三片摄影物镜的设计

合集下载

三片式摄影物镜的优化设计及光学性能评价

三片式摄影物镜的优化设计及光学性能评价

主观评价则是通过人的视觉感受来评价镜头的性能。一般请专业摄影师在相 同的拍摄条件下使用不同的镜头进行拍摄,然后对拍摄结果进行评分。根据摄影 师的评分结果,可以大致了解镜头的主观表现。
2、三片式摄影物镜光学性能评 价实例评估
以某款三片式摄影物镜为例,通过客观评价和主观评价对其光学性能进行评 估。该款镜头采用高折射率、低色散玻璃材料制成,其MTF值在多种光线条件下 均表现出色。在客观测试中,该镜头分辨率高、对比度强且色彩还原准确。
在主观评价方面,专业摄影师对该镜头的成像质量给予了高度评价。拍摄结 果显示,该镜头在多种光线条件下均能保持良好的清晰度和色彩饱和度。摄影师 一致认为该镜头的主观性能优于市面上同类产品。
结论本次演示对三片式摄影物镜的基本结构、优化设计及光学性能评价进行 了详细介绍。通过了解三片式摄影物镜的制造工艺和光学性能及其在实际摄影中 的应用,我们可以更好地理解如何对其进行优化设计。本次演示针对实际应用中 存在的问题提出了相应的优化方案,并介绍了光学性能评价方法以及实例评估。 这有助于我们更好地了解和掌握三片式摄影物镜的性能和应用前景。
2、三片式摄影物镜的优化设计 方案
针对上述问题,可采取以下优化设计方案:
(1)采用适应性更强的自动对焦系统,以适应不同的摄影环境。例如,可以 采用超声波马达驱动的自动对焦系统,提高对焦速度和准确性。
(2)通过计算机模拟和优化设计,实现最佳的光学性能。例如,利用光学设 计软件进行模拟分析,并根据分析结果调整镜片的结构参数,以达到最佳的成像 效果。
尽管三片式摄影物镜在摄影领域有广泛的应用,但在实际使用中仍存在一些 问题。首先,成像质量受多种因素影响,如光线条件、物距、光圈等。在复杂的 摄影环境中,三片式摄影物镜可能无法充分发挥其优势。

显微摄影实验

显微摄影实验

显微摄影实验【实验目的】1.了解显微摄影的基本原理和三种常见的摄影方法。

2.掌握显微摄影的基本操作技术。

3.学习传统的相片冲洗的一般过程。

4.学习利用数码相机拍摄显微数码相片的方法与技巧。

【实验仪器】1.XTL 3400型连续变倍体视显微镜一台;2.ZA-1型摄影仪、生物接筒各一台;3.暗盒每人一个(注:已安装了相纸,不能随意打开);4.标本载玻片一片;秒表一只;快门线一条;暗房相片冲洗设备一套;5.Nikon Coolpix 4500型数码相机一台(选做内容);6.显微专用连接镜头一个(选做内容);7.数码相机电源适配器一个;数码相机USB传输线一条(选做内容);8.Pentium Ⅳ计算机;打印机各一台(选做内容)。

【实验原理】显微摄影是把显微镜的物镜和目镜所组成的光学成像系统作为照相机的镜头去拍摄一般用肉眼无法看清的标本。

这种对微小物体“放大录像”,可直接为教学,科研提供方便。

根据显微镜的结构可知:当被观察的标本(AB)放在物镜前焦点稍外一点的位置时,将在目镜前焦点内侧且靠近焦点的位置处形成一个放大倒立的实像(A1B1),这时再通过目镜(这时的作用象普通放大镜)就可看到一个放大倒立的虚像(A2B2)。

如图8-1所示。

这就是一般显微镜的成像原理。

如果调节物镜成像的位置(可使标本适当远离物镜或升高目镜,即增大目镜与物镜间的距离,使中间成像介于目镜的一倍焦距与两倍焦距之间),使物镜所成的像位于目镜前焦点的外侧,此像再经过目镜放大,即可在目镜的另一侧得到一个经二次放大的正立实像,如图8-2所示。

当光源足够强时,此像可使底片或相纸感光,或者使数码相机、摄像机的CCD光电元件感光成像,这就是显微摄影的原理。

将一个特制的摄取影仪装在普通显微镜上方,即可进行显微摄影。

其整个实验装置如图8-3所示。

由三部分组成 (1)XTL3400型连续变倍体视显微镜;(2)生物接筒;(3)ZA-—1显微摄影仪。

生物接筒是显微镜和摄影仪的连接装置,内装有目镜(安装接筒时,己将显微镜原目镜拆除)。

工程光学三片型照相物镜的结构参数计算课件

工程光学三片型照相物镜的结构参数计算课件
镜片材料
选择适合的光学材料,满足镜头的光学性能和机 械强度的要求。
镜片加工
优化镜片的加工工艺,提高镜头的加工精度和装 配精度,减小镜头的误差。
加工与装配的考虑因素
镜片研磨与抛光
根据镜片材料和光学设计的要求,选择合适的研磨和抛光工艺, 提高镜片的表面质量和光学性能。
装配精度
提高镜头的装配精度,减小装配误差对镜头性能的影响。
工程光学三片型照相 物镜的结构参数计算 课件
目录
CONTENTS
• 工程光学基础知识 • 三片型照相物镜的结构 • 三片型照相物镜的结构参数计算 • 三片型照相物镜的设计优化 • 三片型照相物镜的应用实例
01
工程光学基础知识
工程光学的基本概念
01
02
03
光的本质
光是一种电磁波,具有波 粒二象性。
量的要求。
视场角的计算
视场角
照相物镜能够接收到的景物范围 的角度,是衡量照相物镜视野宽 度的指标。视场角越大,视野越
宽。
计算公式
视场角 = $frac{2 times arctan(frac{W}{2f})}{W/f}$,其中 $W$为视场宽度,$f$为焦距。
注意事项
视场角的计算需要考虑透镜的形状 、焦距等因素,以及成像质量的要 求。在计算过程中,还需要注意单 位的统一。
的分辨率和清晰度。
结构参数计算
望远物镜的结构参数与摄影物镜类似,但还需要考虑视场角、工 作距离等因素。这些参数的计算对于望远观测的效果至关重要。
优化设计
在望远物镜的设计过程中,同样需要不断优化结构参数,以提高 望远观测的效果。这需要综合考虑光学性能、机械加工和成本等
因素。
THANKS

基于ZEMAX的非球面摄影镜头的设计

基于ZEMAX的非球面摄影镜头的设计

基于ZEMAX的非球面摄影镜头的设计倪绿汀;程萍;位迪【摘要】10.3969/j.issn.1003-5060.2012.11.017% 文章利用光学设计软件ZEMAX以及缩放法设计一款焦距50mm,像素为500×104的非球面摄影镜头.该镜头的像元大小为2.2μm,镜头采用的初始结构为双高斯摄影物镜结构.该设计的最大优点在于畸变极小,小于0.05%,各个视场的调制传递函数(MTF)值超过一般要求值,在奈奎斯特频率1/2处视场的MTF值等于0.585,0.7视场之内的MTF值等于0.464,各个视场的照度都能达到95%以上.【期刊名称】《合肥工业大学学报(自然科学版)》【年(卷),期】2012(000)011【总页数】4页(P1510-1513)【关键词】ZEMAX软件;摄影镜头;光学设计;调制传递函数;非球面【作者】倪绿汀;程萍;位迪【作者单位】合肥工业大学电子科学与应用物理学院,安徽合肥 230009;合肥工业大学电子科学与应用物理学院,安徽合肥 230009;合肥工业大学电子科学与应用物理学院,安徽合肥 230009【正文语种】中文【中图分类】O435球面镜片具有球差像差的先天缺陷,从而带来了无法克服的光斑现象,而非球面镜片使光线经过高次曲面的折射,就可以把光线精确地汇聚到一点。

一片非球面镜片就能实现多个球面镜片校正像差的效果,这样非球面镜头可以有效地减少镜片数量,从而减小了体积和质量。

非球面镜头成为佳能、索尼及奥林巴斯等各大公司的热门镜头。

由于它在低照度下所表现出的优越性能,非球面镜头必将在视频监控中得到广泛的应用,尤其是在军事领域中,可以在军事观察、侦查以及搜索指挥中得到应用。

本产品的有效像素为2 580×1 936,总像素为500万像素,像元大小为2.2μm×2.2μm,其CCD的有效面积为5.68mm×4.26mm,对角线长度为7.1mm。

设计中取对角线的1/2作为系统的像高。

三片摄影物镜的设计

三片摄影物镜的设计

三⽚摄影物镜的设计深圳⼤学课程论⽂题⽬成绩专业课程名称、代码年级姓名学号时间任课教师三⽚摄影物镜的设计⼀、设计任务的具体指标及其要求系统的焦距f=100mm,D/f=1/5,视场⾓2W=40O。

该物镜对d光校正单⾊像差,对F、C光校正⾊差。

⼆、实验原理光学设计必须校正光学系统的像差,但既不可能也不必要把像差校正到完全理想的程度,因此需要选择像差的最佳校正,也需要确定校正到怎样的程度才能满⾜使⽤要求,即确定像差容限。

对光学系统成像性能的要求主要有两个⽅⾯:第⼀⽅⾯是光学特性,包括焦距、像距、放⼤率、⼊瞳位置、⼊瞳距离等;第⼆⽅⾯是成像质量,光学系统所成的像应该⾜够清晰,并且物像相似,变形要⼩。

像差指在光学系统中由透镜材料的特性或折射(或反射)表⾯的⼏何形状引起实际像与理想像的偏差。

理想像就是由理想光学系统所成的像。

实际的光学系统,只有在近轴区域以很⼩的孔径⾓的光束所⽣成的像才是完善的。

但在实际应⽤中,须有⼀定⼤⼩的成像空间和光束孔径,同时还由于成像光束多是有不同颜⾊的光组成的,同⼀介质的折射率随颜⾊⽽异。

因此实际光学系统的成像具有⼀系列缺陷,这就是像差。

像差的⼤⼩反映了光学系统质量的优劣。

⼏何像差主要有七种:其中单⾊光像差有五种,即球差、彗差、像散、场曲和畸变;复⾊光像差有轴向⾊差和垂轴⾊差两种。

在实际的光学系统中,各种像差是同时存在的。

它影响了光学系统成像的清晰度、相似性和⾊彩逼真等,降低了成像质量。

1、球差轴上物点发出的光束,经光学系统以后,与光轴夹不同⾓度的光线交光轴于不同位置,因此,在像⾯上形成⼀个圆形弥散斑,这就是球差。

在孔径⾓很⼩的近轴区域可以得到物点成像的理想位置l′,任意孔径⾓U的成像光线偏离理想像点与光轴相交的位置为L′。

我们把轴上物点以某⼀孔径⾓U 成像时,其像⽅截距L′与理想像点的位置l′之差称为轴上点球差,⼜称为轴向球差,⽤如图2-1表⽰。

球差也可在垂轴⽅向度量,称为垂轴球差。

第三章 摄影系统

第三章 摄影系统

3.4 新型摄影系统 • 3.4.1数码相机 • 3.4.2手机相机 3.5摄影系统设计参数分析 3.6设计举例
• 3.2.2图像传感器
3.3 典型摄影物镜 • 3.3.1风景物镜
• 3.3.2匹兹伐物镜
• 3.3.3三片式物镜和天塞物镜 • 3.3.4双高斯物镜
• 3.3.5远距物镜和反远距物镜
• 3.3.5远距物镜和反远距物镜
• 3.3.6广角物镜 • 3.3.7变焦物镜
3.2 感光元件
3.2.1 早期感光元件 • 感光元件是记录摄影图像信息的载体。 • 感光元件发展过程:
金 属 板
1837年

1843年
玻 璃
1851年
软 片
1888年
彩 色 软 片
1935年
图 像 传 感 器
湿 板 化学方法
钟的曝光时间,能拍摄出清晰的图像。 片能在短时间内接受到充足的曝光。
3.1 概述及历史
1841年,维也纳光学师瓦伦特委托 数学教授匹兹伐设计了一种能够拍 1849年戴维· 布鲁司特发明了 立体照相机和双镜头的立体 观片镜。 1861年物理学家詹姆斯· 麦克
出清晰肖像的镜头,配合自己独创
的圆锥型金属箱,制作成一架十分 别致新颖的新型照相机 (F/#=3.7,f=143mm)。
主要内容
3.1 概述及历史
3.2 感光元件 • 3.2.1早期感光元件
3.4 新型摄影系统 • 3.4.1数码相机 • 3.4.2手机相机 3.5摄影系统的设计参数 3.6设计举例
• 3.2.2图像传感器
3.3 典型摄影物镜 • 3.3.1风景物镜
• 3.3.2匹兹伐物镜
• 3.3.3三片式物镜和天塞物镜 • 3.3.4双高斯物镜来自斯韦发明了世界上第一张彩

照相物镜及其光学特性

照相物镜及其光学特性

第6章 照相物镜设计
反远距物镜的光阑常常设在正组中间,所以前组远离光阑,轴外光束有较大的入射高 度,产生了较大的初级轴外 像差和高级轴外像差。视场不大时,前组可以采用单片负透镜; 视场较大时,前组应该采用双胶合的负透镜和双分 离的负光焦度结构,甚至可以用其他更 复杂的结构,如鼓形透镜等。前组产生的轴外像差力求由本身解决,剩余的量 可以由后组 补偿。反远距物镜的后组承担了较大的孔径,其视场由于有前组的发散作用,已经有所减 小。和一般照 相物镜比较,反远距物镜的后组是对近距离成像的,在成像关系上它处于更 加对称的位置,所以,后组似乎有更充分 的理由采用对称结构。但是考虑到前组剩余的像 差,尤其是垂轴像差SⅡ 、SⅤ 和CⅡ 需要后组给予补偿,则采用不 对称的结构型式更为合 理,如三片式或匹兹万结构都可以成为后组的理想结构。
第6章 照相物镜设计
这个半部系统承受无限远物体的光线时,可用薄透镜的弯曲校正其球差。由于从厚透 镜射出的轴上光线近似 平行于光轴,因此薄透镜越向后弯曲,越接近于平凸透镜,其上所 产生的球差及高级量越小。但是,该透镜上轴外光 线的入射状态变坏,随着透镜向后弯曲, 轴外光线的入射角增大,于是产生了较大的像散。为了平衡SⅢ ,需要把光阑 尽量地靠近厚 透镜,使光阑进一步偏离厚透镜前表面的球心,用该面上产生的正像散平衡SⅢ 。与此同 时,轴外光线 在前表面上的入射角急剧增大,产生的轴外球差及其高级量也在增大,从而 引出了球差校正和高级量减小时,像散的 高级量和轴外球差增大的后果。相反,若将光阑 离开厚透镜,使之趋向厚透镜前表面球心,则轴外光线的入射状态就 能大大地好转,轴外 球差很快下降,此时厚透镜前表面产生的正像散减小。为了平衡SⅢ ,薄透镜应该向前弯曲,以使 球面与光阑同心。这样一来,球差及其高级量就要增加。

基于ZEMAX的照相物镜的设计

基于ZEMAX的照相物镜的设计

燕山大学课程设计说明书题目:基于ZEMAX的照相物镜设计学院(系):电气工程学院年级专业:10级仪表三班学号:学生姓名:指导教师:教师职称:副教授燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系学号学生姓名专业(班级) 10级仪表三班设计题目设计技术参数1、焦距:f’=15mm;2、相对孔径:1/2.8;3、在可见光波段设计(取d、F、C三种色光)4、视场角2w=74°设计要求1、简述照相物镜的设计原理和类型;2、确定照相物镜的基本性能要求,并确定恰当的初始结构;3、输入镜头组数据,设置评价函数操作数,进行优化设计和像差结果分析;4、给出像质评价报告,撰写课程设计论文工作量查阅光学设计理论和像差分析的相关文献和资料,提出并较好地的实施方案设计简单透镜组,并用zemax软件对初级像差进行分析和校正,从而对镜头进行优化设计工作计划第一天、第二天:熟悉ZEMAX软件的应用,查阅资料,确定设计题目进行初级理论设计第三天、第四天:完善理论设计,运用ZEMAX软件进行设计优化,撰写报告第五天:完善过程,进行答辩参考资料《光学设计》,西安电子科技大学出版社,刘钧,高明,2006,10 《几何光学像差光学设计》,浙江大学出版社,李晓彤,岑兆丰,2003.11《实用光学技术手册》,机械工业出版社,王之江,2007.1指导教师签字基层教学单位主任签字目录摘要 (1)第一章简述照相物镜的设计原理和类型 (2)第二章设计过程 (4)2.1根据参数要求确定恰当的初始结构 (4)2.2优化设计过程 (5)2.3优化结果像差结果分析 (8)第四章课设总结 (13)参考文献摘要人们早就有长期保存各种影像的愿望。

在摄影技术尚未发明前的公元四世纪时,人们按投影来描画人物轮廓像的方法达到了全盛时代,至今这种方法仍然作为剪纸艺术流传着。

后来,人们让光线通过小孔形成倒立像,进而将小孔改为镜片,并加装一只暗箱。

光学基础之光学系统-远心物镜、远距物镜、反远距物镜及畸变物镜知识介绍

光学基础之光学系统-远心物镜、远距物镜、反远距物镜及畸变物镜知识介绍

1.1.5远心物镜在测量系统中,物距常发生变化,从而使像高发生变化,所以测得的物体尺寸也发生变化,即产生了测量误差;另一方面,即使物距是固定的,也会因为CCD敏感表面不易精确调整在像平面上,同样亲会产生测量误差。

为了解决上述问题,可以采用远心物镜。

其中像方远心物镜可以消除物距变化带来的测量误差,而物方远心物镜则可以消除CCD位置不准带来的测量误差。

1)物方远心物镜物方远心物镜是将孔径光阑放置在光学系统的像方焦平面上,图1.1-23示出,当孔径光阑放在像方焦平面上时,即使物距发生改变,像距也发生改变,但像高并没有发生改变,即测得的物体尺寸不会变化;图1.1-24清楚地显示出物方远心光路的原理,其中孔径光阑位于像方焦面上,物方主光线平行于光轴。

如果物体B1B2正确地位于与CCD表面M共轭的位置A1上,那么它在CCD表面上的像为M1M2。

如果由于物距改变,物体B1B2不在位置A1而在位置A2,那么它的像B´1B´2偏离CCD表面,B´1和B´2点在CCD表面上投影为一个弥散斑,其中心仍为M1和M2点,按此投影像读出的长度仍为M2M1。

这就是说,上述物距改变并不影响测量精度。

图1-232)像方远心光路像方远心光路是将孔径光阑放置在光学系统的物方焦平面上,而像方的主光线平行于光轴。

如图1.1-25所示。

如果物体B1B2的像B´1B´2不与CCD表面M重合,则在CCD表面M上得到的是B´1B´2的投影像,其散斑中心距离M1M2=B´1B´2。

因此,不管CCD表面M是否和B´1B´2相重合,它和标尺所对应的长度总是B1B2,所以没有测量误差。

图1-24图1.1-25 像方远心光路1.1.6远距物镜远距物镜是一种焦距很长而镜筒较短的物镜,从物镜前表面到像平面的距离小于焦距,这对于长焦距物镜来说,有利于缩短物镜的轴向尺寸。

天文望远镜的目镜种类与结构

天文望远镜的目镜种类与结构

天文望远镜的目镜种类与结构1,惠更斯目镜荷兰科学家惠更斯于1703年设计,有两片平凸透镜组成,前面为场镜,后面为接目镜,他们的凸面都朝向物镜一端,场镜的焦距一般是接目镜的2-3倍,镜片间距是它们焦距之和的一半。

惠更斯目镜视场约为25-40度。

过去,惠更斯目镜是小型折射镜的首选,但随着望远镜光力的增大,其视场小,反差低,色差,球差场曲明显的缺点逐渐暴露出来,所以目前这种结构一般为显微镜的目镜采用。

焦距: 8mm ~ 25mm, 出瞳距离5~10 mm,视场25~40度接目镜的放大倍率 k=250mm/f mm2,冉斯登目镜于1783年设计成功,也是两片两组结构,由凸面相对,焦距相同的两个平凸透镜组成。

间距为两者焦距和的2/3-3/4,其色差略大,场曲显著减小,视场约为30-45度,目前已很少采用。

焦距: 4mm ~ 30mm, 出瞳距离0~ 5 mm,视场25~40度3,凯尔纳目镜是在冉斯登目镜的基础上发展而来,出现于1849年,主要改进是将单片的接目镜改为双胶合消色差透镜,大大改善了对色差和边缘像质的改善,视场达到40-50度,低倍时有着舒适的出瞳距离,所以目前在一些中低倍望远镜中广泛应用,但是在高倍时表现欠佳。

另外,凯尔纳目镜的场镜靠近焦平面,这样场镜上的灰尘便容易成像,影响观测,所以要特别注意清洁。

美国一家公司在凯尔纳目镜的基础上进一步改进,研制出了RKE目镜,其边缘像质要好于经典结构。

焦距: 6mm ~ 25mm, 出瞳距离5~14 mm,视场40~52度4,普罗素目镜又称为对称目镜。

由完全相同的两组双胶合消色差透镜组成,其参数表现与OL目镜相当,但具有更大的出瞳距离和视场,造价更低,而且适用于所有的放大倍率,是目前应用最为广泛的目镜,曾派生出多种改进型。

焦距: 3mm ~ 55mm, 出瞳距离5~46 mm,视场42~52度5,阿贝无畸变目镜(简称OR目镜)1880年由德国蔡司公司创始人之一的阿贝设计,为四片两组结构,其中场镜为三胶合透镜,接目镜为平凸透镜,该目镜成功的控制了色差和球差,并把鬼像和场曲降低到难以察觉的程度,它还具有40-50度的平坦视场和足够的出瞳距离,在各倍率都有良好表现,一直被广泛采用。

《应用光学》第12章 照相机和投影仪

《应用光学》第12章 照相机和投影仪
图12.12
机械补偿的变焦距物镜除了包含有作线性移动的变倍组以 外,还需有作非线性移动的补偿组。如图12.13所示。L1 是前固定组,L2是变倍组,L3是补偿组,L4是后固定组。
L2和L3组成了物镜的变焦部 分。当变倍组由左向右作线 性移动时,焦距由短变长, 同时像面发生位移。用补偿 组L3作相应的非线性移动, 使位移了 的像面经补偿组后 重新成在固定的位置上。总 的焦距变化是由变倍组和补 偿组同时移动的结果。变倍 组和补偿组的移动要匹配, 即两者的位置要一一对应。
另外,放大率、工作距离等也是投影系统的光学特性。 二、照明系统
1、临界照明
可使物面照度均匀化。图12.20所示为柯拉照明系统,它由两组 聚光镜L1和L2组成。光源通过L1成实像在L2的孔径光阑处,L1 的
图12.20
行光束。此时,孔径光阑是可调的,以控制物点成像光束孔径 角的大小,充分发挥物镜的分辨能力。视场光阑也是可调的, 以适应不同倍率物镜、目镜组合条件下,被照明视场大小变化 的要求;同时拦截系统中有害的杂散光,改善像面的对比度, 如图12.21所示。
隔一定距离的两个平面 A和A’之间,有两个位 置可使得两平面互为物 像关系,如图12.11所
示,其放大率分别为 和1/.即当一个位置成
缩小像时,另一位置成 放大像。而当透镜从位 置1移到位置2,放大率
图12.11
就在和1/ 之间连续变化。所以该透镜被称为变倍组或变
焦组。但只有一组透镜还不足以在满足变焦的同时满足其 他三个要求,所以就需要采取一些措施,这就是两组可移 动的透镜组,其中一组是变焦组,另一组是补偿组。如图 12.12所示
变焦物镜通常是按照系统中变焦透镜组的个数,以及是正 透镜组还是负透镜组的配置来分类的,如负-负型、负-正型 以及正-负-正型等。

大孔径摄影物镜课程设计

大孔径摄影物镜课程设计

大孔径摄影物镜课程设计一、课程目标知识目标:1. 让学生掌握大孔径摄影物镜的基本概念、原理及分类。

2. 了解大孔径摄影物镜在摄影中的应用及其对成像效果的影响。

3. 掌握大孔径摄影物镜的成像规律,能运用相关公式计算景深、焦距等参数。

技能目标:1. 培养学生运用大孔径摄影物镜进行拍摄的能力,提高摄影技巧。

2. 学会调整相机光圈、焦距等参数,以获得理想的成像效果。

3. 能够分析不同场景下大孔径摄影物镜的适用性,并灵活运用。

情感态度价值观目标:1. 培养学生对摄影艺术的兴趣和热情,激发创作潜能。

2. 培养学生勇于探索、勤于实践的精神,提高问题解决能力。

3. 增强学生对摄影器材的认识,培养正确的消费观念。

课程性质:本课程为摄影技术类课程,注重理论与实践相结合,以培养学生的实际操作能力和艺术素养为目标。

学生特点:学生为初中生,具备一定的摄影基础,对新鲜事物充满好奇,动手能力强,但理论知识相对薄弱。

教学要求:结合学生特点,注重启发式教学,引导学生主动探究,提高学生的实践能力和创新能力。

将课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. 大孔径摄影物镜的基本概念与原理- 摄影物镜的结构与功能- 大孔径摄影物镜的定义- 光圈与景深的关系2. 大孔径摄影物镜的分类与应用- 不同类型的大孔径摄影物镜特点- 大孔径摄影物镜在各类摄影中的应用案例3. 大孔径摄影物镜的成像规律与计算- 焦距、物距、像距的计算- 景深、超焦距的概念及其计算方法- 光圈值与曝光量的关系4. 实践操作与技巧- 相机设置与调整- 大孔径摄影物镜的使用技巧- 实际拍摄中的问题与解决方法5. 摄影作品分析与创作- 分析大孔径摄影作品的特点与美感- 创作具有个性化的摄影作品- 评价与鉴赏摄影作品的方法教学内容安排与进度:第一课时:大孔径摄影物镜的基本概念与原理第二课时:大孔径摄影物镜的分类与应用第三课时:大孔径摄影物镜的成像规律与计算第四课时:实践操作与技巧(室外实践)第五课时:摄影作品分析与创作本教学内容依据课程目标,结合教材内容进行选择和组织,注重科学性与系统性,旨在帮助学生掌握大孔径摄影物镜的相关知识,提高实践操作能力。

大视场大相对孔径水下专用摄影物镜的设计

大视场大相对孔径水下专用摄影物镜的设计

第38卷第4期2009年4月 光 子 学 报ACTA P HO TON ICA SIN ICAVol.38No.4April 20093国防科技重点实验室基金(51448030105ZK1801)资助Tel :02928888754828000 Email :minrycn @ 收稿日期:2007211206大视场大相对孔径水下专用摄影物镜的设计3谢正茂1,2,董晓娜1,陈良益1,余义德3,何俊华1(1中国科学院西安光学精密机械研究所,西安710119)(2中国科学院研究生院,北京100049)(391550部队,大连116011)摘 要:分析了大视场大相对孔径水下专用摄影物镜的设计特点.基于反摄远结构引入一个高次非球面设计了相对孔径为1/1.4,水下全视场66°,焦距11.85mm ,光谱响应范围0.48~0.60μm ,采用平面水密壳窗的水下专用摄影物镜.全视场M TF 在空间频率42lp/mm 时高于0.4.与相同技术要求下全部采用球面透镜的设计进行比较,表明该摄影物镜结构更简单,成像质量也更优异,能够满足深水微光摄影物镜对大视场、大相对孔径、小型化、轻量化的需求.关键词:水下摄影;大视场大相对孔径;反摄远;非球面;光学设计中图分类号:TN942 文献标识码:A 文章编号:100424213(2009)042891250 引言水下摄影技术诸如水下机器人视觉、水下电视是进行水下探测的基本手段,在国防、海洋开发与工程、水下考古等领域起着极其重要的作用并因此受到世界各国的广泛重视[123].由于摄影物镜物方水介质的影响使得地面上使用的光学系统经过简单防水密封后用于水下成像会遇到很多问题,比如像质恶化、视场损失等等.文献[4]中介绍几种地面使用光学系统用于水下成像时的改装方法,但这并不能彻底地消除水介质对光学系统成像质量的影响.为了解决这一难题人们设计了水下专用摄影物镜,这类镜头从设计之初就综合考虑了水介质的影响,即前透镜直接与水接触,因此像差可以校正到高质量地面镜头的水平.目前国内外公开报道的水下专用摄影物镜不具备大视场、大相对孔径兼有的特点,其相对孔径一般在1/2.8~1/2.0,水下全视场角低于40°,另外结构也较复杂,不但无法充分地利用水下光能,而且限制了观测范围的提高,很难满足目前深水微光摄影物镜对大视场、大相对孔径、小型化、轻量化的需求[527].本文分析了大视场大相对孔径水下专用摄影物镜的关键因素,设计了一个相对孔径为1/1.4,水下全视场角66°,焦距11.85mm 的水下专用摄影物镜.该物镜基于反摄远结构,结构更简单,成像质量更好.由8片(不包括平板水密壳窗)采用普通玻璃材料的透镜构成并引入了一个高次非球面.1 光学系统关键点分析1.1 光能衰减研究表明,水对光的强烈吸收和散射使得光能在水中按指数规律迅速衰减.水下不同深度的光照度可用下式来进行估算I =I 0e -k (λ)・z (1)式中I 为水下深度为z 处的照度,I 0为海面的光照度,z 为水下的深度,k (λ)为水衰减系数,它随波长λ的变化而变化.一般纯净海水对“蓝绿”光(0.48~0.57μm )具有相对较高的透过率,但水对光能的吸收也足以使光强每米衰减百分之四,相对而言水对红外及紫外光的吸引则更为强烈.正因为如此,水下光学系统的光谱适应范围一般也比较窄,从这个意义上来说有利于光学系统色差的校正,但是当自然光在水中衰减到一定程度以至于无法成像时必需要借助于水下辅助照明.由于e 光处于“蓝绿”光光谱范围之内,所以水下一般采用e 光消单色像差,而色差的校正要根据镜头的使用环境、深度、照明并结合水对光的传播特性进行合理选择.除了水对光的吸收特性之外,水对光的另外一个重要特性是散射.水中的悬浮颗粒以及微生物对光的散射包括前向散射和后向散射,前向散射会减小成像系统的作用距离,而后向散射则会降低成像的对比度使像面变得模糊不清[8].此外水的折射率、色散特性并不是常量,他们会随着深度、温度、盐度等环境因素的改变而变化,比如纯净水折射率为1.33,而一般海水的折射率为1.34,因此光学系统在设计过程中物方折射率的选择必须依据光学系统使用环境来确定.1.2 光学参量的确定水下专用成像物镜的光学参量主要有相对孔径光 子 学 报38卷D/f ′、视场角2ω、焦距f ′.由于水下光能衰减严重,必须保证目标及像面都有较高的照度才能得到比较理想的成像效果.鲁西莫夫[9]提出像面照度E i =πB 4(D f ′)2Tn 2w (2)式中B 为未衰减的照度,n w 为水的折射率,T 为水路径衰减系数.当B 、n w 、T 一定时像面照度与相对孔径D/f ′的平方成正比,相对孔径越大则像面照度越高,同时在焦距一定的前提下CCD 探测器的信噪比也会随之提高.因此,对于深水微光成像而言提高摄影镜头的相对孔径是非常有利也是非常有必要的,但是如果相对孔径达到1/1.4、1/1.2甚至更高则会给球差和彗差的校正带来极大的难度并导致结构更加复杂.当相对孔径确定之后则要进一确定视场2ω和焦距f ′.如图1,将光学系统视为理想光学系统,常用光学系统物方及像方介质均为空气,而水下光学系统物方介质为水,像方介质为空气.图1 光学参量Fig.1 Optical parameter假设镜头物方最短成像距离为L ,在该距离上要看清物高为2H 的目标,接收器件对角线长为2η′.则水下物方视场角2ω=2arctan (H/L )(3)焦距为[4]η′=-n w f ′tan ω(4)由式(4)可以求得镜头像方的参考焦距f ′=-η′/n w tan ω(5)1.3 光学非球面对于摄影物镜,为了在像面得到比较好的成像质量必须要校正七种像差,即球差、彗差、像散、场曲、畸变、轴向色差、垂轴色差.以上各像差的级数展开式为[10]球差:δL ′=A 1h 2+A 2h 4+A 3h 6+…(6)彗差:K ′S =B 1y h 2+B 2y h 4+B 3y 3h 2+…(7)像散:x ′t s =C 1y 2+C 2y 4+C 3y 6+…(8)场曲:x ′p =D 1y 2+D 2y 4+D 3y 6+…(9)畸变:δy ′z =E 1y 3+E 2y 5+…(10)轴向色差:ΔL ′FC =a 0+a 1h 2+a 2h 4+…(11)垂轴色差:Δy ′FC =b 1y +b 2y 3+b 3y 5+…(12)式中A ,B ,C ,D ,E ,a ,b 分别为级数展开式系数,h为光线的入射高度,y 为物高或视场角.式(6)至(12)中第一项为初级像差,其余高次项代表高级像差.单色像差中球差主要和通光口径h 有关,像散,场曲,畸变只与视场y 的大小有关,而彗差不仅与视场有关还和通光口径有关.对于小视场小相对孔径光学系统的像差只要消除初级像差即可,而大视场和大相对孔径水下专用摄影物镜中各种高级相差都非常显著,因此不仅要校正以上七种初级像差还要校正高级像差,比如高级球差、高级色差等等,这必然会导致光学系统过于复杂.同时对玻璃材料的选择也更加依赖于不常用且比较昂贵的镧系(La )玻璃,由此将带来诸多不良后果,比如光能损失、延长加工周期、提高生产成本等等.为了解决这一难题,在成像质量和结构简化之间取得兼顾,引入高次非球面无疑具有重要意义.高次非球面相对于球面而言具有很多不可比拟的优势,其面形由高次多项式决定,各点处的曲率不同,可以用于校正球差、彗差、像散、场曲等像差,从而提高相对孔径,扩大视场角,减少玻璃片数.伴随着非球面计算辅助设计、加工、检验技术的飞速发展,非球面技术已经广泛应用于军用、民用光学系统中,如空间光学系统,高质量数码摄像镜头等等.在ZEMAX 程序中偶次非球面方程为z =cr 21+1-(1+k )c 2r2+α1r 2+α2r 4+α3r 6+α4r 8+α5r 10+ (13)c 为顶点曲率,k 为二次曲线常量,α1、α2、α3、α4、α5为非球面系数.其中第一项为一般二次曲面方程,第二项为二次抛物面方程.在高次非球面的实际应用过程,一般到用到10次项就可以满足要求,如果用到更高次项则会给非球面的加工、检验带来更大的困难.2 设计实例设计一个相对孔径为1/1.4,水下全视场角66°的水下专用摄影物镜,接收器件为感光面尺寸15.3×12.3mm ,最小像元12μm 的大面阵CCD.该光学系统的相对孔径和视场都很大,给高级球差和彗差、轴外像差如场曲、像散、畸变的校正带来了极大的困难.同时光学系统又不能太复杂,否则不仅会增加光能的损失而且装配准确度也更难控制.在简化系统结构的前提下,必须通过合理选择初始结构,优化玻璃组合,在适当位置引入非球面来保证光学系统的质量.2.1 设计结果该光学系统以e 光(0.546μm )消单色像差,2984期谢正茂,等:大视场大相对孔径水下专用摄影物镜的设计0.48μm 和0.6μm 消色差,并且在边缘视场的渐晕系数设为0.3,用到玻璃材料有K9、ZK7、ZK9、ZF6、ZF7、ZBA F1.光学系统结构如图2,其中物方介质为海水,折射率为1.34.考虑到结构设计、镜头调焦方式等因素,选择平板玻璃作为水密壳窗.图2 光学系统结构Fig.2 Layout of optical system水密壳窗的材料为石英玻璃(J GS1).这种材料具有优良的光谱特性和化学稳定性,耐酸性能好,比重小,膨胀系数低,抗压强度高,作为水密壳窗材料是非常合适的.参考以往经验取水密窗口的厚度为9mm ,口径为Φ65mm.水密壳窗距离第二片透镜的间隔为5mm.整个系统总长度即水接触面到成像面之间的距离为163.4mm ,后工作距为27.95mm.光学系统基于反摄远结构[11]采用了8片镜片(不包括平板水密壳窗).前负组由第二、三、四片透镜组成,其总光焦度φ1=-0.0367.由于前组中两个负透镜的发散作用使得大角度入射的光线在前组内的入射高度不断地减小,再加上弯月形厚透镜的作用很好地控制了前组产生的轴外像差,如像散,场曲等等.另外,由于该光学系统的视场角高达66°,因此前负组的第一片透镜要尽量弯向光阑,这样不仅有利于系统像差的校正,同时也可以避免边缘视场的光线进入光学系统时发生掠射.通常反摄远物镜的后正组光线入射角度会由于前组的发散作用而大大地减小,因此后组所产生的轴外像差相对要小,因而其重点在于较正由于大相对孔径所带来的高级球差及补偿前组产生的轴外像差.本系统中后正组由五片单透镜组成,其总光焦度φ2=0.0267,光阑位于后正组第一片镜片之后.为了着重控制光学系统轴上点初级球差和高级球差,后组采用了多片正负分离透镜,各单透镜都做了适当的弯曲.为了进一步提高水下光能的利用率,降低光学透镜对光的吸收、反射必须要简化结构,减少透镜数量,因此在后组第二片透镜的第二面引入一个高次非球面,其玻璃材料为Z BA F1,非球面方程如式(13),式中c =0.004,k =0,α1=0,α2=1.319458e 2005,α3=1.034049e 2008,α4=-4.689700e 2011,α5=3.124368e 2013.高次非球面的使用大大加强了后组对前组轴外像差的补偿能力,在满足设计指标的前提下不仅使系统的体积、重量得到大大地减小,而且还提高了成像质量.需要注意的是,为了防止CCD 表面玻璃窗口的反射导致在像面产生一个明显的晕斑,光学系统最后一个光学面要尽量避免向CCD 表面弯曲,即该表面的曲率应为负值.2.2 质量评价该光学系统是一个CCD 摄影光学系统,成像质量的评价主要有光学调制函数(M TF )、几何包围能量、畸变曲线等等.考察的视场为轴上点(0ω)、轴外视场(0.707ω)及边缘视场(1ω).图3为其M TF.由于CCD 最小像元尺寸d =12μm ,故奈奎斯特频率N =1/2d =1/(2×12)=42lp/mm.当N =42lp/mm 时,0ω时M TF 值达到0.76;0.707ω时,子午场和弧矢场平均M TF 为0.53;1ω时,M TF 高于0.4.各视场的子午场和弧矢场成像质量差别不大,比较均匀.当光学系统调焦时可以使各个视场的成像质量都能同时得到改善.图3 光学系统调制函数Fig.3 M TF of the optical system几何包围能量如图4.其中横坐标为离点列图质心的距离,纵坐标是横坐标数值确定的半径内所占能量的比例.本光学系统0ω,0.707ω以及1ω在以12μm 为半径的圆内所包含能量的比例均高于85%.如图5,光学系统最大光学畸变为-6.1%.由于本光学系统不用于测量用途,并且畸变并不影响成像清晰度,因此该光学畸变是可以接受的.图4 几何包围能量Fig.4 Geometry encircled energy398光 子 学 报38卷图5 畸变曲线Fig.5 Curves of the distortion值得指出的是,本光学系统用于水下这种特殊环境,与其他地面光学系统相比,在项目实施过程中遇到的主要难点在于防水密封,解决防水密封目前的技术已经非常成熟,并且在工程化的过程中被证明是行之有效的[12213].同时,随着国内非球面加工、检验技术的日益成熟[14215],特别是计算机控制光学表面成形法(Comp uter cont rolled Optical Surfacing ,CCOS )的不断发展和完善有力地保证了本光学系统的实用性和可行性.2.3 设计比较按照相同的技术指标设计了另一个光学系统,并全部采用球面透镜,其光学结构图和传递函数如图6和图7.该光学系统由11片玻璃组成(包括水密窗口),其中有六片采用了不常用的镧系(La )玻璃.0ω与0.707ω的M TF 值相差将近0.5,边缘视场的像散也比较厉害.当光学系统作一定量离焦时各视场成像质量变化差异比较大.因此如果要进一步提高成像质量可能还要增加镜片,但增加镜片对水下成像来说是非常不利的.首先水下光学系统面临的最大问题是光能不足,如果增加镜片则会增加对光能的吸收、反射使得像面照度更低,镜头内部产生杂散光的可能性也大大地增加了.其次,光学系统的安装准确度更加难以控制.相比而言,在大视场大相对孔径水下光学系统中采用非球面不仅能够简化结构、减少玻璃片数,而且还能够大大地提高成像质量.图6 全球面透镜光学系统Fig.6 Optical system only with sphericallens图7 全球面透镜系统M TFFig.7 MFT of optical system only with spherical lens3 结论基于反摄远结构,采用一个高次非球面,并选择常用玻璃使水下摄影物镜在获得水下66°大视场的同时还具有1/1.4的大相对孔径,与相同技术要求下全部使用球面透镜的设计相比不仅成像质量更加优异,而且结构也更为简单.值得注意的是随着非球面加工与检验技术的提高,通过增加非球面数以及优化玻璃组合,可以使水下专用摄影物镜的视场和相对孔径得到进一步的提高,而结构却可以更加简化.参考文献[1] ANDREW J W ,J O HN D P ,et al .The development of acompact underwater stereoscopic video camera [C ].S PI E ,1997,3012:92295.[2] TRIMBL E G M.Area reconnaissance ,object relocation ,andclassificationusingcooperatingautonomousunderwatervehicles[C].S PI E ,1999,3711:1952202.[3] SHIRO K ,HIDEK S ,et al.High 2speed photography ofunderwater sympat hetic detonation of explosives [C ].S PI E ,2001,4183:7602770.[4] SUN Chuan 2dong ,L I Chi ,ZHAN G Jian 2hua ,et al.Opticaldesign of lens for underwater imaging system [J ].Optics andPrecision Engi neeri ng ,1998,6(5):5211.孙传东,李驰,张建华,等.水下成像镜头的光学设计[J ].光学精密工程,1998,6(5):5211.[5] J O HN L ,KEN W ,CL IFF D.Liquid 2filled underwater cameralens system[C].S PI E ,1998,3482:6982702.[6] XI Li 2feng ,CAI Jian 2guo ,CH EN G Lian 2yi ,et al .Research ofunderwater television camera [J ].J ournal ofS hanghaiJ iaotong Universit y ,1997,31(6):1292132.奚立峰,蔡建国,陈良益,等.水下电视摄像系统的研制与开发[J ].上海交通大学学报,1997,31(6):1292132.[7] CL IN TON E ,REKHA D.Tale of two underwater lenses[C].S PI E ,1991,1537:2032214.[8] SUN Chuan 2dong ,CH EN G Lian 2yi ,GAO Li 2min ,et al.Theimaging distance of t he low 2light 2level high 2speed photo 2electricity system underwater [J ].A cta Photonica S inica ,2000,29(2):1852189.4984期谢正茂,等:大视场大相对孔径水下专用摄影物镜的设计孙传东,陈良益,高立民,等.水下微光高速光电成像系统作用距离的研究[J].光子学报,2000,29(2):1852189.[9] MODUNCE L E.Underwater photography[M].ZHAN GWen2di,transl.Beijing:Science Press,1979.默顿斯L E.水中摄影学[M].张闻迪,译.北京:科学出版社, 1979.[10] WAN G Zhi2jiang.Manual of optical technology[M].Beijing:China Machine Press,2006.王之江.实用光学技术手册[M].北京:机械工业出版社,2006.[11] SUN Xin,BA I Jia2guang,WAN G Zhon2hou.Design and studyof t he dome2screen projector optical system[J].A ctaPhotonica S inica,2006,35(11):176621769.孙鑫,白加光,王忠厚.球幕光学系统的设计和研究[J].光子学报,2006,35(11):176621769.[12] H E J un2hua,ZH EN Li,SHI Xian2li,et al.Down2hole opticalwell2logging video system[J].Opto2elect ronic Technolog y&I nf ormation,2004,17(6):76279.何俊华,郑黎,侍相礼,等.深井光学成像测井系统[J].光电子技术与信息,2004,17(6):76279.[13] SUN Chuan2don,L I Chi,CEN G Lian2yi,et al.The key point sof designing underwater TV camera system[J].A ct aPhotonica S inica,1998,27(5):4622466.孙传东,李驰,陈良益,等.水下电视系统研制中的技术难点及解决方法[J].光子学报,1998,27(5):462466.[14] PAN J un2hua.The design,manufacturing and test of opticalaspheric surface[M].Shuzhou:Shuzhou University Press,2004.潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004.[15] GOU Zhi2yong,WAN G Jiang,WAN G Chu,et al.Thesummary of aspheric optical design technology.[J].L aserJ ournal,2006,27(3):122.勾志勇,王江,王楚,等.非球面光学设计技术综述[J].激光杂志,2006,27(3):122.Design for Special U nder w ater Photography Objective Lens withWide Angle and Large R elative ApertureXIE Zheng2mao1,2,DON G Xiao2na1,CH EN G Lian2yi1,YU Y i2de3,H E J un2hua1 (1X i′an I nstitute of O ptics and Precision Mechanics,Chinese A cadem y of S ciences,X i′an710119,China)(2Graduate Universit y of Chinese A cadem y of Sciences,B ei j ing100049,China)(3N o.91550Unit,Dalian,116000,China)Received date:2007211206Abstract:The characteristics of design for special underwater p hotograp hy objective lens wit h wide angle and large relative apert ure are analyzed.Based on reverse–telep hoto st ruct ure wit h a high2order asp heric surface and flat waterproof interface,an underwater p hotograp hy objective,which t he relative apert ure is1/ 1.4,field of view in underwater is66°,focal lengt h is11.85mm,and spect rum bandwidt h is fro m0.48to 0.60μm,is designed.The M TF of t he whole field of view at42lp/mm is greater t han0.4.Co mpared wit h t he lens all wit h sp herical surface at t he same specification,t his p hotograp hy objective lens is simpler in st ruct ure but better in imaging quality,and it can meet t he requirement s of wide angle,large relative apert ure,miniat urization and light weight for weak illumination p hotograp hy objective lens in deep water. K ey w ords:Underwater p hotograp hy;Wide angle and large relative apert ure;Reverse2telep hoto; Asp heric;Optical designXIE Zheng2mao was born in1982.Now he is p ursuing his Master′s Degree in Xi′an Instit uteof Optics and Precision Mechanics,Chinese Academy of Sciences.His main interest s focus onoptical design.598。

物镜三要素

物镜三要素

物镜三要素
摄影物镜的三个重要参数是焦距、视场角和相对孔径。

其中相对孔径影响像面的照度和分辨率。

对摄影系统而言,焦距越长,景深越小;入瞳直径越大,景深越小;拍摄距离越远,景深越大。

为了保证测量精度,测量仪器一般采用物方远心光路。

由于采用物方远心光路时,孔径光阑与物镜的像方焦平面重合,无论物体处于物方什么位置,它们的主光线是重合的,即轴外点成像光束的中心是相同的。

这样,虽然调焦不准,也不会产生测量误差。

学术论文:【毕业论文】双筒棱镜望远镜的物镜和目镜的选型和设计

学术论文:【毕业论文】双筒棱镜望远镜的物镜和目镜的选型和设计

【毕业论文】双筒棱镜望远镜的物镜和目镜的选型和设计毕业论文(设计)课题名称:双筒棱镜望远镜的物镜和目镜的选型和设计题目类型:毕业设计学生姓名:院(系):物理科学与技术学院专业班级:指导教师:辅导教师:时间:目录毕业设计〔论文〕任务书I毕业设计〔论文〕开题报告Ⅳ毕业设计〔论文〕指导教师审查意见Ⅺ毕业设计〔论文〕评阅教师评语Ⅻ毕业设计〔论文〕辩论会议记录ⅩⅢ中文摘要ⅩⅣAbstract ⅩⅤ1 引言12 目视光学系统成像原理12.1 目视光学系统的特点12.2 望远镜系统成像原理12.3 显微镜系统成像原理23 光学自动设计方法33.1光学设计根本步骤33.2光学自动设计概述44 望远镜系统的选型与设计54.1 设计技术要求54.2 系统外型结构参数的理论计算64.3 望远镜结构元件的选型94.3.1 望远镜物镜的选型94.3.2 望远镜目镜的选型94.3.3 转向棱镜的选型104.4 应用TCOS光学设计软件对结构元件进行设计12 4.4.1 物镜设计过程124.4.2 目镜设计过程154.5 设计图纸184.5.1 系统结构图纸184.5.2 系统元件设计图纸185 显微镜系统的选型和设计185.1 设计技术要求185.2 系统外型结构参数的理论计算195.3 显微镜结构元件的选型205.3.1 显微镜物镜的选型205.3.2 显微镜目镜的选型205.4 应用TCOS光学设计软件对结构元件进行设计215.4.1 物镜设计过程215.4.2 目镜设计过程245.5 设计图纸285.5.1 系统结构图纸285.5.2 系统元件设计图纸286 设计体会28参考文献30致谢31附录32XIVXIII长江大学毕业设计〔论文〕任务书学院〔系〕物理科学与技术学院专业应用物理学班级应物2042学生姓名指导教师/职称 /教授⒈毕业设计(论文)题目双筒棱镜望远镜的物镜和目镜的选型和设计⒉毕业设计(论文)起止时间:2021年1月~2021年6月⒊毕业设计(论文)所需资料及原始数据〔指定教师选定局部〕参考文献:康玉思, 刘伟奇, 冯睿. Cook 结构补偿镜的球面折反型望远系统[J]. 光学精密工程, 2021,3(15):303~307杨荣仙. 变倍目镜的设计[J] . 光学技术 , 1992,6:19~30常军, 翁志成, 姜会林等. 长焦距空间三反光学系统设计[J]. 光学精密工程, 2001,9(4):315~318潘君骅. 成像光学工程面临的光学问题[J]. 中国工程科学. 2000,2(3):32~35姜守信,郭霞, 闫惠民.非共轴反光镜程序的设计[J]. 黑龙江电子技术, 1996,2:7~8赵延仲,宋丰华,孙华燕.高斯光束的激光变焦扩束光学系统设计[J]. 装备指挥技术学院学报, 2021,18(5):85~89涂德华. 共轴光学系统镜框结构设计[J]. 光学仪器, 2021,29(1):52~56袁旭沧. 光学设计[M]. 北京: 科学出版社,1980张楠, 卢振武, 李凤有. 衍射望远镜光学系统设计[J]. 红外与激光工程, 2021.2 36〔1〕:106-108尚华, 刘钧, 高明等. 头盔式单目微光夜视仪中的光学系统设计[J]. 应用光学, 2021.5 28〔3〕:292-296安连生. 应用光学[M]. 北京: 北京理工大学出版社, 1998姚多舜, 梁宏君. 一个可完全自动绘图的光学设计软件——OCAD光学设计软件包[J]. 应用光学, 2004.3 25〔2〕:28-35石顺祥, 张海兴, 刘劲松. 物理光学与应用光学[M]. 西安: 西安电子科技大学出版社,1999杨近松. 光学镜头机械结构参数化设计系统的开发[J] . 光学精密工程, 1999,127〔6〕:6-9高晓斌, 余晓芬. 一种并行共焦显微镜的设计与研制[J]. 光学仪器, 2021.12 27〔6〕:72-76赵丽萍, 赵子英, 邬敏贤等. 折射混合望远镜的设计制作及实验[J]. 光学技术, 1999.5 3:28-31郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 1999魏英智, 张琳. 光圈性能测试系统的总体设计[N]. 科技导报, 2021.5 25[5]:53-55姚启钧. 光学教程[M]. 北京: 高等教育出版社, 2002刘钧, 高明. 光学设计[M]. 西安: 西安电子科技大学出版社,2021⒋毕业设计(论文)应完成的主要内容望远镜是重要的光学仪器之一,随着科学技术的飞速开展,望远镜逐步由简单的单筒望远镜开展到双筒望远镜、天文望远镜、射电望远镜。

双高斯镜头的优化设计_

双高斯镜头的优化设计_

双高斯镜头的优化设计作者:徐延亮雷娟来源:《中国基础教育研究》2013年第07期【摘要】随着毕业生就业竞争激烈化,学生不在满足于仅仅学习课本上的理论知识,迫切的需要参与实践,在这种情况下,将光学设计软件ZEMAX引入工程光学教学是大有益处的。

本文以典型的双高斯物镜优化设计为例,经过初始数据录入、优化及分析像差等光学设计的相关步骤,最后使物镜性能得到了提升,使学生获得处理实际光学设计问题的初步的能力。

【关键词】双高斯物镜工程光学 ZEMAX 光学设计引言。

对于工程光学,如何使学生产生学习兴趣?这是教学所面临的难题。

而将ZEMAX软件引入教学解决了这一难题。

大量科研论文是以ZEMAX为平台进行光学设计的[1-4],本文以双高斯物镜优化设计为例,这种物镜的设计,对教学来说是很典型和实用的。

1888年,Alvan Clark 发现使用两对高斯结构,背对背反方向组合后,也可以成为一种有用的镜头,这就是最初的双高斯结构概念。

后来经过Paul Rudolph进一步改进,从而使物镜由原来的4群4片变成4群6片。

二十世纪二十年代,Taylor Hobson在此基础上研发的f/2的高速电影机镜头(Speed Panchro),成为了好莱坞电影厂的标准配备。

到了21世纪的今天,各家光学厂商关于双高斯镜头设计登记在案的专利已超过300件。

本文对双高斯物镜的光学要求为:35mm胶片,使用可见光(F,d,C),焦距f′=100mm,相对孔径D/f′=1/2,场曲小于0.7mm,畸变小于1%,渐晕不小于80%, RMS弥散斑小于30微米。

1.输入初始物镜数据。

设计物镜的第一步是获得物镜的初始数据,通常使用的方法是:(1)查询相关专利进行放缩;(2)使用初级像差理论解出的结果。

本文使用前一种方法,引用美国专利U.S.Patent 2532752(1949)为初始结构,此镜头焦距和相对孔径与本文要求相同,可以给优化带来方便。

在软件LensVIEW找出此专利,并在File下拉菜单中选Create ZEMZX File选项保存。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学课程论文题目成绩专业课程名称、代码年级姓名学号时间任课教师三片摄影物镜的设计一、设计任务的具体指标及其要求系统的焦距f=100mm,D/f=1/5,视场角2W=40O。

该物镜对d光校正单色像差,对F、C光校正色差。

二、实验原理光学设计必须校正光学系统的像差,但既不可能也不必要把像差校正到完全理想的程度,因此需要选择像差的最佳校正,也需要确定校正到怎样的程度才能满足使用要求,即确定像差容限。

对光学系统成像性能的要求主要有两个方面:第一方面是光学特性,包括焦距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小。

像差指在光学系统中由透镜材料的特性或折射(或反射)表面的几何形状引起实际像与理想像的偏差。

理想像就是由理想光学系统所成的像。

实际的光学系统,只有在近轴区域以很小的孔径角的光束所生成的像才是完善的。

但在实际应用中,须有一定大小的成像空间和光束孔径,同时还由于成像光束多是有不同颜色的光组成的,同一介质的折射率随颜色而异。

因此实际光学系统的成像具有一系列缺陷,这就是像差。

像差的大小反映了光学系统质量的优劣。

几何像差主要有七种:其中单色光像差有五种,即球差、彗差、像散、场曲和畸变;复色光像差有轴向色差和垂轴色差两种。

在实际的光学系统中,各种像差是同时存在的。

它影响了光学系统成像的清晰度、相似性和色彩逼真等,降低了成像质量。

1、球差轴上物点发出的光束,经光学系统以后,与光轴夹不同角度的光线交光轴于不同位置,因此,在像面上形成一个圆形弥散斑,这就是球差。

在孔径角很小的近轴区域可以得到物点成像的理想位置l′,任意孔径角U的成像光线偏离理想像点与光轴相交的位置为L′。

我们把轴上物点以某一孔径角U 成像时,其像方截距L′与理想像点的位置l′之差称为轴上点球差,又称为轴向球差,用如图2-1表示。

球差也可在垂轴方向度量,称为垂轴球差。

图2-1 光学系统的球差不同孔径角U(或孔径高度h)入射的光线有不同的球差值,如果轴上物点以最大孔径角Um成像,其球差称之为边光球差,如果以孔径角0.707U成像,则相应的球差称之为0.707带球差。

大部分光学系统只能对某一孔径高度校正球差,一般是对边光校正球差,这样的系统称之为消球差系统。

2、彗差由位于主轴外的某一轴外物点,向光学系统发出的单色圆锥形光束,经该光学系统折射后,若在理想像平面处不能结成清晰点,而是结成拖着明亮尾巴的慧星形光斑,则此光学系统的成像误差称为慧差。

彗差是轴外像差的一种,它破坏了轴外视场成像的清晰度。

彗差值随视场的增大而增大,故对于大视场的光学系统必须予以校正。

由于慧差是垂轴像差,且彗差大小与光束宽度、物体大小、光阑位置、光组内部结构(透镜的折射率、曲率、孔径等)有关。

改变透镜的形状或组合,可较好地消除彗差。

如能对该透镜消除球差,则彗差亦得到改善。

另外当系统结构完全对称,孔径光阑置于系统的中央,且物像放大率为-1时,整个光束结构关于系统的中心点对称,如图2-2所示,系统前半部产生的慧差与后半部产生的慧差绝对值相同、符号相反,慧差完全自动消除。

图2-2 全对称结构彗差自动消除3、像散由位于主轴外的某一轴外物点,向光学系统发出的斜射单色圆锥形光束,经该光学系列折射后,不能结成一个清晰像点,而只能结成一弥散光斑,则此光学系统的成像误差称为像散。

像散是一种轴外像差,使得轴外成像的像质大大地下降。

与彗差不同,像散的大小只与视场角有关,与孔径是没有关系的。

即使光圈开得很小,在子午和弧矢方向仍然无法同时获得非常清晰的像。

在广角镜头中,由于视场角比较大,像散现象就比较明显。

我们在拍摄的时候应该尽量使被摄体处于画面的中心。

对于像散的校正,有以下方法:可以控制视场,小为宜;改变球面曲率;适当透镜材料;合理设置光阑的位置。

4、场曲垂直于主轴的平面物体经光学系统所结成的清晰影像,若不在一垂直于主轴的像平面内,而在一以主轴为对称的弯曲表面上,即最佳像面为一曲面,则此光学系统的成像误差称为场曲。

对于场曲的校正,可以采用弯月型厚透镜,或者采用正负透镜分离的方法。

5、畸变被摄物平面内的主轴外直线,经光学系统成像后变为曲线,则此光学系统的成像误差称为畸变。

畸变是指物所成的像在形状上的变形。

畸变并不会影响像的清晰度,而只影响像与物的相似性。

这是畸变与球差、慧差、像散、场曲之间的根本区别。

由于畸变的存在,物方的一条直线在像方就变成了一条曲线,造成像的失真。

造成畸变的根本原因是镜头像场中央区的横向放大率与边缘区的横向放大率不一致。

畸变与镜头的光圈F数大小无关,只与镜头的视场有关。

畸变与其他像差不同,它仅由主光线的光路决定,引起像的变形,并不影响成像清晰度。

6、色差多数情况下,物体都以复色光成像,白光包含了各种不同波长的单色光,光学材料对不同波长的谱线有不同的折射率。

当白光经过光学系统时,系统对不同波长有不同的焦距,各谱线将形成各自的像点,导致一个物点对应有许许多多不同波长的像点位置和放大率,这种成像的色差异我们统称为色差。

色差是描述两种波长成像点的差异,它仅出现于有透射元件的光学系统中。

按照理想像平面上像差的线大小与物高的关系,可分为两种:描述两种波长像点位置差异的称为纵向色差(又称轴向色差或位置色差),通常对轴上点计算;描述两种波长像点高度或放大率差异的称横向色差(又称垂轴色差或倍率色差),通常对轴外点计算。

(a)位置色差(又称纵向色差):与物高无关的像差,即不同波长的光线经由光学系统后会聚在不同的焦点。

位置色差的形成:同一透镜对不同波长的色光成像的焦距不同,物距一定,焦距不同像距就不同,因此一个物点形成很多像点。

位置色差就是轴上的物点以复色光束成像时产生的像差。

位置色差的校正:为了消色差,应使两透镜的光焦度符合相反,即正负透镜胶合;两透镜的材料不能相同。

(b)横向色差(又称倍率色差):与物高一次方成正比的像差。

它使不同波长光线的像高不同,在理想像平面上物点的像成为一条小光谱。

倍率色差的原因:对轴外点来说,两种色光的横向放大不一定相同,不同色光的距不同时,其横向放大率也不相等,因而像也不相等。

三、三片摄影物镜的初始结构参数的设定1、入瞳直径的设定点击“Gen”按钮打开“General”窗口,在“General”系统通用数据对话框中设置孔径和玻璃库。

在孔径类型(Aperture Type:)中选择“Entrance Pupil Diameter”,并根据设计要求在“Aperture Value:”输入“20”;如图3.1所示。

图3.1 入瞳直径的设定2、视场角的设定点击“Fie”按钮打开“Field Data”窗口,设置视场分别为0°、14°、20°,如图3.2所示。

图3.2 视场角的设定3、工作波长的设定点击“Wav”按钮,或同时按下快捷键“Ctrl+W”打开“Wavelength Data”窗口,设置“Select→F,d,C[Visible]”,自动输入三个特征波长。

如图3.3所示。

图3.3工作波长的设定4、系统初始结构参数的设定打开Zemax软件,在数据编辑器(Lens Data Editor)中输入三片摄影物镜的初始结构参数,如图3.4所示。

三片摄影物镜的系统初始结构图如3.5所示。

图3.4 三片摄影物镜的系统初始结构3.5三片摄影物镜的系统初始结构图四、三片摄影物镜的优化1、确定自变量把除了虚设的光阑平面(第三个面)以外的所有6个面的曲率半径都作为自变量加入校,薄透镜的厚度不作为自变量,把两个空气间隔作为自变量,如第二个面以及第五个面所对应的厚度。

2、评价函数的设定评价函数有六个初级像差和一个实际的像差构成,即选择SHPA、COMA、ASTI、FCUR、AXCL、LACL、DIST,同时将焦距的要求加入到评价函数中。

在这里“SPHA”代表初级波球差,“COMA”代表初级波慧差,“ASTI”代表初级波的像散,“FCUR” 代表初级波场曲,“DIST”代表实际波的最大视场相对的畸变,“AXCL”相当于初级位置色差,“LACL”相当于初级倍率色差。

图4.1是三片摄影物镜未优化的初值的设定。

图4.2是最终优化后的评价函数的值。

图4.1评价函数的初始设定图4.2最终优化后的评价函数3、最终优化后的结构参数和结构图图4.3是最终优化后的三片摄影物镜的结构参数图,图4.4是最终优化后的结构图。

图4.3最终优化后的三片摄影物镜的结构参数图4.4最终优化后的三片摄影物镜的结构图4、三片摄影物镜的球差和位置色差曲线图4.5(a) 图4.5(b)图4.5(a)三片摄影物镜的初始的球差和位置色差曲线图4.5(b)三片摄影物镜的最终优化出的球差和位置色差曲线5、三片摄影物镜的像散、场曲和畸变曲线图4.6(a)图4.6(b)图4.6(a)三片摄影物镜的初始的像散、场曲和畸变曲线图4.6(b)三片摄影物镜的最终优化出的像散、场曲和畸变曲线6、倍率色差曲线图4.7(a)图4.7(b)图4.7(a)三片摄影物镜的初始的倍率色差曲线图4.7(b)三片摄影物镜的最终优化出的倍率色差曲线7、三片摄影物镜的横向像差曲线图4.8(a)图4.8(b)图4.8(a)三片摄影物镜的初始的横向像差曲线图4.7(b)三片摄影物镜的最终优化出的横向像差曲线8、三片摄影物镜系统的公差见附件二五、心得体会通过对三片摄影物镜的玻璃的曲率半径、空气间隔进行了优化,设计出了一个三片摄影物镜,这个三片摄影物镜基本满足设计要求。

在本次的设计中遇到了许多问题,尤其在评价函数的各个功能的作用和怎么影响其各种曲线图。

上课看着老师操作容易,自己动起手来就很难。

三片摄影物镜的设计花费了大量的时间,通过评价函数的调整,一步步改善,最终满足实验的要求。

通过这次设计,我学会了如何使用ZEMAX软件进行优化设计,并体会到ZEMAX 的诸多优点。

这一软件集成了包括光学系统定义、设计、优化、分析、公差等诸多功能,并对软件的应用原理有了一定的了解。

相关文档
最新文档