立体几何中的截面问题
立体几何中的截面问题 教学设计
立体几何中的截面问题教学设计引言:在立体几何中,我们经常会遇到截面问题。
截面问题是指当一个平面与立体体块相交时所形成的平面图形。
通过学习和掌握截面问题,我们可以更好地理解立体体块的性质和结构。
本次教学设计将介绍截面问题的基本概念和解题方法,并通过实例进行详细讲解。
一、截面问题的基本概念1. 定义:截面是指由一个平面与立体体块相交所形成的平面图形。
2. 分类:根据截面与立体体块的相对位置关系,截面问题可分为平行截面和非平行截面两种情况。
二、解题方法1. 平行截面问题的解题方法:a. 根据题目描述,确定平行截面的位置和形状。
b. 利用几何知识和相关定理分析平行截面,确定所求的性质或关系。
c. 运用代数方法求解,得出最终答案。
2. 非平行截面问题的解题方法:a. 根据题目描述,确定非平行截面的位置和形状。
b. 利用几何知识和相关定理分析非平行截面,确定所求的性质或关系。
c. 运用代数方法求解,得出最终答案。
三、实例讲解1. 平行截面实例:题目:一个长方体的一侧是边长为12 cm的正方形,另外一侧是边长为8 cm的正方形。
求长方体的表面积。
解析:根据题目描述,表面积的计算需要求出所有的平行截面的面积,即两个正方形的面积。
长方体的一侧是边长为12 cm的正方形,另外一侧是边长为8 cm的正方形。
因此,表面积为2(12^2+8^2)+12*8 = 416 cm^2。
答案:416 cm^2。
2. 非平行截面实例:题目:一个圆锥体的底面半径为6 cm,高为10 cm。
求圆锥体与底面平行截面的面积与底面积的比值。
解析:根据题目描述,需要求圆锥体与底面平行截面的面积与底面积的比值。
根据几何知识,我们知道截面与底面平行时,截面与底面的对应线段成比例。
因此,截面的半径为6/10*6 = 3.6 cm,面积为π*(3.6^2)。
底面积为π*(6^2)。
所求比值为(π*(3.6^2))/(π*(6^2)) = (3.6^2)/(6^2) ≈ 0.36。
2024年高考数学复习拓展考点精讲精练讲义 25 立体几何中的截面问题含详解
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展25立体几何中的截面问题(精讲+精练)一、截面问题的理论依据(1)确定平面的条件①不在同一平面的三点确定一个平面;②两条平行线确定一个平面(2)如果两个不重合的平面有一个公共点,那么它们相交于过此点的一条直线(3)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(4)如果一条直线平行于一个平面,且经过这条直线的平面与这个平面相交,那么这条直线就和交线平行(5)如果两个平面平行,第三个平面和它们相交,那么两条交线平行二、截面问题的基本思路1.定义相关要素①用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.②此平面与几何体表面的交集(交线)叫做截线.③此平面与几何体的棱(或面)的交集(交点)叫做实截点.④此平面与几何体的棱(或面)的延长线的交点叫做虚截点.⑤截面中能够确定的一部分平面叫做截小面.2.作截面的基本逻辑:找截点→连截线→围截面3.作截面的具体步骤(1)找截点:方式1:延长截小面上的一条直线,与几何体的棱、面(或其延长部分)相交,交点即截点方式2:过一截点作另外两截点连线的平行线,交几何体的棱于截点(2)连截线:连接同一平面内的两个截点,成截线(3)围截面:将各截线首尾相连,围成截面三、作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
(2)延长线法:同一个平面有两个点,可以连线并延长至与其他平面相交找到交点。
(3)平行线法:过直线与直线外一点作截面,拖直线所在的面与点所在的平面平行,可以通过过点找直线的平行线找到几何体的截面的交线。
模型演练:如下图E、F是几等分点,不影响作图。
可以先默认为中点,等完全理解了,再改成任意等分点一、知识点梳理方法:两点成线相交法或者平行法特征:1.三点中,有两点连线在表面上.本题如下图是EF (这类型的关键);2.“第三点”是在外棱上,如C 1,注意:此时合格C 1点特殊,在于它是几何体顶点,实际上无论它在何处,只要在棱上就可以.方法一:相交法,做法如下图.方法二:平行线法,做法如下图.四、正方体中的基本截面类型【典例1】用一个平面去截正方体,所得截面不.可能是()A .直角三角形B .直角梯形C .正五边形D .正六边形【答案】ABC 【分析】二、题型精讲精练根据正方体的几何特征,我们可分别画出用一个平面去截正方体得到的几何体的图形,然后逐一与四个答案中的图形进行比照,即可判断选项.【详解】当截面为三角形时,可能出现正三角形,但不可能出现直角三角形;截面为四边形时,可能出现矩形,平行四边形,等腰梯形,但不可能出现直角梯形;当截面为五边形时,不可能出现正五边形;截面为六边形时,可能出现正六边形,故选:ABC .【典例2】已知正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,则该四棱柱被过点1A ,C ,E 的平面截得的截面面积为______.【典例3】如图,在正方体1111ABCD A B C D -中,4AB =,E 为棱BC 的中点,F 为棱11A D 的四等分点(靠近点1D ),过点,,A E F 作该正方体的截面,则该截面的周长是___________.连接,,,,AE EG GHHF FA ,易证因为4AB =,所以BE CE =中点,若平面α截三棱锥A BCD -和球O 所得的截面面积分别为1S ,2S ,则12S S =()A .8πB .16πC .38πD .364π【题型训练-刷模拟】1.截面形状问题一、单选题1.(2023·全国·高三专题练习)用一平面去截一长方体,则截面的形状不可能是()A .四边形B .五边形C .六边形D .七边形2.(2023·全国·高三专题练习)已知在正方体1111ABCD A B C D -中,E ,F ,G 分别是AB ,1BB ,11B C 的中点,则过这三点的截面图的形状是()A .三角形B .四边形C .五边形D .六边形3.(2023·全国·高三专题练习)已知在长方体1111ABCD A B C D -中,12AB BB BC ==,点P ,Q ,T 分别在棱1BB ,1CC 和AB 上,且13B P BP =,13CQ C Q =,3BT AT =,则平面PQT 截长方体所得的截面形状为()A .三角形B .四边形C .五边形D .六边形4.(2023秋·江苏南京·高三统考开学考试)在正方体1111ABCD A B C D -中,过点B 的平面α与直线1AC 垂直,则α截该正方体所得截面的形状为()A .三角形B .四边形C .五边形D .六边形5.(2023·河南·模拟预测)在正方体1111ABCD A B C D -中,M ,N 分别为AD ,11C D 的中点,过M ,N ,1B 三点的平面截正方体1111ABCD A B C D -所得的截面形状为()A .六边形B .五边形C .四边形D .三角形6.(2023·全国·高三专题练习)在如图所示的棱长为20的正方体1111ABCD A B C D -中,点M 为CD 的中点,点P 在侧面11ADD A 上,且到11A D 的距离为6,到1AA 的距离为5,则过点P 且与1A M 垂直的正方体截面的形状是()A .三角形B .四边形C .五边形D .六边形7.(2023·上海·高三统考学业考试)如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为()A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .不确定2.求截面的面积一、单选题A .23B .4.(2023春·全国·高一专题练习)已知三棱锥ABC 被球O 截得的截面面积为A .1B .5.(2023·吉林通化·梅河口市第五中学校考模拟预测)若球E 在线段BA 上,3BA BE =A .8π3B .2π6.(2023·四川内江·四川省内江市第六中学校考模拟预测)已知球在底面的射影为底面中心)的外接球,得截面面积的最小值是(A.π68.(2023·四川成都·校联考模拟预测)点F为棱AV上一点,二、填空题16.(2023·江苏常州·江苏省前黄高级中学校考二模)在正四棱台为棱11B C的中点,当正四棱台的体积最大时,平面17.(2023·江西吉安·吉安三中校考一模)如图,正方体的动点,过点,,A P Q的平面截该正方体所得的截面记为题的编号)①当12CQ=时,S为等腰梯形;②当34CQ=时,S与11C D的交点③当314CQ<<时,S为六边形;3.求截面的周长一、单选题A.3225+B.22.(2023春·四川南充·高三阆中中学校考阶段练习)AA的中点,则平面E是侧棱1A.32252++C.3252++3.(2023·江西鹰潭·贵溪市实验中学校考模拟预测)已知正方体点,若点P∈平面α,且AC+B.A.35225.(2023·全国·高三专题练习)在正方体棱A D''的四等分点(靠近点A.9225+B.42A.2+25B7.(2023春·广西南宁·高三南宁三中校考专题练习)已知正方体BC的中点,则平面1D EFA.6B二、填空题10.(2023春·上海黄浦·高三格致中学校考开学考试)正三棱柱棱1BB 、11AC 的中点,若过点11.(2023·山东泰安·统考模拟预测)在棱长为中点,则过线段AG 且平行于平面4.圆柱、圆锥、球的截面问题一、单选题1.(2023·山西阳泉·阳泉市第一中学校校考模拟预测)圆锥的母线长为母线作圆锥的截面,则该截面面积的最大值是(A .8B .2.(2023·广西·统考模拟预测)表面积为16π,O 到圆锥底面圆的距离为A .6πB .3.(2023·天津红桥·统考二模)用与球心距离为A .43π3C .83π3....2023秋·陕西西安高三西安市铁一中学校考期末)如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是(A.①②B.①③C.①④D.①⑤7.(2023·全国·高三专题练习)从一个底面圆半径与高均为2的圆柱中挖去一个正四棱锥(以圆柱的上底面为正四棱锥底面的外接圆,下底面圆心为顶点)而得到的几何体如图所示,今用一个平行于底面且距底面为π-A.448.(2023·全国·高三专题练习)B,C,D在圆锥底面上,A.22A .2πB 10.(2023·江西南昌·江西师大附中校考三模)已知正方体足平面BDE ⊥平面1A BDA .136πB 的最大值为(二、填空题18.(2023·陕西西安·校联考一模)某圆锥的底面半径为柱体积的最大值为19.(2023·上海·高三专题练习)在圆柱中,底面圆半径为个动点,绕着底面圆周转,则20.(2023·重庆·统考模拟预测)底面ABC,则过点Q的平面截该三棱锥外接球所得截面面积的取值范围为21.(2023·江西上饶·校联考模拟预测)已知四棱锥面ABCD是等腰梯形,AD点M作球O的截面,所得截面圆面积的最小值为22.(2023春·重庆万州·==,面上,PA PB PC平面截球O所得截面面积的最小值是【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展25立体几何中的截面问题(精讲+精练)一、截面问题的理论依据(1)确定平面的条件①不在同一平面的三点确定一个平面;②两条平行线确定一个平面(2)如果两个不重合的平面有一个公共点,那么它们相交于过此点的一条直线(3)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(4)如果一条直线平行于一个平面,且经过这条直线的平面与这个平面相交,那么这条直线就和交线平行(5)如果两个平面平行,第三个平面和它们相交,那么两条交线平行二、截面问题的基本思路1.定义相关要素①用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.②此平面与几何体表面的交集(交线)叫做截线.③此平面与几何体的棱(或面)的交集(交点)叫做实截点.④此平面与几何体的棱(或面)的延长线的交点叫做虚截点.⑤截面中能够确定的一部分平面叫做截小面.2.作截面的基本逻辑:找截点→连截线→围截面3.作截面的具体步骤(1)找截点:方式1:延长截小面上的一条直线,与几何体的棱、面(或其延长部分)相交,交点即截点方式2:过一截点作另外两截点连线的平行线,交几何体的棱于截点(2)连截线:连接同一平面内的两个截点,成截线(3)围截面:将各截线首尾相连,围成截面三、作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
高考数学:立体几何截面问题
高考数学:立体几何截面问题一、引言立体几何是高考数学的重要组成部分,其中截面问题是一个重要的考点。
截面问题涉及到三维空间中的几何形状、位置关系以及函数关系等多个方面,需要学生具备较高的空间想象能力和逻辑推理能力。
本文将从多个方面介绍截面问题的相关知识,以帮助考生更好地理解和掌握该知识点。
二、截面的定义与性质1.截面的定义:截面是指通过一个平面与三维空间中的几何体相交,所得到的交线或交面的几何形状。
2.截面的性质:截面具有与原几何体相同的形状和大小,但位置关系可能不同。
截面的形状和大小取决于平面与几何体的相对位置和方向。
三、截面与平面几何的关系1.平面几何的基本图形在三维空间中仍然适用,如线段、三角形、四边形等。
2.截面是平面几何图形在三维空间中的表现形式,可以通过平面的移动和旋转来改变截面的形状和大小。
四、截面与立体几何的关联1.立体几何的基本概念和定理在解决截面问题时同样适用,如平行、垂直、平行四边形等。
2.截面问题是立体几何中的一个特殊情况,可以通过特殊情况来推导一般情况,也可以通过一般情况来推导特殊情况。
五、截面的形状与大小1.截面的形状取决于平面与几何体的相对位置和方向。
不同的位置关系可以得到不同的截面形状,如圆形、椭圆形、长方形等。
2.截面的大小取决于平面与几何体的交线长度或交面积大小。
不同的平面位置可以得到不同的截面大小。
六、截面与空间几何的关系1.空间几何的基本概念和定理在解决截面问题时同样适用,如距离、角度、面积等。
2.截面问题是空间几何中的一个特殊情况,可以通过特殊情况来推导一般情况,也可以通过一般情况来推导特殊情况。
3.截面问题可以转化为空间几何问题来解决,也可以通过空间几何问题来推导截面问题的解决方法。
七、截面的对称性1.截面问题中常常涉及到对称性,如轴对称、中心对称等。
2.对称性可以帮助我们简化问题,找到解决问题的关键点。
3.对称性也可以帮助我们判断截面的形状和大小,以及确定平面与几何体的相对位置和方向。
高考数学立体几何截面问题
高考数学立体几何截面问题在高考数学立体几何中,截面问题是一个重要的考点。
本文将从以下几个方面对截面问题进行讲解:截面的形状和性质、截面与几何体的关系、截面与投影的关系以及截面与面积的关系。
一、截面的形状和性质1.截面的形状截面是指通过一个平面与一个几何体相交,所得的交线。
截面的形状可能是一个点、一条直线、一个平面多边形或一个圆。
在解决立体几何问题时,我们需要根据题目所给的条件,判断出截面的形状,并进一步解决问题。
2.截面的性质截面的性质包括以下几点:(1)截面是平面图形,其形状取决于几何体和截面的位置关系。
(2)截面与几何体的边界相交,但不穿过几何体的内部。
(3)截面与几何体的表面平行,因此可以运用平行投影的知识来研究截面的性质。
二、截面与几何体的关系1.截面与正方体的关系正方体的截面有三种情况:三角形、矩形和五边形。
当截面与正方体的中心轴平行时,可以得到一个正方形;当截面与正方体的中心轴垂直时,可以得到一个三角形;当截面与正方体的中心轴斜交时,可以得到一个矩形或五边形。
长方体的截面也有三种情况:三角形、矩形和五边形。
当截面与长方体的中心轴平行时,可以得到一个矩形;当截面与长方体的中心轴垂直时,可以得到一个三角形;当截面与长方体的中心轴斜交时,可以得到一个梯形或不规则四边形。
三、截面与投影的关系1.投影的定义及性质投影是指将一个几何体投射到一个平面上的结果。
投影的性质包括以下几点:(1)投影是直线与平面相交的结果。
(2)投影的长度等于被投影线段的长度。
(3)投影的方向与被投影线段的方向相同或相反。
2.截面与投影的关系截面与投影之间存在一定的关系。
如果一个几何体在一个平面上的投影是一个多边形,那么这个多边形的形状就取决于该几何体的形状以及它与平面的相对位置。
因此,在解决立体几何问题时,我们需要通过判断几何体在某一平面上的投影来推断出它的形状和性质。
四、截面与面积的关系1.面积的定义及计算方法面积是指一个平面图形所占的面积大小。
立体几何中的 截面问题
立体几何中的截面问题立体几何中的截面问题⒈引言立体几何是研究空间之中各种几何体的形态、位置、运动和性质的数学学科。
在立体几何中,截面问题是一个重要的研究方向。
本文将介绍截面问题的基本概念、解题方法以及应用领域。
⒉基本概念⑴截面的定义截面是指将一个立体体积由一个或多个平面切割所得到的平面图形。
⑵截面的种类常见的截面包括平行截面、垂直截面、倾斜截面等。
平行截面是指与立体体积的底面平行的截面,垂直截面是指与立体体积的底面垂直的截面,倾斜截面是指与立体体积的底面既不平行也不垂直的截面。
⒊解题方法⑴平行截面的求解方法平行截面与底面平行,因此可以通过计算底面的面积和位于底面高度上的平行截面与底面的比例关系来求解平行截面的面积。
⑵垂直截面的求解方法垂直截面与底面垂直,因此可以通过计算底面的面积和垂直截面的高度来求解垂直截面的面积。
⑶倾斜截面的求解方法倾斜截面与底面既不平行也不垂直,因此求解倾斜截面的面积需要考虑其与底面的夹角以及截面的形状。
可以通过投影的方法或截面形状的几何关系来求解倾斜截面的面积。
⒋应用领域⑴建筑设计在建筑设计中,截面问题常常用于计算建筑物的横截面积,从而确定建筑物的结构稳定性和负荷承受能力。
⑵工程力学在工程力学中,截面问题常常用于计算结构件的截面形状和尺寸,从而确定结构件的刚度和强度。
⑶生物学在生物学中,截面问题常常用于计算生物体的截面积,从而确定生物体的体积和表面积,进而研究生物体的生理功能和生物学特性。
附件:本文档涉及的附件包括:⒈示例图片:包括平行截面、垂直截面和倾斜截面的示意图。
⒉计算表格:包括计算平行截面、垂直截面和倾斜截面面积的示例表格。
法律名词及注释:⒈立体几何:是数学学科中研究空间中各种几何体的形态、位置、运动和性质的学科。
⒉截面:把立体体积由一个或多个平面切割所得到的平面图形。
立体几何中的 截面问题
立体几何中的截面问题本文档旨在介绍立体几何中的截面问题,包括截面的定义、性质、计算方法等方面的内容。
通过对截面问题的介绍和详细解析,读者可以更好地理解和应用相关知识。
1、截面的定义在立体几何中,截面是指一个平面和立体图形相交而形成的曲线或平面部分。
截面可以是二维的曲线,也可以是三维的平面。
截面问题主要研究在不同情况下的截面形状、面积、体积等性质。
2、截面的性质截面的性质取决于所截图形的性质以及截面的位置和方向。
主要包括以下几个方面:2.1 几何形状:截面可以是点、线段、圆、椭圆、抛物线等各种几何形状。
2.2 面积:截面的面积可能是有限的,也可能是无限的。
2.3 体积:截面可以用来计算图形的体积,从而解决与立体几何有关的问题。
2.4 位置和方向:不同位置和方向的截面可以得到不同的结果,需要根据具体问题进行分析和计算。
3、截面的计算方法根据截面的性质和具体问题的要求,有多种不同的计算方法可以用来求解截面问题。
常用的计算方法包括以下几种:3.1 几何分析法:通过几何分析截面的形状和性质,利用几何定理和方法计算截面的面积、体积等。
3.2 数学建模法:将截面问题转化为数学模型,利用数学方法和计算机技术进行计算和求解。
3.3 数值模拟法:通过数值模拟和计算机仿真,模拟和计算截面问题的解答。
3.4 实验测量法:通过实际测量和实验,获取截面的相关数据和性质进行计算和分析。
附件:本文档无附件。
法律名词及注释:1、立体几何:研究三维空间中点、线、面等几何图形的性质和变换的数学学科。
2、截面:一个平面和立体图形相交而形成的曲线或平面部分。
立体几何截面问题
立体几何截面问题立体几何截面问题是指在三维空间中,分析和解决物体的表面形状及其横截面以及相应交点的问题。
这一问题与传统的几何学有很大的不同,它是一种更加复杂的几何问题,具有较强的实际应用性。
在三维空间中,立体几何截面问题可以概括为如下几个方面:1、立体几何截面中各种物体形状的表面积、体积及曲率的计算。
可以看到,物体的表面积、体积及曲率都是立体几何截面中重要的概念。
物体的表面积可以表示物体的大小,而体积则可以表示物体的体积,曲率则可以表示物体的表面形状。
2、立体几何截面中物体的位置关系及相应交点的求解。
在立体几何截面中,物体的位置关系及相应的交点是关键的概念,因此,对于物体的位置关系及相应的交点的求解也是重要的工作。
3、立体几何截面中物体的对称性及其属性的分析。
物体的对称性及其属性的分析也是立体几何截面中重要的内容,可以帮助我们更好地理解物体的外观特征。
4、立体几何截面中物体的多边形化及其格式化。
物体的多边形化是指将物体表面上的所有点通过直线连接起来,形成一个简单的多边形,以便更加直观地表示物体的形状。
格式化则是指将物体的多边形表示法转换为更加精确的数学表达式,以便更加方便地分析物体的特征。
通过以上几点,我们可以清楚地看到,立体几何截面问题的研究非常复杂,其中涉及到的概念也是十分广泛的,因此,解决这一问题需要综合运用几何学、代数学及其他学科的知识。
立体几何截面的研究有着重要的实际意义。
它可以被应用于工程设计、建筑设计、机械设计等多个领域。
例如,在工程设计中,立体几何截面可以帮助我们更加清晰地了解物体的表面形状,从而使我们能够更好地设计出合理的工程结构;在建筑设计中,立体几何截面可以帮助我们更清楚地认识建筑物的外形,从而使我们得以更好地设计出更加美观的建筑;在机械设计中,立体几何截面可以帮助我们更清楚地认识机械部件的形状,从而能够更加精确地设计出符合要求的机械部件。
总之,立体几何截面问题是一个非常复杂的问题,它既能够提高我们对物体形状的理解,又能够为工程设计、建筑设计、机械设计等提供有效的指导。
立体几何中的截面问题 教学设计
《立体几何中的截面问题》教学设计一、引言立体几何是数学中一个重要的分支,它研究的是三维空间中的图形和体积。
在立体几何中,截面问题是一个非常有趣的话题,它涉及到了平面和立体图形的相互作用,对于学生来说是一个较为抽象的概念,但又是非常重要的。
在本次教学设计中,我们将以立体几何中的截面问题为主题,通过深入浅出的教学方式,帮助学生全面理解这一概念。
二、知识点介绍1.截面的定义在几何学中,截面是指一个几何图形在确定条件下与另一个几何图形交叠的部分。
在立体几何中,我们通常讨论的是平面与立体的交点部分,这些交点形成的图形称为截面。
2.截面与立体图形的关系通过对截面的研究,我们可以更加深入地理解立体图形的形状、体积和特性。
截面不仅可以帮助我们了解一个立体图形的内部结构,还能够将抽象的立体图形转化为平面图形来进行研究。
3.截面问题的应用在工程、建筑、艺术等领域,截面问题都有着广泛的应用。
通过对截面问题的研究,我们可以更好地理解和利用立体图形,从而应用到实际的生活和工作中。
三、教学目标1.了解截面的基本定义和特性。
2.掌握不同立体图形的截面求解方法。
3.能够应用截面问题解决实际生活中的问题。
4.培养学生分析和解决问题的能力。
四、教学内容与逻辑安排1.引入:通过展示一些真实生活中的立体图形,引出截面问题的概念,激发学生的兴趣。
2.理论知识讲解:首先介绍截面的定义和基本特性,然后分别针对不同的立体图形(如长方体、球体、圆柱体等)详细讲解其截面求解方法和特点。
3.实例演练:给出一些具体的例题,让学生通过实际计算和画图来掌握截面问题的求解方法。
4.拓展应用:结合实际生活中的案例,让学生应用截面问题来解决一些实际问题,培养学生的应用能力。
5.总结回顾:总结截面问题的求解方法和应用,强调理论与实际的联系,让学生对本次教学内容有一个全面的回顾和总结。
五、个人观点和理解在我看来,立体几何中的截面问题不仅是一个重要的知识点,更是一个非常有趣和实用的概念。
立体几何中的 截面问题
立体几何中的截面问题立体几何中的截面问题⒈简介立体几何是研究物体的形状、尺寸和空间关系的一门学科。
在立体几何中,截面问题是一个重要的研究方向。
截面问题指的是在一个立体物体中,通过给定的切割平面,研究切割所得的平面图形与原立体物体的关系。
⒉切割平面的表示方法在研究截面问题时,我们通常将切割所用的平面表示为一个方程。
常见的表示方法有点法式、一般式和截距式等。
⑴点法式点法式是通过给定平面上的一点和法向量来表示平面的方程。
设平面上一点为P(x0, y0, z0),法向量为n(n1, n2, n3),则平面的点法式为:n1(x ●x0) + n2(y ●y0) + n3(z ●z0) = 0⑵一般式一般式将平面的方程表示为一个二次齐次方程,形式为Ax +By + Cz + D = 0。
其中A、B、C是平面的法向量的坐标,D是一个与平面有关的常数。
⑶截距式截距式是通过平面与坐标轴交点的位置来表示平面的方程。
设平面与x轴、y轴、z轴的交点分别为(x0, 0, 0),(0, y0, 0),(0, 0, z0),则平面的截距式为:x/x0 + y/y0 + z/z0 = 1⒊平面与立体物体的相交及分类当给定切割平面后,它可能与立体物体相交于不同的方式。
根据相交情况的不同,我们将平面与立体物体的相交分为以下几类:⑴完全相交当切割平面与立体物体完全相交时,即切割平面穿过了立体物体的内部,并将其分成两个或多个部分。
⑵部分相交当切割平面与立体物体部分相交时,即切割平面与立体物体的边界相交。
⑶不相交当切割平面与立体物体不相交时,即切割平面与立体物体没有交点。
⒋截面图形的性质通过研究切割平面与立体物体的相交情况,可以得到截面图形的一些性质。
⑴形状截面图形的形状与切割平面的位置和方向有关。
在同一个立体物体中,不同位置和方向的切割平面可能得到不同形状的截面图形。
⑵面积截面图形的面积可以通过计算得到。
对于平面图形,常用的计算方法有面积公式和积分法。
强基专题--立体几何中的截面问题
强基专题3 立体几何中的截面问题
[跟进训练]
1.(2021·重庆模拟)在三棱锥 P-ABC 中,PA,PB,PC 两两垂直,
PA=3,PB=4,PC=5,点 E 为线段 PC 的中点,过点 E 作该三棱
锥外接球的截面,则所得截面圆的面积不可能为( )
A.6π
B.8π
C.10π
D.12π
1234 5
(2)当π2<θ<π时,0<α<θ<π,此时sin θ<1,sin α可以取到最 大值1,
此时过圆锥母线的截面面积最大,最大值为S=12l2.
1234 5
强基专题3 立体几何中的截面问题
综上所述,过圆锥母线的截面面积的最大值与轴截面顶角θ的范 围有关,
当0<θ≤π2时,轴截面面积最大,最大值为S=12l2sin θ. 当π2<θ<π时,过圆锥母线的截面面积最大,最大值为S=12l2.
同理 FG∥EH,所以四边形 EFGH 为平行四边形,又 AD⊥BC, 所以四边形 EFGH 为矩形.
1234 5
强基专题3 立体几何中的截面问题
由相似三角形的性质得BECF=AACF,FACC=AFDG, 所以BECF+FAGD=AACF+FACC,BC=AD=2, 所以 EF+FG=2,所以四边形 EFGH 的周长为定值 4,S 四边形 EFGH =EF×FG≤EF+2 FG2=1, 所以四边形 EFGH 的面积有最大值 1.故选 B.]
1 2
l2sin θ.截面VCD的面积S′=12l2sin α.在△V强基专题3 立体几何中的截面问题
(1)当0<θ≤π2时,0<α<θ≤π2,sin α<sin θ⇒S′<S,此时过圆 锥母线的截面面积最大为轴截面面积S=12l2sin θ.
截面形状及相应面积的求法 (1)结合线、面平行的判定定理与性质定理求截面问题; (2)结合线、面垂直的判定定理与性质定理求正方体中截面问题; (3)猜想法求最值问题:“要灵活运用一些特殊图形与几何体的 特征,“动中找静”,如正三角形、正六边形、正三棱锥等; (4)建立函数模型求最值问题:①设元;②建立二次函数模型; ③求最值.
立体几何中的截面问题
线段DD1上靠近D的三等分点,若正四棱柱ABCD-A1B1C1D1被过点A1,M,N的平
面所截,则所得截面的周长为
(B)
A.10+8 2
B.10+7 2
C.9+8 2
D.9+7 2
【解析】 如图,延长 C1C 至 Q,使得 CQ=1,连接 MQ,NQ, 则四边形 A1MQN 为平行四边形.记 MQ 与 BC 交于点 R,NQ 与 CD 交于点 P,则截面为五边形 A1NPRM.易得 A1N=4 2,A1M =5,MR= 32+32=3 2,NP= 22+832=130,PR= 12+432 =53,故所得截面的周长为 A1M+MR+PR+PN+A1N=5+3 2 +53+130+4 2=10+7 2.
球心
O
到平面
MNPQ
的距离
d
=
EG
=
1 2
EC1
.
设
正
方
体
ABCDA1B1C1D1 的棱长为 2 2,则 R=12EF= 2,d=EG=12EC1=1,所以球 O 被平面 MNPQ 所截的小圆半径 r= R2-d2= 2-1=1,所以球 O 被平面 MNPQ 所截的小
圆面积为 πr2=π.又易知 NM=2,PN=2 2,所以该正方体被平面 MNPQ 所截得的
图(1)
PQ⊂底面A1B1C1D1,所以PQ⊥CC1.因为A1C1,CC1⊂平面A1C1CA,A1C1∩CC1= C1,所以PQ⊥平面A1C1CA.因为CE⊂平面A1C1CA,所以PQ⊥CE,即l⊥CE.
1 (2023·汕头二模节选)如图,在正方体ABCDA1B1C1D1中, 直线l⊂平面A1B1C1D1,l∩A1C1=E,A1E=3EC1. (2)设点A与(1)中所作直线l确定平面α.请在图中作出平面α截正方 体ABCDA1B1C1D1所得的截面,并写出作法.
【数学】立体几何中的截面问题(六大题型) 2023-2024学年高一数学人教A版2019必修第二册
【答案】 3
【解析】设正方体 − 1 1 1 1 的棱长为 2 ,体积为 ,
则 = 2 × 2 × 2 = 8 3 ,
因为 E 是棱 1 1 的中点,所以 1 = ,
( 2 ) 过 M , N , P 三 点作 正方 体的 截面 为 , 如图 所示 :
则 截 面 的 周 长 为: + + + + = + + ,
因 为 正 方 体 棱 长为 1 , 则
= =
=
故选:ACD.
3
2
3
2
(2 − )2,ℎ2 =
( 2)2 − [
2 = − 3 2 + 2 3 + 2 3
2 ( 2 − ) − 2 2 2
]
2
=
3 2 ,
2
题型二:截面周长
【例 2 】( 2024·高三 ·四川成都 ·开学考试)如图,正方体 − 1 1 1 1 的棱长为 4 , E 是侧棱 1 的中
A.1∶ 2
B.1∶4
C.1∶( 2+1)
D.1∶( 2﹣1)
【答案】 D
【解析】设截后棱锥的高为 h ,原棱锥的高为 H ,
由于截面与底面相似,一个正棱锥被平行于底面的平面所截,
若截得的截面面积与底面面积的比为 1 ∶ 2 , ℎ =
则此正棱锥的高被分成的两段之比:
故选:D
ℎ
−ℎ
=
1
.
2−1
设 1 = , 则 0 ≤ ≤ 1,
立体几何中的截面问题
立体几何中的截面问题一.基本原理:过正方体(长方体)上三点做截面.1.三点中有两点共面例1.如图,在正方体ABCD-A 1B 1C 1D 1中,E,F,G 分别在AB,BC,DD 1上,求作过E,F,G 三点的截面.思路:当三点中有两点共面时,做截面的思路就是先找共面两点所在直线与该平面所有的棱交点,而这些交点由同时在另外一个平面中,即该截面和正方体某个侧面的交点,这样利用公理1,逐次相连找到所有的交点,即可得到截面.解析:作法:①.由于F E ,共面,在底面AC 内,过F E ,作直线EF ,与DA 于L ,显然,此时L 即在侧面D A 1内,又在欲求截面内,而该截面与侧面D A 1又交于点G ,根据公理1,截面与侧面D A 1交于L .同理,过F E ,作直线EF 与DC 的延长线交于M ,此时M 即在侧面1DC 内,又在欲求截面内,根据公理1,截面与侧面1DC 交于M .②在侧面D A 1内,连接LG 交1AA 于K .③在侧面1DC 内,连接GM 交1CC 于H .④连接FH KE ,.则五边形EFHGK EFHGK 即为所求的截面.练习1.(三点两两共面)P,Q,R 三点分别在直四棱柱AC 1的棱BB 1,CC 1和DD 1上,试画出过P,Q,R 三点的截面作法.解析:作法:(1)连接QP,QR 并延长,分别交CB,CD 的延长线于E,F.(2)连接EF 交AB 于T,交AD 于S.(3)连接RS,TP.则五边形PQRST 即为所求截面.例2.(三点所在的棱两两异面)如图,长方体1111D C B A ABCD -中,R Q P ,,分别为111,,CC AB D A 上三点,求过这三点的截面.分析:此题的难点在于R Q P ,,三点均不在同一个侧面(底面)中,这样我们就暂时无法通过侧面(底面)中连线与棱的交点来找到截面的边界点,于是需要先做出一个平面来,让上面三点RQ P ,,中有两点共面,这就转化成例1的情形,从而解决问题.解:如图,作1//BB QE 交11B A 与E ,则1,RC QE 确定一个平面,转化为例1的情形.连接QR EC ,1,交于点F ;连接PF 交1111,B A D C 延长线于H G ,;连接HQ 交11,BB AA 延长线于J I ,;连接JR 交BC 于K .则KRGPIQK 为所作截面.例3.利用平行关系确定截面在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于()A.2a B.4a C.a D.无法确定解析:设AM k CM=,因为//AB 平面MNPQ ,平面ABC 平面MNPQ MN =,AB Ì平面ABC ,所以//MN AB ,同理可得//PQ AB ,//MQ CD ,//NP CD ,故四边形MNPQ 为平行四边形,所以11MN PQ AB AB k ==+,1MQ NP k CD CD k ==+.因为AB CD a ==,所以1a MN PQ k==+,1ak MQ NP k ==+,所以四边形MNPQ 的周长为2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭.故选:A.二.截面的的画法小结1.确定截面的主要依据有(1)平面的四个公理及推论.(2)直线和平面平行的判定和性质.(3)两个平面平行的性质.2.作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
立体几何截面问题专题总结
立体几何截面问题专题总结前言在立体几何截面问题专题的学习中,我深入研究了这一领域的知识,积累了丰富的经验。
在本文中,我将总结我对立体几何截面问题的理解和方法,并分享一些解决这类问题的技巧。
正文什么是立体几何截面问题立体几何截面问题是指在三维空间中,通过一个封闭曲面与另一个几何体相交,求得相交部分的形状、面积、体积等相关问题。
常见的立体几何截面问题包括求圆柱与平面的截面、球与平面的截面等。
解决立体几何截面问题的方法解决立体几何截面问题可以采用以下方法:1.几何推导法:通过几何知识进行推导,得到截面形状和相关参数。
可以使用几何证明、相似三角形等方法来推导。
2.代数方程法:将截面问题转化为几何方程,通过代数方法解方程得到结果。
常用的代数方程包括二元一次方程、二次方程等。
3.平面几何投影法:将立体物体投影到一个平面上,通过对投影图形的分析得出截面形状和相关参数。
4.立体几何体积法:通过计算立体几何体积的方法得到截面的面积或体积。
常见的计算公式包括圆柱的体积公式、球的体积公式等。
解决立体几何截面问题的技巧解决立体几何截面问题时,可以运用以下技巧:•画图辅助:通过画图来理清问题的思路,将立体物体和截面形状清晰地表示出来,有助于理解问题和找出解决方法。
•寻找几何相似:在推导过程中,可以尝试找出几何相似的部分,通过相似三角形或相似比例来得到所需的截面形状或参数。
•利用几何关系:在立体几何中,不同几何形状之间存在着特定的关系,例如平行、垂直关系等。
利用这些关系可以简化问题的求解过程。
•积极总结经验:在解决立体几何截面问题的过程中,积累并总结经验是非常重要的。
经验的积累可以帮助我们更快地解决类似的问题,并提高解题的效率。
结尾通过学习立体几何截面问题专题,我对这一领域有了更深入的了解。
在解决立体几何截面问题时,适当地运用几何推导法、代数方程法、平面几何投影法和立体几何体积法等方法,并结合绘图和几何关系,我们可以更好地解决这类问题。
立体几何截面问题的十种题型(解析版)
第21讲立体几何截面问题10类【题型一】做截面的基本功:补全截面方法【典例分析】在长方体ABCD-A 1B 1C 1D 1中,AB=AA 1=2,AD=3,点E 、F 分别是AB 、AA 1的中点,点E 、F 、C 1∈平面α,直线A 1D 1⋂平面α=P ,则直线BP 与直线CD 1所成角的余弦值是3378 A22 C B 3 D 3 99、、、、答案:B解析:如图,计算可得余弦值是3【变式演练】1.如图,在正方体1111ABCD A B C D -中,M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,则经过M 、N 、P 的平面与正方体1111ABCD A B C D -相交形成的截面是一个()A .三角形B .平面四边形C .平面五边形D .平面六边形【答案】D分别取11A D 、AB 、1C C 的中点、、F H E ,连接MF 、FN 、NH 、HP 、PE 、EM 、11A C 、AC 、NE 、1A B ,先证明、、、H P M F 四点共面,再证明N ∈平面HPMF ,P ∈平面HPMF 可得答案.【详解】如图,分别取11A D 、AB 、1C C 的中点、、F H E ,连接MF 、FN 、NH 、HP 、PE 、EM 、11A C 、AC 、NE 、1A B ,且M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,所以11//A C FM 、//HP AC ,且11//A C AC ,所以//HP FM ,即、、、H P M F 四点共面,因为11//=,F BP F BP A A ,所以四边形1A FPB 是平行四边形,所以1//A B FP ,又因为1//A B NH ,得//NH FP ,且FP ⊂平面HPMF ,H ∈平面HPMF ,所以NH ⊂平面HPMF ,得N ∈平面HPMF ,因为11//=,M H MC B C BH ,所以四边形1C MHB 是平行四边形,所以1//C B MH ,又因为1//C B EP ,得//MH EP ,又MH ⊂平面HPMF ,P ∈平面HPMF ,所以PE ⊂平面HPMF ,得E ∈平面HPMF ,所以、、、、、H P E M F N 六点共面,平面六边形HPEMFN 即为经过M 、N 、P 与正方体1111ABCD A B C D -相交形成的截面,故选:D.2.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,则过三点A 、D1、E 的截面过()A .AB 中点B .BC 中点C .CD 中点D .BB1中点【答案】B根据截面特点结合正方形结构性质求解.【详解】取BC 的中点F ,连接EF ,AF ,如图,则1EF AD ∥,所以F 在截面上,故选:B3.如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A 、P 、Q 的平面截该正方体所得的截面记为Ω.若1CQ CC λ→→=,则下列结论错误的是()A .当102λ∈⎛⎫⎪⎝⎭,时,Ω为四边形B .当12λ=时,Ω为等腰梯形C .当3,14λ⎛⎫∈ ⎪⎝⎭时,Ω为六边形D .当1λ=时,Ω的面积为2【答案】C 【分析】根据题意,依次讨论各选项,作出相应的截面,再判断即可.【详解】解:当102λ<<时,如下图1,Ω是四边形,故A 正确;当12λ=时,如下图2,Ω为等腰梯形,B 正确:当314λ<<时,如下图3,Ω是五边形,C 错误;当1λ=时,Q 与1C 重合,取11A D 的中点F ,连接AF ,如下图4,由正方体的性质易得1////BM PC AF ,且=1PC AF ,截面Ω为1APC F 为菱形,其面积为112AC PF ⋅,D 正确.故选:C【题型二】截面形状的判断【典例分析】一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()A .B .C .D .【答案】B 【分析】根据题意可知,该三棱锥为正四面体,内切球与各面相切于各个面的中心,即可判断出选项B 正确.【详解】如图所示:因为三棱锥的各棱长均相等,所以该三棱锥为正四面体,内切球与各面相切于各个面的中心,即可知过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是.故选:B .【变式演练】1.如图,正四棱锥P ABCD -的高为12,AB =E ,F 分别为PA ,PC 的中点,过点B ,E ,F 的截面交PD 于点M ,截面EBFM 将四棱锥分成上下两个部分,规定BD为主视图方向,则几何体CDAB FME -的俯视图为()A .B .C .D .【答案】C 【分析】根据主视图所给方向即可知俯视图中底面正方形,计算可知M 点投影位置,即可得出答案.【详解】研究平面DPB ,设AC 与BD 的交点为O ,BM 与EF 交点为N,,E F 为,PA PC 的中点,N ∴为PO 的中点,12PO =,6ON OB ∴==,又因为12tan 26PO PDB OD ∠===,过点M 作MG DB ⊥,设GB x =,45NBO ∠=︒ ,GB MG x ∴==,又12DB = ,12DG x ∴=-,tan 212xPDB x∠==-,8x GB ∴==,DG ∴为4个格,GB 为8个格,故选:C 2.用一个平面去截正方体,所得截面不.可能是()A .直角三角形B .直角梯形C .正五边形D .正六边形【答案】ABC 【分析】根据正方体的几何特征,我们可分别画出用一个平面去截正方体得到的几何体的图形,然后逐一与四个答案中的图形进行比照,即可判断选项.【详解】当截面为三角形时,可能出现正三角形,但不可能出现直角三角形;截面为四边形时,可能出现矩形,平行四边形,等腰梯形,但不可能出现直角梯形;当截面为五边形时,不可能出现正五边形;截面为六边形时,可能出现正六边形,故选:ABC.3.在正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C )过M 、N 、P 与正方体的截面记为α,则下面三个判断,其中正确判断的序号有______.①当P 为1CC 中点时,截面α为六边形;②当112CP CC <时,截面α为五边形;③当截面α为四边形时,它一定是等腰梯形;【答案】①③.【分析】①延长MN 交AD 于M ',交CD 于N ',延长N P '交11C D 于T ,取11A D 的中点S ,连接M S '交1AA 于P ',连接11,AC A C ,结合图形即可判断;②延长MN 交AD 于M ',交CD 于N ',连接1N D '交1CC 于P ,连接1M D '交1AA 于P ',此时截面α为五边形,求出1CPCC 即可判断;③当截面α为四边形时,点P 与点1C 重合,判断四边形11A MNC 的形状即可.【详解】解:如图①,延长MN 交AD 于M ',交CD 于N ',延长N P '交11C D 于T ,取11A D 的中点S ,连接M S '交1AA 于P ',连接11,AC A C ,因为M 为AB 中点,N 为BC 中点,所以MN AC ∕∕,同理11ST A C ∕∕,又因11AC A C ∕∕,所以ST MN ∕∕,同理,SP PN MP PT ''∕∕∕∕,所以,,,,,S T P N M P '共面,此时六边形STPNMP '为截面α,所以截面α为六边形;故①正确;如图②,延长MN 交AD 于M ',交CD 于N ',连接1N D '交1CC 于P ,连接1M D '交1AA 于P ',此时截面α为五边形因为11CD C D ∕∕,所以11CPN C PD ' ∽,所以11112CP CN C P C D '==,即113CP CC =,所以当113CP CC ≤时,截面α为五边形;故②错误;当截面α为四边形时,点P 与点1C 重合,如图,由①得,11MN A C ∕∕,所以四边形11A MNC 即为截面α,设正方体的棱长为1,则12NC =,12MA =,所以11NC MA =,所以四边形11A MNC 是等腰梯形;故③正确.故答案为:①③.【题型三】平行关系确定截面【典例分析】在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于()A .2aB .4aC .aD .无法确定【答案】A 【分析】由线面平行的性质定理确定截面MNPQ 的形状,再利用三角形相似的性质求截面MNPQ 的周长.【详解】设AMk CM=,因为//AB 平面MNPQ ,平面ABC 平面MNPQ MN =,AB Ì平面ABC ,所以//MN AB ,同理可得//PQ AB ,//MQ CD ,//NP CD ,故四边形MNPQ 为平行四边形,所以11MN PQ AB AB k ==+,1MQ NP k CD CD k==+.因为AB CD a ==,所以1aMN PQ k ==+,1ak MQ NP k==+,所以四边形MNPQ 的周长为2211aak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭.故选:A.【变式演练】1.在正方体1111ABCD A B C D -中,与AC 平行,且过正方体三个顶点的截面是___________和___________.【答案】平面11AC D 平面11A C B【分析】根据题意,结合图形,得出与AC 平行,且过正方体三个顶点的截面是平面11AC D ,平面11A C B .【详解】解:在正方体1111ABCD A B C D -中,与AC 平行,且过正方体三个顶点的截面是平面11AC D ,平面11A C B .11//AA CC ,11AA CC =,∴四边形11ACC A 是平行四边形;11//AC A C ∴,又AC ⊂/平面11AC D ,11AC ⊂平面11ACD ,//AC ∴平面11AC D ;同理//AC 平面11A C B .故答案为:平面11AC D ,平面11A CB .2.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A .0条B .1条C .2条D .4条【答案】C 【分析】由平行四边形的性质有两对边平行且相等,再应用线面平行的判定可确定线面平行,由线面平行的性质、判定即可知有几条棱与平面α平行.【详解】如下图示,若平面α即为面HEGF 为平行四边形,即//HE FG 且HE FG =,//EG HF 且EG HF =,又HE ⊂面ACD ,FG ⊄面ACD ,则//FG 面ACD ,而FG ⊂面ABD ,面ABD ⋂面ACD AD =,∴//FG AD ,由线面平行判定易知://AD 平面α;同理可得//EG BC ,易得//BC 平面α.∴该三棱锥与平面α平行的棱有AD 、BC ,共2条.故选:C3.如图是一个以 A 1B 1C 1为底面的直三棱柱被一平面所截得的几何体,截面为 ABC .已知AA 1=4,BB 1=2,CC 1=3.在边AB 上是否存在一点O ,使得OC ∥平面A 1B 1C 1.【答案】存在【分析】取AB 的中点O ,连接OC ,可证明11//,OD CC OD CC =,即四边形ODC 1C 是平行四边形,所以OC ∥C 1D ,由线线平行证明线面平行,即得证【详解】存在,取AB 的中点O ,连接OC ,作OD ∥AA 1交A 1B 1于点D ,连接C 1D ,则OD ∥BB 1∥CC 1.因为O 是AB 的中点,所以OD=12(AA 1+BB 1)=3=CC 1,则四边形ODC 1C 是平行四边形,所以OC ∥C 1D.又C 1D ⊂平面C B 1A 1,且OC ⊄平面C 1B 1A 1,所以OC ∥平面A 1B 1C 1.即在边AB 上存在一点O ,使得OC ∥平面A 1B 1C 1.【题型四】垂直关系确定的截面【典例分析】已知正三棱柱(底面为正三角形的直棱柱)111ABC A B C -的体积为AB =D 是11B C 的中点,点P 是线段1A D 上的动点,过BC 且与AP 垂直的截面α与AP 交于点E ,则三棱锥P BCE -的体积的最小值为A 2B .32C .2D .52【答案】A 【分析】由正三棱柱111ABC A B C -的体积为AB =12AA =,由于P ABC P BCE A BCE V V V ---==+,所以要使三棱锥P BCE -的体积最小,则三棱锥E ABC -的体积最大,设BC 的中点为F ,作出截面如图所示,可得点E 在以AF 为直径的圆上,从而可求出点E 到底面ABC 距离的最大值,进而可求得三棱锥P BCE -的体积的最小值【详解】如图所示,因为正三棱柱111ABC A B C -的体积为AB =(214AA ⨯⨯=,即12AA =,因为(21234P ABC P BCE A BCE V V V ---=⨯⨯=+,所以要使三棱锥P BCE -的体积最小,则三棱锥E ABC -的体积最大,设BC 的中点为F ,作出截面如图所示,因为AP α⊥,所以AE EF ⊥,所以点E 在以AF 为直径的圆上,所以点E 到底面ABC 1322=,所以三棱锥P BCE -的体积的最小值为(21332-⨯⨯=.故选:A.【变式演练】1.如图,ABCD A B C D ''''-为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则()A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值【答案】B【分析】将正方体切去两个正三棱锥'A A BD -与'''C D B C -后,得到一个以平行平面'A BD 与''D B C 为上、下底面的几何体V ,V 的每个侧面都是等腰直角三角形,截面多边形W 的每一条边分别与V 的底面上的一条边平行,将V 的侧面沿棱''A B 剪开,展开在一个平面上,得到一个平行四边形''11A B B A ,考查'E 的位置,确定,S l【详解】解:将正方体切去两个正三棱锥'A A BD -与'''C D B C -后,得到一个以平行平面'A BD 与''D B C 为上、下底面的几何体V ,V 的每个侧面都是等腰直角三角形,截面多边形W 的每一条边分别与V 的底面上的一条边平行,将V 的侧面沿棱''A B 剪开,展开在一个平面上,得到一个平行四边形''11A B B A ,如图所示而多边形W 的周界展开后便成为一条与'1A A 平行的线段(如图中'1E E ),显然,''11E E A A =,所以l 为定值,当'E 位于''A B 中点时,多边形W 为正六边形,而当'E 称到'A 时,W 为正三角形,则当周长这定值l 的正六22,所以S 不是定值,故选:B 2.正方体1111ABCD A B C D -,的棱长为4,已知1AC ⊥平面α,1AC β⊂,则关于α、β截此正方体所得截面的判断正确的是()A .α截得的截面形状可能为正三角形B .1AA 与截面αC .α截得的截面形状可能为正六边形D .β截得的截面形状可能为正方形【答案】ABC【分析】首先根据已知条件确定截面,αβ,然后根据选项依次判断正误即可.【详解】如图因为正方体1111ABCD A B C D -∴AC BD ⊥,1BD CC ⊥,又∵1AC CC C = ∴BD ⊥平面11ACC A 又∵1AC ⊂平面11ACC A ∴1AC BD ⊥同理:11AC A D ⊥又∵1A D BD D ⋂=∴1AC ⊥平面1A BD ∴平面α可以是平面1A BD ,又因为11A D BD A B ==∴1A BD 为等边三角形,故A 正确取111111,,,,,A D D D CD CB BB A B 的中点,,,,,E G P K H F 并依次连接易知11=2EG A D ∥,因为EG ⊄平面1A BD ,1A D ⊂平面1A BD ∴=EG ∥平面1A BD 同理:GP 平面1A BD 又因为EG GP G = 且EG ⊂平面EGPKHF ,GP ⊂平面EGPKHF ∴平面EGPKHF ∥平面1A BD ∴平面α可以是平面EGPKHF ∵=EG GP PK KH HF FE ====∴六边形EGPKHF 是正六边形,故C 正确以平面α是平面1A BD 为例计算:设A 到平面1A BD 的距离为h等体积法求距离∵11A A BD A ABD V V --=,∴111133A BD ABD h S AA S ⋅⋅=⋅⋅又因为11=2A BD S ⨯ ,1=44=82ABD S ⨯⨯∴=3h 则1AA 与平面1A BD所成角的正弦值为1=3h AAB 正确对于D 选项:由于直线1AC β⊂,在正方体上任取点但异于1,A C ,与1,A C 可构成平面β,但是截面的形状都不是正方形,故D 错误故选:ABC3.已知正方体1111ABCD A B C D -的棱长为2,M 为1AA 的中点,平面α过点1D 且与CM 垂直,则()A .CM BD⊥B .//BD 平面αC .平面1//C BD 平面αD .平面α截正方体所得的截面面积为92【答案】ABD【分析】分析出BD ⊥面ACM ,可判断选项A ;取AD 的中点E ,由平面几何知识可知,1DM D E ⊥,从而判断出CM ⊥面11B D EF ,即平面α截正方体所得的截面为梯形11B D EF ,从而可判断剩余的三个选项.【详解】连接AC ,则AC BD ⊥,又因为BD AM ⊥,AC AM A ⊥=,所以BD ⊥面ACM ,又因为CM ⊂面ACM ,所以BD ⊥CM ,故选项A 正确;取AD 的中点E ,AB 的中点F ,连接1D F ,EF ,1B F ,DM ,11B D ,在正方形11ADD A 中,由平面几何知识可知,1DM D E ⊥,又因为1CD D E ⊥,CD DM D ⋂=,所以1D E ⊥面CDM ,所以1D E CM ⊥,又因为BD ⊥CM ,所以11B D CM ⊥,又因为1111D E B D D ⋂=,所以CM ⊥面11B D EF ,即平面α截正方体所得的截面为梯形11B D EF ,所以显然//BD 平面α,选项B 正确;平面1C BD 与平面α不平行,选项C 错误;在梯形11B D EF 中,11B D =EF =11B F D E ==所以梯形的高为2,所以梯形11B D EF 的面积为92,即平面α截正方体所得的截面面积为92,故选项D 正确.故选:ABD.【题型五】求截面周长【典例分析】如图,在正方体1111ABCD A B C D -中,4AB =,E 为棱BC 的中点,F 为棱11A D 的四等分点(靠近点1D ),过点,,A E F 作该正方体的截面,则该截面的周长是___________.【分析】首先根据面面平行的性质定理作出过点,,A E F 的正方体的截面,从而求截面的周长.【详解】如图,取11C D 的中点H ,取1CC 上靠近点1C 的三等分点G ,连接,,,,AE EG GH HF FA ,易证//,//AE HF AF EG ,则五边形AEGHF 为所求截面.因为4AB =,所以111182,3,1,3BE CE C H D H A F D F CG =======,143C G =则103AE EG ==,5,GH HF AF ===故该截面的周长是AE EG GH HF AF ++++【变式演练】1.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A .B .C .D .2【答案】B【分析】根据题意先作出截面,进而算出截面各边的长度,最后得到答案.【详解】如图,在正三棱柱111ABC A B C -中,延长AF 与CC 1的延长线交于M ,连接EM 交B 1C 1于P ,连接FP ,则四边形AEPF 为所求截面.过E 作EN 平行于BC 交CC 1于N ,则N 为线段CC 1的中点,由1MFC 相似于MAC △可得MC 1=2,由1MPC △相似于MEN 可得:111242,2333PC PC B P =⇒==,在1Rt AA F 中,112,1AA A F ==,则AF ==,在Rt ABE △中,2,1AB BE ==,则AE ==1Rt B EP 中,1121,3B E B P ==,则PE =在1C FP 中,11141,,603C F C P FC P ==∠=︒,由余弦定理:2224413121cos 60339PF ⎛⎫=+-⨯⨯⨯︒= ⎪⎝⎭,则PF ==故选:B.2.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.【答案】【分析】根据正方体的性质作出截面图形,进而算出周长.【详解】如图,延长EF ,A 1B 1,相交于点M ,连接AM ,交BB 1于点H ,延长FE ,A 1D 1,相交于点N ,连接AN ,交DD 1于点G ,连接FH ,EG ,可得截面为五边形AHFEG .因为ABCD -A 1B 1C 1D 1是棱长为6的正方体,且E ,F 分别是棱C1D 1,B 1C 1的中点,由中位线定理易得:EF =AG =AH =EG=FH AH +HF +EF +EG +AG =故答案为:+3.已知直三棱柱111ABC A B C -的侧棱长为2,AB BC ⊥,2AB BC ==.过AB 、1BB 的中点E 、F 作平面α与平面11AA C C 垂直,则所得截面周长为()A .+B C .D .【答案】C【分析】确定平面α与各棱的交点位置,计算出截面各边边长,由此可得出所得截面周长.【详解】如下图所示,取AC 的中点J ,连接BJ ,取AJ 的D ,连接DE ,取11A C 的中点K ,连接KJ 、1B K ,AB BC = ,J 为AC 的中点,则BJ AC ⊥,1AA ⊥ 平面ABC ,BJ ⊂平面ABC ,1BJ AA ∴⊥,1AC AA A ⋂=,BJ ∴⊥平面11AA C C ,D Q 、E 分别为AJ 、AB 的中点,则//DE BJ 且12DE BJ =,DE ∴⊥平面11AA C C ,DE ⊂ 平面DEF ,所以,平面DEF ⊥平面11AA C C ,所以,平面α即为平面DEF ,设平面α交11B C 于点I ,在直棱柱111ABC A B C -中,11//AA CC 且11AA CC =,所以,四边形11AA C C 为平行四边形,11//AC A C ∴且11AC A C =,J 、K 分别为AC 、11A C 的中点,1//AJ A K 且1AJ A K =,所以,四边形1AA KJ 为平行四边形,1//KJ AA ∴且1KJ AA =,11//BB AA 且11BB AA =,1//KJ BB ∴且1KJ BB =,所以,四边形1BB KJ 为平行四边形,//DE BJ ,DE ⊄平面1BB KJ ,BJ ⊂平面1BB KJ ,//DE ∴平面1BB KJ ,设平面α 平面1BB KJ FG =,DE ⊂ 平面α,所以,//DE FG ,//FG BJ ∴,//BF GJ ,所以,四边形BFGJ 为平行四边形,可得11122GJ BF BB KJ ===,所以,G 为KJ 的中点,延长DG 交11A C 于点H ,//DJ KH ,所以,DJG HKG ∠=∠,JDG KHG ∠=∠,又JG KG = ,所以,DJG HKG ≅△△,11122HK DJ AJ KC ∴===,H ∴为1KC 的中点,因为平面//ABC 平面111A B C ,平面α 平面ABC DE =,平面α 平面111A B C IH =,//DE IH ∴,//DE BJ ,1//BJ B K ,//DE IH ,1//IH B K ∴,I ∴为11B C 的中点,AB BC ⊥,2AB BC ==,则AC ==J 为AC的中点,12BJ AC ∴==122DE BJ ==,同理2IH =,因为直棱柱111ABC A B C -的棱长为2,F 为1BB 的中点,1112BF BB ∴==,由勾股定理可得EF ==IF =,1//KJ BB 且12KJ BB ==,1BB ⊥平面ABC ,KJ ∴⊥平面ABC ,AC ⊂ 平面ABC ,KJ AC ∴⊥,G 、D 分别为KJ 、AJ 的中点,则112GJ KJ ==,122DJ AJ ==,由勾股定理可得DG,同理GH =因此,截面的周长为22DE IH EF IF DH ++++=++.故选:C.【题型六】求截面面积【典例分析】已知正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,则该四棱柱被过点1A ,C ,E 的平面截得的截面面积为______.【答案】【分析】在1DD 上取点F ,使得12D F =,连接1,A F CF ,则四边形1A ECF 是平行四边形,由勾股定理可得11,,A E CE A C ,再结合余弦定理与面积公式即可求解【详解】由题意,正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,可得1118,2AA BB CC BE ====,在1DD 上取点F ,使得12D F =,连接1,A F CF ,则有11,//A F CE A F CE =,所以四边形1A ECF是平行四边形,由勾股定理可得11A E CE A C ======所以2221111cos 210A E CE A C A EC A E CE +-∠==-⨯,所以1sin 10A EC ∠=,所以四边形1A ECF 是平行四边形的面积为11sin 1210A E EC A EC ⨯⨯∠==,故答案为:【变式演练】1.正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,则平面1AC E 截该正方体所得的截面面积为()A .5B .C .D .【答案】D【分析】作出示意图,设F 为1BB 的中点,连接1,,AF FC EF ,易得平面1AC E 截该正方体所得的截面为1AFC E ,再计算其面积.【详解】如图所示,设F 为1BB 的中点,连接1,AF FC ,设G 为1CC 的中点,连接,EG GB ,由//EG AB 且EG AB =,得ABGE 是平行四边形,则//AE BG 且AE BG =,又1//BG C F 且1BG C F =,得1//AE C F 且1AE C F =,则1,,,A E C F 共面,故平面1AC E 截该正方体所得的截面为1AFC E .又正方体1111ABCD A B C D -的棱长为2,11AF FC EC EA ===,1AC =EF =1EF AC ⊥,故1AFC E 的面积为12S =⨯=故选:D.2.在棱长为a 的正方体1111ABCD A B C D -中,E 为1AA 的中点,则过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面面积为()A 2B .298aC .24aD 2【答案】B【分析】取11A D 中点F ,连接BE 、EF 、1C F 、1BC 、1AD ,证明出1//EF BC ,故四点B 、1C 、E 、F 共面,所以过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面为等腰梯形1EFC B ,根据已知,即可求解.【详解】取11A D 中点F ,连接BE 、EF 、1C F 、1BC 、1AD ,因为11//AB C D 且11AB C D =,所以,四边形11ABC D 为平行四边形,所以,11//AD BC ,E 、F 分别为1AA 、11A D 的中点,所以,1//EF AD 且112EF AD a =,所以,1//EF BC ,故B 、1C 、E 、F 四点共面,所以过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面为等腰梯形1EFC B ,其中2EF a =,1BC =,12BE C F a =,过点E 、F 在平面1BC FE 内分别作1BC 的垂线,垂足点分别为G 、H ,因为1BE C F =,1EBG FC H ∠=∠,12EGB FHC π∠=∠=,所以,1Rt EBG Rt FHC ≅△△,故1BG C H =,在平面1BC FE 内,因为1EG BC ⊥,1FH BC ⊥,1//EF BC ,所以,四边形EFHG 为矩形,则GH EF a =,所以,112BC EF BG C H a -==,所以,梯形1BC FE 的高4h a ==,梯形1B CFE 的面积2192428a S a a ⎫=⨯⨯=⎪⎪⎭.故选:B.3.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面为___________,其面积为___________.【答案】四边形1AECQ 【分析】第一空,先画出1,,A P C 所在平面,由平面11//AA DD 平面11BB CC 得出1//AQ EC ,1//AQ EC ,1A E C Q ,,,四点共面,即为所求截面;第二空由已知条件可求出11AE EC AC ==1AEC 的面积,再乘以2可得截面的面积.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ EC ,同理1//AQ EC ,所以四边形1AEC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B CE =,即1EC EB ==所以11AE EC AC ===由余弦定理得:22211111cos 25AE EC AC AEC AE EC +-∠==⨯,所以1sin AEC ∠,所以1AEC Q S四边形1112sin 22AE EC AEC =⨯⨯⨯∠=故答案为:四边形1AEC Q。
立体几何中的 截面问题
立体几何中的截面问题立体几何中的截面问题一、引言1·1 概述本文档将详细介绍立体几何中的截面问题。
截面问题是立体几何中常见的问题类型之一,涉及到在给定几何体上进行切割,求解切割平面与几何体的交线或截面的形状、性质等问题。
1·2 目的本文档的目的是为读者提供关于立体几何中截面问题的全面了解,包括截面的定义、不同几何体的截面特征、相关定理和推论的证明方法、截面问题的应用等。
1·3 适用范围本文档适用于对立体几何有一定了解的读者,特别是对截面问题感兴趣的学生、教师和研究人员。
二、截面的定义与分类2·1 截面的定义截面是指一个平面与立体几何体相交所得的曲线、线段或点集。
2·2 平行截面与垂直截面根据切割平面与几何体的相对位置,我们可以将截面分为平行截面和垂直截面两种类型。
三、不同几何体的截面特征3·1 球体的截面3·1·1 截面形状球体的截面是一个圆或一个点。
3·1·2 截面性质球体的截面是等面积的,并且与球心的连线垂直于截面。
3·2 圆柱体的截面3·2·1 截面形状圆柱体的截面可以是一个圆、一个椭圆、一条直线或两个平行线段。
3·2·2 截面性质圆柱体的截面与轴线平行或垂直,并且截面上的点到轴线的距离是恒定的。
3·3 圆锥体的截面3·3·1 截面形状圆锥体的截面可以是一个圆、一个三角形、一个直线或两个平行线段。
3·3·2 截面性质圆锥体的截面与轴线平行或垂直,并且截面上的点到轴线的距离是变化的。
3·4 正多面体的截面3·4·1 截面形状正多面体的截面可以是一个正多边形、一个多边形、一个直线或两个平行线段。
3·4·2 截面性质正多面体的截面与对称轴平行或垂直,并且截面上的点到对称轴的距离是恒定的。