击实试验

合集下载

土的击实试验报告

土的击实试验报告

土的击实试验报告一、实验目的。

本实验旨在通过对不同类型土壤的击实试验,探究土壤的击实特性及其影响因素,为土壤工程设计提供科学依据。

二、实验材料与方法。

1. 实验材料,本实验选取了黏土、砂土和壤土作为试验材料,以代表不同类型的土壤。

2. 实验方法,首先,将每种土壤样品放入击实试验仪中,然后施加标准冲击数进行击实试验。

在试验过程中,记录每次冲击后土壤的压实度,并绘制击实曲线。

三、实验结果与分析。

经过击实试验,得出以下结论:1. 不同土壤类型的击实特性存在明显差异。

黏土的击实性能最好,其次是壤土,砂土的击实性能最差。

2. 土壤的击实性能受含水率和颗粒组成的影响较大。

含水率较高时,土壤的击实性能较好;而颗粒组成较为均匀的土壤,其击实性能也较好。

3. 土壤的击实性能对工程建设具有重要影响。

在路基、堤坝等工程中,需要根据土壤的击实特性进行合理设计,以确保工程的稳定性和安全性。

四、实验结论。

本实验通过对不同类型土壤的击实试验,得出了土壤的击实特性及其影响因素。

这对于土壤工程设计具有一定的指导意义。

在今后的工程实践中,应充分考虑土壤的击实性能,合理设计工程结构,以确保工程的安全稳定。

五、实验总结。

通过本次实验,我们深刻认识到土壤的击实特性对工程建设的重要性。

在今后的工程设计中,应充分考虑土壤的击实性能,合理选择土壤材料,并进行科学合理的工程设计,以确保工程的安全稳定。

六、参考文献。

1. 《土壤力学基础》。

2. 《土木工程材料学》。

七、致谢。

特别感谢实验室的老师和同学们在实验过程中的帮助和支持,没有他们的辛勤付出,本次实验也无法顺利完成。

击实试验实验方法

击实试验实验方法

击实试验实验方法嘿,咱今儿就来聊聊击实试验实验方法这档子事儿!你知道吗,这击实试验就像是一场泥土的狂欢派对!咱先得准备好各种家伙什儿,土样那肯定是主角啦。

然后把土样放进那个特别的模具里,就好像给土样安了个小家。

接下来,就是一顿操作猛如虎啦!用那个专门的工具,一下又一下地把土样压实。

这就好比给土按摩一样,得把它按得紧紧实实的。

你想想看,要是不压实,那可不行呀,就像盖房子地基不牢一样,那能行吗?在这个过程中,咱可得仔细着点儿,不能马虎。

每一步都得做到位,力度得恰到好处。

不然,得出的数据不准确,那不就白忙活啦!你说这击实试验像不像我们生活中的一些事儿呢?有时候我们也得像对待土样一样,认真、细致、不敷衍。

好比学习一门新技能,得一步一个脚印地去学,去练,才能掌握好呀。

而且呀,做击实试验还得有耐心。

不能着急忙慌的,得慢慢来。

就像熬汤一样,得小火慢炖,才能熬出好味道。

着急可不行,不然汤没熬好,味道就差了一大截呢。

还有哦,这个试验里的每个环节都很重要。

从准备土样到最后的数据记录,都不能掉以轻心。

这就跟我们做事一样,每个细节都决定着成败呢。

咱再想想,要是做击实试验的时候,不注意这些,那会咋样?那得出的结果肯定不靠谱呀!就像我们走路,如果不看清路,那不得摔跟头呀。

所以呀,大家可别小瞧了这击实试验实验方法。

它虽然看起来简单,但是里面的门道可多着呢!咱得好好研究,好好琢磨,才能真正掌握它。

总之呢,击实试验实验方法是个很有意思也很重要的事儿。

我们得认真对待,就像对待生活中的每一件事一样。

只有这样,我们才能从中学到东西,才能不断进步呀!你说是不是呢?。

击实试验

击实试验
注:轻型击实中5个含水率中应有2个大于塑性,2个小于塑性,1个接近塑性。
3.2湿法制备试样应按下列步骤进行:取天然含水率的代表性土样20kg(重型为50kg),碾碎,过5mm筛(重型过20mm或40mm),将筛下土样拌匀,并测定土样的天然含水率。根据土样的塑性预估最优含水率,按本条第一款注的原则选择至少5个含水率的土样,分别将天然含水率的土样风干或加水进行制备,应使制备好的土样水分均匀分布。
ρd=ρ0/(1+0.01wi)
式中wi—某点试样的含水率(%)。
5.1干密度和含水率的关系曲线,应在直角坐标纸上绘制。并应取曲线峰值点相应的纵坐标为击实试样的最大干密度,相应的横坐标为击实试样的最优含水率。当关系曲线不能绘出峰值点时,应进行补点,土样不宜重复使用。
5.2气体体积等于零(即饱和度100%)的等值线应按下式计算,并应将计算值绘于本标准图的关系曲线上。
4.2卸下护筒,用直刮刀修平击实筒顶部的试样,拆除底版,试样底部若超出筒外,也应修平,擦净筒外壁,称筒与试样的总质量,准确至1g,并计算试样的湿密度。
4.3用推土器将试样从击实筒中推出,取2个代表性试样测定含水率,2个含水率的差值应不大于1%。
4.4对不同含水率的试样依次击实。
5、数据处理
试样的干密度应按下式计算:
ωset=(ρw/ρd-1/Gs)×100
式中ωset——试样的饱和含水率(%);
ρw——温度4℃时水的密度(g/cm3);
ρd——试样的干密度(g/cm3);
Gs——土颗粒比重。
5.3轻型击实试验中,当试样中粒径大于5mm的土质量小于或等于试样总质量的30%时,应对最大干密度和最优含水率进行校正。
2、主要仪器设备:
1)数显电动击实仪:主要部件规格见表7.7.3。

(完整版)标准击实实验

(完整版)标准击实实验

标准击实实验(轻击)中的击实功是怎样确定的?我真的具体的值,现要具体的计算公式。

谢谢。

是不是75mgh/v ?式中m 位击锤质量,h 为落高, g 为重力加速度,v 为筒体积。

第六章 土的击实试验一、试验目的在标准击实方法下测定土的最大干密度和最优含水率,为控制路堤、土坝或填土地基等的密实度及质量评价,提供重要依据。

二、基本原理击实仪法是用锤击,使土密度增大,目的是在室内利用击实仪,测定土样在一定击实功能作用下达到最大密度时的含水率(最优含水率)和此时的干密度(最大干密度),借以了解土的压实特性。

目前国内常用的击实方法有两种:(1)轻型击实:适用于粒径小于5mm 的细粒土,锤底直径为51mm ,击锤质量为2.5kg ,落距为305mm ,单位体积击实功为591.6kJ /m 3;分3层夯实,每层25击。

(2)重型击实:适用于粒径不大于40mm 的土。

击实筒内径为152mm ,筒高116mm ,击锤质量为4.5kg ,落距为457mm ,单位体积击实功为2682.7kJ /3m (其他与轻型击实相同);分5层击实,每层56击。

三、仪器设备(1)击实仪(图6-1):主要由击实筒和击锤组成。

(2)天平:称量为200g ,感量为0.01g ;称量为2kg ,感量为1g ;(3)台秤:称量为l0kg ,感量为5g ;(4)推土器;(5)筛:孔径为5mm ;(6)其它:喷水设备、碾土设备、修土刀、小量筒、盛土盘、测含水率设备及保温设备等。

四、操作步骤1、取一定量的代表性风干土样,对于轻型击实试验为20kg ,对于重型击实试验为50kg 。

2、将风干土样碾碎后过5mm 的筛(轻型击实试验)或过20mm 的筛(重型击实试验),将筛下的土样搅匀,并测定土样的风干含水率。

3、根据土的塑限预估最优含水率,加水湿润制备不少于5个含水率的试样,含水率一次相差为2%,且其中有两个含水率大于塑限,两个含水率小于塑限,一个含水率接近塑限。

20 击实试验

20  击实试验

20 击实试验20.0.1 击实试验是测定试样在标准击实功作用下含水率与干密度之间的关系,从而确定该试样的最优含水率和最大干密度。

20.0.2 本试验分轻型击实和重型击实。

轻型击实试验单位体积击实功约为600kJ/m3,重型击实试验单位体积击实功约为2700kJ/m3。

20.0.3 本试验类型和方法列于表20.0.3,应根据工程要求和试样最大粒径选用。

注:1.Q1、Q2、Z1、Z2、Z3分别称:轻1、轻2、重1、重2、重3;2.Q2、Z2、Z3筒高为筒内净高。

20.0.4 当试样中粒径大于各方法相应最大粒径5mm、20mm或40mm的颗粒质量占总质量的5%~30%时,其最大干密度和最优含水率应进行校正。

20.0.5 本试验应采用下列仪器设备:1 击实筒:钢制圆柱形筒,尺寸应符合表20.0.3规定。

该筒配有钢护筒、底板和垫块,见图20.0.5-1。

154图20.0.5-1击实筒(mm)1-护筒;2-击实筒;3-底板;4-垫块155156图20.0.5-2 击锤与导筒(mm) 1-提手;2-导筒;3-硬橡皮垫;4-击锤3 推土器:螺旋式推土器或其他适用设备。

4 天平:称量200 g ,分度值0.01 g 。

5 台秤:称量15 kg ,分度值5 g 。

6 标准筛:孔径为5 mm 、20 mm 、40 mm 。

7 其他:碾土设备、喷水设备、切土刀、称量盒、烘箱等。

20.0.6 试样制备分为干法和湿法两种。

1 干法制备试样应按下列步骤进行:1)将代表性试样风干或在低于50 ℃温度下进行烘干。

烘干后以不破坏试样的基本颗粒为准。

将土碾碎,过5 mm 、20 mm 或40mm 筛,拌和均匀备用。

试样数量,小直径击实筒最少20 kg ,大直径击实筒最少50 kg 。

2)按本规程第4.2节烘干法测定试样的风干含水率。

按试样的塑限估计最优含水率,在最优含水率附近选择依次相差约2%的含水率制备一组试样至少5个,其中2个含水率大于塑限、2个小于塑限、1 个接近塑限。

击实试验报告范文

击实试验报告范文

击实试验报告范文实验名称:击实试验一、实验目的:1.了解击实试验的原理和方法;2.掌握击实试验的步骤和操作技巧;3.研究不同条件下的击实试验结果,分析其影响因素。

二、实验原理:击实试验是指通过加重物的自由落体作用,将土样加以压实以提高其密实度和抗剪强度的试验。

在实验中,通过自由落体落下的重锤作用在土样上产生冲击力,使土颗粒间填充更加紧密,改善土的物理力学性质。

三、实验仪器和材料:1.土壤击实试验仪:包括重锤、筛孔和压力计等部件;2.土样:选择合适的土样进行试验。

四、实验方法:1.准备土样:选择合适的土样进行试验,并根据需要进行初步处理(如除去杂质、加水等);2.装置试验仪器:将装有合适筛孔的试验模具放于平整的台面上,将土样装入试验模具中;3.选择重锤落下高度和次数:根据需要选择合适的重锤落下高度和次数;4.进行试验:按照设定的重锤落下高度和次数进行试验操作。

每次冲击后用压力计测量孔隙水压力,并记录;5.结果处理:根据试验数据计算试样的击实度和抗剪强度等指标,并进行结果分析。

五、实验注意事项:1.保持试验仪器干净、完好,确保试验结果的准确性;2.选择合适的试验土样,不同土壤特性对试验结果有较大影响;3.在试验过程中保持操作规范,确保安全;4.每次试验后及时清理试验仪器,准备下一次试验;5.比对试验结果,进行数据分析和讨论。

六、实验结果与分析:根据实验操作和数据记录,计算得到击实度和抗剪强度等指标。

通过对不同落锤高度和次数下的试验结果进行比对分析,可以得出不同条件对试样物理力学性质的影响。

七、实验结论:通过击实试验,可以有效提高土样的密实度和抗剪强度。

同时,在选择试验条件时,需要根据具体土壤特性和需要考虑其他因素,综合确定最佳试验方案。

实验结果的准确性和可靠性对于工程设计和施工具有重要意义。

击实试验

击实试验
• 击实试验一般分为轻型击实试验和重型击实试验两种。
下一页 返回
第六章 击实试验
• 二、压实原理
• 土在外力作用下的压实原理,可以结合水膜润滑理论及电化学来解 释。一般认为,黏性土中含水率较低,土较干时,由于土粒表面的结 合水膜较薄,水处于强结合水状态,土粒间距较小,土粒之间摩擦力 和茹结力都较大,土粒相对移动时阻力较大,尽管有击实功作用,但 也难以克服这种阻力,因而压实效果差。随着土中含水率的增加,结 合水膜增厚,土粒间距也逐渐增加,压实功比较容易克服粒间引力而 使土粒相对运动,趋于密实,压实效果较好,表现为干密度增大,至 最优含水率时,干密度达最大值。
上一页 下一页 返回
第六章 击实试验
• 三值0.01 g。 • (3)台称:称量10 kg,最小分度值5g。 • (4)筛:孔径5mm。 • (5)其他:喷水设备、碾土器、盛土器、推土器、修土刀等。
上一页 下一页 返回
第六章 击实试验
• (4)称土质量:齐筒顶细心削平试样,擦净筒外壁,称土质量,准确 至0.1 g。
• (5)测含水率:用推土器推出筒内试样,从试样中心处取两个各 15~30 g土测定含水率,平行差值不得超过1%。按(2) ~((4)步进行其 他不同含水率试样的击实试验。
上一页 下一页 返回
第六章 击实试验
• 五、试验注意事项
• 四、操作步骤
• (1)制备土样:取代表性风干土样,放在橡皮板上用木碾碾散,过 5mm筛,土样量不少于20 kg。
• (2)加水拌和:预定5个不同含水率,依次相差2%,其中有两个大于 和两个小于最优含水率。
• 所需加水量按下式计算:
上一页 下一页 返回
第六章 击实试验
• (3)分层击实:取制备好的试样600~800 g,倒入筒内,整平表面, 击实25次,每层击实后土样约为击实筒容积的1∕3。击实时,击锤应 自由落下,锤迹须均匀分布于土面。重复上述步骤,进行第二、三层 的击实。击实后试样略高出击实筒(不得大于6 mm) 。

击实试验方法类型

击实试验方法类型

击实试验方法类型嘿,咱今儿就来聊聊击实试验方法类型这档子事儿。

你说这击实试验啊,就好比是给泥土来一场特别的“健身训练”。

它主要有两种类型,一种是轻型击实试验,另一种呢,就是重型击实试验。

轻型击实试验呀,就像是给泥土做了一套“轻松瑜伽”。

它适用于粒径小于 5 毫米的粘性土,操作起来相对温柔一些。

想象一下,就好像是在轻轻地给泥土做按摩,让它变得更紧实、更有活力。

重型击实试验呢,那可就是“高强度健身操”啦!它主要针对粒径不大于 20 毫米的土。

这可就更带劲了,对泥土的要求也更高。

就好像是让泥土去挑战极限,激发它的最大潜力。

你可能会问了,为啥要搞这么多种击实试验呢?这就好比不同的人有不同的锻炼方式嘛。

粘性土就像是个娇弱的小姑娘,得用轻型的方式来对待;而那些大颗粒的土呢,就像是个强壮的大汉,就得用更厉害的重型试验来折腾它。

做击实试验的时候,那可得认真仔细咯!就跟你做饭一样,调料放多放少都会影响味道。

要是试验步骤不对,或者数据不准确,那得出的结果不就跟乱炖似的,没啥价值了嘛!而且啊,做这个试验还得有耐心。

可不是随便捣鼓几下就能完事的。

得一遍又一遍地重复,就像你练习投篮,不投个几百次哪能找到感觉呢?这击实试验方法类型啊,虽然听起来有点专业,但只要你用心去理解,其实也不难嘛!就像学骑自行车,一开始可能觉得难,但掌握了技巧,不就轻松多啦?咱可不能被这些专业术语给吓住了,要勇敢地去探索,去尝试!你说是不是这个理儿?总之啊,轻型击实试验和重型击实试验各有各的特点和用处。

咱搞工程的、做研究的,都得把它们弄清楚,用对地方。

这样才能保证我们的工程质量过硬,让那些建筑物稳稳地立在那儿。

别小看了这小小的击实试验,它可是起着大作用呢!所以啊,大家可得好好对待它,让它为我们的工作和生活贡献力量!。

击实实验报告小结

击实实验报告小结

一、实验目的本次实验的主要目的是通过击实试验,测定试样在一定击实次数下或某种压实功能下的干密度与含水率之间的关系,从而确定土的最大干密度和最优含水率。

这对于土方工程的设计和施工具有重要意义,有助于确保工程质量和施工安全。

二、实验原理土在一定的压实效应下,若含水率不同,则密度也会不同。

当压实功能和压实方法不变时,土的密度随含水率的增加而增加,但当含水率增大到一定程度后,土的密度反而减小。

这是因为细粒土在含水率较低时,颗粒表面形成薄膜水,摩擦力大,不易压实;当含水率继续增加时,颗粒表面结合水膜渐渐加厚,其润滑作用也增大。

在外力作用下,容易移动,易于压实;而继续增加水量,只会增加土的孔隙体积,从而使干密度降低。

能使土体达到最大干密度的含水率称为最优含水率。

三、实验过程1. 准备实验材料:选取一定量的土样,称量并记录其质量。

2. 准备实验仪器:击实仪、天平、盛样筒、盛样盘、吸水纸等。

3. 实验步骤:(1)将土样放入盛样筒中,用吸水纸将多余水分吸出。

(2)将盛样筒放入击实仪,调整击实次数。

(3)用天平称量盛样筒及土样的质量,记录数据。

(4)将土样放入盛样盘,调整含水率,再次进行击实。

(5)重复步骤(3)和(4),直至土样达到最大干密度。

4. 数据处理:将实验数据整理成表格,计算干密度和含水率之间的关系。

四、实验结果与分析1. 实验结果:通过实验,得到了不同含水率下土样的干密度。

2. 结果分析:(1)随着含水率的增加,土样的干密度先增大后减小,存在一个最大值。

(2)最大干密度对应的最优含水率约为18%。

(3)在最优含水率下,土样的干密度达到最大值,有利于土方工程的施工。

五、实验结论1. 通过本次实验,成功测定了土样的最大干密度和最优含水率。

2. 在土方工程施工过程中,应根据最优含水率进行土样的含水率调整,以确保工程质量和施工安全。

3. 实验结果为土方工程设计提供了理论依据,有助于提高工程质量和施工效率。

六、实验体会与反思1. 体会:本次实验使我深刻认识到土力学在土方工程中的重要性,掌握了土样击实试验的基本原理和方法。

击实试验操作规程

击实试验操作规程

击实试验操作规程操作规程1.实验前的准备1.1 实验器材击实试验器、试验针、标尺、试样、割切机、钢尺、熨斗、定时器等。

1.2 实验场地具有足够强度和平整度的实验场地,边缘平直,不允许有较大的倾斜。

1.3 试样制备根据需要取相应规格和数量的土样进行试验前的制备工作。

常见规格的试样有5cm×5cm×5cm、7.5cm×7.5cm×7.5cm和10cm×10cm×10cm。

制备时需注意土样须保持水分状态和形状不变。

2.实验操作2.1 实验前的检查检查击实试验器的电源、撞击器等器材是否正常,检查试验针的精度等。

检查场地平整度,试验样品制备是否适用,是否具备针对试验的仪器,设备和仪表是否操作正常。

2.2 实验过程将试样放在相应位置,通电并校准仪器,调整撞击器高度,用标尺将试样与击实试验器间距调整至规定范围内,用试验针按规定点数和深度进行撞击,每隔一定次数摆动试样,实验进行到规定次数或试样达到规定密实度后停止。

在试验过程中需注意机械撞击引起的噪声和振动,对人造和自然界的可能产生影响的地距谨慎控制。

2.3 结束及记录试验后将试样从击实器拿出来,室内环境下弄平土表,用钢尺依次在不同深度测量试样厚度,记录试验本领及试样厚度、含水率等数据。

观察试样是否出现断裂和变形。

记录在实验记录本中,并存档备查。

一般要达到每手工试样的试验次数应不少于5次。

需要在不同钻孔间隔的深度地点应进行相同的测试数量。

3.实验注意事项1. 实验时必须戴好安全帽、护目镜和手套;2. 试验针的位置必须准确、深度必须符合规定要求;3. 试验器和辅助设备需定期进行检修,以保证试验的准确性和安全性;4. 试验后对试样及试验器进行清洗、消毒等工作;5. 实验结束后应关闭仪器电源,保持环境整洁,归档记录。

4.实验安全1. 实验过程中电源带电,使用时需注意安全;2. 操作人员应穿着符合安全要求的个人防护装备,尽量避免操作时产生身体接触撞击试验器或试样;3. 试验器和辅助设备必须正常使用,任何设备出现问题应立即停机检修,保证实验安全。

标准击实试验报告击实实验报告

标准击实试验报告击实实验报告

标准击实试验报告击实实验报告试验名称:标准击实试验报告1. 试验背景:标准击实试验是土工工程中常用的试验方法之一,用于评估土壤的密实性和抗剪强度。

该试验通过施加一定的压力和冲击力,将试验土壤压实并测量相应参数,以确定土壤的工程性质和适用范围。

2. 试验目的:本次试验的目的是评估试验土壤的密实程度,并通过测定其抗剪强度,了解土壤的稳定性和承载能力。

3. 试验设备和材料:- 标准击实试验仪器- 打击器和支撑装置- 石头或金属块(用于提供冲击力)- 试验土壤样品- 筛孔和筛板- 秤4. 试验步骤:步骤1:收集试验土壤样品,并将其筛分成不同的颗粒级配。

选择合适的颗粒级配进行试验。

步骤2:将试验土壤放入标准击实试验仪器的试验筒中。

步骤3:按照试验要求确定试验重数,并将打击器和支撑装置安装到标准击实试验仪器上。

步骤4:通过调节试验仪器,使打击器落下和抬起的高度保持一定的标准。

步骤5:开始试验,用打击器给土壤施加冲击力,每次冲击后测量试验土壤的密实度(可使用试验土壤的干密度来衡量)。

步骤6:重复进行多次冲击,直到试验土壤的密实度达到一定的标准(通常为95%的最大干密度)。

步骤7:将击实后的土壤样品收集起来,并进行抗剪试验。

步骤8:在试验设备中应用一定的剪切力,测量土壤在剪切中的应力-应变关系。

步骤9:记录试验数据并分析结果。

5. 试验结果:根据试验数据和分析结果,可以得出试验土壤的密实度和抗剪强度。

根据试验要求和工程需要,评估土壤的工程性质和适用范围。

6. 结论:通过本次标准击实试验,对试验土壤的密实性和抗剪强度进行了评估,获得了实验数据和结果。

根据试验结果,可以判断试验土壤的密实程度和稳定性,并对其在工程应用中的适用性进行判定。

7. 建议:根据试验结果,可以根据工程要求对土壤进行后续的处理和处理。

根据实验结果,可以调整施工工艺和方案,以确保土壤在工程中的稳定性和承载能力。

以上是标准击实试验的实验报告。

具体报告内容可能因试验设计和要求而有所不同,但通常会包括试验背景、目的、设备和材料、试验步骤、试验结果、结论和建议等内容。

击实试验

击实试验

1试验六、击 实 试 验(一)概述击实试验的目的是用标准击实方法,测定土的含水率与干密度的关系,从而确定土的最大干密度(max d γ)和相应于最大干密度时土的最优含水率(w op )。

本试验适用于粒径小于5mm 或含粒径大于5mm 的颗粒质量小于总土量3%的土样。

(二)击实试验原理对压实过程机理的阐明包括毛管润滑理论、薄膜水作用理论、孔隙水压力理论以及表面物理化学理论等,其中以薄膜水理论最为常用。

薄膜水理论认为:含水率较小时,土粒由薄膜水包围,有较大的剪切阻力,击实时干密度低;当含水率增加,薄膜变厚,剪切阻力变小,干密度可达到最大;至增加到某一含水率,增加的自由水和封闭的气体充满土孔隙,因而干密度反随含水率增大而减小。

(三)仪器设备(1)标准击实仪,如图附7–1所示。

(2)天平:称量200g ,感量0.01g ;称量1000g ,感量1g 。

(3)台称:称量10kg ,感量5g 。

(4)喷雾器或其他喷水设备。

(5)推土器。

(6)其他:盛土器、削土刀、土盒、白铁皮(拌土用)、烘箱、碾土器、筛(孔径5mm )、保湿设备等。

(四)操作步骤(1)将具有代表性的风干土样,或在低于60℃温度下烘干的土样,或天然含水率低于塑限可以碾散过筛的土样,放在橡皮板上用木碾碾散,过5mm 筛后备用(本步骤由实验室完成)。

(2)参照土的塑限,估计其最优含水率w op ,预定至少五个不同含水率,使各含水率依次相差约2%,且其中至少各有两个大于w op ,两个小于w op 。

按各个预定含水率及土样原有含水率(由实验室给出),用下式计算各个试样所需的加水w W :)(01.001.0100w w w W W w w -⨯+=( 7–1)式中 w W ——试样所需的加水质量,g ;0w W ——含水率为w 0时试样的质量,g ;w 0——试样原有风干含水率,%;(a ) (b ) (c ) (d )图 7–1 标准击实仪(a )轻型击实筒;(b )重型击实筒;(c )2.5kg 击锤;(d )4.5kg 击锤 1–套筒;2–击实筒;3–底板;4–垫块;5–提手;6–导筒;7–硬橡皮垫;8–击锤2 w ——预定含水率,%。

击实试验

击实试验

试验方法
试验时,将含水量ω为一定值的扰动土样分层装入击实筒中,每铺一层(共3-5层)后均用击锤按规定的落 距和击数锤击土样,最后被压实的土样充满击实筒。由击实筒的体积和筒内被压实土的总重计算出湿密度ρ,并 可计算出干密度ρd,,ω为土的含水量。由一组几个(通常为5个)不同含水量的同一种土样分别按上述方法进 行试验,绘制一条击实曲线,如图2所示。
图2击实曲线
作用
当需对土方回填或填筑工程进行质量控制时,应进行击实试验。测定土的干密度与含水量关系,确定最大干 密度和相应最佳含水量。
击实试验适用于碎石土垫层和路基土。击实试验可以获得路基土压实的最大干密度和相应最佳含水量,击实 试验是控制路基压实质量不可缺少的重要试验项目。
谢谢观看
击实试验
物理学
01 分类
03 试验方法
目录
02 试验设备 04 作用
击实试验是指用锤击实土样以了解土的压实特性的一种方法。这个方法是用不同的击实功(锤重×落距×锤 击次数)分别锤击不同含水量的土样,并测定相应的干容重,从而求得最大干容重(一般是指骨料堆积或紧密密 度)、最优含水量,为填土工程的设计、施工提供依据。击实试验可分为轻型击实试验和重型击实型击实试验两种。轻型击实试验适用于粒径小于5mm的粘性土,而重型 击实试验适用于粒径不大于20mm的土。
试验设备
图1轻型和重型击实仪击实试验所用的主要设备是击实仪,包括击实筒、击锤及导筒等。图1所示为轻型和重 型两种击实仪,击实筒容积分别为947.4cm3和2103.0cm3;击锤质量分别为2.5kg和4.5kg;落高分别为305mm和 457mm。

击实试验

击实试验

击实试验一、概述在工程建设中,经常会遇到填土或松软地基,为了改善这些土的工程性质,常采用压实的方法使土变得密实。

击实试验就是模拟施工现场压实条件,采用锤击方法使土体密度增大、强度提高、沉降变小的一种试验方法。

土在一定的击实效应下,如果含水率不同,则所得的密度也不相同,击实试验的目的是测定试样在一定击实次数下或某种压实功能下的含水率与干密度之间的关系,从而确定土的最大干密度和最优含水率,为施工控制填土密度提供设计依据。

击实试验分轻型击实试验和重型击实试验两种方法。

轻型击实试验适用于粒径小于5mm 的粘性土,其单位体积击实功约为592.2kJ/m 3;重型击实试验适用于粒径不大于20mm 的土,其单位体积击实功约为2684.9kJ/m 3。

二、压实原理土的压实程度与含水率、压实功能和压实方法有着密切的关系,当压实功能和压实方法不变时,土的干密度先是随着含水率的增加而增加,但当干密度达到某一最大值后,含水率的增加反而使干密度减小。

能使土达到最大密度的含水率,称为最优含水率(或称最佳含水率),其相应的干密度称为最大干密度。

土的压实特性与土的组成结构、土粒的表面现象、毛细管压力、孔隙水和孔隙气压力等均有关系,所以因素是复杂的。

压实作用使土块变形和结构调整并密实,在松散湿土的含水率处于偏干状态时,由于粒间引力使土保持比较疏松的凝聚结构,p w 0max d土中孔隙大都相互连通,水少而气多。

因此,在一定的外部压实功能作用下,虽然土孔隙中气体易被排出,密度可以增大,但由于较薄的强结合水水膜润滑作用不明显,以及外部功能不足以克服粒间引力,土粒相对移动便不显著,所以压实效果就比较差。

当含水率逐渐加大时,水膜变厚、土块变软,粒间引力减弱,施以外部压实功能则土粒移动,加上水膜的润滑作用,压实效果渐佳。

在最佳含水率附近时,土中所含的水量最有利于土粒受击时发生相对移动,以致能达到最大干密度;当含水率再增加到偏湿状态时,孔隙中出现了自由水,击实时不可能使土中多余的水和气体排出,而孔隙压力升高却更为显著,抵消了部分击实功,击实功效反而下降。

砂石击实试验标准

砂石击实试验标准

砂石击实试验标准是用于确定砂石材料在不同含水率和击实功下达到最大密度的试验方法。

该试验主要适用于道路、桥梁、建筑等工程中砂石材料的密实度和承载能力的评估。

击实试验可以分为轻型击实和重型击实两种,其中轻型击实适用于粒径小于4.75mm的砂石材料,重型击实适用于粒径大于4.75mm的砂石材料。

在试验过程中,需要将砂石样品放入击实筒中,通过规定的击实次数和击实功,使砂石样品达到最大密实度。

根据试验结果,可以得出砂石材料在不同含水率和击实功下的最大密度,为工程设计提供依据。

土工击实试验

土工击实试验

土工击实试验1、击实的原理击实试验就是模拟工程现场的夯实原理,利用标准化的击实仪和操作规程,对土料施加一定的冲击荷载使之压实,从而确定所需的最大干密度和最佳含水率,作为填土施工控制质量主要依据。

在击实试验的过程中,影响土的最优含水率和最大干密度因素较多,通过对这些影响因素的分析,提高土的击实效果,达到击实试验的目的。

2、土击实性的意义用土作为填筑材料,如修筑道路、堤坝、机场跑道、运动场、建筑物地基及基础回填等,工程中经常遇到填土压实的问题。

经过搬运未经压实的填土,原状结构已被破坏,孔隙、空洞较多,土质不均匀,压缩量大,强度低,抗水性能差。

为改善填土的工程性质,提高土的强度,降低土的压缩性和渗透性,必须按一定的标准,采用重锤夯实、机械碾压或振动等方法将土压实到一定标准,以满足工程的质量标准。

3、击实试验注意事项3.1土的均匀性取样时样品的均匀性不好控制,如果取样不准,即使其他方面控制的多么准确,最终的击实数据也是不可靠的。

所以取样一定要认真细致,确保试样能够代表母体。

对于中粗粒土,必须严格用四分法将试样缩分至需要的总数量,然后再分成5个试样,每个试样6kg左右。

这5个试样要代表原土样的实际级配,不能因粗细颗粒离析而影响试样的均匀性。

否则,由此引起的试验结果数据变异大,无规律,击实曲线无峰值或呈波浪线等。

3.2土样制备方法的影响依据规范进行土样的制备工作,对于天然含水率高的土样,宜用湿土法,对于天然含水率低的土样,宜用干土法。

按四分法至少准备5个试样,按2%~3%含水率递增(递减),拌匀后装入塑料袋内或密封于盛土器内静臵备用,击实试验中按公式计算出来的理论加水量制样并不能达到理想结果,水分损失不可避免。

实际操作中未必有很好的密封装臵,尤其在室温较高的情况下,就不容易满足试验精度要求。

通过大量反复试验,得出下列规律:在室温为24℃~28℃时,实际加水量比理论加水量多0.5%~0.8%,闷料一天后,含水率与预估含水率非常接近,土在第二天含水率降低1%以内;室温为28℃~35℃时,实际加水量比理论加水量多1.0%~1.2%,闷料一天后,含水率与预估含水率非常接近,土在第二天含水率降低1%左右。

击实 试验

击实 试验
返回
14.3.2 全弹总装
火箭弹总装过程与部件装配时基本相似,也要经过装配前清擦、检验、
现以122 mm火箭弹为例,说明全弹的总装过程。
1.
(1) 发射药的准
备 (2) 点火具(点火药盒)的准备 (3) 战斗部的准备 (4) 发动机本
体的准备
2.
3.火箭部装配 (1) 装发射药装药 (2) 装点火具和导电盖 (3) 导电 性检验 (4) 火箭部装配 (5) 固定定向钮 (6) 检验
• (4)称土质量:齐筒顶细心削平试样,擦净筒外壁,称土质量,准确 至0.1 g。
• (5)测含水率:用推土器推出筒内试样,从试样中心处取两个各 15~30 g土测定含水率,平行差值不得超过1%。按(2) ~((4)步进行其 他不同含水率试样的击实试验。
上一页 下一页 返回
第六章 击实试验
• 五、试验注意事项
上一页 下一页 返回
第六章 击实试验
• 三、仪器设备
• (1)击实仪。 • (2)天平:称量200 g,最小分度值0.01 g。 • (3)台称:称量10 kg,最小分度值5g。 • (4)筛:孔径5mm。 • (5)其他:喷水设备、碾土器、盛土器、推土器、修土刀等。
上一页 下一页 返回
第六章 击实试验
14.3.1 非全备弹的配套方法 14.3.2 全弹总装
返回
14.3.1 非全备弹的配套方法
对于简单产品一般采用一次配套的方法进行配套;对于复杂产品或精 度要求较高的产品常采用两次或多次配套的方法进行配套。
1. 以122 mm火箭弹采用的两次配套法为例进行说明。战斗部质量重者配
质量轻的弹尾,两者配套后,重新排定质量序号。第一次配套后,组 合件质量大者配质量大的燃烧室装药。其中,质量序号1为最小质量, 依次递增,燃烧室装药质量一般由装药厂提供 2.配套方法 3. 火箭弹的其他零件如堵盖、点火具、垫圈、螺钉等将随机抽取装配。

击实试验GB_T50123-1999_126

击实试验GB_T50123-1999_126

击实试验轻型击实试验适用于粒径小于的粘性土重型击实试验适用于粒径不大于轻型击实试验的单位体积击实功约实试验的单位体积击实功约图击实仪的击实筒和击锤尺寸应符合表锤能自由下落电动操作的击锤必须有控制落距的跟踪装置和锤图表击实仪主要部件规格表台秤称量标准筛孔径为试样推出器类装置干法制备试样应按下列步骤进行用四分法取代表性土样或将筛下土样拌匀根据土的塑限预估条款的步骤制备个不同含水率的一组试样相邻个含水率的差值宜为注轻型击实中个含水率中应有个接近塑限湿法制备试样应按下列步骤进行取天然含水率的代表性土样型为碾碎过筛型过或根据土样的款注的原则选择至少个含水率的土样击实试验应按下列步骤进行将击实仪平稳置于刚性基础上击重型击实试样为层击实完成时超出击实筒顶的试样高度应小于样底部若超出筒外也应修平准确至个代表性试样测定个含水率的差值应不大于试样的干密度应按下式计算式中图并应取曲线峰值点相应的纵坐标为击实试样的最大干密度当关系曲线不能绘出峰值点时应进行补点图并应将计算值绘于本标准图式中试样的饱和含水率温度试样的干密度土颗粒比重的土质量小于或等于试样总质量的时应对最大干密度和最优含水率进行最大干密度应按下式校正式中粒径大于注饱和面干比重指当土粒程饱和面干状态时的土粒总质量与相当于土粒总体积的纯水式中击实试样的最优含水率粒径大于击实试验的记录格式见附录表承载比试验行试验试样的最大粒径不大于采用大粒径不大于试样筒内径高的金属圆护筒高试样筒型式见图击锤和导筒锤底直径图试样筒击锤和导筒且应符合本标准第条图标准筛孔径和图膨胀量测定装置图带调节杆的多孔顶板测力计量程不小于度应能调节至杆的端面直径为全量程荷载块直径中心孔眼直径水槽其他试样制备应按下列步骤进行条中土样需过或筛以筛除大于或要制备数份试样每份试样质量约试样制备应按本标准第条步骤讲行重型击实试个试样若需要制备个试样试样的干密度可控制在最大干密度的击实完成后试样超高应小于不平整处应细心用细料填补取出垫块浸水膨胀应按下列步骤进行安装好膨胀量测定装常浸泡图浸水膨胀装置式中试样初始高度卸下膨胀量测定装置贯入试验应按下列步骤进行试样顶面放上贯入杆上施加启动电动机试验至贯入量为本试验应进行个试样的干密度差值应小于取其余小于时取以单位压力为横坐标贯入量为纵坐标绘制单位压力与的开始段呈凹曲线应按下列方法进行修正通过变曲率点引一切线与纵坐标相交于图单位压力与贯入量关系曲线承载比应按下式计算贯入量为时式中贯入量单位压力贯入量贯入量时式中贯入量当贯入量为时的承载比大于贯入量时的承载比时时承载比试验的记录格式见附录表回弹模量试验杠杆压力仪法杠杆压力仪最大压力试验前应图杠杆压力仪试样筒见本标准第条仅在与夯击底板的立柱联接的缺口板上多一个内径承压板直径高千分表量程秒表最小分度值图试样筒图承压板杠杆压力仪法试验应按下列步骤进行然后按最优表固定在立柱上在杠杆压力仪的加压架上施加砝码用预定的最大压力进预压应进行时间为同时卸压当卸载时再次记并记录千分表读数直至最后一级压力为使试验曲线的开始部分本试验需进行均值之差应不超过以单位压力为横坐标回弹变形压力与回弹变形曲线如图试样的回弹模量取曲线如果曲线不通过原点允许用初图关系曲线每级压力下的回弹模量应按下式计算式中回弹模量取杠杆压力仪法试验记录格式见附录表强度仪法本试验方法适用于不同含水率和不同密度的细粒土及其路面材料强度仪与本标准第条款的贯入仪相试样筒与本标准第条承压板与本标准第条量表支杆及表夹支杆长与试样筒螺丝孔联接的螺丝杆表夹可用钢材也可用硬塑料强度仪法试验应按下列步骤进行试样制备应按本标准第条仪的贯入杆对正将千分表和表夹安装在支杆上千分表测头安放预压方法按本标准第条将预定的最大压力分成分表读数卸压按本标准第条款的步当试样较硬预定压力偏小时可以不受预定压力的限本试验应进行的均值之差应不超过单位压力与回弹变形关系曲线应按本标准第条强度仪法试验记录格式见附录表渗透试验一般规定试验时的水温宜高于试验室温度本试验以水温应按下式计算式中粘滞系数比表续表个在允许差值范围内的于常水头渗透试验常水头渗透仪装置金属圆筒内径为当图常水头渗透装置常水头渗透试验应按下列步骤进行按本标准图装好仪器取具有代表性的风干土样将厚的粗砂作为过滤层每层试样装完后从渗水孔向圆筒充水至称剩余土样的质调整测压管水位将调节管提高至溢水孔以上水夹使水由顶部注入圆筒降低调节管至试样上部并计算各测压管之间的降低调节管至试样的中部和下部款的根据工程需要改变试样的孔隙比式中水温为时间注平均水位差常水头渗透试验的记录格式见附录表变水头渗透试验环刀内径变水头装置应有最小分度为图变水头渗透装置试样制备应按本标准第条或第条的规定进变水头渗透试验应按下列步骤进行要求密封条的规定进行抽气饱和对饱和试样和较易透水的试样直接用变水头装使水通过试样当出水口有水溢出时开始测记变当不同开始水头下测定的渗透式中变水头管的断面积和渗径分别为测读水头的起始和终止时间起始和终止水头变水头渗透试验的记录格式见附录表固结试验标准固结试验固结容器图固结仪示意图内径为和环刀应具有一定的刚度径应小于环刀内径变形量测设备量程的百分表或准确度为全量程试样制备应按本标准第并测定试样的含水率和密度试样需要饱和固结试验应按下列步骤进行注滤纸和透水板的湿度应接近试样的湿度施加第一级压力的大小应视土的软或最后一级压力应大于土最大压力不小于需要确定原状上的先期因结压力时初始段的荷重率应小于或施加的压力应使测得的曲线对于饱和试样施加第一级压力后应立即向水槽中注水浸施加每一级压力后宜按下列时间顺序测记试样的高度变时间为后每小时变形达注测定沉降速率仅适用饱和土需要进行回弹试验时试验结束后吸去容器中的水式中试样的初始孔隙比式中各级压力下试样固结稳定后的孔隙比应按下式计算式中各级压力下试样固结稳定后的孔隙比式中某级压力值式中式中或式中压缩指数以孔隙比为纵坐标压力为横坐标绘制孔隙比与压力的图关系曲线以孔隙比为纵坐标图示意图在曲线上找出最小曲率半径点做水平线的平分线与曲线下段直线段的延长线交于点则对应于点的压力值即固结系数应按下列方法确定时间平方根法过与曲线交点所对应的时间的平方即为试样固结度达所需的时间该级压力下的固结系数应按下式计算式中最大排水距离图时间平方根法求时间对数法对某一级压力的对数为横坐标时间即为另取一时间依同法求得取其平均值为理论零点延长曲线中部的直线段和通过曲线尾部数点切线的交点即为理论终点图时间对数法求固结试验的记录格式见附录表应变控制连续加荷固结试验底部可测直径应具有一渗透系数试样上部透水板直径宜小于环刀内径图固结仪组装示意图轴向测力孔隙水压力量测设备压力传感器量程其体积因数应小于变形量测设备位移传感器量程程的采集系统和控制系统连续加荷固结试验应按下列步骤进行试样制备应按本标准第从切下的按本标准第将固结容器底部孔隙水压力阀门打开充纯水排除底部及薄在试样顶部放套上上盖用螺丝拧紧密封对试样施加样底部产生的孔隙水压力为同时施加轴向荷重的应变速率可按表表应变速率估算值向压力每隔内每隔后每隔或按本条款的规定时间间隔记录任意时刻施加于试样的有效压力应按下式计算式中任意时刻时施加于试样的有效压力任意时刻时施加于试样的总压力任意时刻试样底部的孔隙压力某一压力范围内的压缩指数回弹指数应按下式计算任意时刻试样的固结系数应按下式计算式中两次读数之间的历时试样在两次读数之间底部孔隙水压力的平均值式中连续加荷固结试验的记录格式见附录表黄土湿陷试验一般规定进行本试验时从同一土样中制备的试样其密度的允许差值为条的规试验所用的滤纸及透水石的湿度应接黄土湿陷试验的变形稳定标准为每小时变形不大于变形不大于湿陷系数试验湿陷系数试验应按下列步骤进行试样制备应按本标准第条的步骤进行试样安装应按本标准第条确定需要施加的各级压力压力等级宜为大于后每级压力为最后一级压力应按取从基础底面算起至压力为大于时仍应用当基底压力大于时试样在规定浸水压力下变形稳定后向容器内自上而下或测记一次变形条湿陷系数应按下式计算式中湿陷系数试验的记录格式见附录表自重湿陷系数试验自重湿陷系数试验应按下列步骤进行试样制备应按本标准第条的步骤进行试样安装应按本标准第条当压力大于每级压力不大于加压后每隔测记一次变形读数测记一条款的自重湿陷系数应按下式计算式中试样浸水湿陷变形稳定后的高自重湿陷系数试验记录格式见附录表溶滤变形系数试验溶滤变形系数试验应按下列步骤进行试样制备应按本标准第条的步骤进行试样安装应按本标准第条试验按本标准第条款的步骤进行后继续用水渗透每隔后每天测记条溶滤变形系数应按下式计算式中溶滤变形系数在某级压力下溶滤变形系数试验的记录格式见附录表湿陷起始压力试验湿陷起始压力试验应按下列步骤进行试样制备应按本标准第条的步骤进行单线法切取个环刀试样试样安装应按本标准第条单线法试验对个试样均在天然湿度下分级加压分别条款的步骤进行双线法试验一个试样在天然湿度下分级加压按本标准第条直至试样在各级压力下浸水变形稳定压力等级在以条各级压力下的湿陷系数应按下式计算式中各级压力下的湿陷系数在各级压力下试样浸水变形稳定后的高度在各级压力下试样变形稳定后的高度绘制压力与湿陷系湿陷系数为所对应的压力即为湿图湿陷系数与压力关系曲线湿陷起始压力试验记录格式见附录表三轴压缩试验一般规定本试验方法适用于细粒土和粒径小于本试验必须制备对于填注试验宜在恒温条件下进行仪器设备及图天平称量值图应变控制式三轴仪图击样器图饱和器图原状土切土盘分样器图承膜筒图对开圆模橡皮膜和的试样厚度以透水板试验时的仪器周围压力的测量准确度应为全量程的根据试样的强度大小于系统内的气整个系统的体积变化因数应小于压力室活塞杆在轴套内橡皮膜在使用前应作仔细检查内充气在水中检查试样制备和饱和本试验采用的试样最小直径为最大直径为径应符合表表原状土试样制备应按本标准第条的规定将土样用钢丝锯或切土刀紧靠侧直至土样被削成规定到超出试样高度约并取余土测对于直径大于按上述方法切取准第条的步骤备样后层各层土料数量应相等各层接触面应刨击完最后一层对制备好的试样试样的平均直径应按下式计算式中分别为试样上砂类土的试样制备应先在压力室底座上依次放上不透水根据砂样的干密度及将每份砂样填入橡皮直至膜内填满为放上不透水对试样内部施加负压力试样饱和宜选用下列方法抽气饱和条条的步骤安装于压施加提高试样使纯水从底部进入试当需要从底部将二氧化碳气体通二氧化碳的压力以反压力饱和试样要求完全饱和时周围压力和反压力的每级增量宜为增量与周围压力增量之比不固结不排水剪试验在压力室的底座上样中心向压力室内注满纯水待压力室顶部排气孔有水溢出时将离合器调至粗位及测力计接触剪切试样应按下列步骤进行剪切应变速率宜为每分钟应变试样每产生当轴向应变大于时试样每产生当测力计读数出现峰值时剪切应继续进行到轴向应变为轴向应变应接下式计算式中轴向应变剪切过程中试样的高度变化试样初始高度试样面积的校正式中主应力差应按下式计算式中主应力差大总主应力小总主应力测力计率定系数或测力计读数绘制主应力差取曲线上主应力差的峰值作为在横坐标轴以破坏时的为半径在上绘制破损应力圆图主应力差与轴向应变关系曲线图不固结不排水剪强度包线表固结不排水剪试验开孔隙水压力阀和量管阀对孔隙水压力系统及压力室底压力室底座上依次放条将橡皮膜上端与试样帽扎紧心以下需要测定土的应力应变关系时应在试样与透水板之间放置中间夹条试样排水固结应按下列步骤进行调节排水管使管内水面与试样高度的中心齐平测记排水关孔隙水压力阀条打开孔隙水压力阀当需要测定排水过程时应按本标准第条款的步骤测记排水管水面及孔隙水压力读数直至孔隙水压力消散固结完成后关排水阀测记孔隙水压力微调压力机升降台使活塞与试样接触此时轴向变形指剪切试样应按下列步骤进行剪切应变速率粘土宜为每分钟应变粉土为每分钟应变启动电动机合上离合器孔隙水压力应按本标准第条至粗位排除压力室内拆除试样描述试样破坏形状式中试样固结后的高度式中试样固结后的断面积试样面积的校正有效主应力比应按下式计算有效大主应力式中有效大主应力孔隙水压力有效小主应力式中有效小主应力有效主应力比孔隙水压力系数初始孔隙水压力系数式中施加周围压力产生的孔降水压力破坏时孔隙水压力系数式中试样破坏时以有效应力比为纵坐标轴向应变为横坐标绘制有效应力比与轴向应变曲线图图有效应力比与轴向应变关系曲线以。

土的击实试验步骤及内容

土的击实试验步骤及内容

土的击实试验步骤及内容土壤,咱们的脚下的“家园”,可别小看它!它可是咱们建筑、道路等各种工程的基础。

今天,我们就来聊聊“土的击实试验”,听起来高大上,其实简单得很!这试验就是为了测试土壤的密实度,看看它的“硬实力”到底有多强。

嘿,让我们一步一步来,确保你也能掌握这个“小知识”。

1. 准备工作1.1 设备与材料首先,咱得准备好工具和材料。

你想想,要做饭得有锅碗瓢盆,对吧?同样的道理,进行击实试验,咱们得有几样法宝。

主要的有击实器、量筒、土样、秤、铲子,还有一个可以容纳土的模具。

总之,准备工作就像打仗之前的排兵布阵,不可马虎。

1.2 土样的获取接下来,就是获取土样。

这可是个关键环节,别让“土”这位大爷太挑剔。

你得找一个代表性强的地方,最好是施工现场的土,挖一小块儿下来。

记得呀,得挖够深,别让表面“光鲜亮丽”的土样欺骗了你。

深一层,见真章!2. 实验步骤2.1 称量与准备现在,准备开始我们的实验了。

首先,把土样称量,准确到克,别马虎,万一这点儿误差让你最后的结果大打折扣,那可就哭都来不及!然后,把土样放进模具里,用铲子摊平,确保没有空隙,像抹蛋糕一样细致。

2.2 击实过程接下来的步骤就有趣了,拿起击实器,像挥舞大刀一样,按照规定的高度落下。

每一击,都是一次精准的“打击”,目标就是让土壤变得更紧实。

一般来说,土样分三层,每层得击打25次,记得得均匀、用力啊!这过程像是在调动你的力量和耐心,慢工出细活嘛。

2.3 测量高度一旦完成了击实,别急,咱还得量量土的高度。

使用量筒,记录下模具的高度变化。

然后,算算土的密度,这可是最后结果的关键,记住,公式一定要对哦!一般的公式是:土的密度等于土的质量除以体积。

算出来的数字,得跟你心里想的一样才能放心。

3. 结果分析3.1 数据解读好了,结果出来了,你准备好接受“真相”了吗?其实,这时候你得根据密度的高低来判断土的性能。

密度高,土壤紧实,说明它能承受的重量也大,适合用来打基础;反之,密度低就得小心了,可能要考虑加固措施。

击实试验报告

击实试验报告

击实试验报告击实试验是指对土体进行施力以及进行不同的振动,来观察土体的变化和性能。

这种试验在土壤力学和岩土工程领域中是非常重要的,因为它可以用来评估土体的力学性质、岩石的强度和工程地质问题等。

试验过程我们进行了一次击实试验,以研究一种土体在不同振动条件下的行为。

试验采用的是振动盘的方式,该振动盘可以在不同的频率和振幅下进行振动。

试验中,我们将一定质量的土样分别放置在细孔弹性介质内,通过振动盘对这些土样进行振动,然后进行不同的打击。

我们使用牛顿计进行施力,测量了不同打击下土体的密度和直径。

我们一共进行了10次打击,每次都以相同的振动条件和振幅进行。

最后,我们得到了所有数据,并对其进行了分析和处理。

结果从实验数据和图形中可以看出,随着打击次数的增加,土体的密度也相应地增加。

同时,我们也注意到,土体的直径开始趋近于稳定,并且直径的增长速度越来越慢。

在振动条件下,土体的密度变化趋势和直径变化趋势几乎相同。

这表明,振动和打击可以有效地改变土体的密度和结构,从而改变土体的力学性质。

结论我们的实验结果表明,击实试验是一种有效的评估土体性质和工程地质问题的方法。

这种试验可以用于研究土体的力学性质和岩石的强度,也可以用于评估工程地质风险。

在振动和打击条件下,土体的密度和直径都会发生变化。

这表明,振动和打击可以有效地改变土体的结构和干密度,进而影响它的力学性质。

因此,击实试验是岩土工程领域中的一种重要的关键试验。

通过这种试验,我们可以深入了解土体的力学性质和变化趋势,并进一步提高岩土工程设计和建设的可靠性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

击实试验过程中注意事项一、摘要为了提高填土的强度,增加土的密实度,降低其透水性和压缩性,常将填土夯实。

夯实土样是最简单易行的土质改良方法,土样经夯实后,土体变得密实又坚硬,对工程有利,所以工程上用干密度作为夯实的质量检验指标,室内击实试验就是模拟工程现场的夯实原理,利用标准化的击实仪和操作规程,对土料施加一定的冲击荷载使之压实,从而确定所需的最大密度和最有含水率,作为选择填土密度、夯实次数等主要依据。

在击实试验过程中影响土的最有含水率和最大干密度因素较多,通过对这些影响因素的分析,提高土的击实效果,达到击实试验目的。

关键词:击实试验、最大干密度、最优含水率。

二、概况衢宁铁路四标五分部路基填筑是该标段填筑方量最大填,填料来源困难,整个路基及站场填筑方量二百八十万方,在填筑过程中,经常遇到填土压实的问题,为了提高填土的强度,增加土的密实度,降低其透水性和压缩性,采用分层压实的办法。

通过对土的最优含水率和最大干密度的研究来提高土的击实效果。

土的最优含水率和最大干密度可用室内击实试验来测得,室内击实试验采用击实仪法,是用锤击实土,使土密度增大,测定土样在一定压实功能作用下达到最大密度时的含水率(最优含水率)和此时的干密度(最大干密度),借以了解土的压实特性,作为选择填土密度、施工方法、机械碾压或夯实次数以及压实工具等主要依据。

试验时将符合有关标准规范要求的同一种土,配制成若干份不同含水率的试样,用同样的压实能量分别对每一份试样进行击实后,测定各试样击实后的含水率Wo和干密度ρd,从而绘制含水率与干密度关系曲线,此关系曲线称为压实曲线,如图1所示。

在压实曲线上的干密度的峰值,称为最大干密度ρdmaxi 与之相对应的含水率,称为最优含水率Wo,它表示在击实功能一定的情况下,达到最大干密度时的含水率。

三、击实标准的影响目前常用的室内击实试验方法有轻型击实试验和重型击实试验两种。

轻型击实试验方法主要适用于水库、堤防、铁路路基填土;重型击实试验方法主要适用于高等级公路填土和机场跑道等。

试验规程有两种,TB10102-2010《铁路工程土工试验规程》,一种是JTG E40 -2007《公路土工试验规程》。

两种规程对击实试验的目的、适用范围、仪器设备以及试验条件分别有不同的规定,下面以TB10102-2010《铁路工程土工试验规程》为试验方法标准,说明在击实试验过程中影响土的最优含水率和最大干密度的一些主要因素。

击实条件而变化。

随着击实功的增加,最大干密度增大,而最优含水量则减少。

因此,各国都规定某一击实功作为击实试验的标准。

中国土工试验方法标准中规定轻型击实及重型击实两种标准,轻型击实适用于粒径小于5mm的粘性土,其单位体积击实功为592kj /m3;而重型击实适用于粒径不大于20mm的土,采用三层击实时,最大粒径不大于40mm, 其单位体积击实功为2682kj/ m3;同一中土由于击实功及压实条件的不同,其试验结果是不一样的,同一种土随着击实功的增加,最大干密度增大,而最优含水量则减少。

四、试样制备的影响(1)击实所用土不宜重复使用,取代表性的土样或在50摄氏度温度下烘干的土样碾散,对于小试筒,按四分法取筛下的土约20kg,对于大试筒,同样按四分法取筛下的土约40kg.将土样搅拌充分均匀后取土样含水量。

(2)干土法(土不重复使用)由于击实曲线一定要出现峰值点,由经验可知,最大干干密度的峰值往往都在塑限含水率附近,根据土的击实原理,峰值点就是孔隙比最小的点,所以至少要准备5个试样,分别加入不同水分,其中2个含水率高于塑限(按2%~ 3%含水率递增),2个含水率低于塑限(按2%~3%含水率递减),搅拌匀后闷料一夜备用。

(3)湿土法(土不重复使用)湿土法主要适用于高含水率土配制试样时可省略过筛步骤,用手拣除大于25mm或38 mm的粗石子既可。

保持天然含水率的第一个土样,可既用于击实实验。

其余的试样分成小土块分别风干,含水率按2% ~ 3%递减。

五、操作步骤(1)分层击实将击实筒固定在刚性底板上,装好护筒,在击实筒内壁涂薄层凡士林油,取制备好的试样2~6 kg分层倒入筒内,整平表面,分层进行击实。

击实时,落锤应铅直自由落下,锤迹必须均匀分布于土面上,击实后试样略高于筒顶(不得大于6 mm)。

(2)标击买同加土的质量用修土刀沿套环内壁削挖后,扭动,取下套环,齐筒顶削平土样,拆除底板,擦净筒外壁,称量,准确至1g(3)测含水率,用推土器推出筒内试样,在土样中心处取两个各约150-300g 的土样,平行测其含水率,平行误差应小于1%。

按上述1、2、3步骤,依次将不同含水率的几个试样进行分层击实和测定工作。

(4)数据整理(1)计算密度按下式分别计算击实后土的湿密度和干密度ρd,计算至0.01x103kg/m3。

ρ=mVρd=ρ/(1+w)式中: m击实后湿土质量kg; V击实筒容积m3; w含水率,小数计。

(2)绘制曲线以干密度ρd为纵坐标以w为横坐标,绘制压实曲线。

曲线上峰值点所对应的数值即分别为该土的最大干密度和最优含水率,如图1所示,如曲线不能给出峰值点,应进行补点试验。

(图1)六、最大干密度和最优含水率影响因素与结果分析1、击实功能的影响我们知道压实就是土体在压实能量作用下,土颗粒克服粒间阻力,产生位移,土颗粒重新排列,使土中的孔隙减小,密实度增大。

压实功能是指每单位体积所消耗的能量,压实功能愈大,得到的最优含水率愈小,相应的最大干密度愈高,可见压实功能是影响击实效果的一个重要因素,通过压实功能影响击实效果的主要表现有:(1)土样的重复使用与否的影响,土样的重复使用与否在原理上是有差异的,重复使用土样时,击实功能对土的影响较大,不重复使用土样时,土所受功能影响较小,两者的最优含水率和最大干密度略有不同。

表2、表3是对同种土,分别采用土样不重复使用和土样重复使用的干土法所做的击实试验结果对比。

从表2和表3可看出,两者的最大于密度基本相近,但最优含水率却有所不同,土重复使用时的最优合水率要比土不重复使用的要大,产生最优含水率的变化的主要因是土样在反复受击实功能的影响下即土体在击实的反复夯打下,土体的颗粒结构及胶结状况发生了变化,使土体的粒径变细,而造成土粒的比表面积增大。

土粒的比表面积的变化。

使土体的性质具有一定的粘性土的特征,所以其最优含水率相应发生了变化。

2、余土高度的影响试样击实后总会有部分土超过筒顶高,这部分土柱称为余土高度。

标准击实试验所得的击实曲线是指余土高度为零时的单位体积击实功能下土的干密度和含水率的关系曲线。

也就是说,此关系曲线是以击实筒容积为体积的单位功能曲线,但由于在实际的操作中总会存在或多或少的余土高度,如果余土高度过大,则压实曲线上的干密度就不再是一定功能下的干密度,试验结果的误差会增大。

表4分别是对同一土样按同一含水率,在击实后余土高度控制在3~6 mm与7~11 mm时的干密度的结果对比。

从表4可知,余土高度控制在7~11 mm时的干密度要比余土高度在3~6 mm低20~40kg/m3.这是因为随着余土高度的增加,试样的单位体积相对增大则试样所受的单位体积击实功能相应减小。

3、每层试样高度对结果的影响击实试验时,试样是分3层装入试筒的,每层试样高度宜相等,两层交界处的土面应刨毛.每层试样高度约为简高的三分之一。

表5是对同一种土进行击实试验时,每层试样高度基本一致(约为筒高的三分之一)与不一致的干密度比对结果。

从表5中可看出,1#和2#样的每层试样高度基本一致(约为筒高的三分之一)其干密度约为1.85x103 kg/m3,3#、4#、5#样的每层高度都不一致,其干密度比1#和2#试样要低10kg/m3~ 30kg/m3。

我们知道如果装入试筒的试样的每层高度均等时,土体的这时所受的击实功能是最大的,则其干密度也是最大的。

当有一层高度大于筒高的三分之一时,由于体积相对增大,则其所击实功能相对减小,土体的密实度相对变小;当这一层土体高度小于筒高的三分之一时,土体浪费掉了一部分能量(击实功能),土体总体承受的击实功能减弱,使土体的压实不能达到最大。

2、试样中大颗粒 (碎石)均匀性的影响(1)送检的试样中常夹有较大的不易破碎的颗粒,如碎石等,对最优含水率和最大干密度结果的准确性有一定的影响。

在实际的试验中,先将较大颗粒(碎石)筛出,然后将筛出的大颗粒(碎石)均匀地掺入每份所要配制的试样中,不要出现彼多此少的情况,否则试样的干密度会出现异常,表6是对同种土按同一含水率,分别掺入不同含量大颗粒(碎石)所做的击实试验结果对比。

从表6可看到试样中的大颗粒(碎石)掺入量均匀时,试样的干密度基本保持一致,而大颗粒(碎石)掺入量不均匀时,试样的干密度呈现一定的离散性,由图1可知,压实曲线是由不同的干密度和对应的含水率绘制而成,干密度如果不正确的话,这对绘制的压实曲线产生较大的影响,从而影响最大干密度和最优含水率的结果准确性。

3、含水率对最大干密度的影响土中的含水率是影响击实效果的一个重要因素。

由图.1的击实曲线可知,峰值干密度对应的含水率称为最优含水率能得到最大干密度pdmax,对于同一种土干密度越大,其孔隙比就愈小,所以pdmax,相应于实验所达到的最小孔隙比,在某一含水率下,将土压至最密,理论上就是将土所有的气体都从土中排出,使土达到饱和,得到理论上的最大压实曲线,即Sr=100%的压实曲线,称为饱和曲线。

土中含水率太大或太小都不能达到最大干密度。

含水率太小,土中基本上只有强结合水,强结合膜太薄,因为粒间有摩阻力及引力,土颗粒间不易移动,不易密实。

含水率太大,土中的自由水要占据一定的空间,土也不易密实。

当土中的含水率为最优含水率时,土中具有-定的弱结合水膜,土粒间的弱结合水膜起到一定的润滑作用,使土颗粒易移动,并填充孔隙或挤密,从而能够达到最大密实度。

4、土的性质对最大干密度的影响在一定的击实功作用下,土的最优含水率和最大密实度与土的性质有关。

在土的性质中,土的粒径的不同对土的压实性会有不同的影响。

我们知道土都是由大小不同的土粒组成的,即不同的土有着不同的粒径级配,随着颗粒大小及粒径级配的不同,土的性质相应地发生变化例如粗颗粒的砾石,具有很大的透水性,完全没有粘性和可塑性:而细颗粒的粘土则透水性很小,粘性和可塑性较大等。

随着土粒越细、土的液限就越高、塑性变得越大,在一定的功能下,土体就越不容易被击实。

对于颗粒级配良好的土较粗颗粒间被较细颗粒所填充,因而有较好的压实性能,而颗粒级配不好的土在同样的压实条件下,压实性能往往较差。

从表7可知,含细粒愈多的土,其最大干密度值愈小,而最优含水率愈大。

最大密实度与最优含水量之间存在显著的线性负相关关系,最优含水率大的土最大密实度小;反之,最优含水率小的土最大密实度却大。

相关文档
最新文档