材料科学基础——三元合金相图152页PPT
合集下载
材料科学基础三元相图PPT课件
代表的两组元的比值恒定。
17
与某一边平行的直线
B
含对角组元浓度相等
B%
C%
P
Q
A
← A%
C
18
过某一顶点作直线
A% C a1 Ba '1 Ba '2 C a2 常 数 C % Bc1 Bc1 Bc2 Bc2
B
a1′ a2′
c1
c2 E
F
C%
B%
A
← A% D a2 a1 C
19
课堂练习
↑
N
B%
A
C%→
13
14
3 成分三角形中特殊的点和线 (1)三个顶点:代表三个纯组元; (2)三个边上的点:二元系合金的成分点;
15
II 点:40%A- 0%B- 60%C 90
III 点:20%A- 20%B- 60%C IV点:20%A- 50%B- 30%C 80
70
60 B% 50
B
10
还有偏共晶、共析、包析、包共析转变等。
22
5 共线法则与杠杆定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合
金的成分点和两个平衡相的成分点必然位 于成分三角形内的同一条直线上。 (由相率可知,此时系统有一个自由度,表示一个相的成 分可以独立改变,另一相的成分随之改变。) (2)杠杆定律:用法与二元相同。
26
二元匀晶相图
液相线 固相线
T (℃)
单相区 双相区
L
L +
A
B
27
三元匀晶相图
70 60 B% 50 40
30
20
10
10
20
30
40
II
17
与某一边平行的直线
B
含对角组元浓度相等
B%
C%
P
Q
A
← A%
C
18
过某一顶点作直线
A% C a1 Ba '1 Ba '2 C a2 常 数 C % Bc1 Bc1 Bc2 Bc2
B
a1′ a2′
c1
c2 E
F
C%
B%
A
← A% D a2 a1 C
19
课堂练习
↑
N
B%
A
C%→
13
14
3 成分三角形中特殊的点和线 (1)三个顶点:代表三个纯组元; (2)三个边上的点:二元系合金的成分点;
15
II 点:40%A- 0%B- 60%C 90
III 点:20%A- 20%B- 60%C IV点:20%A- 50%B- 30%C 80
70
60 B% 50
B
10
还有偏共晶、共析、包析、包共析转变等。
22
5 共线法则与杠杆定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合
金的成分点和两个平衡相的成分点必然位 于成分三角形内的同一条直线上。 (由相率可知,此时系统有一个自由度,表示一个相的成 分可以独立改变,另一相的成分随之改变。) (2)杠杆定律:用法与二元相同。
26
二元匀晶相图
液相线 固相线
T (℃)
单相区 双相区
L
L +
A
B
27
三元匀晶相图
70 60 B% 50 40
30
20
10
10
20
30
40
II
三元合金相图PPT课件
• 根据直线法则,合金的成分点R位
B
于两平衡相的成分点P、Q之间。
• 按杠杆定律对含量进行计算:
P1R1 = PR= 1
C%
R1Q1 RQ 3
B%
代入数据,得
60R1 = PR=1 R120 RQ 3
Q2 R2
Q
计算,得到:
P2
R P
直R1接=5计0算%A组元:60A%×75%. +20%×2P51%=R510%
•三元相图的类型多而复杂,目前比较完整的三元相
图只测出了十几种,更多的是关于三元相图中的各
种截面图和投影图。
.
3
恒压条件下,相律数学表达式为:F = C - P + 1。
• 纯金属成分固定不变,只有温度可以改变,所以纯金属自 由度数最多只有1个。
• 对于二元合金,其中一个组元含量确定,合金成分随即确 定(B%=100%-A%),所以合金成分变量只有一个,加 上温度变量,二元合金自由度数最多有2个。
第五章 三元合金相图
5.1 三元合金相图的表示方法 5.2 平衡相的定量法则 5.3 三元匀晶相图 5.4 固态互不溶解的三元共晶相图 5.5 三元相图总结
.
1
本章要求
• 1、熟悉成分三角形、直线法则和重心法则。 • 2、认识等温截面、变温截面和投影图。 • 3、了解三元匀晶相图和固态互不溶解的三
(2)当给定的合金在一定温度下处于两相平衡状 态时,若其中一相的成分给定,另一相的成分 点必在两已知成分点的延长线上。
(3)若平衡两相的成分点已知,合金成分点必然 位于此两成分点的连线上。
.
21
直线法则和杠杆法则的应用(一)
B
• 将两个已知成分的合金P、Q,
三元相图ppt
智能化数据库
通过建立智能化数据库,可以实现对大量计算结果的自动分析和处理,从而更好地挖掘三 元相图中的信息。
06
其他相关三元相图的内容
三元合金的物理性质
液相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时液态三元合金的最低共晶 成分的液相组成点连接形成的曲 线。
固相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时固态三元合金的共晶成分 的固相组成点连接形成的曲线。
数据库管理系统
通过建立数据库管理系统,可以将三元相图计算结果进行分类、整理和归纳,方 便研究人员进行查询和使用。
三元相图的集成与智能化研究
多尺度模拟
利用多尺度模拟方法可以将微观结构和宏观性能联系起来,从而更好地研究三元相图。
机器学习
机器学习技术可以对三元相图计算结果进行分析、归纳和预测,从而为研究三元相图提供 了新的思路和方法。
优化合金组织
通过三元相图,可以预测合金在不同温度和成分下的组织,进而优化合金组织结 构,提高材料综合性能。
材料制备
优化制备工艺
三元相图可以预测不同制备工艺下的材料相变行为,为制备 工艺的优化提供依据。
新型材料制备
利用三元相图可以设计新型的高性能材料,并通过合适的制 备工艺制备得到所需的材料体系。
工业生产过程
三元相图
xx年xx月xx日
目录
• 三元相图简介 • 三元相图的基本理论 • 三元相图的主要分析方法 • 三元相图的具体应用 • 三元相图的发展趋势和前景 • 其他相关三元相图的内容
01
三元相图简介
定义和意义
定义
三元相图是一种图形表示,主要用于描述 三个变量或三种物质之间的相互关系。
通过建立智能化数据库,可以实现对大量计算结果的自动分析和处理,从而更好地挖掘三 元相图中的信息。
06
其他相关三元相图的内容
三元合金的物理性质
液相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时液态三元合金的最低共晶 成分的液相组成点连接形成的曲 线。
固相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时固态三元合金的共晶成分 的固相组成点连接形成的曲线。
数据库管理系统
通过建立数据库管理系统,可以将三元相图计算结果进行分类、整理和归纳,方 便研究人员进行查询和使用。
三元相图的集成与智能化研究
多尺度模拟
利用多尺度模拟方法可以将微观结构和宏观性能联系起来,从而更好地研究三元相图。
机器学习
机器学习技术可以对三元相图计算结果进行分析、归纳和预测,从而为研究三元相图提供 了新的思路和方法。
优化合金组织
通过三元相图,可以预测合金在不同温度和成分下的组织,进而优化合金组织结 构,提高材料综合性能。
材料制备
优化制备工艺
三元相图可以预测不同制备工艺下的材料相变行为,为制备 工艺的优化提供依据。
新型材料制备
利用三元相图可以设计新型的高性能材料,并通过合适的制 备工艺制备得到所需的材料体系。
工业生产过程
三元相图
xx年xx月xx日
目录
• 三元相图简介 • 三元相图的基本理论 • 三元相图的主要分析方法 • 三元相图的具体应用 • 三元相图的发展趋势和前景 • 其他相关三元相图的内容
01
三元相图简介
定义和意义
定义
三元相图是一种图形表示,主要用于描述 三个变量或三种物质之间的相互关系。
材料科学基础 chp8三元相图PPT课件
2020/11/7
T℃等温面
A
B
L+α
α
N
K
M
O
K
bL
C
ML T
L+α
α K
O
返回
N K
2020/11/7
截面两相区不能代表两相浓 度,且不能用杠杆定律确定 两相相对量。
返回
变温截面的功能:
• 定性地揭示不同成分的系统的结晶过程 • 确定相变的临界温度 • 不能揭示多个平衡相的成分,故也不能揭示各平 衡相的质量分数
=xxCA
N
=EAE C=常数
N
PQ E
%A
xAN xAM C
2020/11/7
返回
8.2 平衡相的定量法则
B
一、直线定律
• 已知成分的两合金P、Q,熔 配成新合金R,R必在PQ连
α Oβ
线上,且在重量重心上。
PR Q
wPRP=wQRQ
A
C
• 成分为O的合金,分解为αβ两相,则αβ连线必过O点。
w % = o 10 % 0w % = o 10 % 0
2020/11/7
返回
二、重心定律
• 已知成分的三个合金P、Q、N,
B
熔配成一个新的合金R,R成分
点必在△PQN内,且在△重量
Q
重心上。
wP·RP = wQ ·RQ = wN ·RN
nR p
Pq
N
A
C
• 证:将PQ合金按直线定律熔配
成n,再由n和N按直线定律熔
在TE等温四相面以上有三个三相区,以下有一个,称 为3/1转变。
三相区由三相平衡三角形滑动而成。三相区棱边为三
个相的浓度变温线。
T℃等温面
A
B
L+α
α
N
K
M
O
K
bL
C
ML T
L+α
α K
O
返回
N K
2020/11/7
截面两相区不能代表两相浓 度,且不能用杠杆定律确定 两相相对量。
返回
变温截面的功能:
• 定性地揭示不同成分的系统的结晶过程 • 确定相变的临界温度 • 不能揭示多个平衡相的成分,故也不能揭示各平 衡相的质量分数
=xxCA
N
=EAE C=常数
N
PQ E
%A
xAN xAM C
2020/11/7
返回
8.2 平衡相的定量法则
B
一、直线定律
• 已知成分的两合金P、Q,熔 配成新合金R,R必在PQ连
α Oβ
线上,且在重量重心上。
PR Q
wPRP=wQRQ
A
C
• 成分为O的合金,分解为αβ两相,则αβ连线必过O点。
w % = o 10 % 0w % = o 10 % 0
2020/11/7
返回
二、重心定律
• 已知成分的三个合金P、Q、N,
B
熔配成一个新的合金R,R成分
点必在△PQN内,且在△重量
Q
重心上。
wP·RP = wQ ·RQ = wN ·RN
nR p
Pq
N
A
C
• 证:将PQ合金按直线定律熔配
成n,再由n和N按直线定律熔
在TE等温四相面以上有三个三相区,以下有一个,称 为3/1转变。
三相区由三相平衡三角形滑动而成。三相区棱边为三
个相的浓度变温线。
材料科学基础三元相图ppt
• 3)判断无变点性质: 15个无变 量点。
• 4)副三角形:有多少无变点就 对应多少副三角形。
• 5)观察相图中是否存在晶型转 变、液相分层或固溶体等。
• 水泥的矿物组成(wt%):
• C3S:40~60%;C2S:15~30%;C3A:6~12%; C4AF:10~16%
• 根据△规则,配料点落在何副△内,最后析晶产物便为这 个副△顶点所表示的晶相。可知,配料点在△C3S-C2S -C3A浓度△内
M
W D
3.MgO-Al2O3-SiO2 系统
4. Na2O-CaO-SiO2 系统
实际生产过程:
• 配料
• 水泥的配料组成(化学组成wt%):
• 原料: 石灰石
粘土
Fe粉
成份 CaO Al2O3 SiO2 Fe2O3
wt% 60~67 5~7 20~24 4~6
在 CaO-Al2O3-SiO2系统中,各种重 要的硅酸盐制品的组成区
• 2. K2O-Al2O3-SiO2 系统
Q
线规则 • 三、判断界线性质——切线规则 • 四、划分副三角形 • 五、标出并确定三元无变量点的性质(刚达到该点
时各相是多少)——重心原理 • 六、冷却(或加热)过程分析(M点析晶性质,过
程)——三角形规则、初晶区规则 • 七、过程量计算(确定析晶结束时各晶体相对数
量)——杠杆规则
• 1. CaO-Al2O3-SiO2 系统
• 1)判断化合物的性质:
共有十个二元化合物、二个三 元化合物。
一致熔融二元化合物: CS、 C2S、 C12A7、A3S2。
• 不一致熔融二元化合物: C3S2 、C3S、C3A、CA、 CA2、CA6
• 一致熔融三元化合物:CAS2、 C2AS。
• 4)副三角形:有多少无变点就 对应多少副三角形。
• 5)观察相图中是否存在晶型转 变、液相分层或固溶体等。
• 水泥的矿物组成(wt%):
• C3S:40~60%;C2S:15~30%;C3A:6~12%; C4AF:10~16%
• 根据△规则,配料点落在何副△内,最后析晶产物便为这 个副△顶点所表示的晶相。可知,配料点在△C3S-C2S -C3A浓度△内
M
W D
3.MgO-Al2O3-SiO2 系统
4. Na2O-CaO-SiO2 系统
实际生产过程:
• 配料
• 水泥的配料组成(化学组成wt%):
• 原料: 石灰石
粘土
Fe粉
成份 CaO Al2O3 SiO2 Fe2O3
wt% 60~67 5~7 20~24 4~6
在 CaO-Al2O3-SiO2系统中,各种重 要的硅酸盐制品的组成区
• 2. K2O-Al2O3-SiO2 系统
Q
线规则 • 三、判断界线性质——切线规则 • 四、划分副三角形 • 五、标出并确定三元无变量点的性质(刚达到该点
时各相是多少)——重心原理 • 六、冷却(或加热)过程分析(M点析晶性质,过
程)——三角形规则、初晶区规则 • 七、过程量计算(确定析晶结束时各晶体相对数
量)——杠杆规则
• 1. CaO-Al2O3-SiO2 系统
• 1)判断化合物的性质:
共有十个二元化合物、二个三 元化合物。
一致熔融二元化合物: CS、 C2S、 C12A7、A3S2。
• 不一致熔融二元化合物: C3S2 、C3S、C3A、CA、 CA2、CA6
• 一致熔融三元化合物:CAS2、 C2AS。
东南大学材料科学基础第5章三元相图PPT课件
四相平衡反应面的上下接口:
47
5.14.2 典型实例一
5.14 包共晶系
5.14.2 典型实例一:包晶+共晶—包共晶—共晶+三固相
48
5.14.2 典型实例一
1、空间模型
1)液相面 A0E2Pp B0E1Pp C0E2PE1
2) 固相面 A0dai B0ebf
C0hcg
3) 三相平衡区界面 L+a+b 相区 上端封口,下端△abP dpPa(开始) deba(终止) pPbe(终止)
反应终止面
he2En e2Epi
lkpm
fgnm hipn
5.13 四相平衡共晶系
34
5.13.1 空间模型 4、四相平衡面 mnp
5、溶解度曲面 三对共轭面 fmm’f’ hh’n’n kpp’k’ gnn’g’ ii’p’p lmm’l’
相区
1、 单相区 L a b g
2、 两相区 L+a L+b L+g a+b b+g g+a
b相区
5.12 三相平衡三元系
26
5.12.2 几种典型的三相平衡三元系
▪ 三相区的上下端封闭为直线: (aeb), (a1e1b1) ▪ 三相区的反应开始面: (aee1a1), (ee1b1b) ▪ 三相区的反应终止面: (aa1b1b)
5.12 三相平衡三元系
27
5.12.2 几种典型的三相平衡三元系
5.10 三元相图的基本概念
2、重心法则 三相平衡时各相的相对分数
三元系中O点代表的材料 由三相组成,三相的成分点 分别为:p(a)、Q(b)、S(g)
则:O点位于三角形PQS的重心上,各相的分数为:
a%OM 10% 0
第九章三元合金相图ppt课件
元
LE3 TE3 (A + C)
共 晶
(3)三元共晶点E:液相 成分到达
相
E点将发生三元共晶反应,
图
反应式为:LE TE (A+B+C)
LE
f=3-4+1=0 所以恒温结晶。
第九章
2.线:二元共晶曲线-三条(沟线) E1E线-当液相成分到达三条沟线E1E上时合金冷却
又两相区进入三相区并发生二元共晶反应 , 反应式为: L (A + B) E2E线-当液相成分到达三条沟线E2E上时合金冷却 又两相区进入三相区并发生二元共晶反应 , 反应式为: L (B + C) E3E线-同理发生二元共晶反应 ,反应式为: L (A + C) 因为 :f=C-P+1=3-3+1=1 三元合金在三相区发生二元共晶反应是在一个温度
L ( ) 各一个
红色为二元共晶曲面完成面投影
(5)固相面(7个)3个α、β、γ完成面; 3个 L ( ) L ( ) 和 L ( ) 二元共晶
B% AE
对下列合金: (1)标出D、E、F、H、
G各点的三元合金成分。 (2)说明三元合金
① H、E(线); ② H、F、D(线) ; ③ H、G(线) ; ④ E 、 F 、 G (线) 三元合金成分特点。
二. 三元相图的直线法则、重心法则和杠杆定律 (一)直线法则:
如果合金0在T’温度时处于两相平行平衡,合金的成分与 两个平衡相共线,并且其成分位于两平衡相之间(mon线 为共轭线)。
第九章
二.固溶体合金的平衡结晶过程及组织
在T1时,固相成分为S1,L相为L1 ; 在T2时,固相成分为S2,L相为L2 ; 在T3时,固相成分为S3,L相为L3 ; 在T4时,固相成分为S4,L相为L4 ,
第5章 三元合金相图PPT课件
8
五、三元系中四相平衡转变的类型
● 同时平衡析出两种沉淀相:α→βII +γII ● 四相平衡共晶转变:L→αa +βb +γc ● 四相平衡包晶转变:L +αa +βb →γc ● 包共晶转变:L +αa →βb +γc ● 四相平衡偏共晶转变:L0→L2 +αa +βb ● 四相平衡共析转变:δ0→αa +βb +γc ● 四相平衡包析转变:δ0 +αa +βb→γc ● 包共析转变:δ0 +αa →βb +γc
9
六、自由能-成分曲面及公切面法则
(free energy-composition relationship)
1. 单相
● 二元合金中的溶体在给定温度下的自由能与 成分间的关系表现为下凹曲线。
● 三元合金中的溶体在给定温度下的自由能 与成分间的关系表现为下凹曲面。
10
2. 两相平衡(two-phase equilibrium)
● 以等边成分三角形表示三元系的成分, 在浓度三角形的各个顶点分别作与浓度 平面垂直的温度轴,构成外形是一个三 棱柱体的三元相图;
● 三棱柱体的三个侧面是三组二元相图, 三棱柱体内部,有一系列空间曲面分隔 出若干相区。
● 三元相图复杂,不易描述相变过程和确 定相变温度。因此,实现三元相图实用 化的方法是使之平面化。
线(CA),线段Cb即为A组元的成分。同理,Ac为B组元的成分, Ba 为C组元的成分。
2
2. 等边成分三角形中的特殊线
(special lines in equilateral composition triangle)
平行于三角形某一条边的直线: 成分位于该线上的材料,它们所含
五、三元系中四相平衡转变的类型
● 同时平衡析出两种沉淀相:α→βII +γII ● 四相平衡共晶转变:L→αa +βb +γc ● 四相平衡包晶转变:L +αa +βb →γc ● 包共晶转变:L +αa →βb +γc ● 四相平衡偏共晶转变:L0→L2 +αa +βb ● 四相平衡共析转变:δ0→αa +βb +γc ● 四相平衡包析转变:δ0 +αa +βb→γc ● 包共析转变:δ0 +αa →βb +γc
9
六、自由能-成分曲面及公切面法则
(free energy-composition relationship)
1. 单相
● 二元合金中的溶体在给定温度下的自由能与 成分间的关系表现为下凹曲线。
● 三元合金中的溶体在给定温度下的自由能 与成分间的关系表现为下凹曲面。
10
2. 两相平衡(two-phase equilibrium)
● 以等边成分三角形表示三元系的成分, 在浓度三角形的各个顶点分别作与浓度 平面垂直的温度轴,构成外形是一个三 棱柱体的三元相图;
● 三棱柱体的三个侧面是三组二元相图, 三棱柱体内部,有一系列空间曲面分隔 出若干相区。
● 三元相图复杂,不易描述相变过程和确 定相变温度。因此,实现三元相图实用 化的方法是使之平面化。
线(CA),线段Cb即为A组元的成分。同理,Ac为B组元的成分, Ba 为C组元的成分。
2
2. 等边成分三角形中的特殊线
(special lines in equilateral composition triangle)
平行于三角形某一条边的直线: 成分位于该线上的材料,它们所含
材料科学基础――三元合金相图PPT课件
26
2 重心定律
适用于三相平衡的情况
w%W WR
Rf10% 0 cf
B%
a
A
B
fb d
R e
c
C%
← A% C
27
但是,作图求三相平衡不够准确而产生误差, 用代数法求解,可避免误差。已知条件: ✓R合金中A,B,C组元含量为xR,yR,zR ✓α相中A,B,C组元含量为xα,yα,zα ✓β相中A,B,C组元含量为xβ,yβ,zβ ✓γ相中A,B,C组元含量为xγ,yγ,zγ
24
杠杆定律
W L+W =W 0 W L X X rb W 0 X X L ab W X X L ar W 0 X X L ab
L
a
rb
α
A
XL
X
Xα B
25
★杠杆定律 由直线法则导出
即三元合金系中两相平衡的杠杆定律 应用条件 a,某一温度下,成分给定三元合金处于液固平衡, 其中成分可知,可求另一成分 b,已知成分的固相在某一温度下析出一新相时,新 相成分已知,可确定母相成分
材料的结构
原子规则排列
点阵、结构
晶系/布拉菲点阵
三维描述
7/14,两者差异?
原子规则排列
金属单质fcc, bcc,hcp
非金属单质
合金相结构
固溶体、中间相
结构参数 原子个数 配位数 密排面 …… 影响因素
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
15
2) 直角浓度三角形
当合金成分以某一组 元为主,其它两组元 含量很少时,合金成 分将靠近等边三角形 某一顶角,采用直角 坐标,则可使该部分 相图清楚地表示出来。
2 重心定律
适用于三相平衡的情况
w%W WR
Rf10% 0 cf
B%
a
A
B
fb d
R e
c
C%
← A% C
27
但是,作图求三相平衡不够准确而产生误差, 用代数法求解,可避免误差。已知条件: ✓R合金中A,B,C组元含量为xR,yR,zR ✓α相中A,B,C组元含量为xα,yα,zα ✓β相中A,B,C组元含量为xβ,yβ,zβ ✓γ相中A,B,C组元含量为xγ,yγ,zγ
24
杠杆定律
W L+W =W 0 W L X X rb W 0 X X L ab W X X L ar W 0 X X L ab
L
a
rb
α
A
XL
X
Xα B
25
★杠杆定律 由直线法则导出
即三元合金系中两相平衡的杠杆定律 应用条件 a,某一温度下,成分给定三元合金处于液固平衡, 其中成分可知,可求另一成分 b,已知成分的固相在某一温度下析出一新相时,新 相成分已知,可确定母相成分
材料的结构
原子规则排列
点阵、结构
晶系/布拉菲点阵
三维描述
7/14,两者差异?
原子规则排列
金属单质fcc, bcc,hcp
非金属单质
合金相结构
固溶体、中间相
结构参数 原子个数 配位数 密排面 …… 影响因素
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
15
2) 直角浓度三角形
当合金成分以某一组 元为主,其它两组元 含量很少时,合金成 分将靠近等边三角形 某一顶角,采用直角 坐标,则可使该部分 相图清楚地表示出来。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
材料科学基础——三元 合金相图
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
Thank