐近线
考研数学高等数学知识点总结渐近线高等数学中的渐近线是指一条曲线无限靠近于一个直线或双曲线,但是永远不会与其相交的特殊情况。
渐近线是数学中的一种重要概念,在图像的研究和计算中有着广泛的应用。
本文将对高等数学中关于渐近线的知识点进行总结。
一、水平渐近线水平渐近线是指曲线在无穷远处与水平轴趋于平行的直线。
设曲线的方程为y=f(x),如果满足以下条件之一,则水平线y=b为曲线的水平渐近线:1.当x趋于正无穷时,f(x)趋于b;2.当x趋于负无穷时,f(x)趋于b。
二、垂直渐近线垂直渐近线是指曲线在无穷远处与垂直轴趋于平行的直线。
设曲线的方程为y=f(x),如果满足以下条件之一,则直线x=a为曲线的垂直渐近线:1.当x趋于a时,f(x)趋于正无穷或负无穷;2.当x趋于a时,f(x)不存在。
三、斜渐近线斜渐近线是指曲线在无穷远处与一倾斜直线趋于平行的情况。
设曲线的方程为y=f(x),如果直线y=kx+b是曲线的渐近线,则满足以下条件之一:1. 当x趋于正无穷时,f(x)/(kx+b)趋于1;2. 当x趋于负无穷时,f(x)/(kx+b)趋于1斜渐近线的方程可以通过以下步骤求解:1. 设y=kx+b为斜渐近线的方程,其中k为斜率,b为截距;2. 将y=f(x)除以kx+b,然后令x趋于无穷大,求出极限值;3. 如果极限存在且等于1,则直线y=kx+b为曲线的斜渐近线。
需要特别注意的是,对于有理型函数,可以通过分别求出x趋于正无穷和负无穷时的极限来确定斜渐近线。
而对于无理型函数,则需要进行等价有理化处理,再进行求解。
四、渐进性质除了渐近线的分类和求解方法,还有一些与渐近线相关的重要性质:1.渐近线的位置是相对的,同一曲线可能存在多条水平、垂直或斜渐近线;2.渐近线仅是曲线在无穷大处的近似趋势,不代表曲线上的每一点都与渐近线相距无限远;3.渐近线的存在是曲线的特殊性质,不同曲线的渐近线的形状和位置都有所不同。
以上就是对高等数学中关于渐近线的知识点的总结。
考研数学历年真题(1987-1997)年数学二
1997 年全国硕士研究生入学统一考试(数学二)一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)已知()()==⎪⎩⎪⎨⎧=≠=-a x x a x xosx x f x 处连续,则,在,,0002_____________.(2)设则,11ln2xxy +-==''=0x y _____________.(3)()=-⎰x x dx4_____________.(4)设=++⎰+∞284x x dx_____________.(5)已知向量组)2,5,4,0(,0,0,21,12,132,1--==-=ααα),(),(t 的秩为2,则t =_____________. 二、选择题 1.设n x xx e e x 与时,-→tan ,0是同阶无穷小,则n 为( )(A )1(B )2(C )3(D )4(2)设在区间[,]a b 上()0,()0,()0.f x f x f x '''><>记1231(),()(),[()()](),2b a S f x dx S f b b a S f a f b b a ==-=+-⎰则( ) (A)123S S S << (B) 231S S S << (C)312S S S <<(D)213S S S <<(3)已知函数()x f y =对一切x 满足()()()()则若,00,1][3002≠='-='+''-x x f e x f x x f x x( )(A)()()的极大值是x f x f 0 (B)()()的极小值是x f x f 0(C)())的拐点(是,x f y x f x =)(00(D)()()()()的拐点也不是曲线的极值,不是x f y x f x x f x f =)(,000 (4)设2sin ()e sin ,x t xF x tdt π+=⎰则()F x ( )(A)为正常数(B)为负常数(C)恒为零(D)不为常数(5).设()()()为则][,0,0,,0,20,22x f g x x x x x f x x x x x g ⎪⎩⎪⎨⎧⎩⎨⎧≥-<=>+≤-=( ) (A )⎧<+0,22x x(B )⎧<-0,22x x1996 年全国硕士研究生入学统一考试(数学二)一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设='+==-0x 322y ,)(则x e x y _____________.(2)=-+⎰-dx x x 21121)(_____________.(3)微分方程的052=+'+''y y y 通解为_____________.(4)=⎥⎦⎤⎢⎣⎡+-+∞→)11ln(sin )31ln(sin lim x x x x _____________.(5)由曲线22,1==+=y x x y 及所围图形的面积=S _____________.(2)设函数()x f 在区间),(δδ-内有定义,若当),(δδ-∈x 时,恒有()0,2=≤x x x f 则必是()x f 的( ) (A)间断点(B)连续而不可导的点 (C)可导的点,且0)0(='f(D)可导的点,且()00≠'f(3)设)(x f 处处可导,则( )(A)()()-∞='-∞=-∞→-∞→x f x f x x lim ,lim 必有当(B)()()-∞=-∞='-∞→-∞→x f x f x x lim ,lim 必有当(C)()()+∞='+∞=-∞→-∞→x f x f x x lim ,lim 必有当(D)()()+∞=+∞='-∞→-∞→x f x f x x lim ,lim 必有当(4)在区间0cos 2141=-+∞+∞-x x x )内,方程,(( ) (A)无实根 (B)有且仅有一个实根 (C)有且仅有两个实根(D)有无穷多个实根(5).设),()()()(],[)(),(x g y m m x f x g b a x g x f =<<,由曲线为常数上连续,且在区间b x a x x f y ===及),(所围平面图形绕直线m y =旋转体体积为( ) (A )⎰-+-badx x g x f x g x f m )]()()][()(2[π(B )⎰---badx x g x f x g x f m )]()()][()(2[π(C )⎰-+-bdx x g x f x g x f m )]()()][()([π(D )⎰---bdx x g x f x g x f m )]()()][()([π(1)计算.12102dx e n x ⎰--(2)求.sin 1⎰+x dx(3)设⎪⎩⎪⎨⎧==⎰,)]([,)(2202t f y du u f x t其中)(u f 具有二阶导数,且.,0)(22dx y d u f 求≠(4)求函数011)(=+-=x xxx f 在点处带拉格朗日型余项n 阶泰勒展开式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数的渐近线是考研数学中经常出现的一个考点,这个知识点不难理解和掌握,考生只要将这个知识点适当加以梳理和练习,就可以稳拿这类考题的分数,但有些考生,由于复习过程中的疏忽和遗漏,没有将这个知识点理解透彻,结果导致丢失这部分分数,实为遗憾。为了帮助各位考生掌握好求函数渐近线的方法,文都考研辅导老师在这里向大家介绍函数渐近线的基本含义、类型和计算时应注意的相关问题,供各位考生参考。
典型例题:
例1.曲线 的渐近线的条数为()
(A) 0 (B) 1 (C) 2 (D) 3
解析:∵ 为函数的间断点,且 ,∴ =1为垂直渐进线,而 ,故 不是渐进线,又∵ ,∴ =1为水平渐近线。函数没有斜渐近线,选(C)
例2.下列曲线中有渐近线的是()
(A) (B)
(C) (D)
解析:∵ , =0,∴y=x是y=x+ 的斜渐近线,选(C)
函数(曲线)渐近线的定义:
设点 为函数 对应曲线上的动点,若当点 无限远离原点时, 到直线L的距离趋于0,则称直线L为此函数(或曲线)的一条渐近线。
函数(曲线)渐近线的类型:
1)水平渐近线:若 存在,或 与 二者之一存在,则称直线 为函数 的水平渐近线。
2)铅直(或垂直)渐近线:若 ,或 与 二者之一成立,则称直线 为函数 的铅直(垂直)渐近线。
3)斜渐近线:若 , ,或 与 、 与 ,这二者之一成立,则称 为函数 的斜渐近侧的,也可能是单侧的。若上面极限只是在单个方向上存在(+∞或-∞,左极限或右极限),则渐近线是单侧的,否则是双侧的。
2)求铅直渐近线时,首先要找出函数的间断点,然后判断 或 、 是否成立,若有一个成立,则 为函数 的铅直(垂直)渐近线。
例3.曲线 的渐近线的条数为()
(A) 0 (B) 1 (C) 2 (D) 3
解析: ,∴ =0为垂直渐进线;又 ,∴ =0为水平渐近线;由 , = = ,得知 为斜渐近线,选(D)
上面就是考研数学中关于函数(曲线)渐近线这类问题的求解方法,供考生们参考借鉴。在以后的时间里,文都考研辅导老师还会陆续向考生们介绍考研数学中其它重要题型的解题方法,希望各位考生留意查看。最后预祝各位学子在2015考研中取得佳绩。