污水生物脱氮除磷原理及工艺

合集下载

污水脱氮除磷的原理及其工艺

污水脱氮除磷的原理及其工艺

污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。

污水脱氮的主要原理是利用硝化反应和反硝化反应。

硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。

这样就实现了对污水中氨氮的脱氮处理。

反硝化反应是将硝酸盐氮还原为氮气。

反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。

反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。

二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。

污水除磷的主要原理是利用化学沉淀法和生物吸附法。

化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。

生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。

三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。

其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。

一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。

系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。

通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺

(2)反应过程 (3)反硝化反应的控制指标
①碳源
污水中的碳源,BOD5/T—N>3-5时,勿需外加 外加碳源,CH3OH(反硝化速率高生成CO2+H2O),
②PH值
当BOD5/T—N<3-5时
适当的PH值(6.5-7.5) ——主要的影响因素
PH>8,或PH<6,反硝化速率下降
8
同化反硝化
+4H
+4H
缓慢搅拌池
沉淀池
21
三、 生物除磷原理
霍米尔(Holmers)提出活性污泥的化学式 C118H170O51N17P 或C:N:P=46:8:1
※ 生物除磷——就是利用聚磷菌一类的的微生物,能够过量 的,在数量上超过其生理需要,从外部摄取磷,并将磷以聚合 形式贮藏在菌体内,形成高磷污泥,排出系统外,达到从废水 中除磷的效果。
设内循环
产生碱度,3.75mg碱度/mgNO3—N 勿需建后曝气池
回流水含有NO3—N(沉淀池污泥反硝化生成)
要提高脱氮率,要增加回流比
(2)影响因素与主要工艺参数
水力停留时间:3 :1; 循环比:200%; MLSS值:大于3000mg/l; 污泥龄:30d; N/MLSS负荷率:0.03gN/gMLSS.d 进水总氮浓度:小于30mg/l。
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
4
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌 RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程

生物脱氮除磷的原理与工艺设计

生物脱氮除磷的原理与工艺设计

生物脱氮除磷的原理与工艺设计生物脱氮除磷是一种通过生物转化过程,将废水中的氮和磷去除掉的方法。

生物脱氮除磷工艺的基本原理是利用特定微生物(硝化细菌、反硝化细菌和磷积累菌)的活性,分别将废水中的氨氮和亚硝酸氮氧化为亚硝酸盐和硝酸盐,然后利用反硝化微生物将硝酸盐还原为氮气;同时,磷酸盐通过生物转化过程被吸附于生物体内,从而实现废水中氮、磷的去除。

1.污水处理系统的设计:包括进水口、沉淀池(或消化池)、氧化池、沉砂池(或沉淀池)、出水口等。

不同的生物脱氮除磷工艺,需要设计不同的系统结构,以确保废水能够顺利流动,并进行相应的生物转化过程。

2.微生物的引进和培养:选择适当的微生物菌种,引进到废水处理系统中。

常见的微生物菌种包括:硝化细菌(如亚硝化细菌、硝化细菌等)、反硝化细菌和磷积累菌。

培养好的微生物菌种,能够提高废水处理系统的处理效果。

3.溶解氧供应:废水中的生物脱氮除磷过程需要一定的溶解氧供应,以维持微生物的正常活性。

通过增加氧气供应、搅拌设备等方式,提高溶解氧浓度,促进微生物的生长和代谢。

4.碳源的添加:废水处理过程需要适量的有机碳源(如甲烷、乙酸等)供给微生物菌种进行生长和代谢。

通过添加碳源,可以提高微生物的活性,增强废水中氮、磷的去除效果。

5.控制系统的建立:根据不同的废水处理系统要求,建立相应的监测和控制系统。

通过监测废水中氨氮、亚硝酸氮、硝酸盐和磷酸盐等指标的含量,调整废水处理过程中的操作参数,实现最佳的脱氮除磷效果。

6.污泥的处理和回用:生物脱氮除磷过程中会产生大量的污泥。

合理处理和回用污泥,可以降低处理成本,并减少对环境的污染。

通过科学的生物脱氮除磷工艺设计,可以高效地去除废水中的氮、磷污染物,实现废水的净化和资源化利用。

然而,不同的废水特性和处理需求可能需要不同的工艺设计,因此,需要根据实际情况进行具体的工艺优化和改进。

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。

2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。

通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。

3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。

近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。

与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。

分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。

分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。

二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。

其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。

1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。

氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。

这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。

2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。

反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。

3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。

硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。

脱氮除磷原理

脱氮除磷原理

脱氮除磷原理脱氮除磷是指通过一系列工艺手段,将废水中的氮和磷去除,以达到净化水质的目的。

脱氮除磷是水处理工程中非常重要的一环,也是保护水环境的关键步骤。

下面我们将介绍脱氮除磷的原理及其常见的处理方法。

首先,我们来介绍脱氮的原理。

氮在废水中的主要形式有氨氮、硝态氮和有机氮等。

脱氮的原理主要包括生物脱氮和化学脱氮两种方式。

生物脱氮是通过好氧条件下的硝化和厌氧条件下的反硝化作用,将氨氮和硝态氮还原成氮气的方式去除。

而化学脱氮则是通过添加化学药剂,将氨氮和硝态氮转化成氮气,达到脱氮的效果。

其次,我们来介绍除磷的原理。

废水中的磷主要以无机磷和有机磷的形式存在。

除磷的原理主要包括化学沉淀法、生物吸附法和生物除磷法等。

化学沉淀法是通过添加化学药剂,将废水中的磷沉淀下来,达到除磷的效果。

生物吸附法则是利用微生物对磷的吸附作用,将废水中的磷去除。

生物除磷法则是通过生物体内的磷释放和磷吸收过程,将废水中的磷去除。

综合来看,脱氮除磷的原理主要是通过生物作用和化学作用,将废水中的氮和磷去除,从而达到净化水质的目的。

在实际的水处理工程中,通常会采用生物处理和化学处理相结合的方式,以达到更好的脱氮除磷效果。

除了上述介绍的脱氮除磷原理,还有一些新型的脱氮除磷技术正在不断发展和应用。

例如,膜生物反应器、生物接触氧化法等技术,都在脱氮除磷领域取得了一定的应用效果。

这些新技术的出现,为脱氮除磷提供了更多的选择和可能性,也为水环境的保护和治理提供了新的思路和方法。

总之,脱氮除磷是水处理工程中非常重要的一环,其原理主要包括生物脱氮和化学脱氮、化学沉淀法、生物吸附法和生物除磷法等方式。

随着新技术的不断发展和应用,相信脱氮除磷技术将会在未来取得更大的突破和进步,为保护水环境作出更大的贡献。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺1 引言氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍利用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁衍,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生专门大的危害。

但是, 我国现有的城市污水处置厂要紧集中于有机物的去除,污(废)水一级处置只是除去水中的沙砾及悬浮固体;在好氧生物处置中,生活污水经生物降解,大部份的可溶性含碳有机物被去除。

同时产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥取得去除;二级生物处置那么是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。

因此研究开发经济、高效的, 适于现有污水处置厂改造的脱氮除磷工艺显得尤其重要。

2 生物脱氮除磷机理生物脱氮机理污水生物脱氮的大体原理确实是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3。

在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。

水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。

○1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+−−−→−+亚硝酸菌 3225.0HNO HNO O −−→−+硝酸菌 ○2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+][35.122233H O H N HNO NH ++→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成份。

4.3生物脱氮除磷技术

4.3生物脱氮除磷技术

NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,

废水生物脱氮除磷原理

废水生物脱氮除磷原理

废水生物脱氮除磷原理
废水生物脱氮除磷是一种利用微生物代谢作用的方法,通过生物碳、氮、磷循环,去除废水中的氨氮和磷的过程。

其原理可以分为以下几
个方面:
1. 生物脱氮原理
废水中的氨氮通过硝化、反硝化等微生物代谢过程,最终转化为氮气
释放到大气中。

具体过程如下:
硝化菌利用氨氮和氧气生成亚硝酸盐,反应式为:NH4++2O2→NO2^-
+2H++H2O。

亚硝酸盐在氧气存在下被反硝化菌还原为氮气,反应式为:2NO2^-
+O2→2NO3^-。

2. 生物除磷原理
废水中的磷通过生物吸附、释放等方式去除。

具体过程如下:
生物体内的磷酸盐被菌体代谢,通过吸附释放等过程沉积到废水处理
系统,从而实现磷的去除。

同时,选择合适的填料并维持水体曝气,可以提高微生物的附着能力
和生长条件,使生物脱氮除磷效果更好。

3. 优化废水处理过程
为了使废水生物脱氮除磷过程更加高效、稳定,需要注意以下几个方面:
(1)控制废水中的C/N/P比例,一般适宜比例为100:5:1。

(2)生物反应器运行过程中,维持一定的曝气量,保证氧气充足。

(3)监测废水中的温度、pH、DO等关键参数,及时调整水质和操作
方式。

(4)在废水生物脱氮除磷过程中,加入一定的外源碳源和磷去除剂,
有助于提高去除效果。

废水生物脱氮除磷技术是一种效果良好、操作简单的处理废水的方法,具有很大的应用前景。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。

首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。

这个过程被称为硝化作用。

反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。

生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。

一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。

这个过程被称为磷酸盐吸收和释放作用。

通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。

非曝气法主要是在低氧或缺氧条件下进行处理。

这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。

常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。

曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。

这种方法的优点是处理效果稳定可靠,适用于大型处理装置。

常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。

在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。

例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。

这种工艺可以同时去除水体中的氮和磷,效果较好。

总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。

不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。

脱氮除磷原理及过程

脱氮除磷原理及过程

脱氮除磷原理及过程脱氮除磷是指将水中的氮和磷等营养盐去除,以达到净化水体的目的。

其原理和过程如下:脱氮原理:脱氮主要是通过微生物的作用来实现的。

在水体中,氮主要以氨氮、硝态氮和有机氮的形式存在。

在底泥和有机物的分解过程中,产生的氨氮(NH3)被硝化细菌氧化成亚硝酸盐(NO2-),然后再被另一类硝化细菌氧化成硝酸盐(NO3-)。

硝酸盐是稳定的氮化合物,不易向大气中释放。

但通过特定条件下的反硝化作用,脱氮可以发生。

反硝化是一种厌氧细菌作用,将水中的硝酸盐还原成氮气(N2),释放到大气中,从而实现去除氮的目的。

脱磷原理:脱磷主要是通过化学沉淀和吸附等方式来实现的。

在水体中,磷主要以无机磷(溶解态磷)和有机磷(悬浮态磷、溶解态磷)的形式存在。

添加化学物质如铝盐、铁盐等能与磷发生反应生成固体沉淀,从而将磷从水中去除。

此外,还可以使用一些吸附性材料,如活性炭等,将水中的磷物质吸附到材料表面,实现去除磷的目的。

脱氮过程:脱氮过程通常涉及两个主要步骤:硝化和反硝化。

在硝化过程中,氨氮被氧化成亚硝酸盐和硝酸盐,通过微生物的作用完成。

然后,在反硝化过程中,硝酸盐被厌氧细菌还原成氮气,从而从水体中去除氮。

脱磷过程:脱磷过程通常包括化学沉淀和吸附等步骤。

在化学沉淀中,将适当的化学物质添加到水体中,与磷发生反应生成固体沉淀,从而将磷从水中去除。

而在吸附过程中,将具有较强吸附性的材料,如活性炭,放入水体中,吸附水中的磷,实现脱磷的目的。

总的来说,脱氮除磷是通过微生物的作用(硝化和反硝化)和化学物质的处理(化学沉淀和吸附)来实现的。

这些过程能有效去除水体中的氮和磷,从而净化水体。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺

硝化过程
反硝化过程
硝化
反硝化
生物脱氮过程是一个化反应则需要缺氧条件和较短 污泥龄的反硝化菌 在大量有机 物存在时 硝化菌对氧气和营养 物质的竞争不如好氧异养菌 不 利于硝化反应 而反硝化菌需要 有机物作为电子供体来完成脱 氮的过程 解决这些矛盾将会提 高生物脱氮工艺的高效性和稳 定性
改进的Bardenpho工艺流程图
生物脱氮的运行控制
DO的控制
温度T的控制
pH的控制
碳氮比的控制
污泥龄的控制 混合液回流比的控制 有毒有害物质的控制
DO的控制
温度T的控制
pH的控制
碳氮比的控制
污泥龄的控制
混合液回流比的控制
有毒有害物质的控制
废水生物除磷的运行控制
S K DN
S0 S K S0 S0
生物除磷的原理
生物除磷动力学
厌氧条件下,PAO对有机物降解和磷的释放:
3 4
2C2 H4O2 HPO3 H2O (C2 H4O2 ) PO 3H
好氧条件下,PAO对有机物的降解和对磷的过量摄 取:
C2 H 4O2 0.16 NH 1.2O2 0.2 PO 0.16C5 H 7 NO2 1.2CO2 0.2 HPO3 0.44OH 1.44 H 2O
UTC工艺流程图
改良型UCT工艺----MUCT
与 A2/O
工艺相比,在适当的 COD/TKN 比例下,缺 氧区的反硝化可使厌氧区回流污泥中硝酸盐含量接 近于0。 当进水 COD/TKN 较高时,缺氧区无法实现 完全的脱氮,仍有部分硝酸盐进入厌氧区,因此又 产生改进UCT 工艺(MUCT) MUCT 工艺有两个缺氧池,前一个接受二沉池回流 污泥,后一个接受好氧区硝化混合液,使污泥的脱 氮与混合液的脱氮分开,进一步减少硝酸盐进入厌 氧区的可能。

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。

其中,氮、磷等营养物质的排放对水环境造成了严重污染。

污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。

本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。

二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。

该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。

2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。

这些工艺在不同领域得到了广泛应用,取得了显著的成效。

3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。

(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。

此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。

三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。

未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。

2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。

例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。

3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。

通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。

4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。

污水脱氮除磷原理

污水脱氮除磷原理

污水脱氮除磷原理
污水脱氮除磷是一种常见的污水处理方法,旨在降低污水中的氮和磷含量,以减少对水环境的污染。

脱氮的原理通常采用生物脱氮方法,其中最常见的是硝化-反硝化过程。

在这个过程中,通过微生物的作用,将污水中的氨氮逐步转化为亚硝酸盐,然后再转化为硝酸盐。

同时,硝化过程中产生的氮气可以通过通气系统排出。

除磷的原理主要是通过化学反应将溶解性磷酸盐转化成不溶性磷酸盐沉淀,从而达到除磷的效果。

常用的除磷方法包括化学除磷和生物除磷。

化学除磷通常采用加入金属盐溶液(如氯化铁、氯化铝等)的方式,金属离子与磷酸盐发生反应生成不溶性的金属磷酸盐沉淀。

这些沉淀物随后通过沉淀池或沉淀池被除去。

生物除磷主要是利用某些特殊的细菌和微生物,在厌氧条件下将污水中的磷酸盐转化为多聚磷酸盐,这些多聚磷酸盐可以沉积在活性污泥中。

在后续的污泥处理过程中,这些磷酸盐有机体可以被分解,从而达到除磷的效果。

综上所述,污水脱氮除磷的原理一般是通过生物反应和化学反应,将污水中的氮和磷转化成沉淀物或沉积在活性污泥中,从而达到减少水环境污染的目的。

污水生物法脱氮除磷技术及应用

污水生物法脱氮除磷技术及应用

3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。

sbr工艺脱氮除磷原理

sbr工艺脱氮除磷原理

sbr工艺脱氮除磷原理SBR工艺脱氮除磷原理SBR工艺(Sequencing Batch Reactor)是一种常用的生物处理技术,可以高效地去除废水中的氮和磷。

它是一种周期性操作的工艺,包括一系列不同的步骤,如进水、曝气、沉淀、排水和静息。

通过合理地控制这些步骤,可以实现废水中氮和磷的有效去除。

SBR工艺的脱氮除磷原理主要包括生物吸附、生物吸附-脱附和生物转化等过程。

废水中的氮和磷会通过生物吸附的方式被生物颗粒物吸附。

在SBR 反应器中,有大量的生物颗粒物存在,它们表面有丰富的微生物菌群。

当废水进入反应器时,氮和磷会被这些菌群吸附在颗粒物表面。

接下来,生物颗粒物会在曝气阶段经历生物吸附-脱附的过程。

在曝气阶段,系统向反应器中通入氧气,通过曝气作用使废水中的溶解氧浓度升高,并提供足够的氧气供给微生物呼吸代谢。

在这个过程中,生物颗粒物上的氮和磷会被微生物菌群吸附,而随着曝气的进行,部分颗粒物会从菌群表面脱附下来。

脱附下来的颗粒物会经过生物转化过程,将吸附的氮和磷转化为氮气和磷酸盐。

生物转化是一种微生物代谢过程,通过这个过程,废水中的氮和磷可以被微生物菌群转化为无害的产物。

在SBR反应器中,通过合理控制曝气和静息时间,可以使得生物转化过程达到最佳效果。

SBR工艺脱氮除磷的原理主要是通过生物吸附、生物吸附-脱附和生物转化等过程来实现。

这些过程的顺序和时间控制非常重要,可以通过合理的操作和控制,使废水中的氮和磷得到高效去除。

SBR工艺具有操作简单、投资成本低、去除效果好等优点,因此在废水处理领域得到了广泛应用。

总的来说,SBR工艺的脱氮除磷原理是基于生物吸附、生物吸附-脱附和生物转化等过程。

通过合理地控制这些过程,可以实现废水中氮和磷的高效去除。

这种技术在废水处理中具有重要的应用价值,对于保护水环境、实现可持续发展具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
二、Phostrip除磷工艺
工艺特点: • 除磷效果好,处理出水的含磷量一般低于1mg/l;
• 污泥的含磷量高,一般为2.1~7.1%; • 石灰用量较低; • 污泥的SVI低于100,污泥易于沉淀、浓缩、脱水, 污泥肥分高,不易膨胀。
第六节 同步脱氮除磷工艺
——又称“前臵式反硝化生物脱氮系统”
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)

优点:
以污水中有机物为反硝化碳源,无须外加 在反硝化反应过程中产生的碱度可补偿硝化反应消耗的 碱度的一半左右; 硝化曝气池在后,使反硝化残留的有机物得以进一氮,有可能在二沉池中进行反 硝化,造成污泥上浮
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
第五节 废水生物除磷工艺与技术

厌氧—好氧生物除磷工艺
生物法与化学法结合的除磷工艺

一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: • 水力停留时间为3~6h; • 曝气池内的污泥浓度一般在2700~3000mg/l; • 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; • 污泥中的磷含量约为4%,肥效好; • SVI小于100,易沉淀,不易膨胀。
反硝化细菌 (异养型)
N2
NO2-N
反硝化细菌 (异养型)
③反硝化作用
第三节 废水生物除磷原理
(1)有关废水中的磷的基本概念: • 废水中的存在形式: 无机磷酸盐(H2PO4-、HPO42-、PO43-)、 聚磷酸盐 有机磷,等; • 所有细菌都从环境中摄取磷;

磷细菌(也称为聚磷菌、除磷菌),可过量、超出生 理需要的摄取磷,以聚合磷酸盐的形式贮存在细胞体 内, 从系统中排出这种高磷污泥,就可达到除磷的目的。
1、三级活性污泥法流程:
①碳化: ②氨化:
1、三级活性污泥法流程:
• 由Barth首先开创;
• 三级各自具有独立的污泥系统; • 优点: 氨化、硝化、反硝化是在各自的反应器中进 行,反应速率快且较彻底; • 缺点: 处理设备多,造价高,运行管理较为复杂。
2、两级活性污泥法脱氮工艺
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
这一平衡受pH的影响,pH为10.5~11.5时,因废水中的 氮呈饱和状态而逸出,所以吹脱法常需加石灰。 进水
石灰或 石灰乳
调节pH值 沉淀池 吹 脱 塔
出水
排泥
吹脱法脱氨工艺流程
二、脱氮的物化法
2)加氯法去除氨氮:
NH 4 HOCl NH 2Cl H H 2O
2NH 2Cl HOCl N 2 3Cl H 2O 3H
好氧或厌氧条件 碱度增大,pH值升高 O2或无氧 异养细菌 绝对好氧条件 碱度下降,pH值降低 O2 氨氧化细菌 (自养型) 亚硝化作用 绝对好氧条件 碱度和pH值无变化 O2 硝化细菌 -N (自养型) NO -N
3
有机氮
NH4+-N
NO2
①氨化作用
硝化作用
②硝化作用
碱度增大,pH值升高 缺氧条件 有机物 有机物
每mgNH4+--N被氧化为氮气,至少需要7.5mg的氯。 NaOCl 进水
加氯反应池
吸活 附性 塔炭
出水
二、脱氮的物化法
3)选择性离子交换法去除氨氮:
采用沸石作为除氨的离子交换体。
进水
澄清或 过滤
沸石 离子 交换 床
再生 液脱 氮
NH3或N2
出水
三、除磷的物化法(混凝沉淀法)
1)铝盐除磷:
3 Al 3 PO4 AlPO4
减弱了。
⑦氧化还原电位: l好氧区的ORP: + 40~50mV;缺氧区的ORP: -160~ 5mV
第四节 废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧 — 好氧活性污泥法生物脱氮系统( A—O 工 艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
羟磷灰石
第二节
废水生物脱氮的基本原理
一、生物脱氮的基本过程:
①氨化(ammonification) ——含氮有机物,在生物处理过程 中被(好氧或厌氧)异养微生物氧化分解为氨氮; ②硝化 (nitrification) —— 由好氧自养硝化菌将氨氮转化为 NO2和NO3; ③反硝化 (denitrification) —— 缺氧条件下,在异养反硝化 菌的作用下将NO2和NO3还原转化为N2。
二、硝化反应(Nitrification)
• 分为两步:
NH 4 NO2
NO NO
由两组自养型硝化菌分步完成:
2
3
①氨氧化细菌,或亚硝化细菌(Nitrosomonas); ②亚硝酸盐氧化细菌,或硝化细菌(Nitrobacter)
1、硝化细菌的特性
●都是革兰氏阴性、无芽孢的短杆菌和球菌; ●强烈好氧,不能在酸性条件下生长; ●无需有机物,以无机含氮化合物为能源,以无机C (CO2或HCO3-)为碳源;
好氧环境中:
进入好氧状态后,聚磷菌将储存于体内的PHB 进行好氧分解并释出大量能量供聚磷菌增殖等生理 活动,部分供其主动吸收污水中的磷酸盐,以聚磷 的形式积聚于体内,这就是好氧吸磷。
剩余污泥中包含过量吸收磷的聚磷菌,也就是 从污水中去除的含磷物质。 普通活性污泥法通过同化作用除磷率可以达到 12%~20%。而具生物除磷功能的处理系统排放的剩 余污泥中含磷量可以占到干重5%~6%,去除率基本 可满足排放要求。
2、硝化反应过程及反应方程式:
②硝化反应: 加上合成,则:
400NO2 NH 4 4 H 2 CO3 HCO3 195O2 C5 H 7 O2 N 3 H 2 O 400NO3
NO2 0.5O2 NO3
硝酸盐细菌的产率是:0.02g/gNO2-N 氧化1mg
三、反硝化反应
1、反硝化反应过程及反硝化菌 • 定义:硝酸盐或亚硝酸盐在反硝化菌的作用下,被还原为气 态氮(N2)的过程; • 反硝化菌属异养型兼性厌氧菌,并不是一类专门的细菌,分 属近十个不同的属,存在于土壤和污水处理系统中,如变形 杆菌、假单胞菌等,土壤微生物中有 50%是这一类具有还原 硝酸盐能力的细菌; • 反硝化菌能在缺氧条件下,以 NO2-N 或 NO3-N 为电子受体, 以有机物为电子供体,而将氮还原; • ①同化反硝化,最终产物是有机氮化合物,是菌体的组成部 分; ②异化反硝化,最终产物为分子态的氮气。
生物脱氮除磷原理及工艺
概述 生物脱氮原理 生物脱氮工艺与技术 生物除磷原理 生物除磷工艺与技术 同步脱氮除磷工艺
第一节
概述
一、营养元素的危害
二、脱氮的物化法 三、除磷的物化法
一 营养元素的危害
• •
氨氮会消耗水体中的溶解氧; 含氮化合物对人和其它生物有毒害作用:
氨氮对鱼类有毒害作用; NO3和NO2可被转化为亚硝胺——“三致”物质; 水中NO3高,可导致婴儿患变性血色蛋白症 —— “Bluebaby”;
●化能自养型;
●生长缓慢,世代时间长。
2、硝化反应过程及反应方程式:
①亚硝化反应: 加上合成,则:
NH 4 1.5O2 NO2 H 2O 2H
55NH4++76O2+109HCO3C5H7O2N+54NO-2+57H2O+104H2CO3
●亚硝酸盐细菌的产率是:0.146g/g NH4+-N ●氧化1mg NH4+-N为NO2--N,需氧3.16mg ●氧化 1mg NH4+-N 为 NO2--N ,需消耗 7.08mg 碱度以 (CaCO3 计)

生物除磷的原理与过程
好氧条 件下, 除磷菌 过量摄 取磷
厌氧条 件下, 除磷菌 将磷释 放 I——PHB(聚羟基丁酸)
相关文档
最新文档