《气体动力学基础》PPT课件
合集下载
《气体动力学基础》课件

气体状态方程
理想气体状态方程 真实气体状态方程 压缩因子
pV = nRT pV = ZnRT Z = pV/nRT
通过状态方程计算气体的压力、体积和温度之间的关系,深入理解气体的行为和性质。
绝热过程
绝热过程定义
在没有热量交换的情 况下,气体的温度和 压力发生变化。
绝热气体定律
pV^γ = 常数,其中γ 为气体比热容比。
2
绝热气体的等容过程
忽略热量交换的影响,讨论绝热气体的等容过程。
3
等容过程的性质
研究等容过程中气体的性质变化和热力学参数的关系。
气体动力学中的速度、密度、压力
速度概念
学习气体分子的平均速度、最 概然速度和均方速率。
密度计算
探索气体的密度定义和计算方 法,并分析密度对气体性质的 影响。
压力测量
介绍不同压力单位和测量方法, 了解压力与气体动力学的关系。
3 解析气体流动
通过研究气体的速度、压力和密度等参数,揭示气体在空气中的传播和扩散规律。
分子运动模型
1 碰撞理论
分析气体分子之间的碰撞,解释气体压力和 温度的关系。
2 动能理论
揭示分子的运动能量如何影响气体的性质和 状态变化。
3 分子均方速率
4 布朗运动
推导和计算气体分子的平均速度和速率分布。
探索分子在气体中的随机运动,为扩散和浓 度分布的研究提供基础。
绝热线和绝热 曲线
绝热过程在叠加状态 空间中形成特定形状 的线和曲线。
绝热耦合
将气体动力学与热力 学相结合,研究绝热 过程中的能量转换。
等温过程
1
等温过程定义
保持气体温度恒定,改变气体的压力和
理想气体的等温过程
最新2019-第16次课第六章气体动理学基础-PPT课件

dN 4 ( m)3 2e2m kTv2v2dv
N 2kT
2.麦克斯韦速率分布函数:
f (v )
dN
4(
m
) e v 3 2
m v2 2kT
2
N dv 2kT
二.麦克斯韦速率分布律
3.麦克斯韦速率分布曲线:
0.5
f(v) 4 ( m)3 2e2m kTv2v2
2kT
m
6.4 能量均分定理
一.自由度 i 确定物体空间位置所需的独立坐标数
» 单原子分子:i = t = 3 » 刚性双原子分子:i = t + r = 5 » 刚性三原子及多原子分子:i = t + r = 6 » 非刚性双原子分子: i = t + r + s = 6 » 非刚性多原子分子:i = t + r + s
f(v )
f(v )
2) f (v )dv 1 0
3) f ( v ) 极大值对应的
速率
vvdv v p
v
最概然速率 v p
v p 附近单位速率区间的分子数
占总分子数的百分比最大
二.麦克斯韦速率分布律
1.分布律
在平衡态下,气体分子速率在 v 到v dv 区间
的分子数占总分子数的百分比 (概率)
6.5 麦克斯韦速率分布律
2. 速率分布矩方图:
N N v
用面积代表 N N
6.2% 12.8%
22.7%
6.2%
4.0%
0 90 140 190 240 290 340 390 v
2.速率分布矩方图:
1)每个小长方形面积代表某速率区间的分子数 占总分子数的百分比N/N
N 2kT
2.麦克斯韦速率分布函数:
f (v )
dN
4(
m
) e v 3 2
m v2 2kT
2
N dv 2kT
二.麦克斯韦速率分布律
3.麦克斯韦速率分布曲线:
0.5
f(v) 4 ( m)3 2e2m kTv2v2
2kT
m
6.4 能量均分定理
一.自由度 i 确定物体空间位置所需的独立坐标数
» 单原子分子:i = t = 3 » 刚性双原子分子:i = t + r = 5 » 刚性三原子及多原子分子:i = t + r = 6 » 非刚性双原子分子: i = t + r + s = 6 » 非刚性多原子分子:i = t + r + s
f(v )
f(v )
2) f (v )dv 1 0
3) f ( v ) 极大值对应的
速率
vvdv v p
v
最概然速率 v p
v p 附近单位速率区间的分子数
占总分子数的百分比最大
二.麦克斯韦速率分布律
1.分布律
在平衡态下,气体分子速率在 v 到v dv 区间
的分子数占总分子数的百分比 (概率)
6.5 麦克斯韦速率分布律
2. 速率分布矩方图:
N N v
用面积代表 N N
6.2% 12.8%
22.7%
6.2%
4.0%
0 90 140 190 240 290 340 390 v
2.速率分布矩方图:
1)每个小长方形面积代表某速率区间的分子数 占总分子数的百分比N/N
气体动力学基础-PPT课件

2. 运动方程
dp
vdv 0
2
dp v 2 const
§6.1 .4 一元等熵气流的基本方程
3. 能量方程
v h const 2
c p p p h c T p R 1
2
p v const 1 2
2
§6.1 .4 一元等熵气流的基本方程
c 1 sin v Ma
1 sin (
1 ) Ma
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若产生微弱扰动的是一根无限长的 直的扰动线,则微弱扰动将以圆柱面 波的形式以当地声速向外传播。 • 当来流的速度变化时,同样会出现类 似于微弱扰动波的四种传播情况。这 时,原来的马赫锥成为马赫线(也称 马赫波)
1 1
cA [( c d ) c v ] [ p ( p d )] A p
1
cdv dp 1
c dp d
微弱扰动的传播速度等于压强对密度的导数开方。
§6.1 微弱扰动的一维传播 声速 马赫数
二、声速
声速即声音传播的速度,声音是由微弱压缩波和 微弱膨胀波交替组戍的,所以声速可作为微弱扰动波 传播速度的统称。
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若气流是非直匀的超声速流,即流线是 弯曲的,流动参数也是不均匀的,则当一 个微弱扰动波发生之后,它不仅随气流沿 着弯曲的路线向下游移动,而且它相对于 气流的传播速度也随当地的声速而异。
§6.2 微弱扰动在空间的传播
马赫锥
• 如果微弱扰动源以亚声速、声速或超声速 在静止的气体中运动,则微弱扰动波相对 于扰动源的传播,同样会出现图9-1所示 的情况。
dp
vdv 0
2
dp v 2 const
§6.1 .4 一元等熵气流的基本方程
3. 能量方程
v h const 2
c p p p h c T p R 1
2
p v const 1 2
2
§6.1 .4 一元等熵气流的基本方程
c 1 sin v Ma
1 sin (
1 ) Ma
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若产生微弱扰动的是一根无限长的 直的扰动线,则微弱扰动将以圆柱面 波的形式以当地声速向外传播。 • 当来流的速度变化时,同样会出现类 似于微弱扰动波的四种传播情况。这 时,原来的马赫锥成为马赫线(也称 马赫波)
1 1
cA [( c d ) c v ] [ p ( p d )] A p
1
cdv dp 1
c dp d
微弱扰动的传播速度等于压强对密度的导数开方。
§6.1 微弱扰动的一维传播 声速 马赫数
二、声速
声速即声音传播的速度,声音是由微弱压缩波和 微弱膨胀波交替组戍的,所以声速可作为微弱扰动波 传播速度的统称。
§6.2 微弱扰动在空间的传播
马赫锥
• 倘若气流是非直匀的超声速流,即流线是 弯曲的,流动参数也是不均匀的,则当一 个微弱扰动波发生之后,它不仅随气流沿 着弯曲的路线向下游移动,而且它相对于 气流的传播速度也随当地的声速而异。
§6.2 微弱扰动在空间的传播
马赫锥
• 如果微弱扰动源以亚声速、声速或超声速 在静止的气体中运动,则微弱扰动波相对 于扰动源的传播,同样会出现图9-1所示 的情况。
《气体动力学》课件-绪论

声速
166x Galileo Galilei 认识声速和光速差别
1500 Leonardo Da Vinci, 发现声音以波的形式传播
1640 Marin Mersenne 首次测量声音在空气中的传播速度
1660 Robert Boyle 发现声音传播必须有介质
1687 Newton 推导声速关系式;Maxwell 推导声速关系式
1910 瑞利和泰勒
激波的不可逆性
1933 泰勒和马科尔
圆锥激波的数Biblioteka 解气体动力学基础_113
1.3 气体动力学发展简史
第三阶段:气体热力学发展阶段(20世纪30年代中50年代末)
1935年召开“航空中的高速流动问题”学术大会,表明流体力学先驱者对高 速问题的关注和重视。之后,由于以喷气飞机、涡轮喷气发动机、火箭 发动机等为背景的工程问题发展的需求,将空气动力学与热力学相结合, 这个时期为气体热力学的发展阶段,其特点是在完全气体假设下的气体 动力学理论和实验逐渐成熟
气体动力学基础_1
11
1.3 气体动力学发展简史
第一阶段:气体动力学基础阶段
1869 1987
1881
1883 1887 1899 1905 1902
朗金/兰金(英) 雨贡钮/许贡纽(法)
描述大波幅强扰动波-激波的兰金(英)-许贡纽 (法)理论
贝特洛Berthelot(法) 马兰德Mallard
实验发现管中火焰传播速度高达1-3.5 km/s (超音速3-10倍)的超音速燃烧现象,爆轰波 =激波+燃烧波
气动是在经典流体力学的基础上,结合热力学和化学动力 学发展起来(气动热力学),可分为
亚音速流动,跨音速流动,超音速流动 高超音速流动
《气体动力学》课件-膨胀波与激波

及波AB、BC、A’B、B’C 的波角
气体动力学基础_1
29
3.5 弱波的反射与相交
膨胀波在自由边界的反射
自由边界:运动介质和其它介质之间的切向交界面
边界特性:接触面两边的压强相等
C’
A’
⑤
p2 p3 pa p4 pa p5 p6 pa
Ma1
②
max
()
2
k k
1 1
1
Ma=1 O
k 1.4, max 13027
气体动力学基础_1
20
13027
3.3 弱波的普朗特-迈耶流动解
Prandtl-Meyer 流动——超声速气流流过外凸壁
右伸波: (Ma) C2
(Ma) 1 (Ma1 ) C2
➢ 对于任意两个马赫数Ma1和Ma2 的膨胀过程,有
➢ 超声速气流每经过一步微弱的膨胀,气流的流动方向、马赫 数和压强等诸气流参数都将产生微小的变化
➢ 把原来的连续膨胀分得愈细,数目愈多,计算出来的结果就
气体愈动准力学确基础_1
27
3.5 弱波的反射与相交
膨胀波在直固壁上的反射
B
①
i
②
Ma1
Ma2
1 2
③
Ma3
3
A
C
➢ 膨胀波在固壁上反射为膨胀波,一般反射角 γ 并不等于入射角i
7
3.1 弱扰动的传播规律
4. 气流运动——超声速
➢马赫角 μ 的大小,反映了受扰
4c
动区域的大小
V>c
3c 2c c
sin1 1
Ma
O
O1
O2
O3
O4
Vn Vt
V
气体动理论基础课件

y
l1
A2
? iy
0
? iz
? A1 l2 ?i
? ix
x l3
z 10
第3章 气体动理论基础
1.一个i分子碰撞一?次给 A1的冲量
y
i分子速度为 ? i? ix
A2
器壁受的冲量为: 2m? ix
0
2. dt时间内i的分子对A1的冲量
么,这两个系统彼此也处于热平衡。 (热平衡定律 )。
热平衡定律说明,处在相互热平衡状态的系统必 定拥有某一个共同的宏观物理性质。 定义: 处在相互热平衡状态的系统所具有的共同的 宏观性质叫 温度。
? 一切处于同一热平衡态的系统有相同的温度 2.温标
温度的数值表示法。
摄氏温标、热力学温标
T ? t ? 273.715
第3章 气体动理论基础
三.理想气体状态方程
pV
?
M RT M mol
?
nRT
克拉珀龙方程
Mmol为气体的摩尔质量; M为气体的质量;
R为普适气体常量, R=8.31(J/mol -1﹒K-1);
?平衡态还常用状态图中的一个点来表示 (p -V图、p-T图、V-T图)
p A(p1,V1,T1)
B(p2,V2,T2)
4
3.热力学系统的描述
第3章 气体动理论基础
宏观量: 平衡态下用来描述系统宏观属性的物理量。 描述系统热平衡态的相互独立的一组宏观量 ,叫系
统的 状态参量 。
如:气体的 p、V、T
一组态参量
描述 对应
一个平衡态
态参量之间的函数关系 称为状态方程 (物态方程 )。
f ( p,V ,T ) ? 0
微观量: 描述系统内个别微观粒子特征的物理量。 如: 分子的质量、 直径、速度、动量、能量 等。
气体动力学ppt

从能量观点出发,分析研究物态变化过程中热功转
换的关系和条件 . 特点 1)具有可靠性; 2)知其然而不知其所以然;
3)应用宏观参量 .
大学物理热学
第一章气体动理论
2. 气体动理论 —— 微观描述 研究大量数目的热运动的粒子系统,应用模
型假设和统计方法 .
特点 1)揭示宏观现象的本质; 2)有局限性,与实际有偏差,不可任意推广 . 两种方法的关系
热力学
相辅相成
气体动理论
大学物理热学 1. 宏观量 2. 微观量 说明:
第一章气体动理论
热学的基本概念
宏观描述和微观描述是描述同一物理现象的两种方 法,因此宏观量和微观量间有一定的内在联系。 宏观量总是微观量的统计平均值。 如气体的压力是单位时间内全部 气体分子与单位面积器壁二、几个常量 1.摩尔质量M (每摩尔物质的质量) 单位: kg·mol1
M 分子量 10
3
/ mol
氧气(O2):M = 32 103;氢气(H2):M = 2 103;
2. 摩尔数 ν
ν m M
ν N NA
氮气(N2):M = 28 103;氩气(Ar):M = 40 103。 (常用) 3. 阿伏伽德罗常数 NA ——1mol 任何气体所含分子数。 NA=6.021023 mol1 4.玻耳兹曼常量 K k NA k =R NA=1.381023 J·K1
R
大学物理热学 三、理想气体状态方程(2)
PV N kT P nkT
第一章气体动理论
式中
证明:
n
N V
表示气体分子数密度。
N N
A
(1)
m M
流体力学第十二章气体动力学基础.ppt

第1页
退出
返回
第十二章 气体动力学基础
第一节 压力波的传播,音速
压力波是机械波。机械波的产生必须具备两个条件:一是要有作机械
振动的物体,称为波源;二是要有传播机械振动的介质,如水,空气等。 在流体中存在压力扰动就会产生压力波。在可压缩流体中,压力扰动
是以一定的速度在流体中传播的,而在不可压缩流体中,压力扰动瞬间就 传播到整个流场。这是可压缩流体与不可压缩流体最本质的差别。如图 12.1所示,长直管中有两个静止的活塞 A 和 B 。当活塞A 受到外力 F作 用时,它右边的流体压力就要升高p。如果活塞 A 、B 之间充满的流体是 不可压缩的液体,则活塞 B 会立即开始跟着运动。但若其中的流体是可压 缩的气体,那么靠近活塞 A 的那层气体将首先受到挤压,产生位移和加速 度,其压力和密度也将分别增加 p、 值。
围绕压力分界面取一控制面,A为控制面面积,由连续方程可得
aA d a dwA
(12.1)
ad dw 0
第4页
退出
返回
第十二章 气体动力学基础 第一节 压力波的传播,音速
动量方程为 pA p dpA aAa dw a
即
dp adw 0
第3页
退出 返回
第十二章
气体动力学基础 第一节 压力波的传播,音速
而扰动未波及处,流体仍是静止的,压力和密度仍为 p、 。如果原来管内 的流体不是静止的,而是以均匀速度 w 向右流动,那么加一微弱扰动后的 情形就如图12.2(b)所示。这时微弱扰动在流速为 w 的流体中以相对速度a 传播,且传播的绝对速度与流体运动的速度 w 有关。在顺流方向,微弱扰 动的绝对传播速度为 a w;在逆流方向,微弱扰动的绝对传播速度为 a w。显然在上述两种情况下,管内流体的运动都是不稳定的。 为了方便分析,设想将坐标系固连在以速度 a 或 w a 前进的压力分界面上, 这样相对该坐标来说,流动就是稳定的,如图12.2(c)所示。站在相对坐 标上的观察者看到流体稳定地从右向左流动,穿过压力分界面时,速度由 a 降至 a dw ,而压力由 p 升高到p dp ,密度 由增加为 d 。
气体动力学基础分析ppt课件

写成
dA(Ma2 1)dv
A
v
14.10.2020
37
10.3.2 气流速度与断面间的关系
dA(Ma2 1)dv
A
v
①Ma<1,v<c,亚声速流动。此时Ma2–1<0,则有
dA dv Av
当dA>0(或<0)时,dv<0(或>0)。与不可压缩流体类似。
②Ma>1,v>c,超声速流动。此时Ma2–1>0,则有
k p0 k pv2
k10 k1 2
kk1R0Tkk1RT v22
i0
i
v2 2
又c kRT 称为当地声速,c0 kRT0 称为滞止声速。
则有
c02 c2 v2 k1 k1 2
14.10.2020
28
IV. 关于滞止状态下的能量方程的说明
i. 等熵流动中,各断面滞止参数不变,其中T0、i0、 c0反映了包括热能在内的气流全部能量,p0反映 机械能;
ii. 等熵流动中,气流速度v增大,则T、i、c沿程降 低;
iii. 由于v存在,同一气流中,c c0,cmax=c0。 iv. 气流绕流中,驻点的参数就是滞止参数;
v. 摩阻绝热气流中, p0沿程降低; vi. 摩阻等温气流中,T0沿程变化。
14.10.2020
29
②最大速度状态及其参数
Ⅰ最大速度状态
略去二阶小量,则有
d dv c
对控制体建立动量方程,且忽略切应力作用
p ( A p d ) A p c [c A ( d ) c v ]
即
dp cdv
14.10.2020
23
声速公式
c 2 dp d
气体动力学部分清华大学课件

ρ
dp
T∇S = ∇h − 1 ∇p
ρ
h0
=
V2 2
+24
h
(二)均匀来流绝热流动(另外还满足Crocco 定理条件)
沿流线伯努力积分:
V2 2
+
γ
γ
−1
p
ρ
+
Π
=
V2 2
+
h
+
Π
=
h0
+
Π
=
c(l)
h0 = const
均匀来流:
全流场:h0 = const
∇h0 = 0
均匀来流绝热流动Crocco定理:
3. 小范围内的大气动力学:温度梯度较大
4. 高温气体动力学:大的温度梯度
3
§7.1 高速空气动力学的基本特征
特点:速度大,特征尺度小
⎧ ∂ρ
⎪ ⎪
∂t
+
∇
⋅ (ρV
)
=
0
⎪⎨ρ
⎪
DV Dt
=
ρ
f
+∇⋅P
⎪ ⎪ ⎩
D Dt
(
e
+
V2 2
)
=
f
⋅V
+
1
ρ
∇ ⋅ (P ⋅V ) + qR
+
1
ρ
∇ ⋅ (λ∇T )
p′ = f1(x) 初始压力扰动
右行平面波
dx dt
=
−a0
t
t=3
t=2
t=1
t=0 x
p′ = f2 (x) 初始压力扰动
左行平面波 14
6)音速
dp
T∇S = ∇h − 1 ∇p
ρ
h0
=
V2 2
+24
h
(二)均匀来流绝热流动(另外还满足Crocco 定理条件)
沿流线伯努力积分:
V2 2
+
γ
γ
−1
p
ρ
+
Π
=
V2 2
+
h
+
Π
=
h0
+
Π
=
c(l)
h0 = const
均匀来流:
全流场:h0 = const
∇h0 = 0
均匀来流绝热流动Crocco定理:
3. 小范围内的大气动力学:温度梯度较大
4. 高温气体动力学:大的温度梯度
3
§7.1 高速空气动力学的基本特征
特点:速度大,特征尺度小
⎧ ∂ρ
⎪ ⎪
∂t
+
∇
⋅ (ρV
)
=
0
⎪⎨ρ
⎪
DV Dt
=
ρ
f
+∇⋅P
⎪ ⎪ ⎩
D Dt
(
e
+
V2 2
)
=
f
⋅V
+
1
ρ
∇ ⋅ (P ⋅V ) + qR
+
1
ρ
∇ ⋅ (λ∇T )
p′ = f1(x) 初始压力扰动
右行平面波
dx dt
=
−a0
t
t=3
t=2
t=1
t=0 x
p′ = f2 (x) 初始压力扰动
左行平面波 14
6)音速
清华大学流体力学课件-6-气体动力学基础

1 M
气体动力学基础
13
§6.1 基本方程和基本概念
依赖域:影响空间某点流动的区域称为该点的依赖域。
M 1
依赖域
影响域
P
超音速气流中 P 点的影响域和依赖域
亚音速:椭圆型方程,必须给出全部的边界条件 超音速:双曲型方程,只需给出上游边界的条件
2017年春-本科生-流体力学
气体动力学基础
u 1
p0 / 0 u c0u*
t
0
u x
u
x
0
c0 p0 / 0
x Lx*
t L t* c0
*
t*
0
L / c0
0
u* x*
c0
L
*u*
x*
0 c0
L
0
* u* 2 *u* 0
p h x a0t h x a0t
2017年春-本科生-流体力学
气体动力学基础
9
§6.1 基本方程和基本概念
方程的解是两族简单波的叠加
右传波 f x a0t :函数 f 沿 x a0t C 不变, 左传波 f x a0t :函数 f 沿 x a0t C 不变,
声速是状态参数,声波的传播是等熵过程(理想、绝热);
在匀速运动的惯性坐标系中,声速仍为 a dp d s
在不均匀气流中,每个点上流动参数不同,声速也不同; 声速与流体的压缩性: 压缩性越强声速越小
不可压缩流体 a
常比热完全气体: p C dp p RT d
基本内容
1. 基本方程和基本概念 2. 完全气体等熵流动的主要性质 3. 激波理论 4. 超声速气体绕凸角流动 5. 完全气体在变截面绝热管内的准一维定常
《气体动力学基础》课件

热力学基本定律
总结词
热力学基本定律是描述热能和其他能量之间转换的基本定律,它包括第一定律和第二定 律。
详细描述
热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量不能被创造或消 灭,只能从一种形式转换成另一种形式。热力学第二定律,也称为熵增定律,指出在自
然发生的反应中,总是向着熵增加的方向进行,即向着更加混乱无序的状态发展。
分子运动论基础
总结词
分子运动论基础是描述气体分子运动的基本理论,它包括分子平均自由程和分 子碰撞理论。
详细描述
分子平均自由程是指气体分子在两次碰撞之间所经过的平均距离。分子碰撞理 论则描述了气体分子之间的碰撞过程和碰撞频率,是理解气体流动和传热现象 的基础。
热传导基本定律
总结词
热传导基本定律是描述热量传递规律的基本方程,它包括导热系数和傅里叶定律。
它涉及到气体流动的基本原理、气体 与物体的相互作用、以及气体流动过 程中的能量转换和传递等。
气体动力学的发展历程
气体动力学的发展始于17世纪,随着科学技术的进步,气体 动力学的研究范围和应用领域不断扩大。
20世纪以来,随着航空航天技术的发展,气体动力学的研究 更加深入和广泛。
气体动力学的研究内容
06 气体动力学在工程中的应用
航空航天领域的应用
飞机设计
气体动力学在飞机设计中发挥着 至关重要的作用,涉及到机翼设 计、尾翼设计、进气道和喷管设 计等。
航天器设计
航天器在发射、运行和返回过程 中都受到气体动力学的影响,如 火箭推进、航天器在大气层中的 飞行和着陆等。
飞行器性能优化
通过研究气体动力学,可以优化 飞行器的性能,提高其飞行速度 、航程和安全性。
能源领域的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘性系数的获取方法:试验;查流力手册;经验公式
混气的粘性系数即速度梯度
➢ 有多种气体组成的混合气体
Xi Mi i Xi Mi
➢ 速度梯度
dV d dy dt
意义为剪切变形角速度
基本概念
➢ 附面层(边界层)的概念 ➢ 理想流体
各种流体的切应力的斜率
塑性流体 牛顿流体 涨塑性流体 假塑性流体
➢ 譬如看看河中的流水,观察水面上漂浮的树叶等物的 速度差别可以发现靠岸处的水流就比河中心的水流慢 些。这是典型的粘性影响.
➢ 摩擦盘也是粘性力在起作用。
粘性产生的物理原因
➢ 分子不规则运动的动量 交换
➢ 分子间的吸引力
y
v≈v∞
v∞
F
δ
F
牛顿内摩擦定律
F dV S dy
dV dy
➢ 上式适合于流体作层状运动的情况; ➢ 当dV/dy=0,或 =0时, =0; ➢ 切应力的方向为:当流体层被快层带动时,
的方向与运动方向一致,当流体层被慢层阻 滞时,的方向与运动方向相反。 ➢ 上式称为牛顿内摩擦定律。遵守牛顿内摩擦 定律的流体称为牛顿流体,如水、空气和气 体等本质上都是牛顿流体;明胶,沥青等为非牛顿 流体。
被激发,但是化学反应还末开始, Cp, Cv, k 是温度的函数,Cv= Cv( T) , Cp = Cv+R= Cp ( T) ➢ 空气2000 < T <9000度时 氧分子和氮分子先后产生离解;此外空气还产生化 学变化 ➢ T>9000度,会发生电离。
完全气体比热比的变化
Cv R
k 1.4
k k(T )
气体动力学基础
国家重点教材配套教学课件
西 北 工 业 大 学 动 力 与 能 源 学 院
掌握知识,轻松学习!
引言
➢气体动力学发展的四大阶段
第一阶段(气体动力学 的基础阶段)
➢ 工程应用背景 :蒸汽机和爆炸技术 ➢ 1870年郎金——雨贡纽导出了激波关
系 ➢ 1882年瑞典工程师发明了拉伐尔喷管 ➢ 1887年马赫导出了马赫角关系 ,之后
影响粘性系数因素
➢ 与流体有关
➢ 与温度有关:液体:T升高,粘性系数减小;
➢
气体:T升高,粘性系数增大;
➢ 与压强有关:P不很高时,影响小,可忽略;
P很高时,需要考虑影响。
对液体,按下式修正;
e p
p
0
液压用油 =1/432
0 是压强为0.1013MPa时的粘性系数; p 是压强为p时的粘性系数;
➢作业 10分 ➢期末考试 80分 ➢平时成绩:10分(课堂主动发言
者,酌情加分,累计最高10分)
《气体动力学基础》参考书
➢ 流体力学{美}W.F.修斯 J.A. 布赖顿著
➢ 气体动力学基础 潘锦珊 主编
➢ 热力学与气体动力学基础 王新月 主编
➢ 流体力学基础
邢宗文 主编
➢ MODERN COMPRESSIBLE FLOW
600K
T 2000K
完全气体
➢ 量热完全气体 ➢ 热完全气体
k, Cp, Cv 为常数; k k ( T ) ,C p C p ( T ) ,C v C v ( T )
两种发动机的比较
强大的工具—CFD
数值模拟
管内流动非定常虚拟演示 ➢马赫数 ➢压强
第一章流体的基本属性
➢ 1.1 流体的基本属性 ➢ 1.2 流体的压缩性与膨胀性 ➢ 1.3 流体的粘性 ➢ 1.4 高温气体的属性 ➢ 1.5 流体的导热性
§1.1 流体的基本属性
连续介质模型
➢ 定义:把气体看作是连绵不断地充满整个空间 的、不留任何空隙的连续介质。
dv/dy
§1.3流体的导热性
• 导热的三种方式:热传导;热对流;热辐射
傅立叶定律
q T
n
(w m 2)
式中,n 是表面的法线方向
T n 是沿法线方向的温度梯度
是导热系数
§1.4高温气体的属性
➢ 当T<600 800度时,空气可以认为是完全气体。 ➢ 2.600K 800K < T < 2000K时,分子振动自由度
分子间隙
连续介质
§1.2 流体的粘性
➢ 虚拟演示
粘性演示
PLAY
➢ 定义:在流动的流体中,如果各流体层的流速 不相等,那么在相邻的两流体层之间的接触面 上,就会形成一对等值而反向的内摩擦力(或 粘性阻力)来阻碍两气体层作相对运动。即流 体质点具有抵抗其质点作相对运动的性质,就 称为流体的粘性。
粘性举例
➢ 1935年召开讨论了关于“航空中的高速 流动问题”的学术大会,表明了流体力 学先驱者对高速问题的关注和重视。之 后,由于以喷气飞机、涡轮喷气发动机、 火箭发动机等为背景的工程问题发展的 需求,将空气动力学与热力学相结合, 这个时期为气体热力学的发展阶段,其 特点是在完全气体假设下的气体动力学 理论和实验逐渐成熟。
最早推导出激波的科学家
朗金
流体运动的旋转和速度势概念的 起源
• 斯托克斯与亥姆霍兹
《气体动力学基础》的内容简介
➢1.流体的基本属性及热力学特性 ➢2.流体所遵循的运动规律 ➢3.流体与流体,流体与物体之间的
相互作用(作用力)
本课程的特点
➢理论性强 ➢概念多 ➢内容多 ➢公式多
教学要求及考核方式
第四阶段:气体热化学和CFD的发
展阶段(20世纪50年代末至今)
➢ 为了解决航天飞行器、高速飞行器的气动力 和气动热问题,解决高温流动问题,必须将 化学热力学、空气动力学、化学动力学及统 计物理学等相结合。其研究背景为空间技术 和战略武器。目前高超声速飞行器的研究仍 然是世界各国研究的热点.计算流体动力学 的发展以惊人的速度取得了举世瞩目的成就。 因而可以借助计算机解决历史上遗留下来的 一些难题,从而进一步解决与目前发展相适 应的一系列复杂问题.
John D. Anderson ,Jr.
几种构形的发动机 及其工作原理
涡轮喷气发动机:进气道.压气 机.燃烧室.涡轮.尾喷管
各部件的作用:
涡轮风扇发动机 ➢一路通过内涵道的压气机.燃烧 室.涡轮.尾喷管 ➢另一路通过外涵风扇.外涵尾喷管
脉冲爆震发动机:应用于火箭、应用于飞机
冲压发动机: 进气道,燃烧室.尾喷管
斯托道拉、普朗特和迈耶先后实验研 究了拉伐尔喷管的流动特性。
第二阶段(可压缩流体动力学 的发展阶段)
➢ 1908年普朗特和迈耶提出了激波和膨胀 波理论
➢ 1910年瑞利和泰勒研究得出了激波的不 可逆性;
➢ 1933年泰勒和马科尔提出了圆锥激波的 数值解
第三阶段:气体热力学的发展阶 段(20世纪30年代中50年代末)