2019年高一数学奥林匹克竞赛决赛试题及答案

合集下载

2019年IMC试题决赛试题及参考答案(高一年级)

2019年IMC试题决赛试题及参考答案(高一年级)

2019年IMC试题决赛试题及参考答案(高一年级)姓名_______ _国家________ 得分________一、选择题(每小题5分,共40分)1.若非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则使A⊆(A∩B)成立的所有a的集合是();(A){a|6≤a≤9}(B){a|a≤9}(C){a|1≤a≤9}(D)∅2.已知函数y=f-1(x)是函数y=f(x)的反函数,且y=f-1(x+5)的图像经过点(-1,3),则y=f(x+1)的图像经过点();(A)(2,4) (B)(3,-1) (C)(-2,8)(D)(3,4)3.Determine the monotonic range(单调递增区间)ofwhere.(A)(B)(C )(D )4. 从1、2、3、…、20中,任取3个不同的数,使这3个数按从小至大排列组成等差数列,那么这样的等差数列有( )个; (A )90(B )120(C )180(D )2405. The three vertices of △ABC are A , B , C and P is a point the plane such that ,Determine the relationship ofpoint P and △ABC .A. P i s on the straight line of side ABB. P is an exterior point of△ABCC. P is an interior point of △ABCD. P is a trisection point on side6. 已知θ是第二象限角,且sin 2θ<cos 2θ,则 等于();(A )sec(π-2θ)(B )cos 2θ(C )sec(-2θ)(D )-cos(2θ-π)7. 甲随机的从1~9这9个数字中选3个数字并将它们按高位数字大低位数字小的方式排成一个三位数;乙随机的从1~8这8个数字中选3个数也按照同样的方式得到一个三位数;那么事件“甲得到的数比乙的大”发生的概率为();(A)(B)(C)(D)8.集合中有()个元素;(A)1 (B)2 (C)0 (D)无数二、填空题(每小题5分,共40分)9.若函数abxaxf2)34()(-+-=,]1,0[∈x,且2)0(≤f,2)1(≤f,则ba+的最大值是________;10.For any real numbers x and y, we have a function f(x) satisfyand11.已知A、B为锐角,且满足,则cos(A+B)=________;12.Given twosets:and.what are the possible values of a?13. 写出的一个素因子:________;14. 设实数x 、y 满足⎩⎨⎧=-+--=-+-1)1(2005)1(1)1(2005)1(33y y x x ,那么x +y =________;15. 对一个数列进行一次“冒泡排序”是指如下系列操作:首先比较数列中第一项与第二项的大小,若则交换这两项在数列中的位置(即交换的数值),否则数列的所有项都保持不变;接着比较现在数列中第二项与第三项的大小,按照同样的规则,若 则交换,否则不变;接着比较第三项与第四项的大小如此等等…,直至最后比较与的大小并按规则交换位置后结束;现将1、2、3、4、…、2013随机排列成一个2013项的数列,对此数列进行一次“冒泡排序”操作,则所得的数列第10项恰是初始数列的第5项的概率为________;16.设函数,则f(2013)=________;三、解答题(每小题10分,共20分)17.已知,满足:A中任意两个元素之差的绝对值不等于3或4或5,求|A|的最大值,并说明理由;18 . 对三元数组(A,B,C)可进行以下变换:变换1:可将三个数进行任意重新排列;变换2:可将(A,B,C)变换成(2B+2C-A,B,C);假设初始状态给定的三元数组为(-1,0,1);1)能否可经有限步变换,得到三元数组(2012,2013,2014);并说明理由;2)能否可经有限步变换,得到三元数组(2009,2010,2011);并说明理由;3)已知可经有限步变换,得到三元数组(1,2024,x),求x的所有可能取值,并说明理由;高一年级(决赛)试题答案题号 1 2 3 4 5 6 7 8答案 C A C A C A C A题号 910 11 12 1314 15 16 答案417400873、649657、9273721简答题17、18题答案详解17、已知 ,满足:A 中任意两个元素之差的绝对值不等于3或4或5,求|A |的最大值,并说明理由;【答案】756【解析】将1、4、7、2、5、8、3、6顺次标记到正八边形的8个顶点处,两个数之差为3或5或4当且仅当这两个数在八边形上相邻或位于一条主对角线的两端;容易证明:任意连续八个数中至多能选3个数满足两两之差不是3、4、5,故在1至2013中至多能选3⨯252=756个数满足要求;---------------------------------------5分构造也可由上述得到:如选取所有8k +1、8k +2、8k +3型数;---------------------------------------5分18、对三元数组(A ,B ,C )可进行以下变换: 变换1:可将三个数进行任意重新排列; 变换2:可将(A ,B ,C )变换成(2B +2C -A ,B ,C ); 假设初始状态给定的三元数组为(-1,0,1);1)能否可经有限步变换,得到三元数组(2012,2013,2014);并说明理由; 2)能否可经有限步变换,得到三元数组(2009,2010,2011);并说明理由;3)已知可经有限步变换,得到三元数组(1,2024,x ),求x 的所有可能取值,并说明理由; 【答案】否、否、1935或2115【解析】1)A +B +C 的奇偶性在变换1、2下保持不变;故1+0+(-1)=0为偶数,不可能得到2012+2013+2014为奇数;------------------------------3分 2)A +B +C (mod4)在变换1、2下或者保持不变;或者变为-(A +B +C )(mod4);故1+0+(-1)=0(mod4),不可能得到2013+2014+2015=2(mod4);------------------------------4分 3)构造:;故x 可取值为1935或2115;要说明这就是x 的所有可能取值,需要构造(全局)不变量,由二次方程的韦达定理,可得代数式的值在题目的变换下保持不变;------------------------------3分;。

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

1.求最大的实数k ,使得对任意正数a ,b ,均有2()(1)(1)a b ab b kab +++≥.2.如图,两圆1Γ,2Γ交于A ,B 两点,C ,D 为1Γ上两点,E ,F 为2Γ上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1Γ,2Γ分别交于点()K C ≠,()L F ≠,DE 与1Γ,2Γ分别交于点()M D ≠,()N E ≠.证明:若ALM ∆的外接圆与BKN ∆的外接圆相切,则这两个外接圆的半径相等.3.函数**:f →N N 满足:对任意正整数a ,b ,均有()f ab 整除(){}max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论.4.将一个25⨯方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示.现有一个固定放置的918⨯方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.5.称集合{1928,1929,1930,,1949}S =的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由.6.设a ,b ,c 为给定的三角形的三边长.若正实数x ,y ,y 满足1x y z ++=,求axy byz czx ++的最大值.7.设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形A B C D '''',使得点P 在直线AB 与A B ''上,点Q 在直线BC 与B C ''上,点R 在直线CD 与C D ''上,点S 在直线DA 与D A ''上.8.对于正整数1x >,定义集合()(){},,,mod 2x p S p p x p x v x αααα=≡为的素因子为非负数且,其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =. 今给定正整数m .设正整数数列1a ,2a ,,n a ,满足:对任意整数n m >,()()(){}11max ,1,,n n n n m a f a f a f a m +−−=++.(1)证明:存在常数A ,B ()01A <<,使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有*n ∈N ,n a Q <.第十六届中国东南地区数学奥林匹克参考答案1.原不等式()()2221(1)a b b a b b kab ⇔++++≥ ()221(1)b ab b b kb a ⎛⎫⇔++++≥ ⎪⎝⎭ 单独考虑左边,左边可以看成是一个a 的函数、b 为参数,那么关于a 取最小值的时候有()()2231(1)1(1)(1)b ab b b b b b a ⎛⎫⎛⎫++++≥++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭于是我们只需要取32(1)k b b −≤+即可.设32(1)()b f b b +=,那么23(1)(2)()b b f b b+−'=,演算可知2b =是f 的极小值点,那么min 27(2)4f f ==,即max 274k =,取极值时有1a =,2b =. 评析1.不等号的左边和右边都不对称,但是右边只是一个2kab ,所以可以考虑一下类似于分离变量的方法把a 或2b 挪到左边去.本答案用的是把a 挪到左边的方法.把2b 挪到左边也有类似的做法,但是会变得比较复杂,有兴趣的同学不妨一试.该题做法非常多,本篇答案给出的做法只是一种以高中课本知识即可解决的方法,但是如果不想用到函数求导这种比较偏流氓的方法的话,纯粹不等式的方法也是可行的.比如, ()(1)(1)11222222b b ab ab b b a b ab b a ⎛⎫⎛⎫⎛⎫+++=++++++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 1/31/31/333131222222b b ab ab b b a ⎛⎫⎛⎫⎛⎫≥⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2274ab = 2.如图.记G 为CF ,DE 的交点,ALM ∆和BKN ∆的外接圆圆心为A O ,B O .取两圆切线上任意一点为1H ,切线另一边的任意一点为2H ,连接CD .LN ,AB ,MK ,EF ,A B O O ,由于180DCA DBA FBA FEA ∠+∠=∠+∠=︒,我们有180DCA FEA ∠+∠=︒,即//CD EF .另外,由圆幂定理我们有~GLN GEF ∆∆,~GKM GDC ∆∆,于是我们有GLN GDC GEF GKM ∠=∠=∠=∠,即//LN MK .另一方面,那么因为//CD EF ,我们有180180180LGM CDG EFG CAM EAL LAM ∠=∠+∠=−∠+−∠=−∠︒︒︒,即G 在A O 上.同理G 在B O 上.由于A O 与B O 相切,我们知道G 在A B O O 上.那这个时候G 在LK ,MN ,A B O O 上,我们知道12GKN NGH MGH GLM ∠=∠=∠=∠,故//LM KN .由于//LM KN ,我们知道LMKN 是一个平行四边形,那么LGM KGN ∆≅∆,那么两个三角形的外接圆半径相等,ALM ∆和BKN ∆的外接圆半径相等.评析2.熟悉平面几何的同学应该很快就可以凭经验知道//CD EF ,//LN MK ,且G 在这两个外接圆上.余下的部分,观察题图可以猜测//LM NK ,如果有这一条的话我们很容易推出两个外接圆的半径相等,剩下就是一些比较角度的工作.总体来说本题偏简单题.3.一定存在无穷多个这样的k ,使得()1f k =.若不然,假设只有有限多个k 使得()1f k =,我们分两种情况讨论.若这样的k 不止一个,那我们可以取到最大的一个,还是记为k ,那么对任意n k >,我们有()1f n >.对任意一个素数p ,由于pk k >,我们有()1f pk >.但是由于()f pk 整除max{(),}max{1,}f k p p p ==.我们知道()f pk p =.对任意两个素数p ,q ,不妨p q ≤,那么()f pqk 整除max{(),}max ,}f pk q p q q ==.那么我们现在亏虑三个素数p ,q ,r 满足p q r ≤≤,但是pq r >(比如,2p =,3q =,5r =).那么一方面,()f pqrk 整除max{(),}max{,}f rk pq r pq pq ==.另一方面,()f pqrk 整除max{(),}max{,}f pqk r q r r ==.但是(,)1pq r =,所以()|1f pqrk 即()1f pqrk =.但是pqrk k >,矛盾.所以一定存在无穷多个k ,使得()1f k =.评析3.欧几里德证明素数无限的方法是数论里面很典范的一种证明方式,在证明某一类数字有无限多个的时候,通过反证假设这一类数字只有有限个,不妨设为12n k k k ⋅<<,套路上我们可以考虑n k ,1n k +,12n k k k ,121n k k k +.[]12,,,n k k k 等数字来找到矛盾,本题也是如此.值得一说的是,在这个题目中,对于任何整数n ,我们可以定义一个新的函数()()n f a f an =,那么()()n f ab f abn =要整除{}max{(),}max (),n f an b f a b =.也就是说n f 也是一个满足相同性质的函数.那么实际上,我们可以证明对任意一个k 满足()1f k =.那么1{}m mk ∞=中有无限多个m 满足()1f mk =.更复杂的话,有兴趣的同学可以自行尝试推导一下这个()1f k =的解的密度.4.首先显然,一个92⨯的格子里面放置两面旌旗一共有两种方法,如下图:或那么918⨯的格子中可以放入9个92⨯的格子,所以每个92⨯的格子里有两种可能,一共92512=种放法.下面证明没有别的放法.首先我们考察918⨯的侧边,即变成为9这条边.若我们用18面旌旗把这些格子填满了,那么我们考察这条边上放的旌旗.旌旗的几条边长为5,4,2,1.若旌旗边长为1的边靠着底边,那么1的左右某一边的格子只能用另一面旌旗的边长为5的边来填,如图:那么这条边上剩下三个格子,无法用2和1来填满(因为1需要伴随5).若旌旗边长为2的边靠着底边,那么这时侧边只能是9522=++用三条旌旗来覆盖,这个时候两条旌旗横着用边长为2的底边来接触侧边.同时第二列只有一个空着的格子,若要填住这个格子只能用一条旌旗的旗头来填,所以只能是如图的填法:其中虚线表示两面用边长为2的底边填充格子侧边的旌旗可以放在用边长为5的底边填充侧边的旌旗的上面或者下面.于是无论如何在第三列总会出现三个连续的空格无法被旌旗填充,所以侧边只能用54+的填法,那么消去这两列之后新的侧边也只能用54+的填法来填充,这种归纳的想法可知没有其他的填法. 评析4.本题的答案非常送分,证明的方法却变得非常朴素.一般遇到填格子的题目的话很常规的一种套路就是用染色的方法,我们可以斑马条纹染色,也可以国际象棋棋盘染色,但是这个题目似乎用染色的方法做不出来,反而用这种硬讨论的朴素方法可以做,似乎有时也需要跳出套路来想问题.5.显然,若m M ∈满足(mod 4)m i ≡,那么任何n 满足()4mod 4n i ≡−都不能在4里面.所以将S 按照模4的余数分为4种:0{1928,1932,1936,1940,1944,1948}S =1{1929,1933,1937,1941,1945,1949}S =2{1930,1934,1938,1942,1946}S =3{1931,1935,1939,1943,1947}S = 那么016S S ==,235S S ==.那么入前所述,0S ,2S 的元素顶多有一个在M 中,1S ,3S 的元素不能同时在M 中,所以四元红色子集有四种情况:四个元素都属于1S 或3S ;一个元素属于0S ,剩下三个元素都属于1S 或3S ;一个元素属于2S ,剩下三个元素都属于1S 或3S ;一个元素属于0S .一个元素属于2S ,剩下两个元素都属于1S 或3S ,所以4433332265656565665565651100x C C C C C C C C =++⨯+⨯+⨯+⨯+⨯⨯+⨯⨯=.同理,5544443365656565665565651127y C C C C C C C C =++⨯+⨯+⨯+⨯+⨯⨯+⨯⨯=.所以x y <评析5.这个题目就算是出自高考全国卷都不会让人感觉到任何奇怪……6.考虑拉格朗日乘子(1)axy byz czx x y z λ=++−⋅++−,那么ay cz x λ∂=−++∂ ax bz y λ∂=−++∂ cx by z λ∂=−++∂ 1x y z λ∂=−−−∂ 那么0L L x y z λ∂∂∂∂====∂∂∂∂的解为: 222()222b c a b x ab bc ca a b c +−=++−−−,222()222c a b c y ab bc ca a b c+−=++−−− 222()222a b c a z ab bc ca a b c +−=++−−−,2222222abc ab bc ca a b c λ−=++−−− 于是max 222()222abc axy byz czx ab bc ca a b c ++=++−−− 评析6.三元二次极值问题用拉格朗日乘子比较容易解决,因为拉格朗日量的各种偏导数都是线性的,最终我们只需要解决一个线性方程即可,所以这篇答案中用了最简单暴力的方法.事实上,这个题目可以用几何不等式的方法来做,或者直接用嵌入不等式来做,但是我不会.7.对于任意的四边形ABCD (甚至不要求凸),我们都可以找一条直线l 使得l 不在任何一条边上,也不与任何一条边平行,并且AB ,BC ,CD ,DA 分别与l 交于四个不同的点P ,Q ,R ,S .我们将证明一个更强的结论:若P ,Q ,R ,S 是一条直线l 上的四个不同的点,那么我们可以找到一个正方形A B C D '''',使得A B '',B C '',C D '',D A ''分别过P ,Q ,R ,S 点.我们不妨设l 就是y 轴(不然通过旋转即可),P ,Q ,R ,S 的纵坐标为p ,q ,r ,s .那么考虑一个斜率参数k ,过P ,R 做斜率为k 的直线y kx p =+和y kx r =+,过Q ,S 做斜率为1k−的直线1y x q k =−+和1y x s k=−+.那么设这四条直线就是A B '',C D '',B C '',D A '',于是我们可以解得 ()2221(),11k A s p k s p k k ⎛⎫=−+ ⎪++⎝⎭,()2221(),11k B q p k q p k k ⎛⎫=−+ ⎪++⎝⎭ ()2221(),11k C q r k q r k k ⎛⎫=−+ ⎪++⎝⎭,()2221(),11k D s r k s r k k ⎛⎫=−+ ⎪++⎝⎭于是22222||()||()AB k q s l AD p r −==− 即p r k q s−=±− 那么由于p ,q ,r ,s 互不相同可知存在这样的斜率,使得A B C D ''''是正方形.评析7.这道平面几何的题目非常的非主流,同学们如果直接从平几方法来构造的话可能会被卡很久,这里给了一种解析的方法.实际上这个题目也可以用复数做,假设A B C D ''''的中心所对应的复数为z ,那么正方形的四个点可以设为z t +,z it +,2z i t +,3z i t +,这种做法也一样可行.8.(1)设11k s s k x p p =(2)k ≥,直接计算可以有 22221010()i i i i s s k k s j s j i i i i i i j f x p p p ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦−−====⎛⎫ ⎪==⋅ ⎪ ⎪⎝⎭∑∑∑∑222112111111i i i s k k s s i ii i i ii p p p p p ⎡⎤⎢⎥⎣⎦−==−=⋅<⋅−−∑∑ 21114123i i k s s i i i i p p −==<⋅=−∑∑(因为i p 最小为2) 记录i s i i a p =,,那么2i a ≥,我们重点考虑i a ∑和i a ∏之间的大小关系. 令()1,,k i i f a a a a λ=⋅−∑∏,那么j i j if a a λ≠∂=−∏∂,所以事实上若j i j a λ≠≤∏,对任意i 都成立,那么在i a 变小的时候f 变大,则()1,,(2,,2)22k k f a a f k λ≤=−.用求导的方法很容易知道22k k λ−会在()()()1111ln 2ln2ln (2)ln 22ln (2)ln (2)3k λ−−−−=⋅⋅≤⨯⨯⋅<的时候取到,那么在整数的取值上,我们取2k =,3得到 222244λλ⨯−=−323268λλ⨯−=−由于2λ≤,我们知道2244kk λλ−≤−.于是1144()2233k kk i i i i f x a k a λλ==⎛⎫<≤⋅−+ ⎪⎝⎭∑∏ 14416144333k i i a x λλλλλ=−⎛⎫≤⋅−+=⋅+⋅ ⎪⎝⎭∏ 那么我们只需要取一个λ使得423λ<≤即可,比如我们取2λ=就会得到28()33f x x <+. (2)若不存在这样的Q ,那么存在n a 使得28n a m >+,不妨设n a ,1n a −,,n m a −中最大的是a ,那么显然28a m >+.于是()()(){}11max ,1,,n n n n m a f a f a f a m +−−=++ ()2828max ,,3333n n m a a m −⎧⎫<+++⎨⎬⎩⎭()()2828max ,,3333n n m a m a m −⎧⎫≤++++⎨⎬⎩⎭ {}228max ,,333n n m a a m −=++ 22833m a a +≤+< 所以归纳可证明n k a a +<,这与无上界是矛盾的.所以一定存在这么一个Q ,使得n a Q <对所有*n N ∈都成立.评析8.数论中出现素因子的加法一般都会变得很难,但是这个题目主要通过估计就可以达到要求,所有同学做题的时候一定要注意看题目,不要看一眼觉得很复杂就马上放弃,这个题还是可做的.从答案上看这个估计并不太难,只要敢拆敢放就能做出来,实际上这种估计也的确没有用到任何解析数论的方法,所有的步骤都是高中生都可以做出来的,但是我还是建议各位同学在学习潘承洞,潘承彪两位先生的《初等数论》的时候把后面章节的内容也看一看,素数定理和 Eratosthenes 筛法的基础知识并不会太难,了解一下并没有什么坏处.另外,这篇答案的放缩放得非常狠,比如公式第二行的不等号基本上是i s 直接放到无穷,第三行的不等号就直接把所有i p ;都放成2,之后讨论函数的时候又把所有i s i p 当2来做,可以说23是一个非常粗略的答案.有兴趣的同学可以算算2k =的情况玩玩,看看自己能把这个不等号放到多小.。

2018-2019年高中数学北京高一竞赛测试检测试卷【1】含答案考点及解析

2018-2019年高中数学北京高一竞赛测试检测试卷【1】含答案考点及解析

2018-2019年高中数学北京高一竞赛测试检测试卷【1】含答案考点及解析班级:___________ 姓名:___________ 分数:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.由下表可计算出变量的线性回归方程为()543212A. B.C. D.【答案】A【解析】试题分析:由题意,∴样本中心点为(3,1.2)代入选择支,检验可知A满足.故答案选A.考点:线性回归方程.2.下图是由哪个平面图形旋转得到的()A. B. C. D.【答案】A【解析】试题分析:根据面动成体的原理即可解,一个三角形绕直角边旋转一周可以得到一个圆锥.一个直角梯形绕着直角边旋转一周得到圆台.解:该几体的上部分是圆锥,下部分是圆台,圆锥的轴截面是直角三角形,圆台的轴截面是直角梯形,∴这个几何图形是由直角三角形和直角梯形围绕直角边所在的直线为轴旋转一周得到.故选A考点:旋转体点评:本题主要考查空间感知能力,难度不大,学生应注意培养空间想象能力.3.cos300°= ()A.-B.-C.D.【答案】C【解析】试题分析:利用诱导公式把要求的式子化为 cos(360°-60°)=cos60°,由此求得结果.解:cos300°=cos(360°-60°)=cos60°=,故选C考点:诱导公式和特殊角的三角函数值点评:本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点.4.下列函数中,在区间上是增函数的是()A.B.C.D.【答案】C【解析】试题分析:根据基本初等函数的单调性知,在上单调递减;在上单调递减;在上单调递增;在上单调递减.考点:本小题主要考查基本初等函数的单调性.点评:考查函数的单调性,要记住基本初等函数的单调性,结合图象解决问题.5.若角和角的终边关于轴对称,则()A.,B.,C.,D.,【答案】A【解析】试题分析:因为α,β角的终边关于y轴对称,所以,即α+β=π+2kπ,(k∈z),考点:终边相同的角。

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。

个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。

2019年度高一数学竞赛试题(含答案)

2019年度高一数学竞赛试题(含答案)

高一数学竞赛试题【本试题满分100分,考试时间120分钟】一.选择题:本大题共5小题,每小题6分,共30分.在每个小题给出的四个选项中,只有一个正确的答案.1.已知集合M =⎭⎬⎫⎩⎨⎧<-+013|x x x ,N ={}3|-≤x x ,则集合{}1|≥x x =( ) A .N M ⋂B .N M ⋂C .C R )(N M ⋂D .C R )(N M ⋃ 2.已知43πβα=+,则)tan 1)(tan 1(βα--等于( ) A .2 B .2- C .1 D .1-3.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式0)()(<--x x f x f 的解集为( )A .)1,0()1,(⋃--∞B .),1()0,1(+∞⋃-C .),1()1,(+∞⋃--∞D .)0,1()0,1(⋃-4.函数()ln |1|3f x x x =--+的零点个数为( )A .3B .2C .1D .05.已知函数⎪⎩⎪⎨⎧<+≥=4),1(4,)21()(x x f x x f x 则=)(log 32f A .823-B .111C .241D .191 二.填空题:本大题共5小题,每小题6分,共30分.将正确的答案写在题中横线上.6. 已知20π≤≤x ,则函数x x x x f 2cos cos sin 24)(+=的值域是 .7. 已知:a ,b ,c 都不等于0,且abcabc c c b b a a +++的最大值为m ,最小值为n ,则=+n m . 8. 已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,若方程)0()(>=m m x f 在区间]8,8[-上有四个不同的根4321,,,x x x x ,则=+++4321x x x x .9.定义集合A ,B 的一种运算:},,{2121B x A x x x x x B A ∈∈+==*,若,则中的所有元素之和为 .10.= 70sin 50sin 30sin 10sin .三.解答题:本大题共4小题,每小题10分,共40分.解答时须写出必要的解题步骤、文字说明和计算结果.11.已知函数2()23cos 2cos 1()f x x x x x R =+-∈(1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值.12.设a ,R b ∈,且2≠a ,定义在区间),(b b -内的函数)(x f =xax 211lg ++是奇函数 (1)求a 的值 (2)求b 的取值范围 (3)讨论)(x f 的单调性.13.已知函数)(x f 的定义域为R ,对任意实数m ,n 都有)()()(n f m f n m f •=+,且当0>x 时,1)(0<<x f .(1)证明1)0(=f ,且0<x 时,1)(>x f .(2)若21)1(=f ,解关于x 的不等式 81)2(2<-x x f .14.已知函数())(22R a a ax x x f ∈+-=,∈x [0,1],求()x f 的最小值)(a g ,并求)(a g 的最大值.参考答案一.选择题:1.D ; 2.A ; 3.B ; 4.A ; 5.C .二.填空题:6.]3,1[-; 7.0; 8.8-; 9.14; 10.161. 三.解答题:11.(本小题满分10分)(1))62sin(2cos 2sin 31cos 2cos sin 32)(2π+=+=-+=x x x x x x x f ,…2分所以函数()f x 的最小正周期π=T . ……………………………………………3分 因为]2,0[π∈x ,所以]67,6[62πππ∈+x , 所以1)62sin(21≤+≤-πx ,所以2)(1≤≤-x f ,所以当262ππ=+x 即6π=x 时,()f x 有最大值为2; 当6762ππ=+x 即2π=x 时,()f x 有最小值为1-. ……………………………6分 (2)由(1)知56)62sin(2)(00=+=πx x f ,所以53)62sin(0=+πx .7分 因为]2,4[0ππ∈x ,所以]67,32[620πππ∈+x ,所以54)62cos(0-=+πx , …8分 所以6sin )62sin(6cos )62cos()662cos(2cos 0000ππππππ+++=-+=x x x x 1034321532354-=⨯+⨯-=.……………………………………………10分12.(本小题满分10分)(1)∵定义在区间),(b b -内的函数)(x f =xax 211lg ++是奇函数, ∴)()(x f x f -+=0411lg 211lg 211lg 2=--=--+++xx a x ax x ax ,…………………… 2分 ∴14112=--xx a ,∴42=a ,又∵2≠a ,∴2-=a .……………………… 3分 (2)由(1)知)(x f =x x 2121lg+-,令02121>+-x x ,解得2121<<-x ,…………… 4分 ∴)21,21(),(-⊆-b b ,∴)21,0()0,21(⋃-∈b .……………………………… 5分 (3)设1x ,)21,21(),(2-⊆-∈b b x ,且21x x <,则 )()(21x f x f -=21212121221122114)(214)(21lg )21212121lg(2121lg 2121lg x x x x x x x x x x x x x x x x --+---=-+⋅+-=+-++-, 7分 ∵1x ,)21,21(),(2-⊆-∈b b x ,∴04)(212121>---x x x x ,04)(212121>--+x x x x ,∵21x x <,∴212121214)(214)(21x x x x x x x x --+>---,……………… 9分∴14)(214)(2121212121>--+---x x x x x x x x ,∴0)()(21>-x f x f ,∴)()(21x f x f >, ∴)(x f 在),(b b -上单调递减.………………………………………………… 10分13.(本小题满分10分)(1)令1=m ,0=n ,则有)0()1()1(f f f =,∵1)1(0<<f ,∴1)0(=f . 2分 当0<x 时,0>-x ,∴1)(0<-<x f ,又∵1)()())(()0(=-=-+=x f x f x x f f ,∴)(1)(x f x f -=,∴1)(>x f .4分 (2)∵)()()(n f m f n m f =+,∴)()()()()(n f m f n f m f n m f =-=-.…………… 5分 设1x ,R x ∈2,且21x x <,则0)(2>x f ,且1)()()(2121>-=x x f x f x f , ∴)()(21x f x f >,∴)(x f 在),(+∞-∞上单调递减. ……………………… 7分 又∵21)1(=f ,∴)3()1()1()1(21212181f f f f =⨯⨯=⨯⨯=, …………… 8分 ∴不等式81)2(2<-x x f 可化为)3()2(2f x x f <-, ∴322<-x x ,∴31<<-x , ……………………………………………… 9分 即不等式 81)2(2<-x x f 的解集为}31{<<-x x .…………………… 10分 14.(本小题满分10分) 二次函数())(22R a a ax x x f ∈+-=的图像开口向上,对称轴为2a x =.……… 1分 ①当02<a ,即0<a 时,()x f 在]1,0[上单调递增, 所以()x f 的最小值为2)0(a f =;………………………………………………… 3分②当120<≤a ,即20<≤a 时,(x f ]1,2(a 上单调递增,所以()x f 的最小值为24)2(2a a a f +-=;………………………………………… 5分 ③当12≥a ,即2≥a 时,()x f 在]1,0[上单调递减, 所以()x f 的最小值为21)1(a f -=.……………………………………………… 6分 综合①②③可得,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<≤+-<=2,2120,240,2)(2a a a a a a a a g .………………………………… 7分 又当0<a 时,02)(<=a a g ;当20<≤a 时,4124)(02≤+-=≤a a a g ;当2≥a 时,021)(≤-=a a g . …………………………………………………………………… 9分 所以当1=a 时,)(a g 有最大值为41.…………………………………………… 10分。

2019年中国数学奥林匹克完整试题及解析

2019年中国数学奥林匹克完整试题及解析

(因为
C325

max L(x, y)).
(x,y)∈X
下面构造例子说明 C325 是可以取到的最好的常数:
设 S = {1, 2, · · · , 35}, 考虑置换 f = (12 · · · 35), 即:
f (1) = 2, f (2) = 3, · · · , f (34) = 35, f (35) = 1,
极值可以在满足一些对称性的序列 (ai) 上取到. 毋庸置疑,满足题目条件的数列集合是闭集,因此两个
小题中的目标函数(都是连续的)确实能取到最大值.
(1)设序列
(ai)
使
a+b+c+d
取到最大,令
ci
=
ai
+
ai+10
+ ai+20 4
+ ai+30 ,下标模
40
理解.

据上一段,ci 满足题目条件,而且(1)中目标函数在序列 (ai) 和 (ci) 上取值相同,因此可以只对具有
2019 年中国数学奥林匹克试题解析
6
注意到: L(x, y) ≤ L(f1(x), f1(y)) + 1, 从而
L(x, y) ≤ L (fk−1(· · · (f1(x))), fk−1(· · · (f1(y)))) + (k − 1) = k ≤ |X| = C325,
所以
m

C325
时总是可以办到的
(解题 : )
题 2. 已知:△ABC 中,AD 为角平分线,E 为 AD 上一点,EF 、EG 为 △ABD、△ACD 外接圆 切线,F 、G 分别为切点,CF 交 BG 于 J. 过 J 的 BC 平行线交 DF 、DG、DE 于 H、I、K.

2019年高中数学竞赛试题及答案及答案

2019年高中数学竞赛试题及答案及答案

高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是.①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④ 3.设0.50.320.5,log 0.4,cos3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或2 5.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图2222=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防(若疫苗有效已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数()1f x =-. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.3 11.2201112. 31(,),(1,0),(3,4)22-- 三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos 2cos 1+-+=ππx x 2sin 212cos 231++= ………………… 2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32sin()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-EFG B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分 综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分ACBB 1A 1C 1FGE(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r=2. ……1分由于点A 的横坐标为4,所以点A 的坐标为(4,5),即AM =……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540kx y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分2=,2=,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………所以满足条件的点A 为线段PQ 上的点,即满足条件的点的横坐标取值范围是.……14分18.(本题满分14分) 解:(1)由()1f x =-可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11()(1f x x x ===3分 显然)(1x f x在区间(0,1]∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)21()()f x f x -===.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即2>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。

2019年高一数学竞赛初赛试题含答案

2019年高一数学竞赛初赛试题含答案

2019年数学竞赛高一初试试题一、选择题(每题5分,共60分)1.已知集合A ={x||x|≤2,x ∈R },B ={x|x ≤4,x ∈Z },则A ∩B =() A .(0,2) B .[0,2] C .{0,2} D .{0,1,2} 2.若,,,,b a R c b a >Î则下列不等式成立的是() A .b a 11<B .22ba >C .1122+>+c b c a D .cb c a >3.3.下列函数为偶函数,且在下列函数为偶函数,且在)0,(-¥上单调递减的函数是() A .32)(xx f =B .3)(-=x x f C .xx f )21()(=D .xx f ln )(=4. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是() A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊥α,n ⊥β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若m ∥n ,m ⊂α,n ⊂β,则α∥β5. 等比数列{}n a 的前项和为n S ,且321,2,4aa a 依次成等差数列,且11=a , 则10S =() A .512 B. 511 C .1024 D .1023 6.已知f(x)=2tanx -2sin 2x 2-1sin x 2cos x 2,则f(π12)的值为() A. 833B. 8 C .4 D. 43 7.设变量x ,y 满足约束条件îíìy ≥x ,x +3y ≤4,x ≥-2,则z =x -3y 的最大值为() A .10 B .8-C .6 D .4 8.已知0,0>>y x ,且112=+y x ,若m m y x 222+>+恒成立,则实数m 的取值范围是(值范围是( )A .24-£³m m 或 B. 42-£³m m 或 C . 24<<-m D. 42<<-m9. 如图所示,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD.将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BD B .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30°D .四面体A ′-BCD 的体积为1310. 已知定义在R 上的奇函数)(x f 满足当0³x 时,,)2(log )(2b x x x f +++= 则3)(>x f 的解集为( )A .)2,(--¥ ∪ ),2(+¥ B . )4,(--¥∪ ),4(+¥ C .)2,2(- D. )4,4(-11. 若直线45p =x 和49p =x 是函数是函数 )0)(sin(>+=w wx y j 图象的两条相邻对称轴,则j 的一个可能取值为( ) A .43p B. 4p C .3p D. 2p12. 已知定义在R 上的奇函数)(x f 满足当0³x 时,[)[)ïîïíì+¥Î--Î+=,,1,31,1,0),1(log )(21x x x x x f则关于x 的函数)10()()(<<-=a a x f x F 的所有零点之和为(的所有零点之和为( ) A .12-aB .12--aC .a --21D .a 21-二、填空题(每题5分,共20分)分) 13. 已知),1,2(),4,1(),3,(===c b k a且,)32(c b a ^-则实数=k _________。

2019年第10届陈省身杯全国高中数学奥林匹克试题及答案

2019年第10届陈省身杯全国高中数学奥林匹克试题及答案

2019年陈省身高中数学夏令营2019陈省身高中数学夏令营测试评析乙一本文所有题II和答案出自Q群网友的回忆和他们与我的讨论.题1.在等腰MBC中.AB = AC. ^ABC内切惋I为©7. bBIC外按関为0O. D为优弧BC上的•点.E为也上的-•点.证明:若过E所做的HI)平行线可「3相切.那么过E所做的CD rn线也可于0/ +HW.答案1・显然由1.BCD人:恻我们冇EBDI = 180 - IBID - JBD = 180。

-£BID-"BJCBD= 180 -z5/D-z//?C-zC/D = z/Ca M理 zCD/ = "BC. ill f- AB = AC我们易得到L BDI = dCB = dBC = zCD/.即DI是1BDC 的角平分线.A在E点做Ol的两条切线EF. EG.山題II知.EF // BD. iGEl = L FEI=LtiDl = ZCW.则EG // CD.评析1.这个题11应该参加夏令营的所冇人都做出來了吧?似乎没什么特别好评论的.题2.〃是•个大f 1的iE幣数.例・他・・..・心为n个两两互异的正整数.记M = 3・©)皿©] I !</<;<川.求M所倉元素个数的最小值.答案2.对任何仃限iF•整数集A.我们=伽・©).[%如| a,丰a, G川.即题II中的M是弧的简写.固定•个大F I的正整数a,取①=川.则M=⑷......... ©}•此时M的兀索个数为n.下证M的元素卜数不可能小「〃•若“ =2.若|M| < 2,那么\M\只能=1.也就是说(«|.«2)=⑷・“2】・即fl| = “2, L i ""2不相等矛氏若/! = 2.…・R - 1时都成立,在〃=A•时,考股任总a l(i2…心中的素因数p.令s = nuxhsS)},并且定义S =沏I v P(a t) = y|. F = M\S, f*是可以分两种情况: [;了,.〕「1. |S| > 1.于是对任总a,.aj€ S,我们都有%((%©))= ipdflj.nJ) = s. 而对任盘a® € T.我们都有y(a・切))・兮([心①])< $.也就是说M s和M T 互不郴交.由数学I丿」纳法可知|M$| > |S|, \M T\> I几那么M D Ms U M T可知2. |S| = 1.不妨S = g F是对干任总g® € I.我们都有卩,((心©))・*,([如①])< 5.但是%([",])= £,也就是说⑷间< M"即|M| > |M r| + 1 同样山U I 纳法\M T\> ID.那么|M| > \M r\ + 1 >|7|+ I = /».评析2.本題中最开始给的例F町以写成满足血|也1・・・1弘的•列整数.则此时也有・...・亦•但是在证明的过程中必须耍完全摒界这种极端条件的想法.在n = 2时只能等J- 2.而M可以不等F的如・部分同学可能会想在01纳的时候证明•个也强的结论.比如|M| > n井且在n > 3 的时仗• T兮成«q iiL仅“i © I心|...| %这种方法会山採把与工I、•死.因为这个命題虽然很漂亮.但是零实上它是完全错误的.比如考虑M = 4.四个整数为1.2.X6.就没右这种整除的关系.若考虑证明等号成立出且仅半M = ••…a n\.这种方法似乎也不可行(至少我们没讨论出來).任这种想证明漂亮结论的想法行不通的同时我们不妨考世•些不太优雅的数论題的套路想法.比如比较索因数,这样•下就归纳出來r.题3.甲乙两个人由甲先开始轮流将1至2019这些数的某个染红色或好雉色.相邻的两个整数不能染成不冋颜色.若所仃数7均被染成冋•种颜色. 则乙胜.若还有数7:没被染色但是轮到的仁没法继续染色「•则此人输•请问谁冇毕胜策略?答案3.乙有必胜策略.先讲乙的策略・ill » = 1010.则2019 = 2/1 - L M为[至In - 1的中间的那个数'乙每•回介屮先染色•若屮所染的数Z'jnZ间的数7全部被染J'(柑同的)颜色.不妨设i到/都彼染了(相同的)颜色.而/-I 和j+1没存被染颜色,那么弔虑三种恃况:1.1.廿,+ 2”.则乙在/-I染上与”相同的颜色;1.2. T;i七j <2”.则乙在A 1染I儿“相同的颜色(即乙尽中间同色数殷的对称性);1.3.若2;=2/i(即中间的同色数段是对称的情况下),乙任i- 1或./+ 1 I••的某个可以染色的地方染上弓n 相同的颜色即可.廿甲所染的数7 k n之间的数7之间仃未被染色的数7或者异色的数孕,同样不妨设/到都被染F(相同的)颜色.而i-1和/♦ 1 没有被染颜色,则也分三种情况:2.1.若U jH而甲U + 2染了9 〃相同的顾色,则乙任j+ I上染上相同的颜色;22 n i + j = 2/i - 1而甲任2i-2染了—相同的颜色.则乙在/-I I•.染I:相同的颜色(即将k与中间同色数「殳连任•总):2.3.杆以I•两种悄况都没发生.则乙隹5-k (即对称点)上染I:相反的颜色.接若先证明一条引理:引理1.在收盘时若1和2/1-1异色.则乙贏.若1和2//-1同色.则乙高半且仅嗎1至2—1骨同色.引理的证明:苻先我们考察收盘时的染色情况.”某个数「未被染色.那么/-I fili+l异色,占则「可继续染色・9收仮刊1•所以我们可以看出來柱收盘时若不是所有数字皆同色的情况•那么1至2—1中间有很多个区间[ai.bi]….・阪吋(的=1. b t = 2— 1. a可以等F bi), b, g 相差为2•而这/个区间交错染色.所以在收盘时未被染色的数7只有仞+ 1•.…g + 1,J«</- 1个.子是染过色的数字有S个.故如果/是偶数,那么M 后•次染色的人是乙•此时乙贏.2; /是奇数.那么最后•次染色的人是屮. 此时屮嬴.而/是偶数半且仪艸⑷•如与⑷沏]异色,I是奇数半且仅出[仆如4 la h b f]同色.所以若1和2/1-1异色.则乙羸.若1和2//-1同色.而中间还有爪他颜色J!艸贏.引理得证.最后我们用归纳法说明乙的策略是可以保证乙可以赢.对n进行归纳. 若〃 =2.此时我们只在1到3 Z间进行染色.那么若屮第•步在1 I:染色,乙任3 I.染反色.此时屮输.若屮第•步染J'3,则同理屮还是输.若屮6 - 步染了2.则这时乙在1或3处染同•种颜色.那么下•步甲只能隹最后• 个数7 I:染同•种颜色,此时1至3全部同色,屮还是输./; n-\时是这个策略是必胜的,在n我们将2至2〃-2这2/1-2个数对应到//-I的情况中.我们重点考察屮乙在染1和2—1时的行为.苦屮在某•次染色的时候将1染了色,此时我们知道2未被染色或者2与I同色.若此时2号1同色.那么按照乙的操作策喙此百有两种情况.若2/1-2 与2井色.则乙右加-1处染与1郴反的颜色.按!阳I理可知乙BL若2/1-2 4 2同色.払!H乙的策略.这种情况只会任2至2/1-2皆同色的时候出现. 所以乙将2//-1染成■样的颜色.那么全部数字颜色相同.乙齋.若此时2 未被染色,而2n-2也栄被染色或与1异色那么乙将2—1染成与]相反的颜色即可胜利•若加-2被染了£1相冋的颜色,而按照乙的策略,这种悄况只可能在3到2n-2皆同色的情况F发生,那么接下*乙在2〃- 1处染与1相同的颜色.F -步甲只能在2处染牙1相同的颜色・F是全部故字同色,乙贏.若甲某•次先染了2n- I,同理乙会亂若乙先染了1,那么按照乙的策略.此时2到2/1-2皆同色.那么剩F这•步屮只能在2—1 I:染相同的颜色,还是乙範.同理若乙先染F 2n-\的话他还是会贏.所以由归纳法可知乙按照这个策略水远会裱.评析3. II接观察收盘情况很容易得到引理,那么在得到引理的情况下.甲」定想便1和2019同色.乙•定!ft!使1和2019异色.那么在屮乙某人先将这2019个数的•端进行染色的时候.另个人下•步就必须耍将另•端染I •对同色或反色.听以屮和乙的套路中就不能主动地先染边缘.由F甲魁先手,那么按照某种归纳的也法.屮染中间点是战保险的染淤此时乙并不能染对称点•所以甲F •步可以考虑乙的对称同色染法.但是乙也知道屮肯定会世耍这种食路.所以按照胜利规则的第条,乙姒保险的办法就是•步步让屮把所fj的数都染成同色,那么这个时候屮就必须跳出这种套路來染-个异色的点•之后乙就可以按照对称异色染法來套路甲.所以由于胜利规则第•条的保障.乙可以破坏屮的套路井H坚持按照自己的套路*染色.那么乙稳麻.这个題的关键在于怎么去吗.本拎案的药仏罪常长,感兴趣的同学可以 考渥有没有也好更简油也更淸楚的写法.答案4.先证明个引理: 引理2. 口;霊,(1 +宀皿)=(】-(一irr.引理的讦•明:任川=1时川I $ 1在这里取.V 二一1即得证.若m> l t 由于严=m,实际上wjr-l m 加7 剛 1>・1[](1 +^4°) = P 口(I + 严”) = []II (1 心/") = (]_(_])"严AS /s| 側 /*! AN ) 所以我们來考察]1嚮(1 +^).若“ 92019直素.那么%仏2“••…2018« 也是2019的一个完全剩余系,所以山引理可知3)18 2018P] (1 + e 湍)=仃(I + e 巧fiuB Jan*若<1 4 2019不互素・那么山F 2019的因子都是奇数.由引理可得2018 3)18 .・・.;・ 3)18 3018 “・. 20IX [][](1+ 禺)=220*9•仃仃(I + e 诩)二仃 2心叫 Z»=O 4f —I frsO 题 I. ilW所以2018 . 3>I8 r n (i +r^)=n (i />«O \Ill J* 2019 = 3x673.那么 £出论・20⑼= 3x(2019m3-l)+673*(20]g673-1 )+1x(2018-(2019^3-1)-(201X673-I)) = 3x672+ 673x2+ 1344 = 4706. 所以原式■ 2019 + 4706 = 6725. 评析4.题II 中的 严巾在数论研完中被称作•个完全剩余系的乘法待征, 这种乘法特征的操作在数论研究中II :常常见.我佔il 华罗庚先工的《数论导 引》里面都可以找到同样的问题或者引理.题5.已知锐角MBC 三边满足BC>CA> AB. JC-内切關O/ 9边BUCXAB 的切点为Ao.Bo.Co .设^ABC 垂心为H. HA.HB.HC 的中点为A r ,B,.C h 点 A|,B\^C\ 关 J■ B (Q ),G )AoMuBo 的对称点为 A2.B2.C2.证明:A 2.B 2.C 2三点共线,HA tan 鲁^ - tan 丛孕= lan 奉 _ian 如;£ * I w答案5.我们先证明42,B 2,C 2都在山线Ol I K 中o 是 从BC 外接岡闘 心.如图.设/2O 用2<)|S 呢Fl 3)IS =2019+》"BX在AC.AB I••的廉足为B心 h为MB3C3的内心.D为A1与B O C Q的交点.那么昭然AB, = ABcosA・AG = ACcosA.那么L ABC ~ M执C\,且相似比为cos4.另•方阿由f- LAByH = lACyH = 90 .我们冇AByHCy WW.其圆心为AH中点A h即cAByCy的外心为A hIll F /A在砌G的半分线I:,而ZBMG就是zCAB.「•是AJ A J兵线,且显然矗山于&C0.由^ABC ~ MB J G我们有Ah = Al cos A.那么11A = Al - (l-cos/l). ill f* z/^oCo = |z4.我们ff ID = rsin 4.其中r为内切闘半径.但是由内切恻的件质我们ill道Al = -A-.所以II)= 4/sin2 4 = M/(l - cosA).故11A = 2/D. I A为7 关f ft>C0的对称点•则M2= g H. €Z AM2 = /Ml.那么M/0+ Z AM2 = zA/.Si + Z/Mi = 180°?即AJO共线. 同理,B2C2IO线.则A2B2C2共线.由于MftC31 j L ABC的相似比为cosA.所以IAi = I A A I = IO cos A.同理IB: = IO cos B. IC2 = /O cosC.由BC > CA > AB 我们有 /A: < IB2 < IC2. 那么A2B2 _ /O(cosB-cosA) _ sin 学sin 宁_ cos § (sin 4 cos f - cos 4 sin ?) BG /O(cosC - cos B) sin 半sin 学cos 牛(sin £ cos ¥-cos g sin £) tan 4 - tan ?_■ ■ ■tan 5 - tan 5评析5.这个题的关键在于我们耍发现1.0也任这条M线I..同学们考试的时候如果没右•思路的话不奶多腑两个图,甘先就可以发现/在这条宜线I:. 另方而.如果同学们很熟悉三角形丘心的性质的话•可以想到AH = 2AAi应该是0到BC距离的两倍,并且A|4・C|也在九点圆L,而九点恻心应该是HO 的中点.此时会引导我们考暹0,在图I:価惚完全可以作出AuBzXi在OI上的这种猜想.余F的证明比较巧妙地考世了 /关F E)G)的对称点.若没有想到这个方法的同7也完全可以按照三角函数眾力汁只的方法來r[按求IA.JB.JC2的长度,但足这种方法太复朵•我们就不写在这篇答案中了.題6.设& > 1是•个正整数,是否存在无穷冬个正罄数X.使得x可以写为两个匸整数的士次基的并.但是不能写成两个正整補 &次慕的和.答案6.令& = (2计-(2”)\那么心可以写成两个疋整数的k次無的羌. 下而用I丿I纳法证明&都不可以写成两个正熬数的k次幕的和•那么这样的数有无穷多个.'*1 // = 0 时,xo = 2k - 1.若.v()=(, + 从那么(hb < 2.此时a.b = 1.即总=I’ +广=2.才盾. ........ .. ........若 3 不能被歸为两个正整数的k次幕之和,若心 T + #.我们分集中情况讨论:(1) a.b不同奇偶.由于此时“ > 1, .v…为偶数.不对能.⑵仏b同为偶数.设a = la^h = 2你.那么(F - 1)2皿=心=2畑七). 则3 = (2 J 1)2吩皿=朮+处,£01纳假设不府.(3) a.b同为奇数.且k是偶数.那么= 1 (mod 4)•但是2皿> 2. 即4 | s不可能模4余2,矛盾.(4) a.b.k都是奇数.此时 + // = (“ + ")(</」-(f~~b + ... + M-1), Ji “A」_ 严b + ... + M-* 为奇数.那么ill于.V” = (2l - I)2" = S + b)(^ - 十%+ …+ //- *).我们疔2滅 | a + b.则(十:-a^-b + ...+M-*)|2A- 1.那么a+b>2nk > 2* - I 2 丹1-+... + M7即(a + dp > a* + M.不Hi a > b.那么此时4(r > (a + h)2 > </ + // > a k >则a <4.即n S 3. d + b S 2a S 6.但足由于1? | 2川 | (a+b).即a + b> 23 = 8. 才H.评析6.本题也可以考虑升茶定理•比如对于•个奇索数p、a1 j p互素. b = a (mod p).那么v p((f -//) = v p(a -6) + v p(k).接下來我们可以用同余分析的方法选取塑特殊的b使得於- M模p的余数彳、可能是两个k次鄢之和模P的余数.有兴趣的同学不妨•试.题7. A.B.C.D足半面上四个点,任意三点不共线,且四个点形成的六条线段的长度的平方皆为冇理数.i正明:严•为有理数.答案7.设AB中点为M.C.l) (l.AH I.的垂足为E.F•那么我们有:若E任线匸殳AM I: (AM-A/£p + EC2 = AE2+ EC1= AC2€ Q. (BM + ME)2+ EC2= BE- + EC2 = BC-€ Q.所以两式相减得到ME - AB = ^(AE2 - BE2) E Q■两式相加得到ME2 + EC2 = {(AC1 + BC2) - AM2€ Q.若E任线「殳BM I •我们也一样冇ME • AB, ME2 + EC-€ Q.所以MF =理泸€ Q.则AE- = AM2 + ME2 - 2AM - ME€ Q・并H.同理BE2 e Q?另外还仃EC2 = AC2- AE2€ Q.对从 BD同理也冇MF\AF2, BF\ FD~€ Q.列外.ME MF = € Q,而n AE . AF = (AM ±ME) • (AM ±MF) = AM1±AM ME ±AM - MF ± ME-AfF € Q (iH负号取决J;E.F在M 6右的位比但并碑响它们都属于Q).由F CD2= (EC ± FD)2 + (4E - AF)2€ Q (这个iE 负号取决F GD {£ AB的同侧还址并侧).拆开半方项之后我们得到EC FDw Q.则比 = 爲=爵s€ Q.评析7.这个题中.从1角形面积之比想到高之比,所以考虑E.F作帑自然. 那在列方程看AE, BE.AF. BF的有理性的时候也会扳门然地出现AE2+ BE2 和AE2- BE1这种式几所以不妨也占渥•下AH的中点M把这个式J'•改成+ MF或±2ME AB.么余I:的余四毛在住稿纸I角儿个只式就看出來了.题& /』2是-个止粋数•“是个实数,满足0 v“v岩•芟数z满足广| 一岀 + 血一I = 0. i正明:|zl = I.答案&记/(£)=尹I -曲+血- 1 •若• £ = cos Q + i sin b我们f jF" — 1 = cos(” +1)0-1 + /sin( n + 1 )。

数学奥林匹克高中训练题(19)及答案

数学奥林匹克高中训练题(19)及答案

数学奥林匹克高中训练题(19)第一试、选择题(本题满分 36分,每小题6分) 1.(训练题 24)对于每一对实数x,y ,函数f 满足方程f (x • y)「f (x)「f (y) -T xy ,且fl 仁•那么,f(n) =n(n =1)的整数n 的个数共有(B)个. (B)1 (C)2 (D) (A)0 2 .(训练题24)有六个座位连成一排,三人就座,恰有两个空位相邻的排法种数为 (A)72 (B)96 (C) 48 (D) 3 .(训练题24)在一次体育比赛中,红白两队各有 5名队员参加,比赛记分办法是: 几名就为本队得几分,且每个队员的得分均不同,得分少的队获胜,则可能获胜的分数是 3 (A).以上都不对队员在比赛中获第(C).27 (A)29 (B)28 4.(训练题24)现有下面四个命题: ① 底面是正多边形,其余各面都是等腰三角形的棱锥是正棱锥. ② 底面是正三角形,相临两侧面所成二面角都相等的三棱锥是正三棱锥. ③ 有两个面互相平行,其余四个面都是全等的等腰梯形的六面体是正四棱台. ④ 有两个面互相平行,其余各个面是平行四边形的多面体是棱柱. 其中,正确的命题的个数是 (A) 3 (B) (D). 2 (C) (C) (D) (D) 13 5.(训练题24)设f : N > N , 且对所有正整数 有 f(n 1) f(n), f( f( rj) 3n .f (1997)的值为(C). (A)1997 (B)1268 (C)3804 (D)5991-训练题24唱爲:;胯豐 的解(x, y)共有(B)组. (A)4 二、填空题 (B)2 (C)1 (D) (本题满分 54分,每小题9分) 1.(训练题 24)数列{a n }的前 14 项是 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33,34, 35, 38,….按此规律,则2.(训练题24)函数f (x)二(長- ~^)( J x T + r 1——)丄的值域是v xJ x —1 x(0,1)3.(训练题24)方程x^1 x ; /I 2 x.二 1 远的解是—2 ■ 36 714.(训练题24)若方程x2(^2i)x 3m -i =0(m R)有一实根、一虚根,则此虚根是2i—25 .(训练题24)平面上有四点A, B, C, D,其中代B为定点,且AB = J3,C, D为动点,且AD DC =|BCT ,记S咎BD=T为也BCD的面积.贝U S2+T2的取值范围是2、「3 -3 2 2 7S2T2:4 811 1 16.(训练题24)使不等式——- - a-1995—对一切自然数n都成立的最小自然数n+1 n+2 2n+1 3a 是1997 ______ .第二试2 2一、(训练题24)(本题满分25分)已知F1, F2是椭圆笃=1(a b 0)的左、右焦点,c为半焦距,a b弦AB过焦点F2•求■ F1AB的面积的最大值.n、(训练题24)(本题满分25分)若X j・0,二人=1, x, x-i, n,求证:三、(训练题24)(本题满分35分)已知ABC是等腰三角形,AB=AC,CD是腰AB上的高线,CD1的中点为M,AE _ BM于E, AF _CE于F •求证:AF _丄AB .3四、(训练题24)(本题满分35分)46个国家派代表队参加一次国际竞赛,比赛共4个题,结果统计如下:做对第一题的选手235人,做对第一、二的选手59人,做对第一、三的选手29人,做对第一、四的选手15人,全做对的3人•存在这样的选手,他做对了前三题,但没有做对第四题•求证:存在一个国家,这个国家派的选手中至少有4个人,他们只做对了第一题.。

2019年中国数学奥林匹克完整试题及解析

2019年中国数学奥林匹克完整试题及解析

题 5. 数列 {an } 定义如下: 正整数 a1 > 1, an+1 = an + P (an ), n ≥ 1, 其中, P (x) 表示正整数 x 的最 大素因子. 证明: 数列 {an } 中有完全平方数.
题 6. 是否存在正实数 a1 , a2 , · · · , a19 ,使得多项式 P (x) = x20 + a19 x19 + · · · + a1 x + a0 无实数根, 但是任意调换两个系数 ai , aj 形成的新多项式都有实根.
(1)设序列 (ai ) 使 a + b + c + d 取到最大, 令 ci = 根
,下标模 40 理解.
据上一段, ci 满足题目条件, 而且(1) 中目标函数在序列 (ai ) 和 (ci ) 上取值相同, 因此可以只对具有
周期 10 的序列考虑这个最大值. 此时 a = b = c = d.
a20+k = − k (0 ≤ k ≤ 10), a30+k = a40 − k = − − k (0 ≤ k ≤ 5)
时取等.
(解题人:龚 固)
题 2. 已知: △ABC 中, AD 为角平分线, E 为 AD 上一点, EF 、EG 为 △ABD 、△ACD 外接圆 切线, F 、G 分别为切点, CF 交 BG 于 J . 过 J 的 BC 平行线交 DF 、DG 、DE 于 H 、I 、K .
(a29+k + a41 − k ) + (a15 + a35 )
≥ (x − 2k) + (x − 2k) + (x − 18 − 2k) + (x − 20)

2019年中国香港数学奥林匹克竞赛试卷(含答案)

2019年中国香港数学奥林匹克竞赛试卷(含答案)

2019年中国香港数学奥林匹克竞赛试卷
1、两个数列定义如下:
a1=1,a2=10,a n+1=2a n+3a n-1,n=2,3,4,…
b1=1,b2=8,b n+1=3b n+4b n-1,n=2,3,4,…
请证明:除1之外,两个数列没有相同的数字。

2、集合S=1,2,…,100。

对于正整数n,将S划分为非空且互不相交的集合S1,S2,…,S n,此时S=。

设a i表示S i的元素的平均值。


的最小值。

3、等腰ABC中,AB=AC,ABC内心为I,内切圆Γ与AB和AC分别切于点F和E,设Ω为AFE的外接圆,Γ与Ω的两条外公切线交于点P。

若其中一条外公切线与AC平行,求证:∠PBI=90
4、某国有n3个城市,对任意两个城市A和B,要么存在一条从A 往B的单向道路,要么存在一条从B往A的单向道路,但不会两条道路都存在。

假设从任意一个城市都可以经过若干条道路到达任意另一个城市,设d(A,B)表示从A到达B最少要经过的道路个数,考虑所有满足条件的设置道路的方法,求的最小值。

参考答案。

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

第十六届中国东南地区数学奥林匹克1.求最大的实数k ,使得对任意正数a,b,均有(a b)(ab 1)(b 1) kab2.2.如图,两圆1,2交于A,B两点,C,D为1上两点,E,F 为2上两点,满足A,B分别在线段CE ,DF内,且线段CE ,DF不相交.设CF 与1,2分别交于点K C ,L F ,DE与1,证明:若ALM 的外接圆与BKN 的外接圆相切,则这两个外接圆的半径相等.3.函数f :N* N *满足:对任意正整数a,b,均有f ab 整除max f a ,b .是否一定存在无穷多个正整数k ;使得f k 1?证明你的结论.4.将一个2 5 方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9简称为“旌旗” ,如图所示.2 分别交于点M D ,N E现有一个固定放问共有多少种不同的覆盖方明理由.第十六届中国东南地区数学奥林匹克5.称集合S {1928,1929,1930,L ,1949}的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y分别表示S的红色的四元子集的个数,红色的五元子集的个数.试比较x,y 的大小,并说明理由.6.设a ,b ,c为给定的三角形的三边长.若正实数x,y,y满足x y z 1,求axy byzczx的最大值.7.设ABCD为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P,Q,R ,S和一个正方形ABCD ,使得点P在直线AB与AB 上,点Q在直线BC与BC 上,点R在直线CD 与CD 上,点S 在直线DA 与D A 上.8.对于正整数x 1 ,定义集合S x p p为x的素因子 , 为非负数 , p x,且 v p x mod 2 ,其中v p x 表示x 的标准分解式中素因子p 的次数,并记f x 为S x中所有元素之和.约定f 1 1 .今给定正整数m .设正整数数列a1,a2 ,L ,a n ,L 满足:对任意整数n m ,max f a n , f a n 1 1 ,L , f a n m ma n 1(1)证明:存在常数A,B 0 A 1 ,使得当正整数x有至少两个不同的素因子时,必有f (x) Ax B; (2)证明:存在正整数Q ,使得对所有n N*,a n Q.第十六届中国东南地区数学奥林匹克参考答案1.原不等式2 2 2a2b 1 b2 a b (b 1) kab 22 b 2ab 1 b2(b 1) kb 2a单独考虑左边,左边可以看成是一个a 的函数、b为参数,那么关于a 取最小值的时候有ab 1 b2 b(b 1) 2 ab b1 b2(b 1) (b 1)3aa于是我们只需要取k (b 1)3b 2即可.设 f(b)32(b21) ,那么f (b)(b 1)3(b 2) ,演算可知b 2是 f 的极小值点,那么 f min f (2) 27, b b4 即k max27 ,取极值时有 a 1, b 2.4评析 1 .不等号的左边和右边都不对称,但是右边只是一个 kab 2,所以可以考虑一下类似于分离变量的方法把 a 或 b 2挪到左边去.本答案用的是把 a 挪到左边的方法.把 b 2挪到左边也有类似的做法,但是会变得 比较复杂,有兴趣的同学不妨一试.该题做法非常多,本篇答案给出的做法只是一种以高中课本知识即可解决的方法,但是如果不想用到函数 求导这种比较偏流氓的方法的话,纯粹不等式的方法也是可行的.比如,为H 1,切线另一边的任意一点为 H 2,连接 CD .LN ,AB ,MK ,EF ,O A O B ,由于 DCA DBA FBA FEA 180 ,我们有 DCA FEA 180 ,即CD / /EF .另外,由 圆幂定理我们有 GLN ~ GEF , GKM ~ GDC ,于是我们有 GLN GDC GEF GKM , 即 LN / / MK . 另一方面,那么因为 CD / / EF ,我们有LGM CDG EFG 180 CAM 180 EAL 180 LAM ,即 G 在 e O A 上.同理 G 在 e O B 上.由于 e O A与e O B 相切,我们知道 G 在O A O B 上.那这个时候G 在 LK ,MN ,O A O B 上,我们知道 GKNNGH 1 MGH 2 GLM ,故LM / / KN .由于 LM / /KN ,我们知道 LMKN 是一个平行四边形,那么 LGM KGN ,那么两个三角形的外接圆半径相等, ALM 和 BKN 的外接圆半径相等.b b ab ab(a1)(b 1) a12 2 2 21/31/31/3b bab abbb3a31 31 2 2 2 22227 2ab 242.如图.记 G 为CF , DE 的交点, ALM BKN 的外接圆圆心为 O A ,O B .取两圆切线上任意一点 bb1 22评析 2.熟悉平面几何的同学应该很快就可以凭经验知道CD//EF ,LN //MK ,且G在这两个外接圆上.余下的部分,观察题图可以猜测LM / / NK ,如果有这一条的话我们很容易推出两个外接圆的半径相等,剩下就是一些比较角度的工作.总体来说本题偏简单题.3.一定存在无穷多个这样的k ,使得f k 1.若不然,假设只有有限多个k 使得f k 1,我们分两种情况讨论.若这样的k 不止一个,那我们可以取到最大的一个,还是记为k ,那么对任意n k ,我们有f n1.对任意一个素数p ,由于pk k ,我们有f pk 1 .但是由于f pk 整除max{ f (k), p} max{1,p} p .我们知道f pk p .对任意两个素数p ,q,不妨p q,那么f pqk 整除max{ f ( pk), q} max p,q} q.那么我们现在亏虑三个素数p,q,r 满足p q r ,但是pq r(比如,p 2,q 3,r 5).那么一方面,f pqrk 整除max{ f (rk ), pq} max{r, pq} pq .另一方面,f pqrk 整除max{ f ( pqk), r} max{q,r} r.但是(pq,r) 1,所以f ( pqrk ) |1即f( pqrk) 1.但是pqrk k,矛盾.所以一定存在无穷多个k ,使得f k 1 .评析 3.欧几里德证明素数无限的方法是数论里面很典范的一种证明方式,在证明某一类数字有无限多个的时候,通过反证假设这一类数字只有有限个,不妨设为k1 k2 L k n,套路上我们可以考虑k n,k n 1,k1k2L k n,k1k2L k n 1.k1,k2,L ,k n 等数字来找到矛盾,本题也是如此.值得一说的是,在这个题目中,对于任何整数n ,我们可以定义一个新的函数f n (a) f (an) ,那么f n(ab) f (abn)要整除max{ f (an),b} max f n(a),b .也就是说f n也是一个满足相同性质的函数.那么实际上,我们可以证明对任意一个k满足f k 1.那么{ mk}m 1中有无限多个m满足f mk 1.更复杂的话,有兴趣的同学可以自行尝试推导一下这个f k 1 的解的密度.4.首先显然,一个9 2 的格子里面放置两面旌旗一共有两种方法,如下图:那么9 18的格子中可以放入9个9 2的格子,所以每个9 2的格子里有两种可能,一共29512种放法.下面证明没有别的放法.首先我们考察9 18的侧边,即变成为9这条边.若我们用18 面旌旗把这些格子填满了,那么我们考察这条边上放的旌旗.旌旗的几条边长为5,4,2 ,1.若旌旗边长为1的边靠着底边,那么1的左右某一边的格子只能用另一面旌旗的边长为5 的边来填,如图:那么这条边上剩下三个格子,无法用2 和1来填满(因为1需要伴随5).若旌旗边长为2 的边靠着底边,那么这时侧边只能是9 5 2 2用三条旌旗来覆盖,这个时候两条旌旗横着用边长为2 的底边来接触侧边.同时第二列只有一个空着的格子,若要填住这个格子只能用一条旌旗的旗头来填,所以只能是如图的填法:其中虚线表示两面用边长为2 的底边填充格子侧边的旌旗可以放在用边长为5的底边填充侧边的旌旗的上面或者下面.于是无论如何在第三列总会出现三个连续的空格无法被旌旗填充,所以侧边只能用5 4 的填法,那么消去这两列之后新的侧边也只能用5 4 的填法来填充,这种归纳的想法可知没有其他的填法.评析 4.本题的答案非常送分,证明的方法却变得非常朴素.一般遇到填格子的题目的话很常规的一种套路就是用染色的方法,我们可以斑马条纹染色,也可以国际象棋棋盘染色,但是这个题目似乎用染色的方法做不出来,反而用这种硬讨论的朴素方法可以做,似乎有时也需要跳出套路来想问题.5.显然,若m M 满足m i( mod 4) ,那么任何n满足n 4 i mod4 都不能在4里面.所以将S按照模4 的余数分为4 种:S0 {1928,1932,1936,1940,1944,1948}S1 {1929,1933,1937,1941,1945,1949}S2 {1930,1934,1938,1942,1946}S3 {1931,1935,1939,1943,1947}那么S0 S1 6,S2 S3 5.那么入前所述,S0 ,S2的元素顶多有一个在M 中,S1 ,S3的元素不能同时在M 中,所以四元红色子集有四种情况:四个元素都属于S1或S3;一个元素属于S0 ,剩下三个元素都属于S1或S3;一个元素属于S2 ,剩下三个元素都属于S1或S3;一个元素属于S0 .一个元素属于S2,剩下两个元素都属于S1或S3,4 4 3 3 3 3 2 2所以 x C 64C 546 C 636 C 53 5 C 63 5 C 53 6 5 C 62 6 5 C 521100 .同理, y C 65C 556 C 646 C 545 C 645 C 546 5 C 636 5 C 531127 . 所以 x y评析 5.这个题目就算是出自高考全国卷都不会让人感觉到任何奇怪⋯⋯xyL0 的解为:abc2222ab 2bc 2ca a 2 b 2 c 2评析 6.三元二次极值问题用拉格朗日乘子比较容易解决, 因为拉格朗日量的各种偏导数都是线性的, 最终我们只需要解决一个线性方程即可, 所以这篇答案中用了最简单暴力的方法. 事实上, 这个题目可以用几何 不等式的方法来做,或者直接用嵌入不等式来做,但是我不会.7.对于任意的四边形 ABCD (甚至不要求凸) ,我们都可以找一条直线 l 使得 l 不在任何一条边上,也不与 任何一条边平行,并且 AB , BC , CD , DA 分别与 l 交于四个不同的点 P ,Q ,R ,S .我们将证明一6.考虑拉格朗日乘子 L axy byz czx(x y z 1),那么ay czaxbz cx by那么b(c a 2 2ab 2bc 2ca a 2b)b 2c 2 c(a b c)2ab 2bc 2ca a 2 b 2 c 2a(b c a)z 2ab 2bc 2ca222abc2abc2ab 2bc 2ca a 2 b 2 c 2(axy byz czx)max个更强的结论:若P ,Q ,R,S是一条直线l 上的四个不同的点,那么我们可以找到一个正方形ABCD ,使得AB ,BC ,CD ,DA 分别过P,Q,R,S点.我们不妨设l就是y轴(不然通过旋转即可),P,Q,R ,S的纵坐标为p,q,r,s .那么考虑一个斜率参数k ,过P ,R 做斜率为k 的直线ykxkx1r ,过Q ,S 做斜率为的直线k1k1x q和s.那么设这四条直线就是CD ,BC ,DA ,于是我们可以解得kk2(sp),k2s,Bkk2 (qk p),11 k22k2q pkk2(qkr),11k21kk2q 1k k2 (s r), 11k2 k 2s r1k|AB|2|AD|2k 2(qs)2( p r )2即k pr qs那么由于p ,q ,r ,s互不相同可知存在这样的斜率,使得ABC D 是正方形.评析 7.这道平面几何的题目非常的非主流,同学们如果直接从平几方法来构造的话可能会被卡很久,这里给了一种解析的方法.实际上这个题目也可以用复数做,假设A B C D 的中心所对应的复数为z ,那么正方形的四个点可以设为z t ,z it ,z i 2t ,z i3 t ,这种做法也一样可行.8.(1)设x p1s1Lskp ksksif(x)k2p isi2 jk i1i0 i1k1 2s i2k s i p ipi1 i i112 p iik s i1 4p i1 i 1 2 2i131sipii记录a ipisip isi(k2),直接计算可以有si2p i2jj011 pi2因为p i 最小为2 )sp i si,,那么a i2,我们重点考虑a i和a i之间的大小关系.令f a1,L , a k a i a i ,那么a ij i a j ,所以事实上若j i a j ,对任意i都成立,那么在 a i 变小的时候 f 变大,则 f a 1,L ,a k f (2,L ,2) 2 k 2k.用求导的方法很容易知道2 k 2kln 2 2 ln 1(2) ln 1(2) 3的时候取到, 那么在整数的取值上, 我们 4 4 .于是k ai i116 1328 2即可,比如我们取 2就会得到 f (x) x .33(2)若不存在这样的 Q ,那么存在 a n 使得 a n 2m 8 ,不妨设 a n ,a n 1,L ,a n m 中最大的是 a ,那么 显然 a 2m 8 .于是an 1max f anf an 11 ,L , f a n m m2828maxan,, anmm3n33n328 ,28maxa n m,Lan mm33 33228max a n ,, an mm3m332 2m 8aa33成立.评析 8.数论中出现素因子的加法一般都会变得很难,但是这个题目主要通过估计就可以达到要求,所有同所以归纳可证明 a n ka ,这与无上界是矛盾的.所以一定存在这么一个 Q ,使得 a n Q 对所有 n N * 都会在 k ln 2 ln 1 2 ln 1(2) 取 k 2 , 3得到22 22 44232368由于2 ,我们知道2k 2kk4 4k f(x) ai2 k 2ki13 34k444aix 3i134 那么我们只需要取一个 使得3学做题的时候一定要注意看题目,不要看一眼觉得很复杂就马上放弃,这个题还是可做的.从答案上看这个估计并不太难,只要敢拆敢放就能做出来,实际上这种估计也的确没有用所有的步到任何解析数论的方法,骤都是高中生都可以做出来的,但是我还是建议各位同学在学习潘承洞,潘承彪两位先生的《初等数论》的时候把后面章节的内容也看一看,素数定理和Eratosthenes 筛法的基础知识并不会太难,了解一下并没有什么坏处.另外,这篇答案的放缩放得非常狠,比如公式第二行的不等号基本上是s i直接放到无穷,第三行的不等号就s2直接把所有p i ;都放成2 ,之后讨论函数的时候又把所有p si i当2来做,可以说是一个非常粗略的答案.有3兴趣的同学可以算算k 2 的情况玩玩,看看自己能把这个不等号放到多小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。

个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。

10.正方体的六个面所在平面把空间分成 部分11.已知数列{}n a 的前n 项和2n S n =,某三角形三边之比为234::a a a ,则该三角形最大角的大小是 .12.已知1009921)(,*-+-+⋅⋅⋅+-+-=∈x x x x x f N x 的最小值等于13.设{}2()min 24,1,53f x x x x =++-,则max ()f x =14.已知a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题: ①⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α;;②⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β;③⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α④⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b ;⑤⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;. ⑥⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b其中正确的命题是 (将正确命题的序号都填上).15、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则12111...na a a ++= 16.在平面直角坐标系内,有四个定点(30),A -,(11),B -,(03),C ,(13),D -及一个动点P ,则||||||||PA PB PC PD +++的最小值为 .三、解答题(本大题共3小题,每题的解答均要求有推理过程,17小题13分,18小题13分,19题14分,满分40分)17.(本题满分16分)已知向量)23sin ,23(cos x x a =,)21sin ,21(cos x x b -=,且]2,0[π∈x . (1)求b a ⋅及||b a +;(2)求函数=)(x f b a ⋅-||b a +的最小值。

18已知数列{}n a 中各项为:12、1122、111222、 (111)⋅⋅⋅⋅⋅⋅222n⋅⋅⋅⋅⋅⋅ 、 ……(Ⅰ)证明这个数列中的每一项都是两个相邻整数的积. (Ⅱ)求这个数列前n 项之和S n .19.设()f x 是定义在R 上的函数,若(0)2014f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,求(2014)f 的值. 答案 1.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( B )A. MB. NC. PD. P M2.函数()142-+=x x x x f 是( A )A.是偶函数但不是奇函数B.是奇函数但不是偶函数C.既是奇函数又是偶函数C.既不是奇函数也不是偶函数3已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是 C A . 0≤m ≤4 B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则c ba +的值是 A. 1 B.2 C.3 C. 2解:由0sin cos 2sin cos =+-+B B A A 得,0)4sin(22)4sin(2=+-+ππB A 即1)4sin()4sin(=++ππB A ,由正弦函数的有界性及B A ,为三角形的内角可知,1)4sin(=+πA 且1)4sin(=+πB ,从而4π==B A ,∴2π=C∴2sin sin =+=+B A cba 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是答: [ C ]A. 2B. 3C. 4D. 5解:由 0a b >>, 可知22210()()424a ab a b b a <-=--≤,所以, 222144()a a b a b a+≥+≥-. 故选 C .6设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A. (0,)+∞B.C. 11(,)22D. 1(,)2+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而C B C B C A C A B CBAC Asin cos cos sin sin cos cos sin cos tan sin cos tan sin ++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩q <<,因此所求的取值范围是. 7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为: 68.函数|cos sin |2sin )(x x e x x f ++=的最大值与最小值之差等于21e+。

解:)|4sin(|2|cos sin |2sin 2sin )(π+++=+=x x x e x e x x f ,从而当4π=x 时取最大值21e+当4π-=x 时取最小值0,从而最大值与最小值之差等于21e+9、设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。

9、解:,,(1)()()()2,x y R f xy f x f y f y x ∀∈+=--+对有(1)()()()2f xy f y f x f x y ∴+=--+有∴()()()2f x f y f y x --+=()()()2f y f x f x y --+即()(),0,()1f x y f y x y f x x +=+==+令得 10正方体的六个面所在平面把空间分成 27 部分11.已知数列{}n a 的前n 项和2n S n =,某三角形三边之比为234::a a a ,则该三角形最大角的大小是 ▲23π. 12.已知1009921)(,*-+-+⋅⋅⋅+-+-=∈x x x x x f N x 的最小值等于------2500-----)13、设{}2()min 24,1,53f x x x x =++-,则max ()f x = 解析.作图比较容易得到 max ()2f x =。

14.已知a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题:①⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α;;②⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β;③⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α④⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b ;⑤⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;. ⑥⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b其中正确的命题是________(将正确命题的序号都填上).解析 ②中a 、b 的位置可能相交、平行、异面;③中α、β的位置可能相交.答案 ①③④⑤15、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则12111...na a a ++= _____ 、解:设1111,0,1,2,...,(3)(6)18,n n n nb n a b b +==-+=则即1111113610.2,2()333n n n n n n b b b b b b +++--=∴=++=+ 故数列1{}3n b +是公比为2的等比数列,11001111112()2()2(21)33333n n n n n n b b b a +++=+=+=⨯∴=-。

()112001112(21)1(21)(1)2333213n nn ni n i i o i i i b n n a +++===⎡⎤-==-=-+=--⎢⎥-⎣⎦∑∑∑。

16在平面直角坐标系内,有四个定点(30),A -,(11),B -,(03),C ,(13),D -及一个动点P ,则||||||||PA PB PC PD +++的最小值为__________. 【解答】+. 如图,设AC 与BD 交于F 点,则 ||||||||||PA PC AC FA FC +=+≥,||||||||||PB PD BD FB FD +=+≥.因此,当动点P 与F 点重合时,||||||||PA PB PC PD +++取到最小值||||AC BD +=17.(本题满分16分)已知向量)23sin ,23(cos x x a =,)21sin ,21(cos x x b -=,且]2,0[π∈x . (1)求b a ⋅及||b a +;(2)求函数=)(x f b a ⋅-||b a +的最小值。

相关文档
最新文档