《生物统计学》复习要点
生物统计学复习要点
1、生物统计学主要包括试验设计和统计分析2、统计学的发展经历了3个阶段:古典记录统计学,近代描述统计学和现代推断统计学3、生物统计学是数理统计在生物学研究中的应用,它是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科,属于应用统计学的一个分支。
4、英国统计学家R.A.Fisher于1923年发展了显著性检验及估计理论,提出来F分布和F 检验,创立了方差和方差分析,在从事农业试验及数据分析研究时,他提出了随机区组法、拉丁方法和正交试验的方法5、常用的统计学术语有:总体与样本,参数与统计数,变量与资料,因素与水平,处理与重复,效应与互作,准确性与精确性,误差与错误6、总体按所含个体的数目可分为有限总体和无限总体,n小于30的样本称为小样本,n大于等于30的为大样本7、参数也称参量,是对一个总体特征的度量。
统计数也称统计量,是由样本计算所得的数值。
8、准确性反映测定值与真值符合程度的大小,而精确性则是反映多次测定值的变异程度9、生物统计学的基本作用:1)提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征2)判断试验结果的可靠性3)提供由样本推断总体的方法4) 提供试验设计的一些重要原则10、试验资料具有集中性和离散性两种基本特征。
平均数是反映集中性的特征数,主要包括算术平均数,中位数,众数,几何平均数等;反映离散性的特征数是变异数,主要包括极差,方差,标准差和变异系数11、资料可分为数量性状资料和质量性状资料12、数量性状资料分为计数资料(非连续变量资料)和计量资料(连续变量资料)13、资料的来源(资料的搜集方法)一般有两个,调查和试验14、常用的抽样方法有随机抽样,顺序抽样,典型抽样15、随机抽样的方法:简单随机抽样,分层随机抽样,整体抽样,双重抽样16、计量资料的整理步骤:1,计算全距2.确定组数和组距(样本容量30--60,分组数为5--8)3,确定组限和组中值4,分组,编制次数分布表17、常用的统计图有条形图,饼图,直方图,多边形图,散点图(会辨认)18、算术平均数的算法:直接计算法,减去(或加上)常数法,加权平均法19、算术平均数的重要特性:1)样本中各观测值与其平均数之差称为离均差,其总和等于零2)样本中各观测值与其平均数之差平方的总和,较各观测值与任一数值(不包括平均数)之差的平方和最小,即离均差平方和为最小20、标准差的特性:1,标准差的大小受多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小2,计算标准差时,如将各观测值加上或减去一个常数a,其标准差不变,将各观测值乘以或除以一个常数a,则标准差扩大或缩小了a倍3,在正态分布情况下,一个样本变量的分布情况可作如下估计:在平均数两侧的1s范围内,观测值个数约为观测值总个数的68.26%,在平均数两侧的2s范围内,观测值个数约为观测值总个数的95。
生物统计学复习提纲
复习提纲一、名词解释1、变异系数:变数的相对变异量,CV=S/y×1002、总体与样本:总体是指具有相同性质的个体组成的集团,样本是指从总体中抽出的一部分个体的集合。
3、统计假设测验:根据于某种实际需要,对未知的或不完全知道的统计总体提出一些假设,然后由样本的实际结果,经过一定的计算,作出在概率意义上应当接受那种假设的测验。
4、显著水平:用来测验假设的概率标准5%或1%等,称为显著水平,一般以α表示。
5、适合性测验:比较实验数据与理论假设是否符合的假设测验。
6、单因素试验:整个试验中只变更、比较一个试验因素的不同水平,其它作为试验条件的因素均严格控制一致的试验。
7、连续型数据与离散型数据:连续型数据是指称量、度量或测量方法得到的数据,离散型数据是指用计数方法获得的数据。
8、零假设与备择假设:零假设是指假设总体平均数μ等于某一指定值μ0,记为H0:μ=μ0或μ-μ0=0。
备择假设,和零假设相对立的一个假设,也称为对应假设。
记作H A:μ≠μ0。
9、第一类错误(α错误):如果H0是真实的,我们通过测验却否定了它,就犯了一个否定真实假设的错误,这叫第一类错误(α错误)。
10、第二类错误(β错误):如果H0是错误的,我们通过测验没有发现其不真实而接受了它,即犯了一个接受不真实的H0的错误,这叫第二类错误(β错误)。
11、回归分析:对具有因果关系的两个变数,统计分析的任务是由实验数据推算出一个表示Y 随X 的改变而改变的方程过程称为回归分析。
12、重复:在试验中同一处理设置的试验单位数。
13、样本容量:样本中包含的个体数,用n表示。
14、生物统计学:生物统计学是以概率理论为基础,研究生命科学中随机现象规律性的方法论科学。
15、有限总体:总体中包含的个体数目有限,这种总体称为有限总体。
16、处理与水平:处理是指试验过程中设置的所有试验因素的所有水平,是试验的具体条件或状态,水平是指每一个因素根据其质或量所分的等级或所处的状态。
生物统计学复习资料
第一章1.生物统计学(Biostatistics)是数理统计在生物学研究中的应用,它是应用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科。
属于应用统计学的一个分支。
是一门应用数学。
2.统计学(Statistics)是把数学的语言引入具体的科学领域,将所研究的问题抽象为数学问题的过程, 是收集、分析、列示和解释数据的一门科学.3.生物统计学是研究生命过程中以样本推断总体的一门学科。
4.生物统计学的基本类容:①试验设计:如何合理地进行调查或试验设计②统计分析:如何科学地整理、分析所收集来的具有变异的资料,揭示出隐藏其内部的规律性。
5.生物统计学的基本作用:①提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征.②运用显著检验,判断试验结果的可靠性或可行性。
③提供由样本推断总体的方法。
④提供试验设计的的一些重要原则。
6.常用的统计学术语:一.总体与样本具有相同性质的个体所组成的集合称为总体;总体有分为有限总体和无限总体。
组成总体的基本单元称为个体从总体中抽出若干个体所构成的集合称为样本(sample);(总体中的一部分)构成样本的每个个体称为样本单位;样本中所包含的个体数目叫样本容量或样本大小,样本容量常记为n。
一般在物学研究中,通常n<30的样本叫小样本,n ≥30的样本叫大样本。
二、参数与统计数描述总体特征的数量称为参数,也称参量。
常用希腊字母表示参数,例如用μ表示总体平均数,用σ表示总体标准差;描述样本特征的数量称为统计数,也称统计量。
常用英文字母表示统计数,例如用X-表示样本平均数,用S表示样本标准差.三、变量与常数变量,或变数,指相同性质的事物间表现差异性或差异特征的数据。
常数,表示能代表事物特征和性质的数值,通常由变量计算而来,在一定过程中是不变的.变量包括定量变量和定性变量,定性变量又可分为连续变量(可以有任何小数出现)和非连续变量(只有整数出现)。
生物统计学复习资料(二)2024
生物统计学复习资料(二)引言概述:生物统计学是基于统计原理和方法来进行生物数据分析和推断的科学领域。
本文档为生物统计学复习资料(二),旨在帮助读者复习统计学的基本概念和方法,并应对其在生物学研究中的应用。
本文将从五个大点出发,系统地介绍生物统计学的相关主题。
正文:一、描述统计学1.数据类型和测量尺度2.数据收集和整理方法3.描述性统计的基本概念和方法4.数据的图形表示与解读5.概率分布的基本特征及其应用二、参数估计1.总体与样本的概念2.参数估计的原理和方法3.点估计和区间估计的概念和计算方法4.常见参数的估计方法5.置信区间的解读与应用三、假设检验1.假设检验的基本原理和步骤2.单样本假设检验和双样本假设检验的概念和计算方法3.假设检验的显著性水平和P值的解释与应用4.常见假设检验的应用示例5.误差的类型和检验结果的解读四、回归分析1.线性回归的基本原理和假设2.回归方程模型的建立和参数估计3.回归系数的显著性检验和自变量的选择4.残差分析和模型的适应性检验5.回归分析在生物学研究中的应用案例五、方差分析1.方差分析的基本概念和原理2.单因素方差分析和多因素方差分析的概念和计算方法3.方差分析中的显著性检验和效应量计算4.方差分析中的多重比较方法5.方差分析的应用示例和注意事项总结:本文系统地介绍了生物统计学的相关主题,包括描述统计学、参数估计、假设检验、回归分析和方差分析。
通过阅读本文,读者可以复习统计学的基本概念和方法,并了解其在生物学研究中的应用。
希望本文对读者的生物统计学复习和学习有所帮助。
生物统计学·名词解释 复习重点
1.生物统计:是应用数理统计的原理和方法研究数量变异规律的学科,也是一门应用数学。
2.总体:根据研究目的确定的研究对象的全体称为总体。
3.个体:总体其中的一个研究单位称为个体。
4.样本:总体的一部分称为样本。
5.有限总体:包含有限个个体的总体称为个体。
6.无限总体:包含无限多个个体的总体叫无限总体。
7.样本容量或大小:样本中所包含的个体数目称为样本容量或大小,常记为n,通常n≤30为小样本,n>30为大样本。
8.参数:总体计算的特征数称为参数,通常用希腊字母表示,如用μ表示总体平均数,σ表示总体标准差。
9.统计数:由样本计算的特征数,称为统计数,通常用拉丁字母表示,如用x表均数,用s表示样本标准差。
10.准确性:也叫准确度,指在试验或调查中同一试验指标或性状的观测值与其真值接近的程度。
11.精确性:也叫精确度,指在试验或调查中同一试验指标或性状的重复观测值彼此接近的程度。
12.正确性:试验或调查的准确性,精确性,合称正确性。
13.随机误差:也叫抽样误差,这是由于偶然因素所造成的,随机误差影响试验的精确性。
特点:偶然性和随机波动性难以消除。
14.系统误差:也叫片面误差,这是由于试验动物的初始条件相同,测量的仪器不准,标准试剂未经校正,以及观测、记载、抄录、计算中的错误所引起。
系统误差影响试验的准确性。
特点:定向性,可消除。
15.必然事件(Ω):在一定条件下必然发生的现象。
16.不可能事件(Φ):在一定条件下不可能发生的现象。
17.事件:在一定条件下可能发生也可能不发生的事件,简称事件。
用A,B表示。
18.概率:在相同条件下进行n次重复试验,如果随机事件A发生的次数为m,则把m/n称为随机事件A的频率,把试验重复数n逐渐增大时,如果随机事件A的频率越来越稳定的接近某一数值p,则我们把数值p称为随机事件A的概率。
这样定义的概率称为统计概率或者称为后验概率。
19.古典概率:设样本空间由n个等可能的基本事件所构成,其中事件A包含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
生物统计学 复习资料
A提出无效假设与备择假设
H0:= 246,HA:> 246
B计算t值
经计算得:=252,S=9.115
所以
= == 2.281
C查临界t值,作出统计推断
t=2.281 >单侧t0.05(11),P< 0.05,否定H0:=246,接受HA:>246,可以认为该批饲料维生素C含量符合规定要求。
P(-∞<t<-2.131)+(2.131<t<+∞)=0.05。
由附表4可知,当df一定时,概率P越大,临界t值越小;概率P越小,临界t值越大。当概率P一定时,随着df的增加,临界t值在减小,当df=∞时,临界t值与标准正态分布的临界u值相等。
第三章
1、用山楂加工果冻儿,传统工艺平均每100g山楂出果冻儿500g.现采用一种新工艺进行加工,测定了16次,得知每100g山楂出果冻儿平均数为520g,标准差为S=12g,问新工艺与传统工艺之间有无显著差异?
在此例中,总体方差未知,而样本容量又不大,所以应该用t测验。其测验步骤如下:
A提出假设.H0:=0,即新工艺和传统工艺之间无显著差异;对HA:0,即新工艺和传统工艺之间存在显著差异.
B确定显著水平.
C检验计算
均数标准差:
统计量t值:
自由度:df=n-1=16-1=15(t0.01(df=15)=2.947)
【例5.3】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg时的背膘厚度有无显著差异?
表5-3长白与蓝塘后备种猪背膘厚度
生物统计学复习要点
1、生物统计学主要包括试验设计和统计分析2、统计学的发展经历了3个阶段:古典记录统计学,近代描述统计学和现代推断统计学3、生物统计学是数理统计在生物学研究中的应用,它是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科,属于应用统计学的一个分支。
4、英国统计学家R.A.Fisher于1923年发展了显著性检验及估计理论,提出来F分布和F 检验,创立了方差和方差分析,在从事农业试验及数据分析研究时,他提出了随机区组法、拉丁方法和正交试验的方法5、常用的统计学术语有:总体与样本,参数与统计数,变量与资料,因素与水平,处理与重复,效应与互作,准确性与精确性,误差与错误6、总体按所含个体的数目可分为有限总体和无限总体,n小于30的样本称为小样本,n大于等于30的为大样本7、参数也称参量,是对一个总体特征的度量。
统计数也称统计量,是由样本计算所得的数值。
8、准确性反映测定值与真值符合程度的大小,而精确性则是反映多次测定值的变异程度9、生物统计学的基本作用:1)提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征2)判断试验结果的可靠性3)提供由样本推断总体的方法4) 提供试验设计的一些重要原则10、试验资料具有集中性和离散性两种基本特征。
平均数是反映集中性的特征数,主要包括算术平均数,中位数,众数,几何平均数等;反映离散性的特征数是变异数,主要包括极差,方差,标准差和变异系数11、资料可分为数量性状资料和质量性状资料12、数量性状资料分为计数资料(非连续变量资料)和计量资料(连续变量资料)13、资料的来源(资料的搜集方法)一般有两个,调查和试验14、常用的抽样方法有随机抽样,顺序抽样,典型抽样15、随机抽样的方法:简单随机抽样,分层随机抽样,整体抽样,双重抽样16、计量资料的整理步骤:1,计算全距2.确定组数和组距(样本容量30--60,分组数为5--8)3,确定组限和组中值4,分组,编制次数分布表17、常用的统计图有条形图,饼图,直方图,多边形图,散点图(会辨认)18、算术平均数的算法:直接计算法,减去(或加上)常数法,加权平均法19、算术平均数的重要特性:1)样本中各观测值与其平均数之差称为离均差,其总和等于零2)样本中各观测值与其平均数之差平方的总和,较各观测值与任一数值(不包括平均数)之差的平方和最小,即离均差平方和为最小20、标准差的特性:1,标准差的大小受多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小2,计算标准差时,如将各观测值加上或减去一个常数a,其标准差不变,将各观测值乘以或除以一个常数a,则标准差扩大或缩小了a倍3,在正态分布情况下,一个样本变量的分布情况可作如下估计:在平均数两侧的1s范围内,观测值个数约为观测值总个数的68.26%,在平均数两侧的2s范围内,观测值个数约为观测值总个数的95。
《生物统计学》复习资料
《生物统计学》复习资料一、填空题1.变量之间的相关关系主要有两大类:(正相关)和(负相关)。
2.试验误差可以分为(随机误差)和(系统误差)两类。
3.样本标准差的计算公式( )。
解析:4.方差分析必须满足(正态性)、(方差齐性)和可加性3个基本假定。
5.在假设检验中,如果检验样本间差异是否极显著,则显著水平a取值为(0.05)。
6.在分析变量之间的关系时,一个变量X确定,Y是随着X变化而变化,两变量呈因果关系,则X称为(自变量),Y称为(因变量)。
二、单项选择题1.抽取样本的基本首要原则是(B)A、统一性原则B、随机性原则C、完全性原则D、重复性原则2.如果对各观测值加上一个常数a,其标准差(D)A、扩天√a倍B、扩大a倍C、扩大a²倍D、不变3.在一组数据中,其中一个数据9的离均差是3,那么该组数据的平均数是(B)A、12B、10C、6D、34.平均数是反映数据资料(B)0的代表值。
A、变异性B、集中性C、差异性D、独立性5.方差分析适合于(A)数据资料的均数假设检验。
A、两组以上B、两组C、一组D、任何6.在假设检验中,是以(A)为前提。
A、肯定假设B、备择假设C、无效假设D、有效假设7.统计学研究的事件属于(D)事件。
A、不可能事件B、必然事件C、小概率事件D、随机事件8.下列属于大样本的是(A)。
A、40B、25C、20D、109.在方差分析中,已知总自由度是15,组间自由度是3,组内自由度是(B)A、18B、12C、10D、510.已知数据资料有10对数据,并呈线性回归关系,它的总自由度、回归自由度和残差自由度分别是(C)A、9、1和8B、1、8和9C、8、1和9D、9、8和1三、判断题(正确的打√,错误的打×。
)1.对于有限总体不必用统计推断方法。
(×)2. 资料的精确性高,其准确性也一定高。
(×)3. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
生物统计学复习提纲
生物统计学复习提纲(2008)第1章 统计学的基本概念总体:根据研究目的确定的同质研究对象的全体(集合)。
样本:从总体中随机抽取的部分观察单位。
根据观察数据之间有无缝隙(gap ),常将数据分类为离散型变量(有缝隙)与连续型变量(无缝隙)两大类。
参数:总体的统计指标,如总体均数、标准差,采用希腊字母分别记为μ、σ。
固定的常数统计量:样本的统计指标,如样本均数、标准差,采用拉丁字母分别记为 ,为参数附近波动的随机变量。
第2章 统计描述①集中趋势(central tendency): 变量值集中位置,即平均水平指标。
常用描述集中趋势的统计量有:1. 算术均数(arithmetic mean),简称均数 (mean)2. 几何均数(geometric mean),适用条件:呈倍数关系的等比资料或对数正态分布(正偏态)资料;如增长速度、抗体滴度资料3. 中位数 (median),反映一批观察值在位次上的平均水平。
4. 众数(mode ),适用于大样本;较粗糙。
5. 调和均数(harmonic mean ),反映变量不同阶段的平均增长率或平均规模。
几种平均数之间的关系算术平均数 > 几何平均数 > 调和平均数②离散趋势(tendency of dispersion): 变量值围绕集中位置的分布情况,即个体观察值的变异程度。
常用的变异指标有:1.极差(Range )(全距)。
2.百分位数与四分位数间距Percentile and Quartile range 。
上面两个指标没有考虑到每个观察值的变异。
3.方差V ariance: 也称均方差(mean square deviation ),观察值的离均差平方和的均值。
总体和样本的方差分别记为σ2,S 2。
4.标准差Standard Deviation: 方差的正平方根;其单位与原变量X 的单位相同。
总体和样本的方差分别记为σ,S 。
5.变异系数 Coefficient of V ariation :xS CV =。
《生物统计学》复习
《⽣物统计学》复习《⽣物统计附试验设计》总复习⼀、主要内容1、基础知识①掌握⽣物统计的特点、基本概念,理解⽣物统计的作⽤;②了解资料的分类⽅法,掌握各类资料的初步整理⽅法;③掌握反映资料集中性和离中性的三个基本的统计量(平均数、标准差和变异系数)的概念、性质及计算;④掌握各种事件的概念和运算(和事件、积事件、互斥事件、对⽴事件、独⽴事件、完全事件);⑤掌握概率的定义、概率的计算、⼩概率事件实际不可能性原理(统计学上进⾏显著性检验的基本依据);⑥掌握⽣物科学研究中常⽤的概率分布:正态分布、⼆项分布、泊松分布、χ2分布、t 分布、F分布⑦理解样本平均数的抽样分布和样本平均数差数的分布。
⑧理解试验的⽬的是:由样本推断总体⑨掌握统计的原理和⽅法⼤数定理中⼼极限定理理论分布抽样分布2、假设检验⽅法①掌握u检验和t 检验——主要⽤于检验样本平均数(百分数)与总体平均数(百分数)或者两个处理平均数(百分数)差异是否显著;②掌握χ2检验——主要⽤于由质量性状得来的次数资料的显著性检验;③掌握⽅差分析——主要⽤于检验多个处理平均数间差异是否显著;3、统计分析⽅法①掌握简单相关与回归相分析②了解多元回归与相关分析③了解协⽅差分析4、试验设计⽅法①了解试验设计的基本概念、任务、特点与要求,掌握试验设计的基本原则(三原则);③掌握完全随机试验设计、配对设计、随机区组设计、拉丁⽅试验设计、交叉设计、正交设计的概念、原理、⽅法,结果的统计分析,各种⽅法的优错点;④掌握样本含量的确定;⑤了解调查设计的⽅法;⼆、基本概念1、总体——具有相同性质的个体所组成的集合2、样本——从总体中抽出的若⼲个个体所构成的集合3、样本容量——⼜称“样本数”,⼜称“样本⼤⼩”。
n4、样本单位——构成样本的每⼀个个体。
5、变量——相同性质的事物间表现差异性或差异特征的数据6、常数——代表事物特征和性质的数值7、参数——总体特征的度量8、统计数——从样本中计算所得的数值 9、效应——引起试验差异的作⽤称为效应10、试验误差——受⾮处理因素的影响使观测值与试验处理真值之间产⽣的差异称为试验误差。
生物统计学总复习重点
b
f(y)
P(a y b) a f (y)dy ?
Y ab
f(t)
df─>∞(标准正态曲线)
df=5
df=1
t
不同自由度下的t 分布图
f(χ2)
χ2分布
χ2
1.4 f( F)
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
1
F 分布曲线
df1 1, df2 5
df1 5, df2 5
df1 10, df2 10
2F
3
4
假设检验
小概率原理(P≤α)
反证法(假定H0成立,然后根据样本 结果推论是否为小概率事件,如果是
则拒绝H0 ,否则不拒绝。)
检验假设:
1. H0: =0 2. HA:=0
假设检验是在H0成立的前提下,从样本数据中寻找证据 来拒绝H0, “接受” HA。 如果样本证据不足,即P>,则只能不拒绝H0 ,暂且认 为H0正确; 如果证据充分,即P ≤ ,则有理由拒绝H0 ,认为差异有 统计学意义。
为什么?“接受零假设”的正确表述应当是什么? 方差分析的条件? 回归与相关分析的区别与联系 用样本直线回归方程,由X预测Y时,为什么不能任意外推?
有A、B、C、D、E、F 6个品种,拟设计一
品种比较试验。已知试验地西部肥沃,东部
贫瘠,应用什么
试验设计比较合理?
若上题中的试验地的土质状况较为均匀,则
275
322
在人为控制的不同无机磷含量x (ppm) 的土壤中种植玉 米,播后38天测定玉米植株中磷的含量y (ppm),现根据9 对观察值,已算得 x=13,y=80 ,sxx=734 ,syy=2274 , sxy = 1040,试完成:(1) 直线回归方程;(2) 对回归方程作 方差分析。
生物统计学复习资料
生物统计学复习资料一、名词解释准确性(accuracy):在试验中某一指标的观测值与真实值的接近程度,也称准确度。
(反映观测值偏离目标值的程度)精确性(precision):在相同试验条件下,对同一指标重复测量时所得观测值之间的接近程度,也称精确度。
(反映观测值之间的变异程度)准确性和精确性合称正确性。
随机误差(random error):由无法控制的偶然因素导致的误差。
(随机误差影响精确性,扩大样本容量或增加试验重复次数有助于减少但无法消除随机误差)系统误差(systematic error):由测量工具不精准、试验方法不完善、操作人员水平差异等因素导致的误差。
(既影响准确性又影响精确性,可消除)总体(population):研究对象的全体成员(有限总体、无限总体)个体(individual):构成总体的各个成员样本(sample):从总体中抽取的部分个体所组成的集合。
样本容量(sample size):样本包含的个体数量。
随机抽样(random sampling):采用随机方式从总体中获取样本的过程。
放回式抽样(sampling with replacement):从总体抽取一个个体,记录特征后放回总体,再抽取下一个个体。
非放回式抽样(sampling without replacement):从总体抽取一个个体,不放回总体就继续抽取下一个个体。
连续型数据(continuous data):与某种标准相比较获得的非整数数据。
(可以提高精确度,采用变量方法分析)离散型数据(discrete data):由记录不同类别个体数目而得到的整数数据。
(不能提高精确度,采用属性方法分析)极差(range,R):数据资料中最大值与最小值的差值。
组距(class interval, i):对频数资料分组时,每个组区间的高限和低限之差,即组区间极差。
样本特征数(sample characteristics):描述频率分布特征的数值总体特征数(population characteristics):描述概率分布特征的数值样本统计数(statistic):由样本数据计算而来的描述样本特征的数值。
生物统计学重要知识点
生物统计学重要知识点生物统计学重要知识点(说明:下列知识点为考试内容,没涉及的不需要复习。
注意加粗的部分为重中之重,一定要弄懂。
大家要进行有条理性的复习,望大家考出好成绩!)第一章概论(容易出填空题和名词解释)1、生物统计学的目的、内容、作用及三个发展阶段2、生物统计学的基本特点3、会解释总体、个体、样本、样本容量、变量、参数、统计数、效应和互作4、会区分误差(随机误差和系统误差)与错误以及产生的原因5、会区分准确度和精确度第二章试验资料的整理与特征数的计算(容易出填空和名词解释)1、随机抽样必须满足的两个条件2、能看懂次数分布表和次数分布图,会计算全距、组数、组距、组限和组中值3、会求平均数(算数、加权和几何)、中位数、众数,算术平均数的重要特性4、会求极差、方差、标准差和变异系数,理解标准差的性质第三章概率与概率分布(选择、填空和计算)1、理解事件、频率及概率,事件的相互关系,加法定理和乘法定理的运用2、概率密度函数曲线的特点和大数定律3、二项分布、泊松分布和正态分布的概率函数和标准分布图像特征,会计算概率值4、理解分位数的概念,弄清什么时候用单尾,什么时候用双尾5、样本平均数差数的分布第四章统计推断(计算)1、无效假设和备择假设、显著水平、双尾检验和单尾检验、假设检验的两类错误,会根据小概率原理做出是否接受无效假设的判断2、总体方差已知和未知情况下如何进行U检验3、一个样本平均数的t检验(例)成组数据平均数比较的t检验(例和)4、一个样本频率的假设检验(例),知道连续性矫正5、参数的区间估计(置信区间)和点估计第五章X2检验(计算)1、X2检验的原理和条件,以及进行连续性矫正的条件和方法2、适合性检验(例和)3、独立性检验:掌握2*2列联表的X2值的两种求法(例)第六章方差分析(计算)1、平方和与自由度的分解、计算方差、F检验2、掌握多重比较的LSD法,会用标记字母法和梯形法3、组内观测次数相等和不等的方差分析(例和)4、方差分析缺失数据的估计中弥补缺失数据的原则第七章直线回归与相关分析(填空、选择)1、回归和相关的概念,回归截距和回归系数的统计学意义,回归方程的三个基本性质2、直线回归的变异来源,每一部分的平方和的计算3、相关分析的相关系数和决定系数的意义第十章试验设计及其统计分析(填空、选择)1、试验设计的基本原则2、正交表及其特点(两个性质和两个特性)3、知道如何选用合适的正交表和设计表头4、正交设计试验结果的统计分析:利用极值R确定关键因子并选出最优组合(例)。
《生物统计学》复习要点
《生物统计学》复习要点课程名称:《生物统计学》适用专业:2016级专升本人力资源管理(业余函授)、行政管理(业余函授)辅导教材:《生物统计学》李春喜等主编科学出版社知识点一概念理解参数;效应;抽样调查;精确性;对立事件;中心极限定理;统计推断;小概率原理;生物学试验的基本要求;多重比较;互作;参数;系统误差;准确性;α错误;计量资料;区间估计;大数定律;水平;方差分析二、基本问题1、试验误差的来源有哪些?如何进行控制?2、平均数和标准差在统计分析中有什么作用?3、什么是u分布?它与t分布有何区别与联系?4、 2检验的主要用途?各用于什么情况下的假设检验?5、什么是生物统计学?其主要内容和作用是什么?6、什么是小概率原理?其在假设检验中有和作用?7、什么是多重比较?多重比较有哪些方法?8、试验误差控制的途径有哪些?三、统计计算1、有一标准正态分布的平均数为16,方差为4。
试计算:(1)落于10-20之间的数据的百分数;(2)小于12或大于20的百分数。
注:F(2)=0.977,F(-2)=0.018,F(-3)=0.001。
2、某养鸡场规定种蛋的孵化率p0>0.80为合格。
现对一批种蛋随机抽取100枚进行孵化检验,结果有78枚孵出,问这批鸡蛋是否合格?(α=0.05)。
单尾u0.05=1.64。
3、某鱼塘水中的含氧量,多年平均为4.5(mg/L),该鱼塘设10个点采集水样,测定含氧量为:4.33,4.62,3.89,4.14,4.78,4.64,4.52,4.55,4.48,4.26(mg/L)。
试检验该次抽样测定的水中含氧量与多年平均值有无显著差别(α=0.05)。
t 0.05(9) =2.262。
4、某猪场对4个不同品种幼猪进行4个月增重量的测定,每个品种选择体重接近的幼猪4头,测定结果列于下表:(1)试对不同品种猪4个月增重量进行显著性方差分析;(2)使用新复极差法(SSR 法)进行多重比较,结果使用字母标记法表述并进行文字推断描述。
《生物统计学教学资料》生物统计复习(小知识).doc
生物统计:生物统计是数理统计的原理和方法在生物科学中的应用,是一门应用数学。
意义: 提供试验设计方法、提供调杳设计的方法、提供整理、分析资料的方法。
特点:通过样本推断总体;有一定的错误率。
基本任务:如何科学整理、分析所得资料,得岀正确结论。
准确性:度量值与真值接近的程度。
精确性:同一样品重复不同观察值间接近的程度。
总体:研究对象的全体。
总体屮抽取一部分有代表性的个体进行研究,称为抽样,这些个体称为样本。
随机谋差:无法控制的内在和外在因素引起的;系统误差:试验条件引起。
参数: 根据总体计算描述整体随机变虽:的特性;一般用希腊字母表示;在群体内不变。
统计数:由样本估计出,拉丁字母表示描述样本随机变量的特性的数字,不同样本的结果不同1.数量性状资料:量测或计数方式测定数量性状而获得的数据。
(1)计量资料:用量测方式获得的数量性状资料(2)计数资料:用计数方式获得的数量性状资料2.质量性状资料:描述质量性状的数据,是通过对质量性状进行数虽:化处理而获得。
统计次数法;评分法3.半定量(等级)资料:观察单位按所考察的性状或指标的等级顺序分纽,清点各纽观察单位所得的资料。
三种类型资料的关系:三种不同类型的资料相互间是冇区别的,但冇时可根据研究的n的和统计方法的要求将一种类型资料转化成另一种类型的资料。
1.数据集中程度(中心)。
(1)平均数:统计学中最常用的统计数,用來表明资料中各观测值的集中程度。
算术平均数:是指资料中各观测值的总和除以观测值个数所得的商。
(2)中(位)数:样木观察值排序示,屮间的那个数值。
(3)众数:数据集中出现频率最多的数值。
(4)儿何平均数:n个观测值相乘Z积开n次方所得的方根,记为G。
(5)调和平均数:资料中各观测值倒数的算术平均数的倒数,记为H。
2.数据离散程度(变界大小)(1)全距(极差):数据集中最大值和最小值的差。
(2)离均差:样本中某个数据与平均数的差。
(3)平均绝对离差(统计学中未被使用)(4)样本方差(均方):(5)总体方差:(6)样木标准差:由于样木方差带有原观测单位的平方单位,在仅表示一个资料屮各观测值的变异程度而不作其它分析时,常需要与平均数配合使用。
(完整word版)生物统计学期末复习资料
第一章概论1.1什么事生物统计学?生物统计学的主要内容和作用是什么?答:生物统计学(biostatistics)是用数理统计的原理和方法来分析和解释生物界各种现象和实验调查资料,是研究生命过程中以样本来推断总体的一门学科。
生物统计学主要包括实验设计和统计分析两答部分的内容。
其基本作用表现在以下四个方面:a.提供整理和描述数据资料的科学方法;确定某些性状和特性的数量特征;b.判断实验结果的可靠性;c.提供由样本推断总体的方法;d.提供实验设计的一些重要原则。
1.2解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、实验误差。
答:总体(populatian)是具有相同性质的个体所组成的集合,是研究对象的全体。
个体(individual)是组成总体的基本单元。
样本(sample)是从总体中抽出的若干个个体所构成的集合。
样本容量(sample size)是指样本个体的数目。
变量(variable)是相同性质的事物间表现差异性的某种特征。
参数(parameter)是描述总体特征的数量。
统计数(statistic是由样本计算所得的数值,)是描述样本特征的数量。
效应(effection)试验因素相对独立的作用称为该因素的主效应,简称效应。
互作(interaction)是指两个或两个以上处理因素间的相互作用产生的效应。
实验误差(experimental error)是指实验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。
1.3随机误差和系统误差有何区别?答:随机误差(random)也称抽样误差或偶然误差,他是有实验中许多无法控制的偶然因素所造成的实验结果与真实结果之间产生的差异,是不可避免的。
随机误差可以通过增加抽样或试验次数降低随机误差,但不能完全消除随机误差。
系统误差(systematic)也称为片面误差,是由于实验处理以外的其他条件明显不一致所差生的倾向性的或定向性的偏差。
生物统计学复习资料(整理)
生物统计学复习资料第一章1.生物统计学的基本作用:1)提供整理和描述数据资料的科学方法,确定某些性状和特征的数量特征。
2)判断试验结果的可靠性3)提供由样本推断总体的方法4)提供试验设计的一些重要原则3.总体:具有相同性质的个体所组成的集合4.个体:组成整体的基本单元5.样本:从总体中抽出的若干个体所构成的集合6.变量:相同性质的事物间表现差异性的某项特征。
按其性质分为连续变量和非连续变量。
变量可以是定量的,也可以是定性的。
7.连续变量:表示在变量范围内可抽出某一范围的所有值8.非连续变量:也称离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。
9.常数:是不能给予不同数值的变量,它代表事物特征和性质的数值,通常由变量计算而来,在一定过程中是不变的。
10.参数:对总体特征的度量11.统计数:由测定样本的全部重复观测值算得的描述样本的特征的数。
12.效应:试验因素相对独立的作用13.误差:是试验中不可控因素所引起的观测值偏离真值的差异14.随机误差:由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间的差异,不可避免。
15.系统误差:由于试验处理以外的其他条件明显不一致所产生的带有倾向性或定向性的偏差,可避免。
16.错误:是指在试验过程中,人为因素所引起的差错。
17.准确性:在调查或试验中某一试验指标或性状的观测值与真实值接近程度18.精确性:指调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章1.次数分布:在不同区间内变量出现的次数所构成的分布。
2.资料根据生物的形状特性,可分为数量性状和质量性状3.间断性变数:指用计数方法获得的数据,其各个观测值必须以整数表示,在两个相邻整数间不允许带有小数的值存在。
4.连续性变数:指称量、度量或测量方法所得到得数据,其各个观测值并不限制于整数,在两个数值之间可以有微量数值差异的第三个数值存在5.质量性状资料的方法:统计次数法,评分法统计次数法:于一定总体或样本内,统计其具有某个性状的个体数目及具有不同性状的个体数目,按类别及其次数或相对次数给分法:给予每类性状以相对数量的方法。
生物统计学考试复习笔记整理
学中最常用的一个统计量 算术平均数 x 研究数据的代表值
中位数:Md 位置平均数数据先从小到大排序 研究数据的代表值
众数 Mo 位置平均数 几何平均数 G 可削弱数据中个别极大值的影响 调和平均数/倒数平均数 H
误差:在畜牧,水产科学试验中,试验指标除受试验因素影响外,还受到许多其他非非试验 因素的干扰,从而产生误差。
随机误差:(抽样误差/统计上的试验误差),无法控制,难以消除。影响精确性。
系统误差:(片面误差),容易克服。影响准确性。
准确性:试验结果值与真实值之间的符合程度。|真值-观测值|
精确性:观察值之间的符合程度。|任意两个观测值间的差值| 准确性高则精确性一定高
在统计学上,把小概率事件在一次试验中看成是实际不可能发生的事件称为小概率事件实际的 可能性原理。 (3)标准误的基本概念: σx 是样本平均数抽样总体的标准差,简称标准误,σx=σ/ n 表示平均数抽样误差的大小。 σ 往往是未知的,用样本标准差 S 来估计 σ,于是有样本标准误 Sx=S/ n
标准差 S 与标准误 Sx 的区别与联系 区别: ①S 反映样本观测值变异程度大小,反映样本的精确度,它的大小说明了 x 对该样本代表性的 强弱。
对试验样本所在总体作出假设 无效假设:H0:μ1 = μ2 备择假设:HA:μ1 ≠ μ2
选定显著水平 α = 0.05 或 0.01(通常用 0.05 )
在无效假设 H0 成立的前提下计算 t 值即无效假设正确的概率
根据小概率事件实际不可能性原理作出统计推断,否定或接受无效假设 根据 df=(n1-1)+(n2-1),由附表 3 查临界 t 值 t0.05 和 t0.01 若|t|< t0.05,则 P>0.05,接受 H0,两样本平均数所在的总体平均数差异不显著 若 t0.01<|t|≤t0.05 ,则 0.01<P≤0.05,否定 H0 接受 HA,差异显著,有 95%把握认为两样本不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生物统计学》复习要点
课程名称:《生物统计学》
适用专业:2016级专升本人力资源管理(业余函授)、行政管理(业余函授)辅导教材:《生物统计学》李春喜等主编科学出版社
知识点
一概念理解
参数;效应;抽样调查;精确性;对立事件;中心极限定理;统计推断;小概率原理;生物学试验的基本要求;多重比较;互作;参数;系统误差;准确性;α错误;计量资料;区间估计;大数定律;水平;方差分析
二、基本问题
1、试验误差的来源有哪些?如何进行控制?
2、平均数和标准差在统计分析中有什么作用?
3、什么是u分布?它与t分布有何区别与联系?
4、 2检验的主要用途?各用于什么情况下的假设检验?
5、什么是生物统计学?其主要内容和作用是什么?
6、什么是小概率原理?其在假设检验中有和作用?
7、什么是多重比较?多重比较有哪些方法?
8、试验误差控制的途径有哪些?
三、统计计算
1、有一标准正态分布的平均数为16,方差为4。
试计算:
(1)落于10-20之间的数据的百分数;
(2)小于12或大于20的百分数。
注:F(2)=0.977,F(-2)=0.018,F(-3)=0.001。
2、某养鸡场规定种蛋的孵化率p0>0.80为合格。
现对一批种蛋随机抽取100枚进行孵化检验,结果有78枚孵出,问这批鸡蛋是否合格?(α=0.05)。
单尾u
0.05=1.64。
3、某鱼塘水中的含氧量,多年平均为4.5(mg/L),该鱼塘设10个点采集水样,测定含氧量为:4.33,4.62,3.89,4.14,4.78,4.64,4.52,4.55,4.48,4.26(mg/L)。
试检验该次抽样测定的水中含氧量与多年平均值有无显著差别(α=0.05)。
t 0.05(9) =2.262。
4、某猪场对4个不同品种幼猪进行4个月增重量的测定,每个品种选择体重接近的幼猪4头,测定结果列于下表:
(1)试对不同品种猪4个月增重量进行显著性方差分析;
(2)使用新复极差法(SSR 法)进行多重比较,结果使用字母标记法表述并进行文字推断描述。
df e = 12时,不同M 值时的SSR 值如下表所示:
df t = 3,df e = 12时F 0.05 = 3.49,F 0.01 = 5.95。
5、测得1960~1972年间越冬代棉红铃虫在江苏东台的羽化高峰期依次为8,6,10,5,6,6,10,-1,12,11,9,1,8。
(以6月30日为0)试求其平均数、标准差和变异系数。
6、设x 服从正态分布N (4,16),试通过标准化变换后计算以下概率:P(-3<x≤4),P(x≤2.44),P(x >-1.48),P(x >-1)。
(F (0)=0.5,F (-1.75)=0.04006,F (-0.39)= 0.3483,F (-1.37)=0.08534,F (-1.25)=0.1056,F (-1)=0.1587,F (-1.96)=0.025)
7、有一标准正态分布的平均数为16,方差为4。
试计算:
(1)落于10-20之间的数据的百分数;
(2)小于12或大于20的百分数。
注:F(2)=0.977,F(-2)=0.018,F(-3)=0.001。
8、有一批蔬菜种子的平均发芽率p0=0.85。
现随机抽取500粒种子,用种衣剂进行浸种处理,结果有445粒发芽。
试检验种衣剂对种子发芽有无效果(α=0.05)。
u 0.05 = 1.96。
教学方式与考核方式:
教学方式:面授辅导、平时作业
考核方式:考勤、作业和开卷考试。