论证阿贝尔定理错误
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论证阿贝尔定理的错误
作者:江西临川江国泉
阿贝尔,伽罗瓦之所以会错,是因为他始终没有走出一个怪圈,而我找到了坚锐无比的法宝既二个数学定理,将这个怪圈捅破了。
阿贝尔定理认为,五次和五次以上的一元高次方程不存在一般的代数根式求解公式。这是一个错误的结论。首先,他论证的方法是错误的。是片面的。阿贝尔,伽罗瓦都是通过预解式的这种方法来论证的,这个出发点就是一个重大错误。
阿贝尔定理错误的主要原因是:
1、阿贝尔定理证明者伽罗瓦,证明过程中使用了模糊未知的一系列预解式作证据,就连预解式个数都不知道多少。请问法律上能随便指定一个不清楚事情真相的人来作证吗?
2、伽罗瓦人为地将所有预解式系数主观判定为已知,而他却根本不知道高于五次的一元方程预解式系数究竟是多少,是多解性还是唯一性,结果造成所有预解式组成的方程组中未知数不够,使其它未知数取值范围缩小,造成只有特殊方程才能有解的假像。
3、群论有自身的适用范围。比如卡丹公式中,如果平方根式里开方根得出的是虚数,结果却反而说明这个方程有三个实数解。用群论如何解释呢?相反,我的换元配方法却能说明这个问题。
利用数学新定理,发明一元高次方程求根公式通用推导方法
1、二个数学新定理介绍
定理A、同解方程式必可求定理:指任意二个一元高次方程之间,只要存在相同的解,则相同解方程式必可求出。
利用价值:如果我们要推导出一个系数为已知数的一元高次方程求根公式,我们可以先求出和此方程有同解的一元高次方程,只要求出的同解方程不是原方程的整倍数,根据同解方程式必可求定理,就可推导出方次更低的同解方程式来。
定理B、同解方程判别定理:指任意二个一元高次方程之间,只要它们的系数有一对应的固定函数关系(即方程系数判别式等于零),它们之间必存在相同的解。这种函数关系(即方程系数判别式等于零)可用韦达定理推导出来。
利用价值:1》、根据方程系数判别式等于零,则二个方程之间必存在相同解。因此,我们如果要设置一个和原方程有相同解的方程出来,只要确保它们的方程系数符合判别式等于零,这个方程必与原方程有同解。
2》、利用此定理可以对多元高次方程组快速消元。这个应用在此不作详细介绍。
2、同解方程式必可求定理论证过程
同解方程式必可求出定理
定理:任意二个一元高次方程之间只要存在同解,必可推导出它们的同解方程式。
论证过程
由于论证过程具有明显的规律性,为了简便说明,在此以方程x3+ax2+bx+c =0与方程x4+mx3+nx2+px+q=0若有公共相等根存在来推导它们的公解方程:
由于x4+mx3+nx2+px+q=0的左边x4+mx3+nx2+px+q总可可化成二部分,即一部分可以整除另一方程左边x3+ax2+bx+c的一部分和不能整除x3+ax2+bx+c的另一部分,因此方程又化成:
(x3+ax2+bx+c )(x+m-a)+(n+a2-am-b)x2+(p+ab-bm-c)x+q+ac -cm=0 ;的形式.
由于它们存在同解,它们的公共根必须代入二个方程都成立,当:x2的系数(n+a2-am-b)≠0时因为这个公共根代入(x3+ax2+bx+c )(x+m-a)等于零,所以代入(n+a2-am-b)x2+(p+ab-bm-c)x+q+ac-cm必等于零。否则它不是公共根,因此公共根必存在在方程:(n+a2-am-b)x2+(p+ab-bm-c)x+q+ac-cm=0之中,如果已知二个方程存在2个同解根,则方程:(n+a2-am-b)x2+(p+ab-bm -c)x+q+ac-cm=0,就是二个方程的同解方程式。
当x2的系数(n+a2-am-b)=0,而x系数(p+ab-bm-c)≠0则二个方程之间的同解方程必为:(p+ab-bm-c)x+q+ac-cm=0 ;
当(n+a2-am-b)=0又(p+ab-bm-c)=0时二个方程的公共根方程为:
x3+ax2+bx+c =0(说明:前题已告之二个方程有公共根)
当x2的系数(n+a2-am-b)≠0,而已知前题是二个方程只存在一个公共根时,公共根方程必须继续推导下去。
前面推导已经知道,公共根即存在于方程x3+ax2+bx+c =0中,又存在于方程(n+a2-am-b)x2+(p+ab-bm-c)x+q+ac-cm=0中,而方程:(n+a2-am-b)x2+(p+ab-bm-c)x+q+ac-cm=0除以(n+a2-am-b)变成:
x2+【(p+ab-bm-c)/(n+a2-am-b)】x+(q+ac-cm)/(n+a2-am-b)=0 ;
方程x3+ax2+bx+c =0:的左边可化成二部分即:能整除x2+【(p+ab-bm-c)/(n +a2-am-b)】x+(q+ac-cm)/(n+a2-am-b)的一部分和不能再整除x2+【(p +ab-bm-c)/(n+a2-am-b)】x+(q+ac-cm)/(n+a2-am-b)余数部分,即方程x3+ax2+bx+c =0化成如下形式:
{x2+【(p+ab-bm-c)/(n+a2-am-b)】x+(q+ac-cm)/(n+a2-am-b)}{x+【a-(p+ab-bm-c)/(n+a2-am-b)】}+{b-【(q+ac-cm)/(n+a2-am-b)】-(p+ab-c-bm)【a(n+a2-b-cm)-(p+ab-c-bm)】/(n+a2-b-am)2}x+c-【(q+ac-cm)】【a(n+a2-am-b)-(p+ab-bm-c)】/(n+a2-am-b)2=0 ;
同前理公共根应存在在余数等于零的方程中。即方程:
{b-【(q+ac-cm)/(n+a2-am-b)】-(p+ab-c-bm)【a(n+a2-b-cm)-(p+ab-c-bm)】/(n+a2-b-am)2}x+c-【(q+ac-cm)】【a(n+a2-am -b)-(p+ab-bm-c)】/(n+a2-am-b)2=0 ;
因此说,只要二个方程存在同解,就可以推算出它们的同解方程式。
总结规律:
任意两个一元高次方程之间如果它们之间存在公共相等根,要推导出它们的公共根方程来,都可采取把较高次方程的左边拆成二部分,一部分能整除较低次方程左边的那部分,和另一部分即余数部分。由于二个方程的公共解必存在于余数等于零的方程中,这样多次反复拆分,就必可求出公解方程式了。
3、同解方程判别定理的论证过程:
同解方程判别定理
定理:任意二个一元高次方程之间,只要它们的系数有一对应的固定函数关系(即方程系数判别式等于零),它们之间必存在相同的解。这种函数关系(即方程系数判别式等于零)可用韦达定理推导出来。
论证过程:
由于证明这个结论具有明显的规律性,所以,我以方程x3+ax2+bx+c=0和方程x2+mx+n=0为例来找推导规律。首先推导它们的判别式。假设方程x2+mx+n=0的二个根分别为x1 ,x2如果二个方程之间有公共等根存在,则将x1 ,x2分别代入方程x3+ax2+bx+c=0必有:
(x13+ax12+bx1+c)(x23+ax22+bx2+c)=0展开变成:
x13x23+a(x13x22+x12x23)+b(x13x2+x1x23)+c(x13+x23)+a2(x12x22)+ab(x12x2+x1x22)+ac(x12+x22)+b2(x1x2)+bc(x1+x2)+c2=0 ;