河南省洛阳市2018-2019学年八年级(上)期末数学试卷(含解析)

合集下载

[试卷合集3套]洛阳市2018年八年级上学期期末经典数学试题

[试卷合集3套]洛阳市2018年八年级上学期期末经典数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数是无理数的是( )A .3.14B .-πC .0.21D .210 【答案】B【分析】根据无理数的定义判断.【详解】A 、3.14是有限小数,是有理数,故不符合题意;B 、-π是无限不循环小数,是无理数,故符合题意;C 、0.21是无限循环小数,是有理数,故不符合题意;D 、210=10,是有理数,故不符合题意;故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.2.若三角形的两边分别是4cm 和5cm ,则第三边长可能是( )A .1cmB .4cmC .9cmD .10cm【答案】B【分析】根据三角形的三边关系,求出第三边的取值范围,然后得到可能的值.【详解】解:∵三角形的两边分别是4cm 和5cm ,设第三边为x ,则有 5454x -<<+,∴19x <<,∴第三边可能为:4cm ;故选:B .【点睛】本题考查了三角形的三边关系,解题的关键是掌握三角形的三边关系进行解题.3.正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数的y x k =-图象大致是( ) A . B . C .D .【答案】A【分析】根据(0)y kx k =≠的函数值y 随x 的增大而减小,得到k <0,由此判定y x k =-所经过的象限为一、二、三象限.【详解】∵(0)y kx k =≠的函数值y 随x 的增大而减小,∴k <0,∴y x k =-经过一、二、三象限,A 选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b 中,k >0时图象过一三象限,k <0时图象过二四象限;b >0时图象交y 轴于正半轴,b <0时图象交y 轴于负半轴,掌握特点即可正确解答.4.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、不是轴对称图形,是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D 、是轴对称图形,符合题意.故选D .【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.若实数m 、n 满足|m ﹣3|+(n ﹣6)2=0,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .15C .12或15D .9【答案】B 【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:|m ﹣3|+(n ﹣6)2=0,∴m ﹣3=0,n ﹣6=0,解得m =3,n =6,当m =3作腰时,三边为3,3,6,336+=,不符合三边关系定理;当n =6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=1.故选:B .【点睛】本题考查了等腰三角形,灵活根据等腰三角形的性质进行分类讨论是解题的关键.6.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于4,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .4PQ >B .4PQ ≥C .4PQ <D . 4PQ ≤ 【答案】B【分析】根据角平分线的性质可知点P 到OB 边的距离等于4,再根据点到直线的距离垂线段最短即可得出结论.【详解】解:∵点P 在∠AOB 的平分线上,∴点P 到OA 边的距离等于点P 到OB 边的距离等于4,∵点Q 是OB 边上的任意一点,∴4PQ ≥(点到直线的距离,垂线段最短).故选:B .【点睛】本题考查角平分线的性质,点到直线的距离.理解角平分线上的点到角两边距离相等是解题关键. 7.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作弧,分别交AB 、AC 于E 、F 两点,再分别以,E F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线AG ,交CD 于点H ,若ACD ∠120=︒,则AHD ∠的度数为( )A .150︒B .115︒C .120︒D .160︒【分析】先由平行线的性质得出,180CHA HAB ACD CAB ∠=∠∠+∠=︒,进而可求出CAB ∠的度数,再根据角平分线的定义求出HAB ∠的度数,则CHA ∠的度数可知,最后利用180AHD CHA ∠=︒-∠求解即可.【详解】∵//AB CD∴,180CHA HAB ACD CAB ∠=∠∠+∠=︒120ACD ∠=︒180********CAB ACD ∴∠=︒-∠=︒-︒=︒∵AH 平分CAB ∠1302HAB CAB ∴∠=∠=︒ 30CHA ∴∠=︒180150AHD CHA ∴∠=︒-∠=︒故选:A .【点睛】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.8.若m n >,则下列不等式正确的是( )A .22m n -<-B .33m n >C .44m n <D .55m n ->- 【答案】B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m >n ,∴m-2>n-2,∴选项A 不符合题意;∵m >n ,∴33m n >,∴选项B 符合题意; ∵m >n ,∴4m >4n ,∴选项C 不符合题意;∵m >n ,∴-5m <-5n ,∴选项D 不符合题意;故选:B【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9.若x <2+|3-x|的正确结果是( ) A .-1 B .1C .2x -5D .5-2x【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.如图,在ABC ∆中,AC BC =,D 是BA 延长线上一点,E 是CB 延长线上一点,F 是AC 延长线上一点,131DAC ∠=︒,则ECF ∠的度数为( )A .49︒B .88︒C .98︒D .131︒【答案】C 【分析】根据等腰三角形的两个底角相等和三角形的内角和解答即可.【详解】解:∵∠DAC=131°,∠DAC+∠CAB=180°,∴∠CAB=49°,∵AC=BC ,∴∠CBA=49°,∠ACB=180°-49°-49°=82°,∴∠ECF=180°-∠ACB=180°-82°=98°,故选:C .【点睛】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.二、填空题11.已知m+n=2,mn=-2,则(1-m )(1-n )=___________.【答案】﹣3【解析】因为m+n=2,mn=﹣2,所以(1﹣m )(1﹣n )=1-(m+n)+mn=1-2+(-2)=-3,故答案为-3.12.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.【答案】0.1.【解析】直接利用频数÷总数=频率,进而得出答案.【详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【点睛】本题考查频数与频率,正确掌握频率求法是解题关键.13.在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。

河南省洛阳市2019届数学八上期末学业水平测试试题

河南省洛阳市2019届数学八上期末学业水平测试试题

河南省洛阳市2019届数学八上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.若代数式11a a +-在实数范围内有意义,则实数a 的取值范围是( ) A.1a ≥B.1a ≠C.1a <D.1a =- 2.流感病毒的直径约为0.000 000 72 m ,其中0.000 000 72用科学记数法可表示为( ) A .7.2×107B .7.2×10-8C .7.2×10-7D .0.72×10-8 3.下列计算正确的是( )A.a•a 2=a 2B.(x 3)2=x 5C.(2a)2=4a 2D.(x+1)2=x 2+1 4.某施工队挖一条240米的渠道,开工后,每天比原计划多挖20米,结果提前2天完成任务.若设原计划每天挖x 米,则所列方程正确的是( )A .240240220x x -=+B .240240202x x -=+C .240240220x x -=-D .240240202x x-=- 5.下列各式中正确的有( )个: ①-=-a b b a ; ②()()22-=-a b b a ;③()()22-=--a b b a ;④()()33-=--a b b a ;⑤()()()()+-=---+a b a b a b a b ;⑥()()22+=--a b a bA.1B.2C.3D.4 6.下面是一位同学做的四道题,其中正确的是( ) A .m 3+m 3=m 6B .x 2•x 3=x 5C .(﹣b )2÷2b =2bD .(﹣2pq 2)3=﹣6p 3q 6 7.如图,在直角三角形ABC 中,∠C =90°,∠CAB 的平分线ADD 交BC 于点D ,若DE 垂直平分AB ,则下列结论中错误的是( )A .AB =2AE B .AC =2CD C .DB =2CD D .AD =2DE8.2019年4月28日,北京世界园艺博览会正式开幕。

{3套试卷汇总}2019年洛阳市八年级上学期期末学业水平测试数学试题

{3套试卷汇总}2019年洛阳市八年级上学期期末学业水平测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( )A .40,37B .40,39C .39,40D .40,38【答案】B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B .【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B 【分析】首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.3.把319000写成10n a ⨯(110a ≤≤,n 为整数)的形式,则a 为( )A .5B .4C .3.2D .3.19【答案】D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:319000用科学记数法表示为3.19×105, ∴a=3.19,故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下面四个图形中,属于轴对称图形的是( ) A . B . C . D .【答案】C【分析】由定义可知,如果将一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形是轴对称图形;接下来,根据上述定义对各选项中的图形进行分析,即可做出判断.【详解】根据轴对称图形的定义可知:选项A 、B 、D 所给的图形均不是轴对称图形,只有选项C 的图形是轴对称图形.故选C.【点睛】此题考查轴对称图形的判断,解题关键在于握判断一个图形是否为轴对称图形的方法.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩【答案】B 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B .【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.6.如图,ABC 中,∠C=90°,AC=3,AB = 5,点 D 是边BC 上一点, 若沿将ACD 翻折,点C 刚好落在边上点E 处,则BD 等于()A .2B .52C .3D .103【答案】B【分析】根据勾股定理,求出BC 的长度,设 BD=x ,则DC= 4-x ,由折叠可知:DE= 4-x ,BE=1,在 Rt BDE 中,222BD =BE DE +,根据勾股定理即可求出x 的值,即BD 的长度.【详解】∵∠C= 90°,AC=3,AB=5 ∴BC= 22AB -AC ,设BD=x ,则DC= 4-x ,由折叠可知:DE=DC=4-x ,AE=AC=3,∠AED= ∠C=90°,∴ BE= AB -AE = 1.在 Rt BDE 中,222BD =BE DE +,即:222x =2(4-x)+,解得:x=52, 即BD=52, 故选:B .【点睛】本题主要考查了折叠的性质、勾股定理,解题的关键在于写出直角三角形BDE 三边的关系式,即可求出答案.7.下列各数中,不是无理数的是( )A .13B .5C .πD .32【答案】A【分析】根据无理数是无限不循环小数解答即可.【详解】13是分数,是有理数. 故选:A【点睛】本题考查的是无理数的识别,掌握无理数的定义是关键.8.若(x+2)(x ﹣1)=x 2+mx+n ,则m+n=( )A .1B .-2C .-1D .2 【答案】C【解析】试题分析:依据多项式乘以多项式的法则,进行计算(x+2)(x-1)=2x +x ﹣2 =2x +mx+n ,然后对照各项的系数即可求出m=1,n=﹣2,所以m+n=1﹣2=﹣1.故选C考点:多项式乘多项式9.如图是两个全等的三角形纸片,其三边长之比为3:4:5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该项点所在两边重合,记折叠后不重叠部分面积分别为,A B S S ,已知10A B S S -=,则纸片的面积是( )A .72B .74C .76D .78【答案】A【分析】设AC=FH=3x ,则BC=GH=4x ,AB=GF=5x ,根据勾股定理即可求得CD 的长,利用x 表示出S A ,同理表示出SB ,根据10A B S S -=,即可求得x 的值,进而求得三角形的面积.【详解】解:如图,设AC=FH=3x ,则BC=GH=4x ,AB=GF=5x .设CD=y ,则BD=4x-y ,DE=CD=y ,在直角△BDE 中,BE=5x-3x=2x ,根据勾股定理可得:4x 2+y 2=(4x-y )2,解得:y=32x , 则S A =12BE•DE=12×2x•32x=32x 2, 同理可得:S B =23x 2, ∵S A -S B =10, ∴32x 2-23x 2=10, ∴x 2=12, ∴纸片的面积是:12×3x•4x=6 x 2=1. 故选A.【点睛】本题主要考查了折叠的性质,勾股定理,根据勾股定理求得CD 的长是解题的关键.10.在实数3.1415926364,1.010010001…,227中,无理数有( ) A .1个B .2个C .3个D .4个 【答案】A【分析】根据无理数即为无限不循环小数逐一判断即可.【详解】解:3.1415926364=4,不是无理数;1.010010001…是无理数;227不是无理数. 综上:共有1个无理数故选A .【点睛】此题考查的是无理数的判断,掌握无理数即为无限不循环小数是解决此题的关键.二、填空题11.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.12.Rt ABC 中,90C ∠=︒,12AC cm =,16BC cm =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于点E ,交斜边于点F ,则CDE △的周长为__________.【答案】20cm 或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A 和∠B 两种情况求解即可.【详解】当∠B 翻折时,B 点与D 点重合,DE 与EC 的和就是BC 的长,即DE+EC=16cm ,CD=12AC=6cm ,故△CDE 的周长为16+6=22cm ; 当∠A 翻折时,A 点与D 点重合.同理可得DE+EC=AC=12cm ,CD=12BC=8cm , 故△CDE 的周长为12+8=20cm .故答案为20cm 或22cm .【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.13.如图,在△ABC 中,∠ACB=90°,AC=15,BC=9,点P 是线段AC 上的一个动点,连接BP ,将线段BP 绕点P 逆时针旋转90°得到线段PD ,连接AD ,则线段AD 的最小值是______.【答案】2【分析】如图,过点D 作DE ⊥AC 于E ,有旋转的性质可得DP=BP ,∠DPB=90°,由“AAS”可证△DEP ≌△PCB ,可得DE=CP ,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D 作DE ⊥AC 于E ,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为32,故答案为32.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.【答案】15【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.15.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.【答案】(4,2)【解析】试题考查知识点:图形绕固定点旋转思路分析:利用网格做直角三角形AMB,让△AMB逆时针旋转90°,也就使AB逆时针旋转了90°,由轻易得知,图中的AB′就是旋转后的位置.点B′刚好在网格格点上,坐标值也就非常明显了.具体解答过程:如图所示.做AM∥x轴、BM∥y轴,且AM与BM交于M点,则△AMB为直角三角形,线段AB绕点A按逆时针方向旋转90°,可以视为将△AMB逆时针方向旋转90°()得到△ANB′后的结果.∴,AN⊥x轴,NB′⊥y轴,点B′刚好落在网格格点处∵线段AB 上B 点坐标为(1,3)∴点B′的横坐标值为:1+3=4;纵坐标值为:3-1=2即点B′的坐标为(4,2)试题点评:在图形旋转涉及到的计算中,还是离不开我们所熟悉的三角形.16.定义运算“※”:a ※b =()()a a b a b b a b b a⎧⎪⎪-⎨⎪⎪-⎩><,若5※x =2,则x 的值为___. 【答案】2.5或1.【详解】解:当5>x 时,5※x=2可化为525x =-,解得x=2.5,经检验x=2.5是原分式方程的解; 当5<x ,5※x=2可化为25x x =-,解得x=1,经检验x=1是原分式方程的解. 故答案为:2.5或1.【点睛】本题考查了新定义运算,弄清题中的新定义是解本题的关键,解题时注意分类讨论思想.17.如图,已知ABC ∆中,90ACB ∠=︒,15B ∠=︒,边AB 的中垂线交BC 于点D ,若BD=4,则CD 的长为_______.【答案】23【分析】连接AD ,根据中垂线的性质可得AD=4,进而得到ADC 30∠=︒,AC 2=,最后根据勾股定理即可求解.【详解】解:连接AD∵边AB 的中垂线交BC 于点D , BD=4∴AD=4∵90ACB ∠=︒,15B ∠=︒∴CAD 60ADC 30∠∠=︒=︒,∴AC 2=∴2222CD 4223AD AC =-=-=故答案为:23.【点睛】此题主要考查中垂线的性质、30︒角所对的直角边等于斜边的一半、勾股定理,熟练掌握性质是解题关键. 三、解答题18.如图,在ABC ∆中,AB AC =,以BC 为直角边作等腰Rt BCD ∆,90CBD ∠=,斜边CD 交AB 于点E .(1)如图1,若60ABC ∠=,4BE =,作EH BC ⊥于H ,求线段BC 的长;(2)如图2,作CF AC ⊥,且CF AC =,连接BF ,且E 为AB 中点,求证:2CD BE =.【答案】(1)223+(2)见解析【分析】(1)由直角三角形的性质可求2,23BH EH ==,由等腰直角三角形的性质可得23EH CH ==BC 的长;(2)过点A 作AM ⊥BC ,通过证明△CNM ∽△CBD ,可得CN AN CD BD =,可得CD=2CN ,AN=BD ,由“SAS ”可证△ACN ≌△CFB ,可得结论.【详解】(1)60ABC ∠=,EH BC ⊥,30BEH ∴∠=,24BE BH ∴==,3EH BH =,2,23BH EH ∴==90CBD ∠=,BD BC =,45BCD ∴∠=,且EH BC ⊥,45BCD HEC ∴∠=∠=,23EH CH ∴==,223BC BH CH ∴=+=+;(2)如图,过点A 作AM BC ⊥,AB AC =,AM BC ⊥,1122BM MC BC DB ∴=== 45DCB ∠=,AM BC ⊥, 45DCB MNC ∴∠=∠=,12MN MC DB ∴==//AM DB ,12CN MN CD BD ∴==,1AN AEBD BE==, 2CD CN ∴=,AN BD BC ==CF AC ⊥,45BCD ∠=,45ACD BCF ∴∠+∠=,且45ACD MAC ∠+∠=,BCF MAC ∴∠=∠,且AC CF =,BC AN =,()ACN CFB SAS ∴∆≅∆.BF CN ∴=, 2CD BF ∴=.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,添加恰当辅助线构造全等三角形是本题的关键. 19. [建立模型](1)如图1.等腰Rt ABC 中, 90ACB ∠=︒, CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,求证: BEC CDA ≌; [模型应用](2)如图2.已知直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕点A 逆时针旋转45'°至直线2l ,求直线2l 的函数表达式:(3)如图3,平面直角坐标系内有一点()3,4B -,过点B 作BA x ⊥轴于点A ,BC ⊥y BC y ⊥轴于点C ,点P 是线段AB 上的动点,点D 是直线21y x =-+上的动点且在第四象限内.试探究CPD △能否成为等腰直角三角形?若能,求出点D 的坐标,若不能,请说明理由.【答案】(1)见解析;(2)直线l 2的函数表达式为:y =−5x−10;(3)点D 的坐标为(113,193-)或(4,−7)或(83,133-).【解析】(1)由垂直的定义得∠ADC =∠CEB =90°,由同角的余角的相等得∠DAC =∠ECB ,然后利用角角边证明△BEC ≌△CDA 即可;(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,由(1)可得△ABO ≌△BCD (AAS ),求出点C 的坐标为(−3,5),然后利用待定系数法求直线l 2的解析式即可;(3)分情况讨论:①若点P 为直角时,②若点C 为直角时,③若点D 为直角时,分别建立(1)中全等三角形模型,表示出点D 坐标,然后根据点D 在直线y =−2x +1上进行求解. 【详解】解:(1)∵AD ⊥ED ,BE ⊥ED , ∴∠ADC =∠CEB =90°, ∵∠ACB =90°,∴∠ACD +∠ECB =∠ACD +∠DAC =90°, ∴∠DAC =∠ECB ,在△CDA 和△BEC 中,ADC CEBDAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△CDA (AAS );(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:332y x=+与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:20 35k bk b-+=⎧⎨-+=⎩解得:510 kb=-⎧⎨=-⎩,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=103 -,∴点D的坐标为(113,193-);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=12k,∴点D的坐标为(72k,72k),又∵点D在直线y=−2x+1上,∴772122k k,解得:k=53 -,∴点D的坐标为(83,133-);综合所述,点D的坐标为(113,193-)或(4,−7)或(83,133-).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.20.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【答案】(1)证明见解析;(2)4.【分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案. 【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DFE (SAS ), ∴∠ACE=∠DEF , ∴AC ∥DE ;(2)∵△ABC ≌△DFE , ∴BC=EF , ∴CB ﹣EC=EF ﹣EC , ∴EB=CF , ∵BF=13,EC=5, ∴EB=4, ∴CB=4+5=1. 【点睛】考点:全等三角形的判定与性质.21.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,-3),C (4,-2). (1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)画出△A 1B 1C 1向左平移3个单位长度后得到的△A 2B 2C 2;(3)如果AC 上有一点P (m ,n )经过上述两次变换,那么对应A 2C 2上的点P 2的坐标是______.【答案】 (1)作图见解析;(2)作图见解析;(3)(m ﹣3,﹣n ). 【解析】(1)直接利用关于x 轴对称点的性质得出答案; (2)利用平移规律,找出对应点的位置,顺次连接即可. (3)接利用平移变换的性质得出点P 2的坐标.【详解】(1)解:如图所示:△A 1B 1C 1就是所要求作的图形、 (2)△A 2B 2C 2就是所要求作的图形;(3)如果AC 上有一点P(m,n)经过上述两次变换,那么对应A 2C 2上的点P 2的坐标是:()23,.P m n -- 故答案为(m−3,−n). 【点睛】考查了轴对称变换以及平移变换,正确找出对应点是解题的关键.22.校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理; 看法 频数 频率 赞成 5 无所谓 0.1 反对400.8(1)本次调查共调查了 人;(直接填空) (2)请把整理的不完整图表补充完整;(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【答案】(1)50;(2)见解析;(3)2400.【解析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;(3)根据题意列式计算即可.【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;故答案为:50;(2)无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1 无所谓 5 0.1 反对40 0.8 统计图为:(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.王华由225382-=⨯,229784-=⨯,22153827-=⨯,22115812-=⨯,22157822-=⨯,这些算式发现:任意两个奇数的平方差都是8的倍数(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母); (3)证明这个规律的正确性.【答案】(1)22113=814-⨯,22175=833-⨯;(2)22(21)(21)8m n a +--=;(3)见解析. 【分析】(1)根据已知算式写出符合题意的答案; (2)利用平方差公式计算,即可得出答案;(3)先把代数式进行分解因式,然后对m 、n 的值进行讨论分析,即可得到结论成立.【详解】解:(1)根据题意,有:22113=1219=112=814--⨯,22175=28925=264=833--⨯; ∴22113=814-⨯,22175=833-⨯;(2)根据题意,得:22(21)(21)8m n a +--=(m ,n , a 都是整数且互不相同); (3) 证明:22(21)(21)m n +-- =(2121)(2121)m n m n ++++-- =4(1)()m n m n ++-;当m 、n 同是奇数或偶数时,(m-n )一定是偶数, ∴ 4(m-n )一定是8的倍数;当m 、n 是一奇一偶时,(m+n+1)一定是偶数, ∴ 4(m+n+1)一定是8的倍数;综上所述,任意两个奇数的平方差都是8的倍数. 【点睛】本题考查了因式分解的应用及平方差公式的应用,解题的关键是熟练掌握因式分解的方法进行解题.注意:平方差公式是a 2-b 2=(a+b )(a-b ).24.如图,在平面直角坐标系中,有一个△ABC ,顶点(1,3)A -,(2,0)B ,(3,1)C --.(1)画出△ABC 关于 y 轴的对称图形111A B C ∆(不写画法) 点A 关于 x 轴对称的点坐标为_____________; 点 B 关于 y 轴对称的点坐标为_____________; 点 C 关于原点对称的点坐标为_____________;(2)若网格上的每个小正方形的边长为 1,求△ABC 的面积. 【答案】(1)见解析;(-1,-3)、(-2,0)(3,1)(2)9.【分析】(1)根据关于y 轴对称的对应点的坐标特征,即横坐标相反,纵坐标相同,即可得出对应点的111A B C 、、 的坐标,然后连接三点即可画出△ABC 关于y 轴的对称图形.根据关于x 轴、y 轴、原点对称的对应点的坐标特征即可解决.(2)将三角形ABC 面积转化为CDA CBF ABE CDEF △△△矩形S -S -S -S 求解即可. 【详解】解:(1)∵三角形各点坐标为:(1,3)A -,(2,0)B ,(3,1)C --.∴关于y 轴对称的对应点的坐标为()()()1111,3-2,03-1A B C 、、,,依次连接个点.由关于x 轴对称的点的坐标特征可知,A 点关于x 轴对称的对应点的坐标为(-1,-3),由关于y 轴对称的点的坐标特征可知,B 点关于y 轴对称的对应点的坐标为(-2,0),由关于原点对称的点的坐标特征可知,C 点关于原点对称的对应点的坐标为(3,1).(2)分别找到点D (-3,3)、E (2,3)、F (2,-1),由图可知,四边形CDEF 为矩形,且CDEF 矩形S =20,ABC CDA CBF ABE CDEF △△△△矩形S =S -S -S -S =20-4-52-92=9.所以△ABC 的面积为9. 【点睛】本题考查了关于x 轴、y 轴、原点对称的对应点的坐标特征,割补法求图形面积,熟练掌握对称点的坐标特征是解决本题的关键.25.今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.(1)用含a的代数式表示第一批茶叶的毛利润;(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)【答案】(1)600a+8100000a-99000;(2)240元【分析】(1)用总销售额减去成本即可求出毛利润;(2)因为第一批进货单价为a元/千克,则第二批的进货单价为(20a-)元/千克,根据第二批茶叶获得的毛利润是35000元,列方程求解.【详解】(1)由题意得,第一批茶叶的毛利润为:300×2a+150×(54000a-300)-54000=600a+8100000a-99000;(2)设第一批进货单价为a元/千克,由题意得,5000020a-×12×200+5000020a-×12×(a-20+40)-50000=35000,解得:a=120,经检验:a=120是原分式方程的解,且符合题意.则售价为:2240a=.答:第一批茶叶中精装品每千克售价为240元.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 ( )A .相等B .不相等C .互余或相等D .互补或相等【答案】D【分析】作出图形,然后利用“HL ”证明Rt △ABG 和Rt △DEH 全等,根据全等三角形对应角相等可得∠B=∠DEH ,再分∠E 是锐角和钝角两种情况讨论求解.【详解】如图,△ABC 和△DEF 中,AB=DE ,BC=EF ,AG 、DH 分别是△ABC 和△DEF 的高,且AG=DH ,在Rt △ABG 和Rt △DEH 中,AB DE AG DH =⎧⎨=⎩, ∴Rt △ABG ≌Rt △DEH (HL ),∴∠B=∠DEH ,∴若∠E 是锐角,则∠B=∠DEF ,若∠E 是钝角,则∠B+∠DEF=∠DEH+∠DEF=180°,故这两个三角形的第三边所对的角的关系是:互补或相等.故选D.2.下列命题是真命题的是( )A .如果两角是同位角,那么这两角一定相等B .同角或等角的余角相等C .三角形的一个外角大于任何一个内角D .如果a 2=b 2,那么a =b【答案】B【分析】根据平行线的性质、余角的概念、三角形的外角性质、有理数的乘方法则判断.【详解】解:A 、两直线平行,同位角相等,∴如果两角是同位角,那么这两角一定相等是假命题;B 、同角或等角的余角相等,是真命题;C 、三角形的一个外角大于任何一个与它不相邻的内角,∴三角形的一个外角大于任何一个内角,是假命题;D 、(﹣1)2=12,﹣1≠1,∴如果a 2=b 2,那么a =b ,是假命题;故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称的定义,结合所给图形逐一判断即可得答案.【详解】A.不是中心对称图形,故该选项不符合题意,B.不是中心对称图形,故该选项不符合题意,C.是中心对称图形,故该选项符合题意,D.不是中心对称图形,故该选项不符合题意,故选:C .【点睛】本题考查了中心对称图形的特点,判断中心对称图形的关键是寻找对称中心,旋转180°后与原图形能够重合.4.化简2244xy y x x --+的结果是( ) A .2x x + B .2x x - C .2y x + D .2y x - 【答案】D 【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分. 【详解】解:()()22y x 2xy 2y y x 4x 4x 2x 2--==-+--, 故选D .5.元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果x 千克苹果,则可列方程为( ).A .32080012x x -=B .32080012x x =-C .32080012x x -=D .80032012x x-=【答案】D【分析】设该店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据每千克水果的价格比第一次购进的贵了1元,列出方程求解即可.【详解】设该商店第一次购进水果x 千克,根据题意得:80032012x x-=, 故选:D .【点睛】本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.6.若把分式3425x y x y +-中的,x y 都扩大4倍,则该分式的值( ) A .不变B .扩大4倍C .缩小4倍D .扩大16倍 【答案】A 【分析】当分式3425x y x y +-中x 和y 同时扩大4倍,得到1216820x y x y+-,根据分式的基本性质得到12164343482042525x y x y x y x y x y x y+++=⨯=---,则得到分式的值不变. 【详解】分式3425x y x y+-中x 和y 同时扩大4倍, 则原分式变形为12164343482042525x y x y x y x y x y x y+++=⨯=---, 故分式的值不变.故选A .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是( )A .众数是3B .中位数是0C .平均数3D .方差是2.8【答案】B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A. 3,3,0,4,1众数是3,此选项正确;B. 0,3,3,4,1中位数是3,此选项错误;C. 平均数=(3+3+4+1)÷1=3,此选项正确;D. 方差S2=15[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确;故选B【点睛】本题考查了方差,加权平均数,中位数,众数,熟练掌握他们的概念是解决问题的关键8.已知图中的两个三角形全等,则∠α等于()A.72°B.60°C.58°D.48°【答案】D【分析】直接利用全等三角形的性质得出对应角进而得出答案.【详解】解:∵图中的两个三角形全等,∴∠α=180°﹣60°﹣72°=48°.故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.9.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )A.6个B.7个C.8个D.9个【答案】A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;。

2018-2019学年河南省洛阳市八年级(上)期末数学试卷

2018-2019学年河南省洛阳市八年级(上)期末数学试卷

2018-2019学年河南省洛阳市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣12.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5 C.(x﹣1)2=x2﹣1 D.x﹣2x=x3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或174.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B. 1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣35.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣27.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()A.5 B.﹣5 C.1 D.﹣110.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64二、填空题(本大题共4小题,每小题5分,满分20分)11.已知点(a﹣1,3)与点(2,b+3)关于y轴对称,则(a+b)2018=.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.13.请给假命题“两个锐角的和是钝角”举一个反例.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).三、简答题(本大题共2小题,每小题8分,共16分)15.(8分)如图,在网格图中(小正方形的边长为1),△ABC的三个顶点都在格点上,直接写出点C的坐标,并把△ABC向右平移4个单位得到△A1B1C1,再把△A1B1C1沿x轴对称得到△A2B2C2,请分别作出△A1B1C1与△A2B2C2,并写出点C1和点C2的坐标.16.(8分)已知直线y=﹣2x+b经过点(1,1),求关于x的不等式﹣2x+b≥0的解集.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE 平分∠ACB,求∠DEC的度数.18.(8分)如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm 求:(1)∠1的度数(2)AC的长五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知y与x+3成正比例,且当x=1时,y=8(1)求y与x之间的函数关系式;(2)若点(a,6)在这个函数的图象上,求a的值.20.(10分)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB、DF⊥AC,垂足分别为E、F,且BE=CF.求证:(1)BD=CD;(2)AB=AC.六、(本题满分12分)21.(12分)一个有进水管与出水管的容器,从某时刻开始6min内只进水而不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量保持不变,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)求y关于x的函数解析式.(2)直接写出每分钟进水,出水各多少升.七、(本题满分12分)22.(12分)如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE;(2)若△ACB不动,把△DCE绕点C旋转到使点D落在AB边上,如图2所示,问上述结论还成立吗?若成立,给予证明.八、(本题满分14分)23.已知:线段AB,作出线段AB的垂直平分线MN.24.已知:∠AOB,作出∠AOB的平分线OC.25.已知:线段a和b,求作:直角△ABC,使∠B=90°,BC=a,AC=b2018-2019学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.2.(4分)下列各式中,正确的是()A.30=0 B.x3•x2=x5C.(x﹣1)2=x2﹣1 D.x﹣2x=x【解答】解:A、30=1,故原题计算错误;B、x3•x2=x5,故原题计算正确;C、(x﹣1)2=x2﹣2x+1,故原题计算错误;D、x﹣2x=﹣x,故原题计算错误;故选:B.3.(4分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.4.(4分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B.1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣3【解答】解:0.000151=1.51×10﹣4,故选:C.5.(4分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③【解答】解:加上条件AE=CF,利用SSS证明三角形全等;添加条件∠D=∠B,根据SAS得出全等;故选:D.6.(4分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣2【解答】解:∵3x=4,3y=6,∴3x﹣y=3x÷3y=4÷6=.故选:B.7.(4分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:A.8.(4分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.【解答】解:设江水的流速为x km/h,则逆流的速度为(30﹣x)km/h,顺流的速度为(30+x)km/h,由题意得,=.故选:C.9.(4分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()A.5 B.﹣5 C.1 D.﹣1【解答】解:(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3,由x2+ax+b=(x+1)(x﹣3)=x2﹣2x﹣3知a=﹣2、b=﹣3,则a+b=﹣2﹣3=﹣5,故选:B.10.(4分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64【解答】解:根据题意得:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7,系数之和为2(1+7+21+35)=128,故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.【解答】解:∵点(a﹣1,3)与点(2,b+3)关于y轴对称,∴a﹣1=﹣2,b+3=3,解得:a=﹣1,b=0,∴(a+b)2018=1,故答案为:1,.12.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.13.【解答】解:例如α=30°,β=40°,α+β<90°,故答案为:α=30°,β=40°,α+β=70°<90°,14.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.三、简答题(本大题共2小题,每小题8分,共16分)15.【解答】解:如图所示,△A1B1C1与△A2B2C2即为所求,点C1的坐标(3,3)和点C2的坐标(3,﹣3).16.【解答】解:∵直线y=﹣2x+b经过点(1,1),∴1=﹣2×1+b,解得b=3,∵﹣2x+3≥0,解得x≤.四、(本大题共2小题,每小题8分,满分16分)17.【解答】解:在△ABC中,∵∠A=55°,∠ACB=70°∴∠ABC=55°∵∠ABD=32°∴∠CBD=∠ABC﹣∠ABD=23°∵CE平分∠ACB∴∠BCE=∠ACB=35°∴在△BCE中,∠DEC=∠CBD+BCE=58°.18.【解答】解:(1)∵△ADF≌△BCE,∠F=28°,∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE,BC=5cm,∴AD=BC=5cm,又CD=1cm,∴AC=AD+CD=6cm.五、(本大题共2小题,每小题10分,满分20分)19.【解答】解:(1)根据题意:设y=k(x+3),把x=1,y=8代入得:8=k(1+3),解得:k=2.则y与x函数关系式为y=2(x+3)=2x+6;(2)把点(a,6)代入y=2x+6得:6=2a+6,解得a=0.20.【解答】证明:(1)∵AD平分∠BAC,DE⊥AB、DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°,在△DEB和△DFC中,,∴△DEB≌△DFC,∴BD=DC.(2)∵△DEB≌△DFC,∴∠B=∠C,∴AB=AC.六、(本题满分12分)21.【解答】解:(1)当0≤x≤6时,设y=ax,把(6,24)代入上式得:6a=24,解得:a=4,所以y=4x;设当6≤x≤14时的直线方程为:y=kx+b(k≠0).∵图象过(6,24)、(14,32),∴,解得:,∴y=x+18(6≤x≤14);综上所述,;(2)根据图象,每分钟进水24÷6=4升,设每分钟出水m升,则4﹣(32﹣24)÷(14﹣6)=4﹣1=3,故每分钟进水、出水各是4升、3升.七、(本题满分12分)22.【解答】(1)证明:∵△ABC和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ACE=∠BCD=90°,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:结论成立.理由:∵△ABC和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ACE=∠BCD=90°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD.八、(本题满分14分)23.【解答】解:如图所示,直线MN即为所求.24.【解答】解:如图所示,OC即为所求作的∠AOB的平分线.25.【解答】解:如图△ABC即为所求.。

《试卷3份集锦》洛阳市2018-2019年八年级上学期数学期末练兵模拟试题

《试卷3份集锦》洛阳市2018-2019年八年级上学期数学期末练兵模拟试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.直角坐标系中,点(,4)a 在一次函数31y x 的图象上,则a 的值是( ) A .1B .2C .3D .4 【答案】A【分析】直接把点的坐标代入解析式得到a 的一元一次方程,解方程即可.【详解】∵点(,4)a 在一次函数31y x 的图象上, ∴3a+1=4解得,a=1,故选:A.【点睛】本题主要考查一次函数图象上点的坐标特征,把点的坐标代入求解一元一次方程即可.2.若分式213x x +-等于零,则x 的值是( ) A .3x =B .3x ≠C .12x =-D .12x ≠- 【答案】C【分析】根据分式的值为零的条件可以求出x 的值,分式的值是1的条件是:分子为1,分母不为1.【详解】∵210x +=且30x -≠,解得:12x =-, 故选:C .【点睛】本题考查了分式的值为零的条件:分式的分子为1,分母不为1,则分式的值为1.3.直线y=ax+b 经过第一、二、四象限,则直线y=bx ﹣a 的图象只能是图中的( ) A . B . C . D .【答案】B【解析】试题分析:已知直线y=ax+b 经过第一、二、四象限,所以a <0,b >0,即可得直线y=bx ﹣a 的图象经过第一、二、三象限,故答案选B .考点:一次函数图象与系数的关系.4.点P (-2,-3)关于x 轴的对称点为( )A .()3,2--B .()2,3C .()2,3-D .()2,3-【答案】D【分析】关于x 轴对称的点,横坐标不变,纵坐标变为相反数【详解】∵点P (-2,-3), ∴关于x 轴的对称点为(-2,3). 故选D .【点睛】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律: (1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.下列各式不是最简分式的是( )A .-x x yB .5210x x --C .2233a b a b ++D .214x - 【答案】B【分析】根据最简分式的概念逐项判断即得答案.【详解】解:A 、-x x y是最简分式,本选项不符合题意; B 、()551210252x x x x --==--,所以5210x x --不是最简分式,本选项符合题意; C 、2233a b a b ++ 是最简分式,本选项不符合题意; D 、214x -是最简分式,本选项不符合题意. 故选:B .【点睛】本题考查的是最简分式的概念,属于基础概念题型,熟知定义是关键.6.如图,C 为线段AE 上任意一点(不与A 、E 重合),在AE 同侧分别是等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②PD QE =;③PQ AE ;④60AOB ∠=︒;⑤QB AB =.正确的结论有( )A .5个B .4个C .3个D .2个【答案】B 【解析】由已知条件可知根据SAS 可证得E ACD BC ∆∆≌,进而可以推导出AD BE =、PD QE =、PQ AE 、60AOB ∠=︒等结论.【详解】∵ABC ∆和CDE ∆是等边三角形∴AC BC =,CD CE =,60ACB ECD ∠=∠=︒∴60PCQ ∠=︒∴ACB PCQ ECD PCQ ∠+∠=∠+∠即ACD BCE ∠=∠∴在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BCE SAS ∆∆≌∴AD BE =,ADC BEC ∠∠=,DAC EBC ∠=∠∵60PCD QCE ∠=∠=∠︒,CD CE =∴在PCD QCE ∆∆≌中PCD QCE CD CEPDC QEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()PCD QCE ASA ∆∆≌∴PD QE =,PC QC =∴PCQ ∆是等边三角形∴60CPQ ACB ∠=∠=︒∴//PQ AE∵60ACB BEC EBC ∠=∠+∠=︒∴60AOB BEC DAC ∠=∠+∠=︒∵在BQC ∆中,60BQC ECQ CEQ ∠=∠+∠>︒,60BCQ ∠=︒∴QB BC <∵BC AB =∴QB AB <∴正确的结论是:AD BE =,PD QE =、PQ AE 、60AOB ∠=︒故选:B【点睛】本题考查了三角形、等边三角形、全等三角形的相关内容,其结论都是在E ACD BC ∆∆≌的基础上形成的结论,说明证三角形全等是解题的关键,既可以充分揭示数学问题的层次,又可以考查学生的思维层次. 7.等腰三角形的周长为12,则腰长a 的取值范围是( )A .3<a <6B .a >3C .4<a <7D .a <6【答案】A【分析】根据等腰三角形的腰长为a ,则其底边长为:12﹣2a ,根据三角形三边关系列不等式,求解即可.【详解】解:由等腰三角形的腰长为a ,则其底边长为:12﹣2a .∵12﹣2a ﹣a <a <12﹣2a+a ,∴3<a <1.故选:A .【点睛】本题考查了三角形三边的关系,对任意一个三角形,任意两边之和大于第三边,任意两边之差小于第三边,灵活利用三角形三边的关系确定三角形边长的取值范围是解题的关键.8.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是( )A .1 号袋B .2 号袋C .3 号袋D .4 号袋【答案】C 【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:故选C .【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.9.下列从左边到右边的变形,是正确的因式分解的是( )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(2)1x x x x -+=-+D .2269(3)x x x -+=-【答案】D 【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A 、右边不是积的形式,该选项错误;B 、224(2)(2)x y x y x y -=+-,该选项错误;C 、右边不是积的形式,该选项错误;D 、2269(3)x x x -+=-,是因式分解,正确.故选:D .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的定义.10.问四个车标中,不是轴对称图形的为( )A .B .C .D . 【答案】C【分析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,据此解题即可.【详解】A,B,D 三个选项中可以找出对称轴,是轴对称图形,C 选项不符合.所以答案为C 选项.【点睛】本题主要考查了轴对称图形的判断,熟练掌握其特点是解题关键.二、填空题11.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 【答案】a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a ,解得:x=8- a ,根据题意得:8- a >2,8- a≠1,解得:a <8,且a≠1.故答案为:a <8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.12.计算53)(53)的结果等于_______.【答案】2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=(5)2﹣(3)2=5﹣3=2,考点:二次根式的混合运算13.己知一次函数21y x =+的图象与x 轴、y 轴分别交于A 、B 两点,将这条直线进行平移后交x 轴、y 轴分别交于C 、D ,要使点A 、B 、C 、D 构成的四边形面积为4,则直线CD 的解析式为__________.【答案】23y x =-或217y x =+.【分析】先确定A 、B 点的坐标,利用两直线平移的问题设直线CD 的解析式为2y x b =+,则可表示出(2b C -,0),(0,)D b ,讨论:当点C 在x 轴的正半轴时,利用三角形面积公式得到11()(1)4222b b -+⨯-=,当点C 在x 轴的负半轴时,利用三角形面积公式得到111142222b b -⨯⨯=,然后分别解关于b 的方程后确定满足条件的CD 的直线解析式.【详解】解:一次函数21y x =+的图象与x 轴、y 轴分别交于A 、B 两点,1(2A ∴-,0),(0,1)B , 设直线CD 的解析式为2y x b =+,(2b C ∴-,0),(0,)D b , 如图1,当点C 在x 轴的正半轴时,则0b <,依题意得:11()(1)4222b b -+⨯-=, 解得5b =(舍去)或3b =-,此时直线CD 的解析式为23y x =-;如图2,当点C 在x 轴的负半轴时,则0b >,依题意得:111142222b b -⨯⨯=, 解得17b =-(舍去)或17b =,此时直线CD 的解析式为217y x =+,综上所述,直线CD 的解析式为23y x =-或217y x =+.故答案为:23y x =-或217y x =+.【点睛】本题考查了一次函数图象与几何变换:求直线平移后的解析式时要注意平移时k 的值不变.也考查了三角形面积公式.14.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b 、的等式为________.【答案】(a+b )2﹣(a ﹣b )2=4ab【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S 阴影=4S 长方形=4ab ①,S 阴影=S 大正方形﹣S 空白小正方形=(a+b )2﹣(b ﹣a )2②,由①②得:(a+b )2﹣(a ﹣b )2=4ab .故答案为(a+b )2﹣(a ﹣b )2=4ab .【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.15.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是_________米.【答案】8【解析】利用勾股定理求得树的顶端到折断处的长即可得解.【详解】解:根据题意可得树顶端到折断处的长为22=5米,34则这棵树折断之前的高度是5+3=8米.故答案为:8.【点睛】本题主要考查勾股定理的应用,解此题的关键在于熟练掌握其知识点.16.如图,AB=AD,∠1=∠2,如果增加一个条件_____,那么△ABC≌△ADE.【答案】AC=AE【解析】由∠1=∠2,则∠BAC=∠DAE,加上AB=AD,若根据“SAS”判定△ABC≌△ADE,则添加AC=AE.【详解】∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,而AB=AD,∴当AC=AE时,△ABC≌△ADE.故答案为:AC=AE.【点睛】本题考查了全等三角形的判定定理的应用,能熟练地掌握全等三角形的判定定理是解题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS..17.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.【答案】y=-x+1.【解析】根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.三、解答题18.平面直角坐标系中,ABC ∆三个顶点的坐标为(3,4),(1,2),(5,1)A B C .(1)直接写出,,A B C 关于y 轴对称的点111,,A B C 的坐标:1A ;1B ;1C ; (2)若ABC ∆各顶点的横坐标不变,纵坐标都乘以1-,请直接写出对应点2A ,2B ,2C 的坐标,并在坐标系中画出222A B C ∆.【答案】(1)(3,4);(1,2);(5,1)---(2)222(3,4),(1,2),(5,1)A B C ---;图见解析.【分析】(1)根据点坐标关于y 轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以1-”可得点222,,A B C 坐标,再在平面直角坐标系中描出222,,A B C三点,然后顺次连接即可得222A B C ∆.【详解】(1)在平面直角坐标系中,点坐标关于y 轴对称的规律为:横坐标变为相反数,纵坐标不变 (3,4),(1,2),(5,1)A B C111(3,4),(1,2),(5,1)A B C ∴---故答案为:()3,4-;(1,2)-;(5,1)-;(2)横坐标不变,纵坐标都乘以1-222(3,4),(1,2),(5,1)A B C ∴---在平面直角坐标系中,先描出222,,A B C 三点,再顺次连接即可得222A B C ∆,结果如图所示:【点睛】本题考查了点坐标关于y 轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.19.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.20.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量; (2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【答案】(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.21.某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组又各自生产5天,则两组产品一样多;若甲组先生产了300个产品,然后两组又各自生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?(请用方程组解)【答案】甲:500,乙:600【解析】试题分析: 设甲、乙两组每天个各生产x y 、个产品,则根据若甲组先生产1天,然后两组又一起生产了5天,则两组产量一样多.若甲组先生产了300个产品,然后两组同时生产4天,则乙组比甲组多生产100个产品两个关系列方程组求解.试题解析:设甲、乙两组每天个各生产x 、y 个产品,根据题意得:()155********x y x y ,⎧+=⎨++=⎩解得:500600.x y =⎧⎨=⎩ 答:甲、乙两组每天个各生产500、600个产品.22.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生;并在图中补全条形统计图;(2)如果全校共有学生1600名,请估计该校最喜欢“科普”书籍的学生约有多少人?【答案】(1)200,作图见解析;(2)1.【分析】(1)从扇形图可知文艺占40%,从条形统计图可知文艺有80人,可求出总人数.求出科普的人数,画出条形统计图.(2)全校共有人数×科普所占的百分比,就是要求的人数.【详解】解:(1)80÷40%=200,补全条形统计图如图所示:(2)501600400200⨯=(人).答:估计该校最喜欢“科普”书籍的学生约有1人.【点睛】本题考查从扇形统计图和条形统计图获取信息的能力,以及画条形统计图的能力,关键知道扇形统计图考查的部分占总体的百分比,条形统计图考查的是每组里面的具体数.23.如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)根据矩形的性质和折叠的性质可得:AB=DC=DE,∠BAD=∠BCD=∠BED=90°,根据AAS可证△ABF≌△EDF,根据全等三角形的性质可证BF=DF;(2)根据全等三角形的性质可证:FA=FE,根据等边对等角可得:∠FAE=∠FEA,根据三角形内角和定理可证:2∠AEF +∠AFE =2∠FBD+∠BFD =180°,所以可证∠AEF=∠FBD,根据内错角相等,两直线平行可证AE∥BD;(3)根据矩形的性质可证:AD=BC=BE,AB=CD=DE,BD=DB,根据SSS可证:△ABD≌△EDB,根据全等三角形的性质可证:∠ABD=∠EDB,根据等角对等边可证:GB=GD,根据HL可证:△AFG≌△EFG,根据全等三角形的性质可证:∠AGF=∠EGF,所以GH垂直平分BD.试题解析:(1)∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,在△ABF和△DEF中,{BAD BED AFB EFD AB DE∠=∠∠=∠=∴△ABF≌△EDF(AAS),∴BF=DF.(2)∵△ABF≌△EDF,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF +∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),∴∠ABD=∠EDB,∴GB=GD,在△AFG和△EFG中,∠GAF=∠GEF=90°,FA=FE,FG=FG,∴△AFG≌△EFG(HL),∴∠AGF=∠EGF,∴GH垂直平分BD.【方法II】(1)∵△BCD≌△BED,∴∠DBC=∠EBD又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,∴∠EBD=∠ADB,∴FB=FD.(2)∵长方形ABCD,∴AD=BC=BE,又∵FB=FD,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF +∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB,∴∠ABD=∠EDB,∴GB=GD,又∵FB=FD,∴GF是BD的垂直平分线,即GH垂直平分BD.考点:1.折叠的性质;2.全等三角形的判定与性质;3.平行线的性质与判定;4.矩形的性质.24.一个四位数,记千位和百位的数字之和为a,十位和个位的数字之和为b,如果a=b,那么称这个四位数为“心平气和数”例如:1625,a=1+6,b=2+5,因为a=b,所以,1625是“心平气和数”.(1)直接写出:最小的“心平气和数”是,最大的“心平气和数”;(2)将一个“心平气和数”的个位与十位的数字交换位置,同时将百位与千位的数字交换,称交换前后的这两个“心平气和数”为一组“相关心平气和数”.例如:1625与6152为一组“相关心平气和数”,求证:任意的一组“相关心平气和数”之和是11的倍数.(3)求千位数字是个位数字的3倍,且百位数字与十位数字之和是14的倍数的所有“心平气和数”.【答案】(1)1001,1;(2)见解析;(2)2681和4【分析】(1)因为是求最小的“心平气和数”和最大的“心平气和数”,所以一个必须以1开头的四位数,一个是以9开头的四位数,不难得到1001和1这两个答案.(2)可以设千位和百位的数字之和为m,十位和个位的数字之和为m,千位数字为a,十位数字为b,根据题意列出一组“相关心平气和数”之和,利用提取公因式进行因式分解就可以了,即可证明得任意的一组“相关心平气和数”之和是11的倍数.(2)先讨论出千位与个位数字分别为2,6,9和1,2,2,也可以讨论出,百位数字与十位数字之和只能是3,进而得到最后两组符合题意的答案.【详解】解:(1)最小的“心平气和数”必须以1开头,而1000显然不符合题意,所以最小的只能是1001,最大的“心平气和数”必须以9开头,后面的数字要尽可能在0﹣9这九个数字中选最大的,所以最大的“心平气和数”一定是1.故答案为:1001;1.(2)证明:设千位和百位的数字之和为m,十位和个位的数字之和为m,千位数字为a,十位数字为b,所以个位数字为(m﹣b),百位数字为(m﹣a).依题意可得,这组“相关心平气和数”之和为:(m ﹣b )+10b+100(m ﹣a )+1000a+b+10(m ﹣b )+100a+1000(m ﹣a ),=11(m ﹣b )+11b+1100a+1100(m ﹣a )=11(m ﹣b+b+100a+100m ﹣100a )=11×101m ,因为m 为整数,所以11×101m 是11的倍数,所以任意的一组“相关心平气和数”之和是11的倍数.(2)设个位数字为x ,则千位数字为2x ,显然1≤2x≤9,且x 为正整数,故x =1,2,2.又因为百位数字与十位数字之和是3的倍数,而百位数字与十位数字之和最大为18,所以百位数字与十位数字之和只能是3.故可设十位数字为n 则百位数字为3﹣n ,依题意可得,x+n =3﹣n+2x ,整理得,n ﹣x =7,故,当x =1时,n =8,当x =2时n =9,当x =2时,n =10(不合题意舍去), 综上所述x =1,n =8时“心平气和数”为2681,x =2,n =9时,“心平气和数”为4.所以满足题中条件的所有“心平气和数”为2681和4.【点睛】本题考查整数的有关知识,熟练掌握数的组成、倍数和约数等概念是解题关键.25.如图所示,AB BC =,AD 为△ABC 中BC 边的中线,延长BC 至E 点,使CE BC =,连接AE . 求证:AC 平分∠DAE【答案】详见解析【分析】延长AD 到F ,使得DF=AD ,连接CF .证明△ACF ≌△ACE 即可解决问题.【详解】解:延长AD 到F ,使得DF=AD ,连接CF .∵AD=DF ,∠ADB=∠FDC ,BD=DC ,∴△ADB ≌△FDC (SAS ),∴AB=CF ,∠B=∠DCF ,∵BA=BC ,CE=CB ,∴∠BAC=∠BCA ,CE=CF ,∵∠ACE=∠B+∠BAC ,∠ACF=∠DCF+∠ACB ,∴∠ACF=∠ACE ,∵AC=AC ,∴△ACF ≌△ACE (SAS ),∴∠CAD=∠CAE.∴AC平分∠DAE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,点B F 、在线段EC 上, ,CF EB A D =∠=∠,增加下列一个条件,仍不能判定ABC DEF △≌△的是( )A .// DF ACB . DF AC = C .E ABC ∠=∠D .//AB DE【答案】B 【分析】由CF=EB 可求得EF=DC ,结合∠A=∠D ,根据全等三角形的判定方法,逐项判断即可.【详解】∵CF=EB ,∴CF+FB=FB+EB ,即EF=BC ,且∠A=∠D ,∴当// DF AC 时,可得∠DFE=∠C ,满足AAS ,可证明全等;当 DF AC =时,满足ASS ,不能证明全等;当E ABC ∠=∠时,满足AAS ,可证明全等;当//AB DE 时,可得E ABC ∠=∠,满足AAS ,可证明全等.故选B .【点睛】此题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS ,SAS ,ASA ,AAS 和HL .2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)【答案】A【分析】根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.【详解】∵第四象限内点的横坐标大于0,纵坐标小于0,∴(3,-4) 位于第四象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.3.下列各式为分式的是( )A .3bB .1x -C .3()4x y +D .m n m n+- 【答案】D【解析】根据分式的定义即可求解.【详解】A. 3b 是整式,故错误; B. 1x -是整式,故错误; C. 3()4x y +是整式,故错误; D.m n m n +-是分式,正确; 故选D .【点睛】此题主要考查分式的识别,解题的关键是熟知分式的定义.4.某次列车平均提速vkm/h ,用相同的时间,列车提速前行驶skm ,提速后比提速前多行驶50km ,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h ,下面所列出的四个方程中,正确的是( ) A .50s s x x v +=+ B .50s s x v += C .50s s v x += D .50s s x x v-=- 【答案】A【分析】先求出列车提速后的平均速度,再根据“时间=路程÷速度”、“用相同的时间,列车提速前行驶km s ,提速后比提速前多行驶50km ”建立方程即可.【详解】由题意得:设列车提速前的平均速度是/xkm h ,则列车提速后的平均速度是()/x v km h + 则50s s x x v+=+ 故选:A .【点睛】本题考查了列分式方程,读懂题意,正确求出列车提速后的平均速度是解题关键.5.下列四个式子中是分式的是( )A .3xB .253a -C .107D .m n m n-+ 【答案】D【分析】根据分母中含有字母的是分式来进行判断即可. 【详解】3x ,253a -,107分母中不含字母,不是分式; m n m n-+分母中含有字母,是分式; 故选:D .【点睛】本题主要考查分式,掌握分式的概念是解题的关键,判断一个代数式是分式还是整式的方法:分母中含有字母的是分式,分母中不含字母的是整式.6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm【答案】C【分析】根据三角形的三边关系逐项判断即得答案.【详解】解:A 、因为3+4<8,所以3cm ,4cm ,8cm 的三根小木棒不能摆成三角形,故本选项不符合题意;B 、因为8+7=15,所以8cm ,7cm ,15cm 的三根小木棒不能摆成三角形,故本选项不符合题意;C 、因为13+12>20,所以13cm ,12cm ,20cm 的三根小木棒能摆成三角形,故本选项符合题意;D 、因为5+5<11,所以5cm ,5cm ,11cm 的三根小木棒不能摆成三角形,故本选项不符合题意. 故选:C .【点睛】本题考查了三角形的三边关系,属于基本题型,熟练掌握基本知识是解题的关键.7.如图,∠ACD=120°,∠B=20°,则∠A 的度数是( )A .120°B .90°C .100°D .30°【答案】C 【详解】∠A=∠ACD ﹣∠B=120°﹣20°=100°,故选C .8.由方程组43x m y m+=-⎧⎨-=⎩可得出x 与y 之间的关系是( ) A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【答案】B【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解43x my m⎧⎨⎩+--=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B.【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.9.下列图案中,是中心对称图形但不是轴对称图形的是()A .B .C .D .【答案】C【解析】根据中心对称图形以及轴对称图形的概念逐一进行分析即可得.【详解】A、不是中心对称图形,是轴对称图形,故不符合题意;B、是轴对称图形,也是中心对称图形,故不符合题意;C、是中心对称图形,不是轴对称图形,故符合题意;D、不是中心对称图形,也不是轴对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.10.在显微镜下测得“新冠”病毒的直径为0.00000000205米,用科学记数法表示为()A.0.205×10﹣8米B.2.05×109米C.20.5×10﹣10米D.2.05×10﹣9米【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000205米,该数据用科学记数法表示为2.05×10-9米.故选:D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题11.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)【答案】∠D=∠B【分析】要判定△ADF ≌△CBE ,已经有AD=BC ,DF=BE ,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC , DF=BE ,∴只要添加∠D=∠B ,根据“SAS ”即可证明△ADF ≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS )、边角边(SAS )、角边角(ASA )、角角边(AAS ).12.观察下列各式:111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ⋯⋯⋯,则123200a a a a +++⋅⋅⋅+=______ 【答案】200401【分析】根据题意,总结式子的变化规律,然后得到1111()(21)(21)22121n a n n n n ==--⨯+-+,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案. 【详解】解:∵111113132a ⎛⎫==- ⎪⨯⎝⎭;。

2018-2019学年八年级上学期末测试数学试卷及答案

2018-2019学年八年级上学期末测试数学试卷及答案

2018-2019学年八年级上期末测试数学卷一、选择题(本题共6个小题,每小题2分,共12分) 1.以长为3cm ,5cm ,7cm ,10cm 的四条线段中的三条线段为边,能构成三角形的情况有( )A.1种B.2种C.3种D.4种2.已知等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C. 50°或80°D. 40°或65°3.下列运算正确的是( )A .623a a a ÷=B .222a b 2a b a b +-- ()()=2C .235a a a -= ()D .5a 2b 7ab +=4.下面式子从左边到右边的变形是因式分解的是( )A. 2x x 2x x 12--=--()B. 22a b a b a b +-=- ()()C. 2x 4x 2x 2-=+- ()()D. 1x 1x 1x -=-()5.下列因式分解正确的是( )A. 2x xy x x x y -+=-()B. 3222a 2a b ab a a b -+=-()C. 22x 2x 4x 13-+=-+()D. 2ax 9a x 3x 3-=+- ()()6.△ABC 中AB 边上的高,下列画法中正确的是( )A. B. C. D.二、填空题(本题共8个小题;每小题3分,共24分)7.若2x 2a 3x 16+-+()是完全平方式,则a = _ _ .8.禽流感病毒的形状一般为球形,直径大约为0.000000102m ,该直径用科学记数法表示为m .9.如果分式x 1x 1--的值为零,那么x = . 10.我们已经学过用面积来说明公式.如222x 2xy y x y ++=+()就可以用下图甲中的面积来说明.请写出图乙的面积所说明的公式:x 2+(p +q )x +pq = ___ ____ .11.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A =100°,则∠1+∠2+∠3+∠4= .12.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =2,则PQ 的最小值为 ____ .13.如图,△ABC 中∠C =90°,AB 的垂直平分线DE 交BC 于点E ,D 为垂足,且EC =DE ,则∠B 的度数为 .14.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为 .三、解答题(本题共4个小题;每小题5分,共20分)15.计算:220122013012 1.5201423----⨯+()()().16 计算: 23y z 2y z z 2y --+-+()()()17 计算: 2223322m n 3m n 4n ---÷ ()18.解方程2313x 16x 2-=--四、解答题(本题共4个小题;每小题7分,共28分)19.先化简,再求值:22x4x4x x1 x4x2x2-+--÷-++(),其中x =-3.20. 如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.21. 列方程解应用题:八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.22. 已知:如图∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.(保留作图痕迹,不写做法)23. 在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上)(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.24.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD(2)BE⊥AC25.我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:①如果一个三角形的一条中线和一条高相互重合,则这个三角形是等腰三角形.②如果一个三角形的一条高和一条角平分线相互重合,则这个三角形是等腰三角形.③如果一个三角形的一条中线和一条角平分线相互重合,则这个三角形是等腰三角形.我们运用线段垂直平分线的性质,很容易证明猜想①的正确性.现请你帮助小明判断:(1)他的猜想②是命题(填“真”或“假”).(2)他的猜想③是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.26.如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,以相同的速度分别由A向B、由C向A爬行,经过t分钟后,它们分别爬行到了D、E处.设在爬行过程中DC与BE的交点为F.(1)当点D、E不是AB、AC的中点时,图中有全等三角形吗?如果没有,请说明理由;如果有,请找出所有的全等三角形,并选择其中一对进行证明.(2)问蜗牛在爬行过程中DC与BE所成的∠BFC的大小有无变化?请证明你的结论.八年级数学第一学期试题参考答案及评分标准一、选择题:二、填空题:7.7或-1; 8.71.0210-⨯; 9.-1; 10.(x+p )(x+q ); 11.280°; 12.2; 13.30°; 14.10°三、解答题:(共46分)15.原式=4- 1.5+1 …………………2分=3.5 …………………3分16. 23y z 2y z z 2y --+-+()()()=22223y 2yz z 4y z -+--()()…………………2分 =22y 6yz 4z --+ …………………4分172223322m n 3m n 4n ---÷ () =443324m n 3m n 4n ---⋅÷ …………………5分=434323m n --+--() …………………7分=3mn …………………8分 18. 解:22x 4x 4x x 1x 4x 2x 2-+--÷-++() =x 2x x 1x+2x 2x 2---÷++() …………………2分 =2x 1-- …………………4分 当x =-3时,原式=12. …………………5分 19. 解:方程两边同时乘以2(3x ﹣1),得4﹣2(3x ﹣1)=3, …………………2分解得 x=. …………………3分检验:x=时,2(3x ﹣1)=2×(3×﹣1)≠0所以,原分式方程的解为x=. …………………5分20. 解:∵AD 是高 ∴∠ADC=90° ……………1分∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20° ………2分∵∠BAC=50°,∠C=70°,AE 是角平分线∴∠BAO=25°,∠ABC=60° ……………4分 ∵BF 是∠ABC 的角平分线 ∴∠ABO=30° ……………5分 ∴∠BOA=180°﹣∠BAO ﹣∠ABO=125°. ……………6分21. 解:设骑自行车的速度是x 千米/小时,154015x 603x-= ……………3分 解得 x=15 ……………4分 经检验x=15是方程的解.答:骑自行车的同学的速度是15千米/小时. ……………6分22.①做出角平分线 (2)②做出MN 的垂直平分线 (4)③下结论...............得1分(共计7分)23.(1)S △ABC =72721=××.........3分 (2)画出正确的图形...........3分(3)写出点A (-1,3) A 1(1,3)... 1分24.. 证明:(1)∵AD ⊥BC∴∠ADC=∠ADB=90° ........1分又∵∠ACB=45°∴∠DAC=45° ............2分∴∠ACB=∠DAC ...........3分∴AD=CD ..................4分又∵∠BAD=∠FCD∠ADB=∠FDC∴△ABD ≌△CFD ..............5分(2)∵△ABD ≌△CFD ∴BD=FD ................6分∴∠1=∠2 ............... 7分又∵∠FDB=90°∴∠1=∠2=45°.............又∵∠ACD=45°∴△BEC中,∠BEC=90° .......∴BE⊥AC ...................8分25. 解:(1)真. ……………1分(2)已知:在△ABC中,D为BC的中点,AD平分∠BAC.求证:△ABC是等腰三角形. ……………2分证明:作DE⊥AB,DF⊥AC,垂足分别为E、F,……3分∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF,∵D为BC的中点∴CD=BD,∴Rt△CFD≌Rt△BED(HL),…………5分∴∠B=∠C,∴AB=AC.即△ABC是等腰三角形. …………6分26. 解:(1)有全等三角形:△ACD≌△CBE;△ABE≌△BCD. ……2分证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴∠A=∠BCE=60°,CE=AD.在△ACD和△CBE中,,∴△ACD≌△CBE. …………4分(2)DC和BE所成的∠BFC的大小保持120°不变.………5分证明:∵由(1)知△ACD≌△CBE,∠ACB=60°∴∠FBC+∠BCD=∠ACD+∠BCD=∠ACB=60°∴∠BFC=180°﹣(∠FBC+∠BCD) =120°.…………7分- 11 -。

【名师推荐】河南省洛阳市八年级上期末数学试卷(有答案)

【名师推荐】河南省洛阳市八年级上期末数学试卷(有答案)

2017-2018学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80° B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B 作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣2【解答】解:∵分式有意义,∴+2≠0,即≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80° B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=,∠B=+30°,分情况讨论:当∠A=∠C为底角时,2+(+30°)=180°,解得=50°,顶角∠B=80°;当∠B=∠C为底角时,2(+30)+=180°,解得=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(﹣6)(+4)+(3+2)(2﹣3)=2﹣2﹣24+4﹣92=﹣82﹣2﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为元/m3,则2016年1月起居民用水价格为(1+)元/m3.…(1分)依题意得:﹣=5.解得=1.8.检验:当=1.8时,(1+)≠0.所以,原分式方程的解为=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B 作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

(汇总3份试卷)2018年洛阳市八年级上学期期末教学质量检测数学试题

(汇总3份试卷)2018年洛阳市八年级上学期期末教学质量检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A .75°B .60°C .45°D .30°【答案】A 【详解】解:三角形的外角等于与它不相邻的两个内角和,由题,∵AC ∥BD ,∴∠C=∠B=30°, ∵∠AOB 是△AOC 的一个外角,∴∠AOB=∠C+∠A= 45°+30°=75°,选A .【点睛】本题考查平行线的性质和三角形的外角.2.若22123a a +=,则12a a +-的值为( ) A .5B .0C .3或-7D .4【答案】C【分析】根据完全平方公式的变形即可求解. 【详解】∵22211225a a a a ⎛⎫+=++= ⎪⎝⎭ ∴1a a+=±5, ∴12a a +-的值为3或-7 故选C.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.3. “某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x 米,则可得方程400040002010x x -=+.”根据此情境,题中用“×××××”表示得缺失的条件,应补为( )A .每天比原计划多铺设10米,结果延期20天才完成任务B .每天比原计划少铺设10米,结果延期20天才完成任务C .每天比原计划多铺设10米,结果提前20天完成任务D .每天比原计划少铺设10米,结果提前20天完成任务【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x 表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x 米,那么x+10就应该是实际每天比原计划多铺了10米, 而用400040002010x x -=+则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划多铺设10米,结果提前20天完成任务. 故选:C . 【点睛】 本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.4.下列计算错误的是( )A .45535-=B .()()23231-+=C .236⨯=D .2733÷= 【答案】B【分析】根据二次根式的加减法对A 进行判断;根据平方差公式对B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】A 、45535-=,计算正确,不符合题意;B 、()()23231-+=-,计算错误,符合题意;C 、236⨯=,计算正确,不符合题意; D 、2733÷=,计算正确,不符合题意;故选:B .【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.5.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D 10【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADCEBC DCA BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩ , ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC中,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.6.已知ABC ∆中,B 是A ∠的2倍,C ∠比A ∠大20,则A ∠等于( )A .30B .40C .60D .80【答案】B【分析】设A x ∠=,则,B C ∠∠可表示出来,然后利用三角形内角和定理即可求出A ∠的度数.【详解】设A x ∠=,则2,20B x C x ∠=∠=+︒根据三角形内角和定理得,220180x x x +++︒=︒解得40x =︒故选:B .【点睛】本题主要考查三角形内角和定理,掌握三角形内角和定理是解题的关键.7.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是() A .含30°角的直角三角形 B .顶角是30的等腰三角形C .等边三角形D .等腰直角三角形【答案】C【解析】试题分析:∵P 为∠AOB 内部一点,点P 关于OA 、OB 的对称点分别为P 1、P 2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选C.考点:轴对称的性质8.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx ﹣2的解集是().A.514x<<B.413x<<C.513x<<D.1<x<2【答案】C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<53,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<53,所以不等式组mx>kx+b>mx−2的解集是1<x<53.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.下列长度的三条线段可以组成三角形的是()A.3,4,2 B.12,5,6C.1,5,9 D.5,2,7【答案】A【解析】根据三角形三边关系即可解题.【详解】解:根据三角形三边关系,A. 3,4,2,正确B. 12,5,6,错误,5+6<12,C. 1,5,9, 错误,1+5<9,D. 5,2,7, 错误,5+2=7,故选A.【点睛】本题考查了三角形三边关系,属于简单题,熟悉概念是解题关键.10.下列图案属于轴对称图形的是( )A .B .C .D .【答案】C【解析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念知A 、B 、D 都不是轴对称图形,只有C 是轴对称图形.故选C .【点睛】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么就是轴对称图形.二、填空题11.已知实数m ,n 满足5,3,m n mn +==则m n -=_____. 【答案】13【分析】根据完全平方公式进行变形,得到()()224m n m n mn -=+-可得到结果,再开方即可得到最终结果.【详解】()()222222224+4m n m mn n m mn n mn m n mn -=-+=++-=-,代入可得()2253413m n -=-⨯=,所以13m n -=故答案为:13【点睛】考查利用完全平方公式求代数式的值,学生熟练掌握完全平方公式是本题解题的关键,并利用开平方求得最后的结果.12.若关于,x y 的方程组275x y k x y k+=+⎧⎨-=⎩ 的解互为相反数,则k =_____. 【答案】6-【分析】由方程组的解互为相反数,得到y x =-,代入方程组计算即可求出k 的值.【详解】由题意得:y x =-,代入方程组得275x x k x x k -=+⎧⎨+=⎩①②, 由①得:7x k =--③,③代入②得:426k k --=,解得:6k =-,故答案为:6-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 13.如图,ABC 中,6AB AC ==,12ABC S =△,BD CD =,E 、F 分别是AC 、AD 上的动点,则CF EF +的最小值为______.【答案】4【分析】作BE ⊥AC 垂足为E ,交AD 于F ,此时CF+EF 最小,利用面积法即可求得答案.【详解】作BE ⊥AC 垂足为E ,交AD 于F ,∵AB=AC ,BD=DC ,∴AD ⊥BC ,∴FB=FC ,∴CF+EF=BF+EF ,∵线段BE 是垂线段,根据垂线段最短,∴点E 、点F 就是所找的点; ∵12ABC S AC BE =, ∴221246ABC S BE AC ⨯===, ∴CF+EF 的最小值4BE ==.故答案为:4.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、垂线段最短等知识,掌握应用面积法求高是解决这个问题的关键.14.无论m 取什么实数,点(123)A m m --,都在直线l 上,若点()B a b ,是直线l 上的点,那么2(23)a b -+=__________.【答案】16【分析】由点A 坐标可求出直线l 的解析式,从而可找到a 和b 之间的关系,代入即可求得23a b -+的值.【详解】解:设点(123)A m m --,所在直线l 的解析式为y kx b =+, 依题意得:23(1)m k m b -=-+∴()23k m k b -=-++,∵无论m 取什么实数,()23k m k b -=-++恒成立,∴2030k k b -=⎧⎨-++=⎩, ∴21k b =⎧⎨=-⎩ ∴直线l 的解析式为21y x =-,点(,)B a b 是直线l 上的动点,21b a ∴=-,21a b ∴-=,22(23)(13)16a b ∴-+=+=,故答案为:16.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式. 15.若多项式2x ax b ++分解因式的结果为()()12x x -+,则+a b 的值为__________.【答案】-1【分析】根据多项式的乘法法则计算()()12x x -+,与2x ax b ++比较求出a 和b 的值,然后代入a+b 计算.【详解】∵()()12x x -+=x 2+x-2,∴2x ax b ++=x 2+x-2,∴a=1,b=-2,∴a+b=-1.故答案为:-1.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.16.计算:()22(2)5xy x y -___________. 【答案】-2043y x【分析】先计算乘方,再计算乘法,即可得到答案.【详解】()22(2)5xy x y -=2224(5)x y x y ⋅-=-2043y x ,故答案为:-2043y x .【点睛】此题考查整式的混合运算,首先计算乘方,再计算乘法,最后计算加减法.17.若1m n -=-,则()2m n m n --+的值为______.【答案】1【分析】根据题意把(m-n )看作一个整体并直接代入代数式进行计算即可得解.【详解】解:∵1m n -=-,∴()2m n m n --+,=()2()m n m n ---=(-1)1-(-1),=1+1,=1.故答案为:1.【点睛】本题考查代数式求值,熟练掌握整体思想的利用是解题的关键.三、解答题18.已知,等腰三角形的周长为24cm ,设腰长为y (cm ),底边长为x (cm ).(1)求y 关于x 的函数表达式(2)求x 的取值范围.【答案】(1)1122y x =-+; (2)012x << 【分析】(1)利用等腰三角形的性质列出函数表达式即可;(2)根据等腰三角形的性质可直接得出底边的取值范围.【详解】解:(1)∵等腰三角形的周长为24cm ,腰长为y (cm ),底边长为x (cm ),∴y 关于x 函数解析式为:2411222x y x -==-+; (2)∵x 是等腰三角形的底边长,∴自变量x 的取值范围为:012x <<.【点睛】此题主要考查了等腰三角形的性质以及根据实际问题列一次函数关系式,熟练应用等腰三角形的性质是解题关键.19.如图,ABC ∆中,点D ,E 分别是边AB ,AC 的中点,过点C 作//CF AB 交DE 的延长线于点F ,连结BE .(1)求证:四边形BCFD 是平行四边形.(2)当AB BC =时,若2BD =,3BE =,求AC 的长.【答案】(1)详见解析;(2)27【分析】(1)根据三角形的中位线的性质得出DE ∥BC ,再根据已知CF ∥AB 即可得到结论;(2)根据等腰三角形的性质三线合一得出90AEB =︒∠,然后利用勾股定理即可得到结论.【详解】(1)证明:∵点D ,E 分别是边AB ,AC 的中点,∴DE ∥BC .∵CF ∥AB ,∴四边形BCFD 是平行四边形;(2)解:∵AB=BC ,E 为AC 的中点,∴BE ⊥AC .∴90AEB =︒∠∵AB=2DB=4,BE=3,22437∴-AE227∴==AC AE 【点睛】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.计算:(1)计算:201823(1)64(2)-+---(2)因式分解x 2(x-2)+(2-x)【答案】(1)-5;(2)(x-2)(x+1)(x-1)【分析】(1)根据乘方的意义、立方根的定义和算术平方根的定义计算即可;(2)先提取公因数,然后利用平方差公式因式分解即可.【详解】解:(1)解:原式=1-4-2=-5(2)解:原式=(x-2)(x 2-1)=(x-2)(x+1)(x-1)【点睛】此题考查的是实数的混合运算和因式分解,掌握乘方的意义、立方根的定义、算术平方根的定义、利用提公因式法和公式法因式分解是解决此题的关键.21.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m 2+5mn +2n 2可以因式分解为________;(2)若每块小长方形的面积为10 cm 2,四个正方形的面积和为58 cm 2,试求图中所有裁剪线(虚线部分)长之和.【答案】 (1)(m +2n)(2m +n)(2)42cm【解析】(1)根据图象由长方形面积公式将代数式2m 2+5mn+2n 2因式分解即可;(2)求出m+n 的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【详解】(1)2m 2+5mn+2n 2可以因式分解为(m+2n )(2m+n );故答案为(m+2n )(2m+n );(2)依题意得:2m 2+2n 2=58,mn=10,∴m 2+n 2=1.∴(m+n )2=m 2+n 2+2mn=49,∴m+n =7,∴图中所有裁剪线(虚线部分)长度之和为6m+6n=6(m+n)=6×7=42cm.【点睛】本题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题的关键.22.解答下列各题(1)如图1,方格纸中的每个小方格都是边长为1个单位长的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).①作出△ABC关于x轴对称的△A1B1C1;②如果P点的纵坐标为3,且P点到直线AA₁的距离为5,请直接写出点P的坐标.(2)我国是世界上严重缺水的国家之一为了倡导“节约用水,从我做起”,小丽同学在她家所在小区的200住户中,随机调查了10个家庭在2019年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图2①求这10个样本数据的平均数;②以上面的样本平均数为依据,自来水公司按2019年该小区户月均用水量下达了2020年的用水计划(超计划要执行阶梯式标准收费)请计算该小区2020年的计划用水量.【答案】(1)①详见解析;②点P的坐标为(﹣4,3)或(6,3);(2)①6.8t;②该小区2020年的计划用水量应为16320t.【分析】(1)①由轴对称的性质先确定点A1,B1,C1的坐标,再描点,连线即可;②由P点到直线AA₁的距离为5,可知点P的横坐标为﹣4或6,由其纵坐标为3,即可写出点P坐标;(2)①根据加权平均数的计算方法求解即可;②可将①中所求10个样本数据的平均数乘以12个月,再乘以200户即可.【详解】解:(1)①如图1,△A1B1C1即为所求;②如图1,点P的坐标为(﹣4,3)或(6,3);(2)①(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8t ,∴这10个样本数据的平均数为6.8t ;②6.8×12×200=16320t ,∴该小区2020年的计划用水量应为16320t .【点睛】本题考查了轴对称的性质,加权平均数的计算,样本估计总体等,解题关键是会认条形统计图以及在计算小区全年计划用水量时注意要乘以12个月.23.(1)计算:()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦; (2)先化简,再求值:524223x x x x-⎛⎫++⋅ ⎪--⎝⎭,其中5x =. 【答案】(1)13-;(2)62x --;16-【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可; (2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦ =()()666589a a a ⎡⎤+-÷⎣⎦ =()()6639aa -÷ =13- (2)524223x x x x -⎛⎫++⋅ ⎪--⎝⎭ =24524223x x x x x ⎛⎫--+⋅ ⎪---⎝⎭=()222923x x x x--⋅-- =()()()332223x x x x x+--⋅-- =()23x -+=62x --将5x =代入,得原式=62516--⨯=-【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.24.如图,在ABC ∆中,90,5,3C AB cm BC cm ︒∠===,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A →→→运动,设运动时间为t 秒(0t >).(1)用尺规作线段AB 的垂直平分线(不写作法,保留作图痕迹);(2)若点P 恰好运动到AB 的垂直平分线上时,求t 的值.【答案】(1)见解析;(2)t 的值为258s 或192s 【分析】(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线, (2)勾股定理求出AC 的长, 当P 在AC 上时,利用勾股定理解题,当P 在AB 上时,利用22P A P B =解题.【详解】解:(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线,有作图痕迹;(2)如图,在Rt ACB ∆中,由勾股定理得2222534AC AB BC =-=-=,①当P 在AC 上时,1AP t =,∴14PC t =-,11P A PB =,1PB t =, 在1Rt PCB ∆中,由勾股定理得: 22211+=PC BC PB 即:()()22243t t -+= 解得:258t s =; ②当P 在AB 上时,227P A P B t ==-, 即:572t -=, ∴192t s = ∴t 的值为258s 或192s . 【点睛】本题考查了尺规作图--垂直平分线,勾股定理的实际应用,会根据P 的运动进行分类讨论,建立等量关系是解题关键.25.已知1a b -=,223a b +=,求下列代数式的值:(1)ab ;(2)228a b --.【答案】(1)1;(258或58.【分析】(1)把1a b -=两边平方,展开,即可求出ab 的值;(2)先求出2()a b +的值,再开方求得a b +的值,再对原式分解因式,再整体代入求出即可.【详解】(1)∵1a b -=,223a b +=,∴2()1a b -=,∴2221a ab b -+=,∴2132ab -=-=-,∴1ab =;(2)∵1a b -=,1ab =,∴a b +====228a b --()()8a b a b =+--8=8或8.【点睛】本题考查了完全平方公式和平方差的应用,能灵活运用公式进行变形是解此题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知点A(−1,m)和B(3,n)是一次函数y =-2x +1图象上的两点,则( )A .m=nB .m>nC .m<nD .不确定 【答案】B【分析】根据一次函数表达式得到k 的符号,再根据一次函数的增减性即可得出结论.【详解】解:∵A ,B 两点在一次函数y =-2x +1的图像上,-2<0,∴一次函数y =-2x +1中y 随x 的增大而减小,∵A(−1,m),B(3,n),-1<3,∴点A 在图像上位于点B 左侧,∴m >n ,故选B.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性的判定是解决问题的关键.2.在直角坐标系中,点A (–2,2)与点B 关于轴对称,则点B 的坐标为( )A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2) 【答案】B【解析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选:B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律: (1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.3.由方程组43x m y m +=-⎧⎨-=⎩可得出x 与y 之间的关系是( ) A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【答案】B【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解43x my m⎧⎨⎩+--=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B.【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.4.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.020 0.019 0.021 0.022A.甲B.乙C.丙D.丁【答案】B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.5.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于( )A.80°B.60°C.40°D.30°【答案】C【解析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.【详解】根据折叠的性质可得:BD=DE,AB=AE.∵AC =AE+EC ,AB+BD =AC ,∴DE =EC ,∴∠EDC =∠C =20°,∴∠AED =∠EDC+∠C =40°.故选C .【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE =EC 是解答本题的关键. 6.要使分式2x x -有意义,则x 的取值应满足( ) A .2x ≠B .2x ≠-C .2x =D .2x =- 【答案】A【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案. 【详解】解:要使分式2x x -有意义,则20x -≠,所以2x ≠. 故选:A .【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.7.点P (﹣2,3)关于y 轴对称点的坐标在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点P (-2,3)在第二象限,∴点P 关于y 轴的对称点在第一象限.故选A.8.已知关于x 的分式方程6111m x x +=--的解是非负数,则m 的取值范圈是( ) A .5m >B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 【答案】C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得 61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.9.若分式33x x -+的值为0,则x 的值为( ) A .3 B .3- C .3或3- D .0【答案】A【分析】根据分式的值为零的条件可以求出x 的值.【详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A .【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可. 10.如图,已知OAC ≌OBD ,若13OC =,7OB =,则AD 的长为( ).A .5B .6C .7D .8【答案】B 【分析】根据全等三角形的性质即可得到结论.【详解】解:∵OAC ≌OBD ,∴OC OD =,OB OA =,∵13OC =,7OB =,∴1376AD OD OA OC OB =-=-=-=.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.二、填空题11.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.【答案】1【解析】试题分析:设10人桌x 张,8人桌y 张,根据题意得:10x+8y=80∵x 、y 均为整数,∴x=0,y=10或x=4,y=5或x=8,y=0共1种方案.故答案是1.考点:二元一次方程的应用.12.若x+y =5,xy =6,则x 2+y 2+2006的值是_____.【答案】1【分析】根据x+y =5,xy =6,利用完全平方公式将题目中的式子变形即可求得所求式子的值. 【详解】解:∵x+y =5,xy =6, ∴x 2+y 2+2006 =(x+y )2−2xy+2006 =52−2×6+2006 =25−12+2006 =1,故答案为:1. 【点睛】本题考查了完全平方公式,利用完全平方公式将题目中的式子变形是解题的关键.13.在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是_____. 【答案】1.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】由题意可得,3n=0.03, 解得,n=1, 故估计n 大约是1, 故答案为1. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.14.若数据的2, 3, 5, 8a ,方差是0.7,则数据12,13,15,10,18a 的方差是__________. 【答案】0.7【分析】根据方差的意义与求法将第一组数据中的a 的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7. 故答案为:0.7. 【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.15.直线y 1=k 1x +b 1(k 1>0)与y 2=k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2等于________. 【答案】1【解析】试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.试题解析:如图,直线y=k 1x+b 1(k 1>0)与y 轴交于B 点,则OB=b 1,直线y=k 2x+b 2(k 2<0)与y 轴交于C ,则OC=﹣b 2, ∵△ABC 的面积为1, ∴OA×OB+12OA×OC=1, ∴121122()422b b ⨯⨯+⨯⨯-=, 解得:b 1﹣b 2=1.考点:两条直线相交或平行问题.16.已知在ABC 中,90ACB ∠=︒,AC BC =,点D 为直线AC 上一点,连接BD ,若15CBD ∠=︒,则ABD ∠=_______________. 【答案】60°或30°【分析】分点D 在线段AC 上和点D 在射线AC 上两种情况,画出图形,利用等腰直角三角形的性质和角的和差计算即可.【详解】解:当点D 在线段AC 上时,如图1,∵90ACB ∠=︒,AC BC =,∴45ABC BAC ∠=∠=︒, ∵15CBD ∠=︒,∴451530ABD ∠=︒-︒=︒;当点D 在射线AC 上时,如图2,∵90ACB ∠=︒,AC BC =,∴45ABC BAC ∠=∠=︒,∵15CBD ∠=︒,∴451560ABD ∠=︒+︒=︒. 故答案为:60°或30°.【点睛】本题主要考查了等腰直角三角形的性质,属于基础题型,正确分类画出图形、熟练掌握等腰直角三角形的性质是解题关键.173825-=______. 【答案】3【分析】根据立方根和平方根的定义进行化简计算即可. 3825-=-2+5=3 故答案为:3 【点睛】本题考查的是实数的运算,掌握平方根及立方根是关键. 三、解答题18.(101318(3)()212π--++;(215023)2【答案】(1)22+;(2)-5.【分析】(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可; (2)将二次根式化简,然后应用乘法分配律,进行计算即可. 【详解】解:(1)原式2122122=-+=; (2)原式3252(2101552==-=-. 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.19.如图,点B ,C ,D 在同一条直线上,ABC ,ADE 是等边三角形,若CE 5=,CD 2=,()1求ECD ∠的度数; ()2求AC 长.【答案】 (1)60°;(2)3.【解析】()1由等边三角形的性质可得AD AE =,AB AC =,60BAC DAE ACB ∠∠∠===,可证BAD ≌CAE ,可得60B ACE ∠∠==,可得ECD ∠的度数;()2由全等三角形的性质和等边三角形的性质可求AC 的长.【详解】解:()1ABC ,ADE 是等边三角形AD AE ∴=,AB AC =,BAC DAE ACB 60∠∠∠===,BAD CAE ∠∠∴=,且AD AE =,AB AC =, BAD ∴≌()CAE SASB ACE 60∠∠∴==DCE 180ACB ACE 60∠∠∠∴=--=()2BAD ≌CAEBD CE 5∴==,BC BD CD 523∴=-=-= , AC BC 3∴==【点睛】考查了全等三角形判定和性质,等边三角形的性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.20.已知关于x 的一元二次方程x 2+(k ﹣1)x+k ﹣2=0 (1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k 的取值范围. 【答案】(1)见解析;(1)k <1.【分析】(1)先求出△的值,再根据△的意义即可得到结论;(1)利用求根公式求得2(1)(3)k k x --±-=,然后根据方程有一根为正数列出关于k 的不等式并解答.【详解】(1)△=(k ﹣1)1﹣4(k ﹣1)=k 1﹣1k+1﹣4k+8=(k ﹣3)1 ∵(k ﹣3)1≥0, ∴方程总有两个实数根.(1)∵2(1)(3)k k x --±-=,∴x 1=﹣1,x 1=1﹣k . ∵方程有一个根为正数, ∴1﹣k >0, k <1. 【点睛】考查了根的判别式.体现了数学转化思想,属于中档题目.21.如图:在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为()2,1A -,()1,2B -,()3,3C -.(1)将ABC ∆向上平移4个单位长度,再向左平移1个单位长度,得到111A B C ∆,请画出111A B C ∆(点A ,B ,C 的对应点分别为1A ,1B ,1C )(2)请画出与ABC ∆关于y 轴对称的222A B C ∆(点A ,B ,C 的对应点分别为2A ,2B ,2C ) (3)请写出1A ,2A 的坐标【答案】(1)作图见解析;(2)作图见解析;(3)()11,3A ;()22,1A --. 【分析】(1)利用点平移的坐标变换特征得出1A 、1B 、1C 的位置,然后描点连线即可; (2)利用关于y 轴对称点的性质得出2A 、2B 、2C 的位置,然后描点连线即可;(3)利用点平移的坐标变换特征和关于y 轴对称点的性质即可写出1A ,2A 的坐标. 【详解】(1)如图,111ABC ∆为所作; (2)如图,222A B C ∆为所作;(3)点()21A -, 向上平移4个单位长度,再向左平移1个单位长度,得到()113A ,; 点()21A -,关于y 轴对称点()221A --,; 故答案为:()113A ,;()221A --,; 【点睛】本题考查了作图-平移变换和轴对称变换,熟练掌握网格结构并准确找出对应点的位置是解题的关键. 22.在平面直角坐标系中,横、纵坐标均为整数的点叫做整数点,设坐标轴的单位长度为1cm ,整数点P 从原点O 出发,速度为1cm /s ,且点P 只能向上或向右运动,请回答下列问题:(1)填表:点P 从O 点出发的时间可以到达的整坐标可以到达整数点的个数1秒(0,1),(1,0)2(2)当点P从点O出发10秒,可到达的整数点的个数是____________个;(3)当点P从O点出发____________秒时,可得到整数点(10,5).【答案】(1)填表见解析;(2)11个;(3)1【分析】(1)设到达的整坐标为(x,y),其中x>0,y>0,由题意可知,动点P由原点O运动到(x,y)的方式为:先向右走xcm(所需时间为x÷1=x秒),再向上走ycm(所需时间为y÷1=y秒),从而得出点P从O点出发的时间=x+y,从而求出结论;(2)根据(1)中的结论列举出所有可能即可求出结论;(3)根据(1)中的结论即可求出结论.【详解】解:(1)设到达的整坐标为(x,y),其中x>0,y>0,由题意可知,动点P由原点O运动到(x,y)的方式为:先向右走xcm(所需时间为x÷1=x秒),再向上走ycm(所需时间为y÷1=y秒),∴点P从O点出发的时间=x+y∵3=3+0=2+1=1+2=0+3∴点P从O点出发的时间为3秒时,到达的整坐标为(3,0) 或(2,1) 或(1,2) 或(0,3) ,可以到达整数点的个数为4填表如下:(2)∵10=10+0=9+1=8+2=7+3=6+4=5+5=4+6=3+7=2+8=1+9=0+10∴当点P从点O出发10秒,可到达的整数点的坐标为(10,0)、(9,1)、(8,2)、(7,3)、(6,4)、(5,5)、(4,6)、(3,7)、(2,8)、(1,9)、(0,10)可以到达整数点的个数为11个,故答案为:11;(3)∵10+5=1∴当点P从O点出发1秒时,可得到整数点(10,5).故答案为:1.【点睛】。

河南省洛阳嵩县联考2018-2019学年八上数学期末调研试卷

河南省洛阳嵩县联考2018-2019学年八上数学期末调研试卷

河南省洛阳嵩县联考2018-2019学年八上数学期末调研试卷一、选择题1.如果数m 使关于x 的不等式组12260x x m <⎧⎪⎨⎪-≥⎩有且只有四个整数解,且关于x 的分式方程311x m x x-=--有整数解,那么符合条件的所有整数m 的和是( ) A .8 B .9 C .﹣8 D .﹣92.在下列代数式中,是整式的为( )A .1x x+ B .33x - C .2x x D .3(3)-- 3.若分式31a -有意义,则a 的取值范围是( ) A.任意实数 B.1a ≠- C.1a ≠D.0a ≠ 4.如果a 2m -1·a m +2=a 7,则m 的值是( ).A .2B .3C .4D .55.下列各式由左到右的变形中,属于因式分解的是( )A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+- C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.已知,则等于( ) A.2 B.-2 C.4 D.-47.下列三个定理中,①有两个角相等的三角形是等腰三角形;②全等三角形的周长相等;③同位角相等,两直线平行;存在逆定理的有( )个.A .0B .1C .2D .38.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥BC ,若AB=5,AC=6,则△AMN 的周长为( )A .7B .9C .11D .169.如图,OC 平分∠AOB ,CD ⊥OA 于 D ,CE ⊥OB 于 E ,CD =3cm ,则 CE 的长度为( )A .2cmB .3cmC .4cmD .5cm10.若△ABC ≌△MNP ,∠A=∠M ,∠C=∠P ,AB=4cm ,BC=2cm ,则 NP=( )A .2cmB .3cmC .4cmD .6cm11.如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BE 交CF 于D ,AC 交BE 于M ,AB交CF于N,则下列结论中错误的是()A.∠EAC=∠FABB.∠EAF=∠EDFC.△ACN≌△ABMD.AM=AN12.若一个正多边形的一个外角是30°,则这个正多边形的边数是( )A.9 B.10 C.11 D.1213.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.714.下列说法中正确的是()A.若|a|=﹣a,则 a 一定是负数B.单项式 x3y2z 的系数为 1,次数是 6C.若 AP=BP,则点 P 是线段 AB 的中点D.若∠AOC=∠AOB,则射线 OC 是∠AOB 的平分线15.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55°B.50°C.45°D.60°二、填空题16.若关于x的方程25--xx+5mx-=0有增根,则m的值是_____.17.已知a+b=3,ab=2,则a-b=________.【答案】±118.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=_____°.19.正多边形的每个内角等于150︒,则这个正多边形的边数为______________条.20.如图,有一底角为35的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是______度.三、解答题21.先化简,再求值:2221()121a aa a a a+-÷--+其中a=1222.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.23.计算(1)106÷10-2×100(2)(a+b-3)(a-b+3)(3)103×97(利用公式计算)(4)(-3a 2b )2(2ab 2)÷(-9a 4b 2)24.“综合与实践”学习活动准备制作一组三角形,记这些三角形分别为a b c ,,,用记号()()a b c a b c ,,≤≤表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形.(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD 是ABC ∆的中线,线段AB AC ,的长度分别为2个,6个单位长度,且线段AD 的长度为整数个单位长度,过点C 作CE AB ∥交AD 的延长线于点E .①求AD 的长度;②请直接用记号表示ACE ∆.25.如图,小亮从点O 处出发,前进5米后向右转15,再前进5米后又向右转15,这样走n 次后恰好回到出发点O 处.(1)小亮走出的这个n 边形的每个内角是多少度?这个n 边形的内角和是多少度?(2)小亮走出的这个n 边形的周长是多少米?【参考答案】***一、选择题16.317.无18.9019.1220.125三、解答题21.-2.22.BC=18.【解析】【分析】根据等腰三角形的性质可得AD ⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案【详解】解:∵AB=AC ,AD 平分∠BAC ,∴AD ⊥BC ,∴∠ADC=90°,∵点E 为AC 的中点,∴DE=CE=12AC=152. ∵△CDE 的周长为24,∴CD=9,∴BC=2CD=18.【点睛】此题考查等腰三角形的性质和直角三角形斜边上的中线,解题关键在于等腰三角形的性质得出AD ⊥BC23.(1)-189.4;(2)a 2-b 2+6b-3;(3)9991;(4)-2a b 2.24.(1)(1,1,1),(1,2,2),(2,2,2);(2)①3AD =;②(2,6,6)【解析】【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)①根据题意,由AAS 可证明ABD ECD ∆∆≌,所以2AD DECE AB ===,2AE AD =,再根据三角形三边关系可得AC CE AE AC CE -<<+,即62262AD -<<+,所以24AD << ,又因为AD 的长度为整数个单位长度,所以得3AD =.②由①得ACE ∆的三边分别是2,6,6,根据题意可得答案.【详解】解:(1)因为大于0且小于3的整数的整数有1、2,所以根据三角形三边关系列举出所有满足条件的三角形有:(1,1,1),(1,2,2),(2,2,2);(2)①如图 ∵CE AB ∥∴ABD ECD BAD CED ∠=∠∠=∠在ABD ∆和ECD ∆中 ABD ECD BAD CED BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD ECD ∆∆≌∴2AD DE CE AB ===∴2AE AD =在ACE ∆中 ∵AC CE AE AC CE -<<+∴62262AD -<<+∴24AD <<∵AD 的长度为整数个单位长度∴3AD =;②由①得,ACE ∆的三边分别是2,6,6,根据题意,用记号表示ACE ∆为(2,6,6).【点睛】本题考查三角形的三边关系,三角形中线,解题关键是利用中线倍长法做辅助线.25.(1)这个n 边形的每个内角为165,这个n 边形的内角和为3960度;(2)小亮走出这个n 边形的周长为120米.。

河南省洛阳市八年级(上)期末数学试卷(解析版)

河南省洛阳市八年级(上)期末数学试卷(解析版)

河南省洛阳市八年级(上)期末数学试卷、选择题(每小题3分,共30 分)1. (3分)以下四家银行的标志图中,不是轴对称图形的是()A 團B GC © D.吳2. (3分)下列运算中正确的是()A. x2十x P=x4B. a?a2=d2C. (a3)2=a6D. (3a)3=9a33. (3分)使分式六有意义的x的取值范围是()A. x>—2B. x v2C. X M2D. X M — 24. (3分)下列各式由左边到右边的变形中,是因式分解的是(A. 2xy+6xz+3=2x (y +3z)+3B. (x+6)(x —6)=x2—36C.—2x2—2xy=— 2x (x+y)D. 3a2—3b2=3 (a2-b2)(3分)化简二■丄正确的是( )x-1GF $ I B $ -- 二------ — -- B. --------- 二------ -- —乂一]x-l X-l X-l X-l X-1丁:■: . _ D:':.「二一.一一丄二_1_上二一…—___:- :' '.■■:■< ! v' !6. (3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明/7. (3分)如图,已知△ ABE^A ACD,下列选项中不能被证明的等式是()5.A.C.A. AD=AE B . DB=AE C. DF=EF D . DB=EC8. (3分)如图,在△ ABC 中,/ B=Z C=60°,点D 在AB 边上,DE 丄AB ,并与AC 边交于点E.如果AD=1, BC=6那么CE 等于( )9. (3分)如图,AD 是厶ABC 的角平分线,/ C=20°, AB+BD=AC 将厶ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E.那么/ B 等于( )10. (3分)如图,已知,BDABC 的角平分线,且BD=BC E 为BD 延长线上 的一点,BE=BA 下列结论:①厶 ABD ^^ EBC ②/ BCE ■/BCD=180:③AD=AE=EC④AC=2CD 其中正确的有( )个.A . 1 B. 2 C. 3 D . 4二、填空题(共5小题,每小题3分,满分15分)11. (3分)写出点M (- 2,3)关于x 轴对称的点N 的坐标 ________ .12. ( 3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 _________ .13. _______________ (3分)若等腰三角形的一个内角比另一个内角大 30°,则这个等腰三角形的 顶角的度数为 .14. (3分)如图,△ ABC 中,点 D 在边 BC 上,若 AB=AD=CD / BAD=100,则 3 D . 2BA.18. (9分)先化简(13a+2然后从一2=凉2的范围内选取一15. (3分)如图,△ ABC中,BC的垂直平分线DP与/BAC的角平分线相交于点D,垂足为点P,若/ BAC=84,则/ BDC _________ .三、解答题(共75 分)16. (8分)计算(1) (a- 1) 2-a (a+2)(2) (x—6) (x+4) + (3x+2) (2-3x)17. (8分)解决下列两个问题:(1)如图1,在厶ABC中,AB=3, AC=4, BC=5 EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为(2)如图2.点M、N在/BAC的内部,请在/ BAC的内部求作一点P,使得点P到/BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)个合适的整数作为a的值代入求值.度.沦夕曲+1图219. (9分)如图,DE// BC,点A为DC的中点,点B, A, E共线,求证:DE=CB20. (9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨[•小红家2015年8月的水费是18元,而2016年8 月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21. (10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m> n.(以上长度单位:cm)(1-)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为 _______ ;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.I22. (11 分)如图,Rt A ABC中,/ ACB=90,AC=BC 点D 在斜边AB上,且AD=AC, 过点B作BE! CD交直线CD于点E. 来源学科网ZXXK](1)求/ BCD的度数;(2)作AF丄CD于点F,求证:△ AFD^A CEB(3)请直接写出CD与BE的数量关系(不需证明).E23. (11分)问题情境:如图①,在△ ABD与厶CAE中,BD=AE / DBA=Z EACAB=AC 易证:△ ABD ^A CAE (不需要证明)特例探究:如图②,在等边厶 ABC 中,点D 、E 分别在边BC AB 上,且BD=AE AD 与CE 交于点F .求证:△ ABD ^A CAE归纳证明:如图③,在等边厶ABC 中,点D 、E 分别在边CB BA 的延长线上, 且BD=AE △ ABD 与△ CAE 是否全等?如果全等,请证明;如果不全等,请说明 理由.拓展应用:如图④,在等腰三角形中,AB=AC 点0是AB 边的垂直平分线与AC的交点,点D 、E 分别在OB BA 的延长线上.若BD=AE / BAC=50, / AEC=32,求/ BAD 的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1. (3分)以下四家银行的标志图中,不是轴对称图形的是( )A ®B QC © 長【解答】解:A 、是轴对称图形,故错误;B 、不是轴对称图形,故正确;C 是轴对称图形,故错误;D 、不轴对称图形,故错误.故选:B.2. (3分)下列运算中正确的是( )2.8 - 4 2 2 3、26 3 3A. x F x =xB. a?a =aC. (a ) =aD. (3a) =9a 【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C底数不变指数相乘,故C正确爲D、积的乘方等于乘方的积,故D错误;故选」:C.3. (3分)使分式:有意义的x的取值范围是( )A. x>- 2B. x v2C. X M2D. X M- 2【解答】解:•••分式:一有意义,二X+2M 0,即卩X M- 2.故选:D.4. (3分)下列各式由左边到右边的变形中,是因式分解的是( )A. 2xy+6xz+3=2x (y+3z) +3B. (x+6) (x- 6) =^ - 36C. - 2X2- 2xy=- 2x (x+y)D. 3a2- 3b2=3 (a2- b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2- b2仍然可以继续分解为(a+b) (a- b),故D属于分解不彻底, 故D不正确;故选:C.2 !(3分)化简丫 正确的是( ) x-1' 1 B x^-l (汎-1)' - ------ —二! -- ------- ------- — D. —二 —K —1 x-l X-l X-l X-l X-1丁 _'■■ ■— - - | D 叮-丨… C i :丨x-l X-1 X X-l x-1 x+1【解答】解:原式=」!' 1 =x+1,X-1 故选:C. 6. (3分)如图所示,是用直尺和圆规作一个角等于已知角的“示意图,则说明/【解答】解:由作法易得 OD=O D ; OC=O C' CD=C D'依据SSS 可判定△ CODC'O'D ;故选:B.7. (3分)如图,已知△ ABE^A ACD,下列选项中不能被证明的等式是( )A . AD=AEB . DB=AE C. DF=EF D . DB=EC【解答】解:•••△ ABE^A ACD ,••• AB=AC AD=AE / B=Z C , 故 A 正确;••• AB - AD=AC- AE,即 BD=EC 故 D 正确;在厶 BDF ftA CEF 中5. A .C.N B 二 ZC* ZBFD=ZCFE,&D=CE•••△ BDF ^A CEF(ASA ,••• DF=EF 故 C 正确; 故选:B.8. (3分)如图,在△ ABC 中,/ B=Z C=60°,点D 在AB 边上,DE 丄AB ,并与 AC 边交于点E.如果AD=1, BC=6,那么CE 等于( )【解答】解:•••在△ ABC 中,/ B=Z C=60,••应丄AB ,• / AED=30,•/ AD=1,• AE=2••• BC=6• AC=BC=6• CE=AC- AE=6- 2=4,故选:B.9. (3分)如图,AD 是厶ABC 的角平分线,/ C=20°, AB+BD=AC 将厶ABD 沿 AD 所在直线翻折,点B 在AC 边上的落点记为点E.那么/ B 等于( )A . 80,B. 60,C. 40,D . 303 D . 2【解答】解:根据折叠的性质可得BD=DE AB=AE••• AC=AEEC AB+BD=AC••• DE=EC•••/ EDC=z C=20,•••/ AED=/ EDC+Z C=40.•••/ B=Z AED=40故选:C.10. (3分)如图,已知,BDABC的角平分线,且BD=BC E为BD延长线上的一点,BE=BA下列结论:①厶ABD^^ EBC ②/ BCEV BCD=180:③AD=AE=EC④AC=2CD其中正确的有()个.AB CA. 1B. 2C. 3D. 4【解答】解:①T BDABC的角平分线,•••/ ABD=Z CBDr AB=BE在厶ABD和厶EBC中,ZABD^ZCBD,IBXBC•••△ ABD^A EBC(SAS,①正确;②••• BDABC的角平分线,BD=BC BE=BA•••/ BCD=/ BDC=/ BAE=Z BEA•••△ ABD^A EBC.•./ BCE Z BDA AD=EC …•••/ BCHZ BCD=/ BDA+Z BDC=180,②正确;③由②得:/ BDC=/ BEA又•••/ ADE=Z BDC,.Z ADE=/ BEA••• AD=AE••• AD=AE=EC ③正确;④ ••• AD=AE=EC AE+CE> AD+CD,••• AD > CD,•••心 2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11. (3分)写出点M (- 2, 3)关于x 轴对称的点N 的坐标(-2,- 3) 【解答】解::M (-2, 3),•关于x 轴对称的点N 的坐标(-2,- 3).故答案为:(-2,- 3)12. ( 3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅解:0.00 000 000 034=3.4X 10-10,13. (3分)若等腰三角形的一个内角比另一个内角大 30。

∥3套精选试卷∥2018年洛阳市八年级上学期期末考试数学试题

∥3套精选试卷∥2018年洛阳市八年级上学期期末考试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1B .0C .-2D .-1【答案】D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解. 详解:2423m n m n -=⎧⎨-=⎩①② ②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n 这个整体式子的值.2.某手机公司接到生产300万部手机的订单,为尽快交货.…,求每月实际生产手机多少万部?在这道题目中,若设每月实际生产手机x 万部,可得方程300 1.53005x x⨯-=,则题目中“…”处省略的条件应是( )A .实际每月生产能力比原计划提高了50%,结果延期5个月完成B .实际每月生产能力比原计划提高了50%,结果提前5个月完成C .实际每月生产能力比原计划降低了50%,结果延期5个月完成D .实际每月生产能力比原计划降低了50%,结果提前5个月完成【答案】B 【分析】由x 代表的含义找出1.5x 代表的含义,再分析所列方程选用的等量关系,即可找出结论. 【详解】设每月实际生产手机x 万部,则1.5x 即150%x +表示:实际每月生产能力比原计划提高了50%, ∵方程300 1.53005x x ⨯-=,即3003005150%x x -=+, 其中300150%x +表示原计划生产所需时间,300x 表示实际生产所需时间, ∴原方程所选用的等量关系为:实际生产比原计划提前5个月完成,即实际每月生产能力比原计划提高了50%,结果提前5个月完成.故选:B .【点睛】本题考查了分式方程的应用,根据所列分式方程,找出选用的等量关系是解题的关键.3.下列各式中,能用完全平方公式进行因式分解的是() . A .2x 4x 4-+B .2x 1+C .2x 2x 2--D .2x 4x 1++【答案】A【分析】根据完全平方式的特征进行因式分解,判断即可.【详解】A. 22x 4x 4=(x-2)-+,能用完全平方公式进行因式分解,故选项A 正确;B. 2x 1+,不能用完全平方公式进行因式分解,故选项B 错误;C. 2x 2x 2--,不能用完全平方公式进行因式分解,故选项C 错误;D. 2x 4x 1++,不能用完全平方公式进行因式分解,故选项D 错误.故选:A【点睛】本题考查的是多项式的因式分解,掌握用完全平方公式进行因式分解的方法是解题的关键.4.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为( ) A .0.22×10﹣9B .2.2×10﹣10C .22×10﹣11D .0.22×10﹣8 【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为-n a 10⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 000 22=-102.210⨯,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.表示时关键要正确确定a 的值以及n 的值.5.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF【答案】B 【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD 是△ABC 的中线.故选B .本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB【答案】A【分析】由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.7.已知a、b、c是△ABC三边的长,则2--+|a+b-c|的值为()(a b c)A.2a B.2b C.2c D.2(a一c)【答案】B【解析】试题解析:∵三角形两边之和大于第三边,两边之差小于第三边,∴a-b-c<0,a+b-c>0∴()2--+|a+b-c|=b+c-a+a+b-c=2b.a b c故选B.8.下列国旗中,不是轴对称图形的是()A.B.C.D.【分析】一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:A.【点睛】本题考查轴对称图形,解题的关键是掌握轴对称图形的判断方法:把一个图形沿一条直线对折,如果图形的两部分能够重合,那么这个是轴对称图形.9.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位【答案】D【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D.【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.10.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC ≌△DEA ,∴∠B=∠E=115°,∠ACB=∠EAD ,∠BAC=∠ADE ,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C .点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC 与△AED 全等.二、填空题11.分解因式:39a b ab -= .【答案】ab (a+3)(a ﹣3).【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.12.如图,已知△ABC 是等边三角形,分别在AC 、BC 上取点E 、F ,且AE=CF ,BE 、AF 交于点D ,则∠BDF =______.【答案】60°.【解析】试题分析:∵△ABC 是等边三角形,∴∠BAC=∠ABC=∠C=60°,AB=AC ,又∵AE=CF ,∴△ABE ≌△ACF (SAS ),∴∠ABE=∠CAF ,∴∠BDF=∠BAD+∠ABE=∠BAD+∠CAF=∠BAC=60°.考点:1.等边三角形的性质;2.全等三角形的性质和判定;3.三角形的外角的性质.13.计算124183-⨯= . 【答案】6.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解: 12418=266=63-⨯-. 14.使分式的值为0,这时x=_____.【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法15.计算9910012-2⎛⎫⨯ ⎪⎝⎭的结果是_____________. 【答案】2-【分析】根据积的乘方的逆运算,把原式变形为指数相同的,然后利用有理数的乘方和乘法法则进行计算即可. 【详解】原式9912(2)2=⨯-⨯ 2(1)=⨯-2=-,故答案为:2-.【点睛】本题考查了积的乘方公式,逆用公式是解题的关键,注意负数的奇次方是负数.16.成人每天的维生素D 的摄入量约为0.0000046克,数据0.0000046用科学记数法可表示为_________________【答案】4.6×106-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.0000046用科学记数法表示为4.6×106-故答案为4.6×106-【点睛】此题考查科学记数法,解题关键在于使用负指数幂进行表达17.若一个正比例函数的图象经过(4,8)A 、(m,8)B )两点,则m 的值为__________.【答案】4【分析】设正比例函数为y=kx ,将点A 代入求出解析式,再将点B 代入即可求出m.【详解】设正比例函数为y=kx ,将点(4,8)A 代入得:4k=8,解得:k=2,∴y=2x,将点(m,8)B代入得:2m=8,解得m=4,故答案为:4.【点睛】此题考查正比例函数的解析式,利用待定系数法求函数解析式,由此求得图象上其他点的坐标.三、解答题18.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?【答案】(1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.【分析】(1)根据从甲地行驶到乙地的路程相等列出分式方程解答即可;(2)根据所需费用不超过50元列出不等式解答即可.【详解】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:8030x0.5x=+,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;至少需要用电行驶60千米.(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100-y)≤50,解得:y≥60,所以至少需要用电行驶60千米.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.19.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF 的长.【答案】(1)详见解析;(2)2.【分析】(1)根据题意易得AD=BD ,∠BFD=∠ACD ,进而得到△BDF ≌△ACD ,问题得证;(2)连接CF ,由(1)易得DF=DC ,然后利用垂直平分线的性质定理可求解.【详解】解:(1)AD ⊥BD ,∠BAD=45°,∴AD=BD ,∵∠BFD=∠AFE ,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD ,在△BDF 和△ACD 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴BF=AC ;(2)连接CF ,∵△BDF ≌△ADC ,∴DF=DC ,∴△DFC 是等腰直角三角形∵CD=1,∴2∵AB=BC ,BE ⊥AC ,∴AE=EC ,BE 是AC 的垂直平分线.∴AF=CF ,∴2.【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形及线段的垂直平分线的性质定理,关键是根据题意得到三角形全等,然后得到线段的等量关系.20.如图,已知∠A =∠D ,AB =DB ,点E 在AC 边上,∠AED =∠CBE ,AB 和DE 相交于点F . (1)求证:△ABC ≌△DBE .(2)若∠CBE =50°,求∠BED 的度数.【答案】(1)见解析;(2)∠BEC=65°【分析】(1)根据三角形的内角和得到∠ABD =∠AED ,求得∠ABC =∠DBE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到BE =BC ,求得∠BEC =∠C ,根据三角形的内角和即可得到结论.【详解】(1)证明:∵∠A =∠D ,∠AFE =∠BFD ,∴∠ABD =∠AED ,又∵∠AED =∠CBE ,ABD CBE ∴∠=∠∴∠ABD+∠ABE =∠CBE+∠ABE ,即∠ABC =∠DBE ,在△ABC 和△DBE 中,A D AB DBABC DBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DBE (ASA );(2)解:∵△ABC ≌△DBE ,∴BE =BC ,∴∠BEC =∠C ,∵∠CBE =50°,∴∠BEC =∠C =65°.【点睛】本题考查了全等三角形的判定和性质,灵活的根据题中已知条件选择合适的判定方法是解题的关键. 21.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.22.解答下列各题:(12810. (2)解方程:22322x x x-=+++. 【答案】(1)425-(2)3x =-【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到23(2)2x x =++-,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式28210=⨯⨯425=-(2)23(2)2x x =++-,解得3x =-,经检验,原方程的解为3x =-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.23.已知,ABC ∆在平面直角坐标系中的位置如图所示.(1)把ABC ∆向下平移2个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出111A B C ∆关于y 轴对称的222A B C ∆,并写出2A 的坐标;(3)求ABC ∆的面积.【答案】(1)见解析;(2)(4,-1);(3)6.1.【分析】(1)首先确定A 、B 、C 三点向下平移2个单位长度后的对应点位置,然后再连接即可; (2)首先确定A 1、B 1、C 1关于y 轴对称的对称点,然后再连接即可;(3)把△ABC 放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:A 2的坐标(4,-1);(3)△ABC 的面积:3×1-12×2×3-12×1×1-12×2×3=11-3-2.1-3=6.1. 【点睛】本题主要考查了作图--轴对称变换和平移变换,关键是找出组成图形的关键点平移后的对应点位置. 24.解方程:(132421626(2)计算:1275(52)(52)3+(3)解方程组:1323811x y x y ⎧+=⎪⎨⎪-=⎩【答案】(1);(2)3+(3)512x y =⎧⎪⎨=⎪⎩. 【分析】(1)利用二次根式的性质和二次根式的乘除法化简,将所得的结果相加减即可;(2)利用平方差公式和和二次根式的乘除法化简,将所得的结果相加减即可;(3)利用加减消元法即可求解.【详解】解:(1)原式=2=2=2-= (2)原式=22-=52-+=3+(3)1323811x y x y ⎧+=⎪⎨⎪-=⎩①②①×6得:3618x y +=③,③-②得147y =,解得12y =, 将12y =代入②得3411x -=,解得5x =, 即该方程组的解为:512x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查二次根式的混合运算和解方程组.(1)(2)中掌握二次根式的性质和二次根式的乘除法则是解题关键;(3)中掌握消元思想是解题关键.25. “双十一”活动期间,某淘宝店欲将一批水果从A 市运往B 市,有火车和汽车两种运输方式,火车和汽车途中的平均速度分别为100千米/时和80米/时.其它主要参考数据如下:(1)①若A 市与B 市之间的距离为800千米,则火车运输的总费用是______元;汽车运输的总费用是______元;②若A 市与B 市之间的距离为x 千米,请直接写出火车运输的总费用1y (元)、汽车运输的总费用2y (元)分别与x (千米)之间的函数表达式.(总费用=途中损耗总费用+途中综合总费用+装卸费用)(2)如果选择火车运输方式合算,那么x 的取值范围是多少?【答案】(1)①15600,18900;②1172000y x =+,222.5900y x =+; (2) 200x >时,选择火车运输方式合算.【分析】(1)①根据题意和表格中的数据可以分别计算出火车运输的总费用和汽车运输的总费用; ②根据题意和表格中的数据可以分别写出火车运输的总费用y 1(元)、汽车运输的总费用y 2(元)分别与x (千米)之间的函数表达式;(2)根据题意和②中的函数关系式,令y 1<y 2,即可求得x 的取值范围.【详解】(1)①由题意可得,火车运输的总费用是:1×(800÷100)+800×15+10=15600(元),汽车运输的总费用是:1×(800÷80)+800×20+900=18900(元),故答案为:15600,18900;②由题意可得,火车运输的总费用y 1(元)与x (千米)之间的函数表达式是:y 1=1(x÷100)+15x+10=17x+10,汽车运输的总费用y 2(元)与x (千米)之间的函数表达式是:y 2=1(x÷80)+20x+900=22.5x+900;(2)令17x+10<22.5x+900,解得,x >1.答:如果选择火车运输方式合算,那么x 的取值范围是x >1.【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是 A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .两图形重合【答案】B【解析】在坐标系中,点的坐标关于y 轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y 坐标轴对称,故B 正确.2.如图,在ABC ∆中,10AB AC ==,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若BCD 的周长为17,则BC 的长为( )A .6B .7C .8D .9【答案】B 【分析】根据线段垂直平分线的性质可得AD=BD ,AB=2AE ,把△BCD 的周长转化为AC 、BC 的和,然后代入数据进行计算即可得解.【详解】∵DE 是AB 的垂直平分线,∴AD=BD ,AB=2AE=10,∵△BCD 的周长=BD+CD+BC=AD+CD+BC=AC+BC=11,∵AB=AC=10,∴BC=11-10=1.故选:B .【点睛】此题考查线段垂直平分线的性质.此题比较简单,解题的关键是掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用.3.已知:C D 、是线段AB 外的两点, ,AC BC AD BD ==,点P 在直线CD 上,若5AP =,则BP 的长为( )A .2.5B .5C .10D .25【答案】B【分析】根据已知条件确定CD 是AB 的垂直平分线即可得出结论.【详解】解:∵AC=BC,∴点C在AB的垂直平分线上,∵AD=BD,∴点D在AB的垂直平分线上,∴CD垂直平分AB,∵点P在直线CD上,∴AP=BP,AP ,∵5∴BP=5,故选B.【点睛】本题主要考查了线段的垂直平分线,关键是熟练掌握线段的垂直平分线的性质.4.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【答案】B【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.5.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1 B.m>﹣1 C.m>0 D.m<0【答案】A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.6.分式 21x --可变形为( ) A .21x -- B .21x + C .21x -+ D .21x - 【答案】D【分析】根据分式的性质,可化简变形.【详解】2221(1)1x x x -==----. 故答案为D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7.已知72x =,432816x x x ++的值为( ) A .117B 73 C .3 D .9 【答案】D【分析】先将432816x x x ++因式分解,再将72x =代入,借助积的乘方公式(()n n n a b ab ⋅=,本题中为逆运用)和平方差公式(22()()a b a b a b +-=-)求解即可.【详解】解:4322222816(816)(4)x x x x x x x x ++=++=+, 将72x =代入,原式=2272)724)+22(72)72)=2772)]=2(74)=-9=.故选:D .【点睛】本题考查因式分解的应用,积的乘方公式,平方差公式,二次根式的化简求值.解决此题的关键是①综合利用提公因式法和公式法对原代数式进行因式分解;②利用积的乘方公式和平方差公式对代值后的式子进行适当变形.8.已知,m n x a x b ==那么23m n x +的值等于 ( )A .32a b +B .23a bC .32a bD .23a b +【答案】B【分析】由同底数幂的乘法的逆运算与幂的乘方的逆运算把23m n x +变形后代入可得答案.【详解】解:,m n x a x b ==,232323()()m n m n m n x x x x x +∴=•=•23.a b =故选B .【点睛】本题考查的是同底数幂的逆运算与幂的乘方的逆运算,掌握逆运算的法则是解题的关键.9.下列以a 、b 、c 为边的三角形中,是直角三角形的是( )A .a =4,b =5,c =6B .a =5,b =6,c =8C .a =12,b =13,c =5D .a =1,b =1,c【答案】C【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可.【详解】解:A 、因为42+52=41≠62,所以以a 、b 、c 为边的三角形不是直角三角形;B 、因为52+62≠82,所以以a 、b 、c 为边的三角形不是直角三角形;C 、因为122+52=132,所以以a 、b 、c 为边的三角形是直角三角形;D 、因为12+12≠2,所以以a 、b 、c 为边的三角形不是直角三角形;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.10.禽流感病毒的半径大约是0.00000045米,它的直径用科学记数法表示为( )A .70.910-⨯米B .7910-⨯米C .6910-⨯米D .7910⨯米 【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】70.000000452910-⨯=⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题11.一组数据3,4,6,7,x 的平均数为6,则这组数据的方差为_____.【答案】1【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【详解】解:数据3,4,1,7,x 的平均数为1, ∴346765x ++++=, 解得:10x =,2222221[(36)(46)(66)(76)(106)]65s ∴=-+-+-+-+-=; 故答案为:1.【点睛】本题考查方差的定义:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.用不等式表示x 的3倍与5的和不大于10是____________________;【答案】3x+5≤1【分析】直接利用x 的3倍,即3x ,与5的和,则3x+5,进而小于等于1得出答案.【详解】解:由题意可得:3x+5≤1.故答案为:3x+5≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.13.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).【答案】①③【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③;④由BE 1=BC 1-EC 1=1AB 1-(CD 1﹣DE 1)=1AB 1-CD 1+1AD 1=1(AD 1+AB 1)-CD 1可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 1=BC 1-EC 1=1AB 1-(CD 1﹣DE 1)=1AB 1-CD 1+1AD 1=1(AD 1+AB 1)-CD 1.∴BE 1=1(AD 1+AB 1)-CD 1,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.14.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.【答案】106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO ,延长AO 交BC 于点D .根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO ,∠DOC=∠2+∠OAC ,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC ,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.15. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)【答案】可添∠ABD=∠CBD 或AD=CD .【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD 或AD=CD .【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS ,SAS ,ASA ,AAS . 16.计算:)31646132- 【答案】43+【分析】将第一项分母有理化,第二项求出立方根,第三项用乘法分配律计算后,再作加减法即可.【详解】解:原式=()2646332⨯---⨯+ =324323+-+=43+.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.17.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为__.【答案】 (-12,-12) 【解析】试题解析:先过点A 作AB′⊥OB ,垂足为点B′,由垂线段最短可知,当B′与点B 重合时AB 最短,∵点B 在直线y=x 上运动,∴△AOB′是等腰直角三角形,过B′作B′C ⊥x 轴,垂足为C ,∴△B′CO 为等腰直角三角形,∵点A 的坐标为(﹣1,0),∴OC=CB′=12OA=12×1=12, ∴B′坐标为(﹣12,﹣12), 即当线段AB 最短时,点B 的坐标为(﹣12,﹣12). 考点:一次函数综合题.三、解答题18.某商店销售篮球和足球共60个.篮球和足球的进价分别为每个40元和50元,篮球和足球的卖价分别为每个50元和65元.设商店共有x 个足球,商店卖完这批球(篮球和足球)的利润为y .(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)商店现将篮球每个涨价a 元销售,足球售价不变,发现这批球卖完后的利润和x 的取值无关.求卖完这批球的利润和a 的值.【答案】(1)y =5x +600(0≤x ≤60);(2)a =5,900元【分析】(1)设商店共有x 个足球,则篮球的个数为(60-x ),根据利润=售价-进价,列出等量关系即可;(2)将(1)中的(50-40)换成(50+a -40)进行整理,分析即可.【详解】解:(1)设商店共有x 个足球,依题意得:y =(65-50)x +(50-40)(60-x )即:y =5x +600(0≤x ≤60);(2)根据题意,有y =(65-50)x +(50+a -40)(60-x )=(5-a )x +60(10+a )∵y 的值与x 无关,∴a =5,∴y=60×(10+5)=900,∴卖完这批球的利润为900元.【点睛】本题考查一次函数的应用,熟练掌握利润与售价、进价之间的关系是关键.19.如图,在平面直角坐标系xOy 中,点()0,6A 、点()4,6B ,点P 同时满足下面两个条件:①点P 到A 、B 两点的距离相等;②点P 到xOy ∠的两边距离相等.(1)用直尺和圆规作出符合要求的点P (不写作法,保留作图痕迹);(2)写出(1)中所作出的点P 的坐标 .【答案】(1)见解析;(2)(2,2).【分析】(1)先作线段AB 的垂直平分线l ,再作∠xOy 的平分线OC ,它们的交点即为所要求作的点P ; (2)由于P 在线段AB 的垂轴平分线上,则P 点的横只能为2,再利用P 点在第一象限的角平分线上,则P 点的横纵坐标相等,从而得到点P 的坐标.【详解】(1)如图,点P 为所作;。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

[试卷合集3套]洛阳市2018年八年级上学期期末调研数学试题

[试卷合集3套]洛阳市2018年八年级上学期期末调研数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A .9cmB .13cmC .16cmD .10cm【答案】A 【解析】试题分析:由折叠的性质知,CD=DE ,BC=BE .易求AE 及△AED 的周长.解:由折叠的性质知,CD=DE ,BC=BE=7cm .∵AB=10cm ,BC=7cm ,∴AE=AB ﹣BE=3cm .△AED 的周长=AD+DE+AE=AC+AE=6+3=9(cm ).故选A .点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.若分式2ab a b+中的,a b 的值同时扩大到原来的10倍, 则分式的值( ) A .变为原来的20倍 B .变为原来的10倍C .变为原来的110D .不变 【答案】B 【分析】,a b 的值同时扩大到原来的10倍可得210ab a b ⎛⎫⨯⎪+⎝⎭,再与2ab a b +进行比较即可. 【详解】将分式2ab a b+中的,a b 的值同时扩大到原来的10倍,可得 210101010a b a b⨯⨯+ 210ab a b⨯=+ 210ab a b ⎛⎫=⨯ ⎪+⎝⎭则分式的值变为原来的10倍本题考查了分式的变化问题,掌握分式的性质是解题的关键.3.若(x-3)(x+5)是x2+px+q的因式,则q为( )A.-15 B.-2 C.8 D.2【答案】A【分析】直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选A.【点睛】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.4.下列图案不是轴对称图形的是( )A.B.C.D.【答案】C【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选C.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.5.学习了一元一次不等式的解法后,四位同学解不等式21126x x≥1时第一步“去分母”的解答过程都不同,其中正确的是()A.2(2x-1)-6(1+x)≥1B.3(2x-1)-1+x≥6 C.2(2x-1)-1-x≥1D.3(2x-1)-1-x≥6【答案】D【分析】根据不等式的解法判断即可.【详解】解:21126x x≥1不等式两边同时乘以分母的最小公倍数6可得:32116x x,【点睛】本题考查了解一元一次不等式,能正确根据不等式的基本性质进行去分母是解此题的关键.6.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( ) A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限【答案】A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子: (1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.7.下列各式计算正确的是( ).A .a 2•a 3=a 6B .(﹣a 3)2=a 6C .(2ab )4=8a 4b 4D .2a 2﹣3a 2=1【答案】B【详解】解:A 选项是同底数幂相乘,底数不变,指数相加,a 2•a 3=a 5,故错误;B 选项是利用积的乘方和幂的乘方法则把-1和a 的三次方分别平方,(﹣a 3)2=a 6,正确;C 选项利用积的乘方法则,把积里每一个因式分别乘方,(2ab )4=16a 4b 4,故错误;D 选项把同类项进行合并时系数合并,字母及字母指数不变,2a 2﹣3a 2=﹣a 2,错误;故选B .8.平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( ).A .(﹣2,﹣3)B .(2,﹣3)C .(﹣3,﹣2)D .(3,﹣2)【答案】A【分析】根据关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P (﹣2,3)关于x 轴对称的点的坐标为(﹣2,﹣3)故选A .【点睛】此题考查的是求一个点关于x 轴对称点的坐标,掌握关于x 轴对称的两点坐标关系是解决此题的关键. 9.如图,Rt △ABC 中,CD 是斜边AB 上的高,∠A=30°,BD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm【答案】C 【分析】根据题意易得:∠BCD=30°,然后根据30°角的直角三角形的性质先在直角△BCD 中求出BC ,再在直角△ABC 中即可求出AB .【详解】解:Rt △ABC 中,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵CD 是斜边AB 上的高,∴∠BCD=30°,∵BD=2cm ,∴BC=2BD=4cm ,∵∠ACB=90°,∠A=30°,∴AB=2BC=8cm .【点睛】本题考查的是直角三角形的性质,属于基本题型,熟练掌握30°角所对的直角边等于斜边的一半是解题关键.10.下列图形中,不一定是轴对称图形的是( )A .正方形B .等腰三角形C .直角三角形D .圆【答案】C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C二、填空题11.如图,ABC 是等边三角形,AE CD =,AD 、BE 相交于点P ,BQ DA ⊥于Q ,3PQ =,1EP =,则DA 的长是______.【答案】1【分析】由已知条件,先证明△ABE ≌△CAD 得∠BPQ=60°,可得BP=2PQ=6,AD=BE .即可求解.【详解】∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠ACD=60°;又∵AE=CD ,在△ABE 和△CAD 中,AB CA BAE ACD AE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAD ;∴BE=AD ,∠CAD=∠ABE ;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ ⊥AD ,∴∠AQB=90°,则∠PBQ=90°-60°=30°;∵PQ=3,∴在Rt △BPQ 中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=1.故答案为:1.【点睛】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.12.如图,ABM ∆与CDM ∆是两个全等的等边三角形,MA MD ⊥.有下列四个结论:①025MBC ∠=;②0180ADC ABC ∠+∠=;③直线MB 垂直平分线段CD ;④四边形ABCD 是轴对称图形.其中正确的【答案】②③④【分析】①通过全等和等边三角形的性质解出答案即可判断;②根据题意推出即可判断;③延长BM交CD于N,利用外角定理推出即可判断;④只需证明四边形ABCD是等腰梯形即可判断.【详解】①∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°﹣60°﹣60°﹣90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;②∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;③延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;④根据②同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴四边形ABCD 是等腰梯形,∴四边形ABCD 是轴对称图形.故答案为:②③④.【点睛】本题考查等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定,关键在于熟练掌握相关基础知识.13.如图,在OAB ∆中,3OA OB ==,45AOB ∠=︒,C 是AB 中点,则点O 关于点C 的对称点的坐标是______.【答案】 (3323222+,).【分析】过点A 作AD ⊥OB 于D ,然后求出AD 、OD 的长,从而得到点A 的坐标,再根据中点坐标公式,求出点C 的坐标,然后利用中点坐标公式求出点O 关于点C 的对称点坐标,即可.【详解】如图,过点A 作AD ⊥OB 于D ,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷2=322, ∴点A(322,322),B(3,0), ∵C 是AB 中点,∴点C 的坐标为(332322222+,), ∴点O 关于点C 的对称点的坐标是:(3323222+,) 故答案为:(3323222+,).14.计算:25-38-=________.【答案】1【解析】根据算术平方根和立方根定义,分别求出各项的值,再相加即可.【详解】解:因为3255,82=-=-,所以3258527--=+=.故答案为1.【点睛】本题考核知识点:算术平方根和立方根. 解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.15.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.16.如图,矩形纸片ABCD ,8AB =,6BC =,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在E 处,PE DE 、分别交AB 于点O F 、,且OP OF =,则AF 长为__________【答案】165【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP=OF 可得出△OEF ≌△OBP ,根据全等三角形的性质可得出OE=OB 、EF=BP ,设BF=EP=CP=x ,则AF=8-x ,BP=6-x=EF ,DF=DE-EF=8-(6-x )=x+2,依据Rt △ADF 中,AF 2+AD 2=DF 2,求出x 的值,即可得出AF 的长.【详解】根据折叠可知:△DCP ≌△DEP ,∴DC=DE=8,CP=EP在△OEF 和△OBP 中,∵∠EOF=∠BOP ,∠B=∠E=90°,OP=OF ,∴OE+OP=OF+OB∴BF=EP=CP,设BF=EP=CP=x,则AF=8−x,BP=6−x=EF,DF=DE−EF=8−(6−x)=x+2,∵∠A=90°,∴Rt△ADF中,AF2+AD2=DF2,即(8−x)2+62=(x+2)2,解得:x=24 5,∴AF=8−x=8−245=165,故答案为:165.【点睛】本题考查了矩形中的折叠问题,熟练掌握全等三角形的判定与性质,利用勾股定理建立方程是解题的关键.17.如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE= _______________cm .【答案】1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【详解】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,90CAD CBFAD BDADC BDE︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD-DE=BD-CD=BC-CD-CD=1;故答案为1.【点睛】【答案】10︒【分析】设∠B=∠C=x,∠EDC=y,构建方程即可解决问题;【详解】设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 ︒−2(x+y)=180 ︒−20 ︒−2x,∴2y=20 ︒,∴y=10 ︒,∴∠CDE=10 ︒.【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.【答案】12°【解析】先根据角平分线的定义求得∠EAC的度数,再由三角形外角的性质得出∠AED的度数,最后由直角三角形的性质可得结论.【详解】解:∵AE平分∠BAC,∴∠EAC=1BAC2∠=11002⨯︒=50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.本题考查三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余. 20.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?【答案】(1)这项工程的规定时间是30天;(2)该工程的施工费用为153000元【分析】(1)设这项工程的规定时间是x 天,根据工程问题的等量关系列分式方程求解;(2)通过第一问求出的甲、乙单独完成的时间,算出合作需要的时间,乘以每天的费用得到总费用.【详解】解:(1)设这项工程的规定时间是x 天,根据题意得:115()1511.5x x x+⨯+=, 解得30x =,经检验30x =是方程的解,答:这项工程的规定时间是30天;(2)该工程由甲、乙合做完成,所需时间为;111()1830 1.530÷+=⨯ (天), 则该工程的施工费用是:18×(5500+3000)=153000(元),答:该工程的施工费用为153000元.【点睛】本题考查分式方程的应用,解题的关键是掌握工程问题中的列式方法.21. (1)分解因式: ()()()()a b x y b a x y ----+.(2)分解因式: 225(2)5m x y mn --;(3)解方程: 2221111x x x x -=+--. 【答案】(1)2()x a b -;(2)()()522m x y n x y n -+--;(3)无解【分析】(1)利用提公因式法因式分解即可;(2)先提取公因式,然后利用平方差公式因式分解即可;(3)根据解分式方程的一般步骤解分式方程即可.【详解】解:(1) ()()()()a b x y b a x y ----+=()()()()a b x y a b x y --+-+=[]()()()a b x y x y --++=[]()a b x y x y --++=2()x a b -(2) 225(2)5m x y mn --=225(2)m x y n --⎡⎤⎣⎦=()()522m x y n x y n -+-- (3) 2221111x x x x -=+-- 化为整式方程,得()2121x x x -+=+去括号,得2221x x x -+=+移项、合并同类项,得33x =解得:1x =经检验:1x =是原方程的增根,原方程无解.【点睛】此题考查的是因式分解和解分式方程,掌握用提公因式法和平方差公式因式分解和解分式方程的一般步骤是解决此题的关键,需要注意的是,分式方程要验根.22.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?【答案】(1)该公司至少购进甲型显示器1台;(2)购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【分析】(1)设该公司购进甲型显示器x 台,则购进乙型显示器(50-x )台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50-x 与(1)的结论构成不等式组,求出其解即可.【详解】解:(1)设该公司购进甲型显示器x 台,则购进乙型显示器(50-x )台,由题意,得:1000x+2000(50-x )≤77000解得:x≥1.∴该公司至少购进甲型显示器1台.(2)依题意可列不等式:x≤50-x ,解得:x≤2.∴1≤x≤2.∵x 为整数,∴x=1,24,2.∴购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【点睛】本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,方案设计的运用,解答时根据条件的不相等关系建立不等式是关键.23.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.【答案】5y +x ,2.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y +÷=5y x +, 当21x y =-,=时, 原式=523-=【点睛】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式. 24.计算:(1)233(3)a a a -⋅÷(2)先化简,再求值: [(2m+n)(2m-n)+(m+n)2-2(2m 2-mn)]÷(-4m),其中m=1,n=12. 【答案】(1)-27a 10;(2)4m n --,34- 【解析】(1)根据积的乘方、单项式乘单项式以及整式除法法则计算即可;(2)根据整式的混合运算法则把原式化简,代入计算即可.【详解】(1)原式 =()2927a aa -⋅÷=-27a 11÷a=-27a 10;(2)原式=[4m 2-n 2 + (m 2+2mn+n 2)-(4m 2-2mn )]÷(-4m)=(4m 2-n 2 +m 2+2mn+n 2-4m 2+2mn )÷(-4m)=(m 2+4mn )÷(-4m) = 4m n -- 当m=1,n=12时,原式=1142--=34-. 【点睛】本题考查了整式的混合运算,掌握平方差公式、完全平方公式、合并同类项法则是解题的关键 25.如图,D ,E 分别是AB ,AC 中点,CD AB ⊥,垂足为D ,BE AC ⊥,垂足为E ,CD 与BE 交于点F .(1)求证:AC AB =;(2)猜想CF 与DF 的数量关系,并证明.【答案】(1)证明见解析(2)猜想:2CF DF =【解析】(1)连接BC,再利用垂直平分线的性质直接得到相应线段的相等关系;(2)由(1)得出三角形ABC 是等边三角形,再推出FBC FCB ∠=∠,即可得出答案.【详解】(1)连接BC∵点D 是AB 中点且CD AB ⊥于点D∴CD 是线段AB 的垂直平分线∴CA CB =同理BA BC =∴AC AB =(2)猜想:2CF DF =证明:由(1)得AC AB BC ==∴ABC 是等边三角形∴60A ∠=︒在Rt ABE 中9030ABE A ∠=︒-∠=︒在Rt BDF 中2BF DF =∵在Rt ADC 中9030ACD A ∠=︒-∠=︒又∵60ABC ACB ∠=∠=︒ ∴FBC FCB ∠=∠∴CF BF =∴2CF DF =【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥- 【答案】A【分析】令点P 的横坐标小于0,列不等式求解即可.【详解】解:∵点P P (1+m ,3)在第二象限,∴1+m <0,解得: m <-1.故选:A .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P (﹣3,1)关于y 轴对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】直接利用关于y 轴对称点的性质进而得出答案.【详解】解:点P (﹣3,1)关于y 轴对称点坐标为:(3,1),则(3,1)在第一象限.故选:A .【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数. 3.在分式39xz xy ,22ab a b -,22x y x y --,a b a b +-中,最简分式有( ) A .1个B .2个C .3个D .4个 【答案】B【分析】利用最简分式的定义判断即可得到结果. 【详解】39xz xy =3z y ,221x y x y x y-=-+,则最简分式有2个, 故选:B .【点睛】此题考查了最简分式,熟练掌握最简分式的定义是解本题的关键.4.已知△ABC 为直角坐标系中任意位置的一个三角形,现将△ABC 的各顶点横坐标乘以-1,得到△A 1B 1C 1,则它与△ABC 的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y=x 对称 【答案】B【分析】已知平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),从而求解.【详解】根据轴对称的性质,∵横坐标都乘以−1,∴横坐标变成相反数,根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴△ABC 与△A ′B ′C ′关于y 轴对称,故选:B .【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,比较简单.5.下列各式中,是最简二次根式的是( )A .6B .12C .18D .27 【答案】A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A.6不能继续化简,故正确; B.12=23,故错误; C.18=32,故错误; D. 27=33故错误.故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.6.如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 、E 分别在边AC 、AB 上,14AD =,点P 是边BC 上一动点,当PD PE +的值最小时,15AE =,则BE 为( )A .30B .29C .28D .27【答案】B 【分析】延长AC 至点M ,使CM CD =,过点M 作ME AB ⊥于点E ,交BC 于点P ,则此时PD PE +的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长AC 至点M ,使CM CD =,过点M 作ME AB ⊥于点E ,交BC 于点P ,则此时PD PE +的值最小.在Rt ABC △中,30B ∠=︒,60A ∴∠=︒.ME AB ⊥,90AEM ∴∠=︒,90A M ∴∠+∠=︒,90M ∴∠=︒.15AE =,230AM AE ∴==.AM AD DM =+,14AD =,16DM ∴=.CM CD =,8CD CM ∴==,22AC AD CD ∴=+=.在Rt ABC △中,30B ∠=︒,244AB AC ∴==.AB AE BE =+,15AE =,29BE ∴=.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.7.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠CB .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 【答案】D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011 °,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误; C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确.故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.8.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( )A .m >-1B .m <1C .-1<m <1D .-1≤m≤1【答案】C 【解析】试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m >﹣1,解不等式②得,m <1,所以,m 的取值范围是﹣1<m <1.故选C .考点:两条直线相交或平行问题.9.如图,ABC 是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE 、EF 、FG ……添加的这些钢管的长度都与BD 的长度相等.如果10ABC ∠=︒,那么添加这样的钢管的根数最多是( )A .7根B .8根C .9根D .10根【答案】B 【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【详解】∵添加的钢管长度都与BD 相等, 10ABC ∠=︒,∴∠FDE=∠DFE=20︒,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10︒,第二个是20︒,第三个是30︒,四个是40︒,五个是50︒,六个是60︒,七个是70︒,八个是80︒,九个是90︒就不存在了,所以一共有8个,故添加这样的钢管的根数最多8根故选B.【点睛】此题主要考查等腰三角形的性质,解题的关键是根据等边对等角求出角度,发现规律进行求解. 10.如图,直线y=x+b 与直线y=kx+6交于点P (1,3),则关于x 的不等式x+b>kx+6的解集是( )A .1x <B .1x >C .3x >D .3x <【答案】B 【分析】观察函数图象得到x>1时,函数y=x+b 的图象都在y=kx+6上方,所以关于x 的不等式x+b>kx+6的解集为x>1.【详解】当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1,故答案为x>1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题11.已知23a =-,23b -=-,()03c =-,比较a ,b ,c 的大小关系,用“<”号连接为______.【答案】a b c <<【分析】分别根据有理数乘方的意义、负整数指数幂的运算法则和0指数幂的意义计算a 、b 、c ,进一步即可比较大小.【详解】解:2=93a =--,2193b -==--,()031c =-=, ∵1909-<-<, ∴a b c <<.故答案为:a b c <<.【点睛】本题主要考查了负整数指数幂的运算法则和0指数幂的意义,属于基本题型,熟练掌握基本知识是解题的关键.12.若3m a =,5n a =,则m n a +=______.【答案】15【分析】根据同底数幂乘法法则来求即可.【详解】解: m n m n a a a +==3×5=15【点睛】本题考查的是同底数幂的乘法法则,同底数幂相乘,底数不变指数相加.13.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC :S △ABC =1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【分析】①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B 可知AD=BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD ,再由三角形的面积公式即可得出结论. 【详解】①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩,∴△ANP ≌△AMP ,则∠CAD=∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;②∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确; ③∵∠1=∠B=30°,∴AD=BD ,∴点D 在AB 的中垂线上,故此选项正确; ④∵在Rt △ACD 中,∠2=30°,∴CD=12AD ,∴BC=BD +CD=AD +12AD=32AD ,S △DAC =12AC•CD=14AC•AD ,∴S △ABC =12AC•BC=12AC•32AD=34AC•AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.14.正比例函数5y x =-的图像经过第______________________象限.【答案】二、四【分析】根据正比例函数的图象与性质解答即可.【详解】解:∵﹣5<0,∴正比例函数5y x =-的图像经过第二、四象限.故答案为:二、四.【点睛】本题考查了正比例函数的图象与性质,属于应知应会题型,熟练掌握基本知识是解题的关键. 15.若13x -+在实数范围内有意义,则x 的取值范围是 ____________. 【答案】x<-3【解析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:依题意得:()30x -+>,解得3x <-.故选答案为3x <-.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0,在本题中,()3x -+是分式的分母,不能等于零.16.在△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若∠ADE =40°,则∠DBC =_____.【答案】15°.【解析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE=∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB=AC,∴∠ABC=118050652︒-︒=︒,∴∠DBC=∠ABC-∠ABD=15︒.故答案为:15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.17.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______ 米. 【答案】3.4×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10-1,故答案为:3.4×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题18.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).【答案】(1)见解析;(2)结论成立,理由见解析;(3)见解析【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN=BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC于H,同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,∴D与N,M与E,B与C关于AH对称.∴BM=CE,∴BM=CF,∴P与F关于AH对称,∴所做图形是轴对称图形.【点睛】本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.计算(1)4(a ﹣b )2﹣(2a+b )(2a ﹣b ).(2)先化简,再求值(a+2﹣342a a --)÷2692a a a -+-,其中a =1 【答案】(1)﹣8ab+5b 2;(2)3a a -,﹣12. 【分析】(1)先计算完全平方式和平方差公式,再去括号、合并即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】(1)原式=4(a 2﹣2ab+b 2)﹣(4a 2﹣b 2)=4a 2﹣8ab+4b 2﹣4a 2+b 2=﹣8ab+5b 2;(2)原式=(243422a a a a -----)÷2(3)2a a -- =232a a a --•22(3)a a -- =(3)2a a a --•22(3)a a -- =3a a -, 当a =1时, 原式=113-=﹣12. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.先化简再求值:求2244132++--++x x x x x x 的值,其中12x =-. 【答案】221x -,83- 【分析】先把分式的分子分母分解因式,然后约分化简,注意运算的结果要化成最简分式或整式,再把给定的值代入求值. 【详解】2244132++--++x x x x x x ()()()22112+=--++x x x x x 211+=--+x x x x。

河南省洛阳市名校2018-2019学年八上数学期末试卷

河南省洛阳市名校2018-2019学年八上数学期末试卷

河南省洛阳市名校2018-2019学年八上数学期末试卷一、选择题1x 的取值范围是( ) A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥32.下列各式的变形中,正确的是( ) A.11x x x x --= B.()224321x x x -+=+-C.()211x x x x÷+=+ D.22(-)()x y x y x y =-+ 3.若关于x 的方程1011m x x x -+=--有增根,则m 的值是( ) A .3B .2C .1D .1- 4.在下列各式中,运算结果为x 2的是( ) A .x 4-x 2B .x 6÷x 3C .x 4⋅x -2D .(x -1)2 5.下列运算中,正确的是( ) A .22a a a ⋅= B .224()a a = C .236a a a ⋅=D .2323()a b a b =⋅ 6.38181-不能被( )整除.A .80B .81C .82D .837.在下列学校校徽图案中,是轴对称图形的是( )A .B .C .D .8.在平面直角坐标系中,点M (-1,3)关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.如图,∠ACB =90°,AC =BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则DE 的长是( )A .32B .2C .D 10.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,如果AB=AC ,那么图中全等的三角形有( )A.2对B.3对C.4对D.5对11.平面直角坐标系中,点P(﹣2,3)关于x 轴对称的点的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,3)12.如图,在ABC 中,AB AC,A 50,AB ︒=∠= 的垂直平行线交AC 于D 点,则CBD ∠ 的度数为( ).A.15︒B.30°C.50︒D.45︒ 13.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是( )A.10,11,12B.11,10C.8,9,10D.9,1014.如图,四个图形中,线段 BE 是△ABC 的高的图是( )A .B .C .D .15.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题16.把多项式x 3y ﹣6x 2y+9xy 分解因式的结果是_____.17.假期,某校为了勤工俭学,要完成整个A 小区的绿化工作,开始由七年级单独工作了4天,完成整个绿化工作的三分之一,这时九年级也参加工作,两个年级又共同工作了2天,才全部完成整个绿化工作,则由九年级单独完成整个绿化工作需要____天.18.如图,在△ABC 中,点D 为BC 的中点,△AEF 的边EF 过点C ,且AE =EF ,AB ∥EF ,AD 平分∠BAE ,CE =2,AB =9,则CF =_____.19.已知∠A 与∠B 互余,若A ∠=22°,则B Ð的度数为__.20.如图,三角形纸片中,AB=5cm ,AC=7cm ,BC=9cm.沿过点B 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为BD,则△DEC 的周长是________cm.三、解答题21.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)图1 图2(1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板。

〖汇总3套试卷〗洛阳市2018年八年级上学期期末统考数学试题

〖汇总3套试卷〗洛阳市2018年八年级上学期期末统考数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若四边形ABCD 中,∠A :∠B :∠C :∠D =1:4:2:5,则∠C+∠D 等于( )A .90°B .180°C .210°D .270° 【答案】C【分析】利用四边形内角和为360︒解决问题即可.【详解】解:∵∠A :∠B :∠C :∠D =1:4:2:5,∴∠C+∠D =360︒×251425++++=210︒, 故选:C .【点睛】本题考查四边形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.2.若一个多边形的各内角都等于140°,则该多边形是 ( )A .五边形B .六边形C .八边形D .九边形 【答案】D【分析】先求得每个外角的度数,然后利用360度除以外角的底数即可求解.【详解】每个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=1.故选:D .【点睛】考查了多边形的内角与外角.解题关键利用了任意多边形的外角和都是360度.3.一组数据3、-2、0、1、4的中位数是( )A .0B .1C .-2D .4 【答案】B【分析】将这组数据从小到大重新排列后为-2、 0、1、3、4;最中间的那个数1即中位数.【详解】解:将这组数据从小到大重新排列后为-2、 0、1、3、4;最中间的那个数1即中位数. 故选:B【点睛】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.4.若a m =8,a n =16,则a m+n 的值为( )A .32B .64C .128D .256 【答案】C【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.【详解】当a m =8,a n =16时,816128m n m n a a a +=⋅=⨯=,故选C.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.5.如图,AD 是ABC ∆的中线,E ,F 分别是AD 和AD 延长线上的点,连接BF ,CE ,且CE AD ⊥.BF AD ⊥.有下列说法:①CE BF =;②ABD ∆和ACD ∆的面积相等;③BAD CAD ∠=∠;④BDF CDE ∆∆≌.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先利用AAS 证明△BDF ≌△CDE ,则即可判断①④正确;由于AD 是△ABC 的中线,由于等底同高,那么两个三角形的面积相等,可判断②正确;不能判断BAD CAD ∠=∠,则③错误;即可得到答案.【详解】解:∵CE AD ⊥,BF AD ⊥,∴∠F=∠CED=90°,∵AD 是ABC ∆的中线,∴BD=CD ,∵∠BDF=∠CDE ,∴△BDF ≌△CDE (AAS ),故④正确;∴BF=CE ,故①正确;∵BD=CD ,∴ABD ∆和ACD ∆的面积相等;故②正确;不能证明BAD CAD ∠=∠,故③错误;∴正确的结论有3个,故选:C.【点睛】本题考查了全等三角形判定和性质,以及三角形中线的性质,解题的关键是证明△BDF ≌△CDE . 6.如图,在ABC ∆中,40A ∠=︒,点D 是ABC ∠和ACB ∠角平分线的交点,则BDC ∠等于( )A .80B .100C .110D .120【答案】C 【分析】根据三角形的内角和定理和角平分线的定义,得到70DBC DCB ∠+∠=︒,然后得到答案.【详解】解:∵在ABC ∆中,40A ∠=︒,∴18040140ABC ACB ∠+∠=︒-︒=︒,∵BD 平分∠ABC ,DC 平分∠ACB , ∴11=,22DBC ABC DCB ACB ∠∠∠=∠, ∴1()702DBC DCB ABC ACB ∠+∠=⨯∠+∠=︒, ∴18070110BDC =︒-︒=︒∠;故选:C.【点睛】本题考查了三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握所学的定理和定义进行解题,正确得到70DBC DCB ∠+∠=︒.7.在△ABC 中,若∠A =80°,∠B =30°,则∠C 的度数是( )A .70°B .60°C .80°D .50°【答案】A【分析】根据三角形的内角和定理,即可求出答案.【详解】解:∵∠A =80°,∠B =30°,∴180803070C ∠=︒-︒-︒=︒,故选:A .【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°. 8.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 【答案】A 【分析】x 的18即18x ,不超过1是小于或等于1的数,由此列出式子即可. 【详解】“x 的18与x 的和不超过1”用不等式表示为18x+x ≤1.故选A .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.9.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是( )A .众数是3B .中位数是0C .平均数3D .方差是2.8 【答案】B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A. 3,3,0,4,1众数是3,此选项正确;B. 0,3,3,4,1中位数是3,此选项错误;C. 平均数=(3+3+4+1)÷1=3,此选项正确;D. 方差S 2=15[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确; 故选B【点睛】本题考查了方差, 加权平均数, 中位数, 众数,熟练掌握他们的概念是解决问题的关键10.微信已成为人们的重要交流平台,以下微信表情中,不是轴对称图形的是( )A .B .C .D . 【答案】C【解析】根据轴对称的概念作答:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选:C .【点睛】本题主要考查了轴对称的概念,解题关键是掌握轴对称的概念并能找到对称轴.二、填空题11.如图,//a b ,若1100∠=︒,则2∠的度数是__________.【答案】80︒【分析】根据平行线的性质得出13∠=∠,然后利用2,3∠∠互补即可求出2∠的度数. 【详解】∵//a b13100∴∠=∠=︒2180318010080∴∠=︒-∠=︒-︒=︒故答案为:80︒ .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.12.如图,扶梯AB 的坡比为4:3,滑梯CD 的坡比为1:2,若30AE BC ==米,一男孩经扶梯AB 走到滑梯的顶部BC ,然后从滑梯CD 滑下,共经过了_____米.【答案】(80405)+【分析】根据两个坡度比求出BE 和DF ,再利用勾股定理求出AB 和CD ,最后加上BC 就是经过的路程长.【详解】解:∵AB 的坡度是4:3, ∴43BE AE =, ∵30AE =,则4303BE =, ∴40BE =, ∵CD 的坡度是1:2, ∴12CF DF =, ∵40CF BE ==,则4012DF =, ∴80DF =, 根据勾股定理,2222304050AB AE BE +=+=,CD ===503080AB BC CD ++=++=+故答案是:80+【点睛】本题考查解直角三角形的实际应用,解题的关键是抓住坡度的比,利用这个关系去解直角三角形. 13.因式分解:3222472x x x -+=__________.【答案】2x (x -6)2【分析】先提公因式2x ,再利用完全平方公式分解即可.【详解】3222472x x x -+=22(1236)x x x -+=22(6)x x -,故答案为:22(6)x x -. 【点睛】此题考查整式的因式分解,正确掌握因式分解的方法:先提公因式,再按照公式法分解,根据每个整式的特点选择恰当的因式分解的方法是解题的关键 .14.化简:226()4a b b a⋅=__________. 【答案】9b .【分析】先计算商的乘方,然后根据分式的约分的方法可以化简本题. 【详解】226()4a b b a ⋅=2223694a b b b a=. 故答案为:9b .【点睛】本题考查了约分,解题的关键是明确分式约分的方法.15_____.【答案】16.分式32x x --与32x-的差为1,则x 的值为____. 【答案】1【分析】先列方程,观察可得最简公分母是(x−2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后再进行检验.【详解】解:根据题意得,31 322xx x--=--,方程两边同乘(x−2),得3−x+3=x−2,解得x=1,检验:把x=1代入x−2=2≠0,∴原方程的解为:x=1,即x的值为1,故答案为:1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.17.在平行四边形ABCD 中,BC边上的高为4 ,AB=5 ,25AC=,则平行四边形ABCD 的周长等于______________ .【答案】12或1【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=1;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222BE AB AE543=--=,∴BC=BE-CE=3-2=1,∴平行四边形ABCD 的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD 的周长等于12或1.故答案为:12或1.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.三、解答题18.在等边ABC 中,点E 是AB 上的动点,点E 与点A 、B 不重合,点D 在CB 的延长线上,且EC ED =. ()1如图1,若点E 是AB 的中点,求证:BD AE =;()2如图2,若点E 不是AB 的中点时,()1中的结论“BD AE =”能否成立?若不成立,请直接写出BD 与AE 数量关系,若成立,请给予证明.【答案】(1)证明见解析;(2)AE DB =,理由见解析.【分析】()1由等边三角形的性质得出AE BE =,BCE 30∠=,再根据,得出D BCE 30∠∠==,再证出D DEB ∠∠=,得出DB BE =,从而证出AE DB =;()2作辅助线得出等边三角形AEF ,得出AE EF =,再证明三角形全等,得出DB EF =,证出AE DB =.【详解】()1证明:ABC 是等边三角形,ABC ACB 60∠∠∴==,点E 是AB 的中点,CE ∴平分ACB ∠,AE BE =,BCE 30∠∴=,ED EC =,D BCE 30∠∠∴==.ABC D BED ∠∠∠=+,BED 30∠∴=,D BED ∠∠∴=,BD BE ∴=.AE DB ∴=.()2解:AE DB =;理由:过点E 作EF //BC 交AC 于点F.如图2所示:AEF ABC ∠∠∴=,AFE ACB ∠∠=. ABC 是等边三角形,ABC ACB A 60∠∠∠∴===,AB AC BC ==,AEF ABC 60∠∠∴==,AFE ACB 60∠∠==,即AEF AFE A 60∠∠∠===,AEF ∴是等边三角形.DBE EFC 120∠∠∴==,D BED FCE ECD 60∠∠∠∠+=+=,DE EC =,D ECD ∠∠∴=,BED ECF ∠∠∴=.在DEB 和ECF 中,DEB ECF DBE EFC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,DEB ∴≌()ECF AAS ,DB EF ∴=,AE BD ∴=.【点睛】本题考查了等边三角形的性质与判定、三角形的外角以及全等三角形的判定与性质;证明三角形全等是解题的关键.19.如图,在Rt ABC ∆中,090C ∠=.(1)作ABC ∠的角平分线BD 交AC 于点D ;(要求:尺规作图,保留作图痕迹,不写作法)(2)若3,5CD AD ==,过点D 作DE AB ⊥于E ,求AE 的长.【答案】 (1)见解析;(2)AE=1.【分析】(1)直接利用角平分线的作法作出BD 即可;(2) 利用角平分线的性质及勾股定理即可求得答案.【详解】解:(1)∠ABC 的角平分线BD 如图所示;(2)如图,∵BD 平分∠ABC , DE ⊥AB ,∠C=90°,∴3CD DE ==,∵5AD =, ∴2222534AE AD DE =-=-=.【点睛】本题主要考查了角平分线的作法以及角平分线的性质、勾股定理等知识,正确掌握角平分线的作法是解题关键. 20.先化简,再求值:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,并从1-,0,1,2这四个数中取一个合适的数作为x 的值代入求值.【答案】12x x +-;当0x =时,值为12-. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用分式有意义的条件得出符合分式的x 的值,代入计算可得.【详解】解:原式211(2)11(1)(1)x x x x x x --⎛⎫=-÷ ⎪--+-⎝⎭ 22(1)(1)1(2)x x x x x -+-=⋅-- 12x x +=- 为使分式有意义,则有10x +≠,10x -≠,20x -≠,1x ≠,1x ≠-,2x ≠,此时,取0x =当0x =时,原式1122x x +==-- 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的应用,注意取合适的值时,要使分式有意义.21.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为()1,6A -,()5,3B -,()3,1C -.(1)ABC ∆关于y 轴对称的图形111A B C ∆(其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点()1,0,且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形222A B C ∆(其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标;【答案】(1)()11,6A ,()15,3B,()13,1C ;(2)图详见解析,()23,6A ,()27,3B ,()25,1C 【分析】(1)由题意利用作轴对称图形的方法技巧作图并写出点1A ,1B ,1C 的坐标即可;(2)根据题意作出直线l ,并利用作轴对称图形的方法技巧画出ABC ∆关于直线l 对称的图形222A B C ∆以及写出点2A ,2B ,2C 的坐标即可.【详解】解,(1)作图如下:由图可知()11,6A ,()15,3B,()13,1C ; (2)如图所示:由图可知222A B C ∆为所求:()23,6A ,()27,3B ,()25,1C .【点睛】本题考查轴对称变换,熟练掌握并利用关于y 轴对称的点的坐标特点是解答此题的关键.22.(1)计算:(32126; (2)解方程组:125x y x y +=⎧⎨-=⎩①②. 【答案】(1)3(2)21x y =⎧⎨=-⎩. 【分析】(1)利用完全平方公式,根据二次根式得运算法则计算即可得答案;(2)利用加减消元法解方程组即可得答案.【详解】(1)原式=3+3162⨯=4+23﹣3=4+3.(2)125 x yx y+=⎧⎨-=⎩①②①+②得3x=6,解得:x=2,把x=2代入①得2+y=1,解得:y=﹣1,∴方程组的解为21 xy=⎧⎨=-⎩.【点睛】本题考查了二次根式的运算和解二元一次方程组,熟练掌握二次根式得运算法则及加减法解二元一次方程组是解题关键.23.如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B 离墙的距离大5米.(1)这个云梯的底端B离墙多远?(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?【答案】(1)这个云梯的底端B离墙20米;(2)梯子的底部在水平方向右滑动了4米.【解析】(1)由题意得OA=15米,AB-OB=5米,根据勾股定理OA2+OB2=AB2,可求出梯子底端离墙有多远;(2)由题意得此时CO=7米,CD=AB=25米,由勾股定理可得出此时的OD,继而能和(1)的OB进行比较.【详解】解:(1)设梯子的长度为米,则云梯底端B离墙为米。

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。

{3套试卷汇总}2018年洛阳市八年级上学期期末经典数学试题

{3套试卷汇总}2018年洛阳市八年级上学期期末经典数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AD 是ABC 的角平分线,将ABD △沿AD 所在直线翻折,点B 落在边AC 上的点E 处.若,20AB BD AC C +=∠=︒,则∠B 的大小为( )A .80°B .60°C .40°D .30°【答案】C 【分析】根据翻折的性质可得AE=AB ,DE=BD ,∠AED=∠B ,根据AB+BD=AC 可得DE=CE ,根据等腰三角形的性质及外角性质可得∠AED 的度数,即可得答案.【详解】∵将ABD △沿AD 所在直线翻折,点B 落在边AC 上的点E 处.∴AE=AB ,DE=BD ,∠AED=∠B ,∵AB+BD=AC ,AC=AE+CE ,∴DE=CE ,∴∠C=∠CDE ,∵∠C=20°,∠ADE=∠C+∠CDE ,∴∠ADE=2∠C=40°,∴∠B=40°,故选:C .【点睛】本题考查翻折的性质、等腰三角形的性质及三角形外角的性质,翻折前后两个图形全等,对应边相等,对应角相等;三角形的一个外角等于和它不相邻的两个内角的和;等腰三角形的两个底角相等;熟练掌握相关性质是解题关键.2.下列命题:①如果0a b +=,那么0a b ;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有( )A .1B .2C .3D .4【答案】B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果0a b +=,那么a b 、互为相反数或0a b ==,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m ﹣n 的值是( ) A .1B .2C .3D .4 【答案】D【分析】根据已知将12x y =-⎧⎨=⎩代入二元一次方程组321x y m nx y +=⎧⎨-=⎩得到m ,n 的值,即可求得m-n 的值. 【详解】∵12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩∴3421m n -+=⎧⎨--=⎩ ∴m=1,n=-3m-n=4故选:D【点睛】本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.4.已知3x y +=,且2x y -=,则代数式22x y -的值等于( )A .2B .3C .6D .12【答案】C【分析】先将22x y -因式分解,再将3x y +=与2x y -=代入计算即可. 【详解】解:22()()326x y x y x y -=+-=⨯=,故答案为:C .【点睛】本题考查了代数式求值问题,涉及了利用平方差公式进行因式分解,解题的关键是熟记平方差公式. 5.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A .80°B .50°C .30°D .20°【答案】D 【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.6.若分式2(1)(2)x x x -+有意义,x 的值可以是( ) A .1B .0C .2D .-2【答案】C【分析】分式有意义的条件是:分母不等于0,据此解答.【详解】由题意知:()()-120x x x +≠,解得:0x ≠,1x ≠,-2x ≠,故选:C .【点睛】本题考查分式有意义的条件,熟悉知识点分母不等于0是分式有意义的条件即可.7.如图,在△ABC 中,AD 为BC 边上的中线,DE 为△ABD 中AB 边上的中线,△ABC 的面积为6,则△ADE 的面积是( )A.1 B.32C.2 D.52【答案】B【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC的面积的一半,由此即可解决问题.【详解】∵AD是△ABC的中线,∴S△ABD=12S△ABC=1.∵DE为△ABD中AB边上的中线,∴S△ADE=12S△ABD=32.故选:B.【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.8.因式分解(x+y)2﹣2(x2﹣y2)+(x﹣y)2的结果为()A.4(x﹣y)2B.4x2C.4(x+y)2D.4y2【答案】D【分析】利用完全平方公式进行分解即可.【详解】解:原式=[(x+y)﹣(x﹣y)]1,=(x+y﹣x+y)1,=4y1,故选:D.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式a1±1ab+b1=(a±b)1.9.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【答案】D【分析】根据众数和中位数的概念可得出结论.【详解】一组数据中出现次数最多的数值是众数;将数据从小到大排列,当项数为奇数时中间的数为中位数,当项数为偶数时中间两个数的平均数为中位数;由题可知,小明所说的是多数人的分数,是众数,小英所说的为排在中间人的分数,是中位数.故选为D.【点睛】本题考查众数和中位数的定义,熟记定义是解题的关键.10.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5B.中位数是5C.平均数是6D.方差是3.6【答案】D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.二、填空题11.若分式31xx+-的值为0,则x的值为___________.【答案】-3【分析】由分式的值为0,则分子为0,分母不为0,可得答案.【详解】因为:分式31xx+-的值为0所以:3010 xx+=⎧⎨-≠⎩解得:3x=-故答案为 3.-【点睛】本题考查的是分式的值为0的条件,即分子为0,分母不为0,熟知条件是关键.12.已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.1【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵a m=3,∴a2m=32=9,∴a 2m-n =292m n a a ==4.1. 故答案为4.1.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.13.如图,在ABC ∆中,ABC ∠,ACB ∠的角平分线交于点O ,连接AO 并延长交BC 于D ,OH BC ⊥于H ,若60BAC ∠︒=,5OH =,则OA =____________.【答案】10【分析】作OE AB ⊥交AB 于E ,由OB 平分ABC ∠,OH BC ⊥,得到5OE OH ==,根据角平分线的定义得到30BAO ∠=︒,根据直角三角形的性质即可得到结论. 【详解】解:作OE AB ⊥交AB 于E ,∵OB 平分ABC ∠,OH BC ⊥,∴5OE OH ==,∵,ABC ACB ∠∠的角平分线交于点O ,∴AO 平分BAC ∠,∵60BAC ∠=︒,∴30BAO ∠=︒,∴210AO OE ==故答案为10【点睛】本题考查了角平分线的性质以及直角三角形中,30角所对边为斜边的一半,灵活运用性质定理是解题的关键.14.计算13-的结果是 ______. 【答案】0 【分析】先计算绝对值、算术平方根,再计算减法即可得. 【详解】解:原式=1133-=0, 【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质. 15.如果方程组352233x y a x y a+=+⎧⎨+=⎩的解满足3x y +=,则21a +的值为___________.【答案】2-【分析】先利用方程组求出a 的值,再代入求解即可得.【详解】352233x y a x y a +=+⎧⎨+=⎩①② ②2⨯-①得:6(2)x y a a +=-+,即52x y a +=-由题意得:523a -=解得1a =将1a =代入得:2211112a -+=+=故答案为:2-【点睛】本题考查了二元一次方程组的解定义、代数式的化简求值等知识点,掌握理解二元一次方程组的解定义是解题关键.16的平方根是 .【答案】±1.±1.故答案为±1.17.要使分式3 x 2-有意义,则 x 的取值范围是___________. 【答案】x ≠1【分析】根据分式有意义得到分母不为2,即可求出x 的范围. 【详解】解:要使分式3 x 2-有意义,须有x-1≠2,即x≠1,故填:x≠1.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为2.三、解答题18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式____________________________________(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=_________.【答案】(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)见解析;(3)1【分析】(1)图2的面积一方面可以看作是边长为(a +b +c )的正方形的面积,另一方面还可以看成是3个边长分别为a 、b 、c 的正方形的面积+2个边长分别为a 、b 的长方形的面积+2个边长分别为a 、c 的长方形的面积+2个边长分别为b 、c 的长方形的面积,据此解答即可;(2)根据多项式乘以多项式的法则计算验证即可;(3)将所求的式子化为:()()22222a a b c b c ab ac bc +++-++=+,然后整体代入计算即得结果.【详解】解:(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc ;所以(1)中的等式成立;(3)()()2222221023530a b c a b c ab ac bc ++=++-++=-⨯=.故答案为:1.【点睛】本题是完全平方公式的拓展应用,主要考查了对三数和的完全平方的理解与应用,正确理解题意、熟练掌握完全平方公式是解题的关键.19.已知:如图,在ABC 中,D 为BC 的中点,DE BC ⊥交BAC ∠的平分线于点E ,过点E 作EF AB ⊥于交AB 于,F EC AC ⊥交AC 的延长线于G .求证:BF CG =.【答案】见解析【分析】连接EB 、EC ,利用已知条件证明Rt △BEF ≌Rt △CEG ,即可得到BF =CG .【详解】证明:连接BE 、EC ,∵ED ⊥BC ,D 为BC 中点,∴BE =EC ,∵EF ⊥AB EG ⊥AG ,且AE 平分∠FAG ,∴FE =EG ,在Rt △BFE 和Rt △CGE 中BE CE EF EG ⎧⎨⎩==, ∴Rt △BFE ≌Rt △CGE (HL ),∴BF =CG【点睛】本题考查了角平分线的性质及垂直平分线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?【答案】三人间租住了8间,两人间租住了12间【分析】根据:住在三人间人数+住在二人间人数=总人数,三人间的总费用+二人间总费用=总费用,列出方程组,解方程组即可.【详解】解:设三人间租住了x 间,两人间租住了y 间,根据题意得:32484035022160x y x y +=⎧⎨⨯+⨯=⎩, 解得812x y =⎧⎨=⎩, 答:三人间租住了8间,两人间租住了12间.【点睛】本题考查二元一次方程组的实际应用,准确找出题中的等量关系是解题关键.21.如图,点D 是△ABC 的BC 边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°, 求∠DAC 的度数.【答案】28°【解析】根据三角形的外角和内角和性质计算即可得出答案.【详解】解:由图和题意可知:∠BAC=180°-∠2-∠3又∠3=∠4=∠1+∠2,∴66°=180°-∠2-(∠1+∠2)∵∠1=∠2∴66°=180°-3∠1,即∠1=38°∴∠DAC=∠BAC-∠1=66°-38°=28°【点睛】本题考查的是三角形,外角定理是三角形中求角度的常用定理,需要熟练掌握.22.如图,在一条东西走向的河的一侧有一村庄C ,该村为了方便村民取水,决定在河边建一个取水点H ,在河边的沿线上取一点B ,使得CH HB ⊥,测得3CB =千米, 1.8HB =千米求村庄C 到河边的距离CH 的长.【答案】村庄C 到河的距离CH 的长为2.4千米【分析】结合图形,直接可利用勾股定理求出答案. 【详解】解:在CHB 中90CHB ∠=︒,3CB =千米, 1.8HB =千米 ∴22CH CB HB =-223 1.8=-=2.4(千米)∴村庄C 到河的距离CH 的长为2.4千米.【点睛】本题考查的是勾股定理的使用,根据题意直接代值计算即可.23.如图,“丰收1号”小麦的试验田是边长为a 米(2)a >的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(2)a -米的正方形,两块试验田的小麦都收获了500kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?【答案】(1) 丰收2号;(2)22a a +-. 【分析】(1)根据题意可以求得两块试验田的面积,从而可以求得哪种小麦的单位面积产量高; (2)根据“高的单位面积产量除以低的单位面积产量”进行计算求解即可.【详解】(1)“丰收1号”小麦的试验田面积是22(4)a m -,单位面积产量是22500/4kg m a - “丰收2号”小麦的试验田面积是22(2)a m -,单位面积产量是22500/(2)kg m a - 2a >,22(2)0,40a a ∴->->∴224(2)480a a a =---->∴224(2)a a --> ∴25004a <-2500(2)a - 所以“丰收2号”小麦的单位面积产量高.(2)2500(2)a ÷-25004a -=225004(2)500a a -⋅-2(2)(2)(2)a a a -+=-22a a +=- 所以,“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的22a a +-倍. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.24.已知()2219m -=,()3127n +=.(1)若点P 的坐标为(),m n ,请你画一个平面直角坐标系,标出点P 的位置;(2)求出3m n +的算术平方根.【答案】 (1)P(2,2)或P(-1,2);【分析】(1)依据平方根的定义、立方根的定义可求得m 和n 的值,得到点P 的坐标,最后画出点P 的坐标;(2)分别代入计算即可.【详解】(1)2(21)9m -=,∴213m -=±,即213m -=或213m -=-,∴1221m m ==-,,∵()3127n +=, 13n +=,2n =,∴1(12P -,),2(22P ,); 所求作的P 点如图所示:(2)当22m n ==,时,33228m n +=⨯+=,8的算术平方根是22,当1m =-,2n =时,()33121m n +=⨯-+=-,1-没有算术平方根.所以3m+n 的算术平方根为:22.【点睛】本题考查了立方根与平方根的定义、坐标的确定,此题难度不大,注意掌握方程思想的应用,不要遗漏. 25.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.【答案】见解析【分析】由CE=DE 易得∠ECD=∠EDC ,结合AB ∥CD 易得∠AEC=∠BED ,由此再结合AE=BE ,CE=DE 即可证得△AEC ≌△BED ,由此即可得到AC=BD.【详解】∵CE DE =,∴ECD EDC ∠=∠, ∵//AB CD ,∴AEC ECD ∠=∠,BED EDC ∠=∠,∴AEC BED ∠=∠,又∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩,∴AEC ≌BED .∴AC BD =.【点睛】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式中,是分式的有( ) 3x y -,21a x -,1x π+,﹣3a b ,12x y +,12x y +,2x x -. A .5个B .4个C .3个D .2个 【答案】B 【解析】3x y -是多项式,是整式;21a x -是分式;1x π+是整式;3a b 是分式;12x y +是分式;12x y +,是整式;2x x -是分式,所以分式共有4个, 故选B.2.如图,ABC 为等边三角形,D 为BC 延长线上一点,CE=BD ,CE 平分ACD ∠,下列结论:(1)BAC DAE ∠=∠;(2) AE AD =;(3)ADE 是等边三角形,其中正确的个数为( )A .0个B .1个C .2个D .3个【答案】D 【分析】根据等边三角形的性质得出AB AC =,60BAC B ACB ∠=∠=∠=︒,求出ACE B ∠=∠,根据SAS 可证明ABD ACE ≅即可证明BAC DAE ∠=∠与 AE AD =;根据全等三角形的性质得出AD AE =,CAE BAD ∠=∠,求出60DAE BAC ︒∠=∠=,即可判断出ADE 是等边三角形.【详解】ABC 是等边三角形,AB AC ∴=,60BAC B ACB ∠=∠=∠=︒,120ACD ∴∠=︒,CE 平分ACD ∠,1602ACE ACD ∴∠=∠=︒, ACE B ∴∠=∠,在ABD △和ACE △中AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴≅,AD AE ∴=,故(2)正确;∴CAE BAD ∠=∠∴=60DAE BAC ∠=∠︒,故(1)正确;∴ADE 是等边三角形,故(3)正确.∴正确有结论有3个.故选:D .【点睛】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.3.下列命题是真命题的是( )A .在一个三角形中,至多有两个内角是钝角B .三角形的两边之和小于第三边C .在一个三角形中,至多有两个内角是锐角D .在同一平面内,垂直于同一直线的两直线平行【答案】D【分析】正确的命题是真命题,根据定义依次判断即可.【详解】在一个三角形中,至多有一个内角是钝角,故A 不是真命题;三角形的两边之和大于第三边,故B 不是真命题;在一个三角形中,至多有三个内角是锐角,故C 不是真命题;在同一平面内,垂直于同一直线的两直线平行,故D 是真命题,故选:D.【点睛】此题考查真命题的定义,正确理解真命题的定义及会判断事情的正确与否是解题的关键.4.把式子()()()()()2482562121212121++++⋅⋅⋅+化筒的结果为( )A .102421-B .102421+C .51221-D .51221+ 【答案】C 【分析】添一项2-1后,与第一个括号里的数组成平方差公式,依次这样计算可得结果.【详解】解:(2+1)(22+1)(24+1)(28+1)…(2256+1),=(2-1)(2+1)(22+1)(24+1)(28+1)…(2256+1),=(22-1)(22+1)(24+1)(28+1)…(2256+1),=(24-1)(24+1)(28+1)…(2256+1),=(28-1)(28+1)…(2256+1),=(216-1)(216+1)…(2256+1),…=2512-1.故选:C【点睛】本题考查了利用平方差公式进行计算,熟练掌握平方差公式是解题的关键.5.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小7 8 9 10 11时)学生人数 6 10 9 8 7则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【答案】A【分析】根据表格中的数据可知该班有学生40人,根据中位数定义可求得中位数,再根据读书时间最多的人数根据众数的概念即可求得众数.【详解】由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选A.【点睛】本题考查了众数、中位数,明确题意,熟练掌握中位数、众数的概念以及求解方法是解题的关键. 6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【答案】A【分析】根据全等三角形的性质求出∠D和∠E,再根据三角形内角和定理即可求出∠EAD的度数.【详解】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B =∠D =40°,∠E =∠C =75°,∴∠EAD =180°﹣∠D ﹣∠E =65°,故选:A .【点睛】本题主要考查了全等三角形的性质及三角形内角和,掌握全等三角形的性质是解题的关键.7.如图,“士”所在位置的坐标为()12--,,“相”所在位置的坐标为()22-,,那么“炮”所在位置的坐标为( )A .()21-,B .()31-,C .()21-,D .()31-,【答案】B 【分析】由士和相的坐标推得坐标原点所在的位置,即可得出“炮“所在的位置坐标.【详解】解:根据“士”所在位置的坐标为(−1,−2),“相”所在位置的坐标为(2,−2)可建立如图所示坐标系,∴“炮”所在位置为(−3,1),故选:B .【点睛】本题考查了坐标确定位置的知识,解答本题的关键是要建立合适的坐标系.8.如图,平行四边形ABCD 中,AB = 6cm ,AD=10 cm ,点P 在AD 边上以每秒1 cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4 cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止 (同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有( )A .1 次B .2次C .3次D .4次【答案】C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质. 解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q 在BC上往返运动的次数.9.如图为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三角形中与△ACD全等的是()A.△ACF B.△AED C.△ABC D.△BCF【答案】B【解析】试题分析:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,在△ACD和△AED中,{AD AD AE AC DE DC===,∴△ACD≌△AED(SSS),故选B.考点:全等三角形的判定.10.点P(3,﹣2)关于x 轴的对称点P′的坐标是( )A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(3,2) 【答案】D【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P(3,﹣2)关于x 轴的对称点P′的坐标是(3,2).故选D .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题11.已知关于x 的方程1122ax x x -=--无解,则a =__________. 【答案】0或1【分析】根据分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,分类讨论当a=0时与a ≠0时求出答案. 【详解】解:1122ax x x -=-- 去分母得:11ax -= ,即:2ax = ,分情况讨论:①当整式方程无解时,0a = ,此时分式方程无解;②当分式方程无解时,即x=2,此时0a ≠,则22x a == , 解得:1a = ,故当0a =或者1a =时分式方程无解;故答案为:0或1【点睛】本题主要考查了分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,正确掌握解分式方程的步骤是解题的关键.12.如图,直线y=kx+b 与直线y=2x+6关于y 轴对称且交于点A ,直线y=2x+6交x 轴于点B ,直线y=kx+b 交x 轴于点C ,正方形DEFG 一边DG 在线段BC 上,点E 在线段AB 上,点F 在线段AC 上,则点G 的坐标是____.【答案】(32,0).【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,∴直线AC为y=﹣2x+6,设G(m,0),∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,∴F(m,2m),代入y=﹣2x+6得:2m=﹣2m+6,解得:m32 =,∴G的坐标为(32,0).故答案为:(32,0).【点睛】本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.【答案】67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角α与67°的角是对应角,因此α67=︒,故答案为67°.14.如图,∠BAC=30°,AB=4,点P是射线AC上的一动点,则线段BP的最小值是_____.【答案】1【分析】先根据垂线段最短得出,当BP AC ⊥时,线段BP 的值最小,再根据直角三角形的性质(直角三角形中,30所对直角边等于斜边的一半)即可得出答案.【详解】由垂线段最短得:当BP AC ⊥时,线段BP 的值最小30,4BAC AB ∠=︒= 122BP AB ∴== 故答案为:1.【点睛】本题考查了垂直定理:垂线段最短、直角三角形的性质,根据垂线段最短得出线段BP 最小时BP 的位置是解题关键.15.因式分解:()224a b b --=______.【答案】()()3a b a b -+【分析】利用平方差公式进行因式分解.【详解】解:()()()()()224223a b b a b b a b b a b a b --=-+--=+-.故答案是:()()3a b a b -+.【点睛】本题考查因式分解,解题的关键是掌握因式分解的方法.16.如图在Rt ABC ∆中,90ACB ∠=︒,10AB cm =,6AC cm =,分别以AB AC BC 、、为直径作半圆,如图阴影部分面积记为1S 、2S ,则12S S +=__________.【答案】242cm【分析】先根据勾股定理得出以BC 为直径的半圆面积+以AC 为直径的半圆面积=以AB 为直径的半圆面积,再根据12S S +=以BC 为直径的半圆面积+以AC 为直径的半圆面积+ABC S ∆-以AB 为直径的半圆面积,进而推出12S S +=ABC S ∆即得.【详解】∵在Rt ABC ∆中90ACB ∠=︒,10AB cm =,6AC cm =∴8BC cm == ∴11682422ABC S AC BC ∆=••=⨯⨯=2cm ∴以AB 为直径的半圆面积为:2211012522222AB πππ⎛⎫⎛⎫••=⨯⨯= ⎪ ⎪⎝⎭⎝⎭2cm 以BC 为直径的半圆面积为:2218182222BC πππ⎛⎫⎛⎫••=⨯⨯= ⎪ ⎪⎝⎭⎝⎭2cm 以AC 为直径的半圆面积为:22161922222AC πππ⎛⎫⎛⎫••=⨯⨯= ⎪ ⎪⎝⎭⎝⎭2cm ∴以BC 为直径的半圆面积+以AC 为直径的半圆面积=以AB 为直径的半圆面积∵12S S +=以BC 为直径的半圆面积+以AC 为直径的半圆面积+ABC S ∆-以AB 为直径的半圆面积 ∴12S S +=ABC S ∆∴1224S S +=2cm故答案为:224cm .【点睛】本题考查了勾股定理的应用,熟练掌握结论“直角三角形以两直角边为边的相似几何图形面积之和等于斜边上同形状图形面积”是快速解决选择填空题的有效方法.17.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为________. 【答案】k >﹣2且k≠﹣1【分析】先解分式方程,然后根据分式方程解的情况列出不等式即可求出结论. 【详解】解:211x k x x-=-- ()21--=-x x k解得:x=2+k∵关于x 的分式方程211x k x x-=--的解为正数, ∴010x x >⎧⎨-≠⎩∴20210k k +>⎧⎨+-≠⎩解得:k >﹣2且k≠﹣1故答案为:k >﹣2且k≠﹣1.【点睛】此题考查的是根据分式方程根的情况求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.三、解答题18.计算:-14+32--(π-3.14) 0+6÷2 【答案】0【分析】首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】原式 =-1+2-3-1 +3= 0【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.如图,ABC ∆是等边三角形,D 、E 、F 分别是AB 、BC 、AC 上一点,且60DEF ∠=︒. (1)若150∠=︒,求2∠;(2)如图2,连接DF ,若//DF BC ,求证:13∠=∠.【答案】(1)250∠=;(2)见解析【分析】(1)根据等边三角形的性质角度运算即可得出12DEB DEB ∠+∠=∠+∠,从而得到21∠=∠即可;(2)由平行可知FDE DEB =∠∠,再由三角形的内角和运算即可得.【详解】解:(1)∵ABC ∆是等边三角形.∴60B A C ∠=∠=∠=,∵1180B DEB ∠+∠+∠=︒,2180DEB DEF ∠+∠+∠=︒,60DEF ∠=︒∴12DEB DEB ∠+∠=∠+∠,∴2150∠=∠=.(2)∵//DF BC ,∴FDE DEB =∠∠,∵1180B DEB ∠+∠+∠=︒,3180FDE DEF ∠+∠+∠=︒ ,60B ∠=︒,60DEF ∠=︒ ,∴13∠=∠.【点睛】本题考查了等边三角形的性质及三角形内角和,解题的关键是掌握相应的性质,并对角度进行运算. 20.(1)仔细观察如图图形,利用面积关系写出一个等式:a 2+b 2= . (2)根据(1)中的等式关系解决问题:已知m+n =4,mn =﹣2,求m 2+n 2的值.(3)小明根据(1)中的关系式还解决了以下问题:“已知m+1m =3,求m 2+21m 和m 3+31m的值” 小明解法:222211m m 2327m m ⎛⎫+=+-=-= ⎪⎝⎭23231111m m m m m m m m ⎛⎫⎛⎫++=+++ ⎪⎪⎝⎭⎝⎭32321111m m m m 37318m m m m ⎛⎫⎛⎫⎛⎫∴+=++-+=⨯-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 请你仔细理解小明的解法,继续完成:求m 5+m ﹣5的值【答案】(1)(a+b )2﹣2ab ;(2)20;(3)1【分析】(1)观察原式为阴影部分的面积,再用大矩形的面积减去两个空白矩形的面积也可表示阴影部分面积,进而得出答案;(2)运用(1)中的结论进行计算便可把原式转化为(m+n)2﹣2mn 进行计算;(3)把原式转化为(m 2+m ﹣2)(m 3+m ﹣3)﹣(m+m ﹣1)进行计算.【详解】解:(1)根据图形可知,阴影部分面积为a 2+b 2,阴影部分面积可能表示为(a+b)2﹣2ab ,∴a 2+b 2=(a+b)2﹣2ab ,故答案为:(a+b)2﹣2ab ;(2)m 2+n 2=(m+n)2﹣2mn =42﹣2×(﹣2)=20;(3)m 5+m ﹣5=(m 2+m ﹣2)(m 3+m ﹣3)﹣(m+m ﹣1)=7×18﹣3=1.【点睛】本题主要考查了转化的思想,乘法公式的应用,模仿样例,灵活进行整式的恒等变形是解决本题的关键. 21.已知在平面直角坐标系中有三点A (﹣2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置,并求△ABC 的面积;。

┃精选3套试卷┃2018届洛阳市八年级上学期期末教学质量检测数学试题

┃精选3套试卷┃2018届洛阳市八年级上学期期末教学质量检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等【答案】D【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.2.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【答案】A【详解】作DE ⊥AB 于E ,∵AB=10,S △ABD =15,∴DE=3,∵AD 平分∠BAC,∠C=90°,DE ⊥AB ,∴DE=CD=3,故选A.3.下列从左到右的变形,属于分解因式的是( )A .2(3)(3)9a a a +-=-B .25(1)5x x x x +-=--C .2 (1)a a a a =++D .32x y x x y =⋅⋅ 【答案】C【解析】试题解析:A. 右边不是整式积是形式,故本选项错误;B. 不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 不是因式分解,故本选项错误.故选C.4.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A 型的有200人,那么该校血型为AB 型的人数为( )A .100B .50C .20D .8【答案】B 【分析】根据A 型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A 型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB 型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB 型的人数为500×10%=50(人),故选:B .【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.5.满足不等式2x >的正整数是( )A .2.5B C .-2 D .5 【答案】D【解析】在取值范围内找到满足条件的正整数解即可.【详解】不等式2x >的正整数解有无数个,四个选项中满足条件的只有5故选:D.【点睛】考查不等式的解,使不等式成立的未知数的值就是不等式的解.6.已知x 是整数,当x -x 的值是( )A .5B .6C .7D .8 【答案】A<<56<<,5,∴当x 取最小值时,x 的值是5,故选A .【点睛】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.直线y kx =过点(,)A m n ,(34)B m n -+,,则k 的值是( )A .43B .43-C .34D .34- 【答案】B【分析】分别将点()A m n ,,(34)B m n -+,代入即可计算解答.【详解】解:分别将点()A m n ,,(34)B m n -+,代入y kx =,得:(3)4mk n m k n =⎧⎨-=+⎩,解得43k =-, 故答案为:B .【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.8.计算22222a b a b a b a b a b ab⎛⎫+---⨯ ⎪-+⎝⎭的结果是 ( ) A .1a b - B .1a b + C .a -b D .a +b【答案】B【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解: 2222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭=()()()2222a b a b a b a b a b ab +---⨯+-=1a b + 故选B .【点睛】本题考查分式的混合运算.9.小亮对一组数据16,18,20,20,3■,34进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,但小亮依然还能准确获得这组数据的( )A .众数B .方差C .中位数D .平均数 【答案】C【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断.【详解】解:这组数据的众数、方差和平均数都与第5个数有关,而这组数据的中位数为20与20的平均数,与第5个数无关.故选:C .【点睛】本题考查了方差:它描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念. 10.已知(m -n)2=38,(m +n)2=4000,则m 2+n 2的值为( )A .2017B .2018C .2019D .4038 【答案】C【分析】根据完全平方公式的变形,即可解答.【详解】(m−n )2=38,m 2−2mn +n 2=38 ①,(m +n )2=4000,m 2+2mn +n 2=4000 ②,①+②得:2m 2+2n 2=4038,m 2+n 2=1.故选:C .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.二、填空题11.一个多边形所有内角都是135°,则这个多边形的边数为_________【答案】6【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【详解】解:∵所有内角都是135°,∴每一个外角的度数是180°-135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形考点:多边形的内角和外角点评:本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.12.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC ,分别交AB 、AC 于点E 、F .若5AB =,4AC =,那么AEF ∆的周长为_______.【答案】9【分析】根据角平分线的性质,可得∠EBO 与∠OBC 的关系,∠FCO 与∠OCB 的关系,根据平行线的性质,可得∠DOB 与∠BOC 的关系,∠FOC 与∠OCB 的关系,根据等腰三角形的判定,可得OE 与BE 的关系,OE 与CE 的关系,根据三角形的周长公式,可得答案.【详解】∵∠ABC 与∠ACB 的平分线相交于点O ,∴∠EBO=∠OBC ,∠FCO=∠OCB .∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB ,∴∠EOB=∠EBO ,∠FOC=∠FCO ,∴EO=BE ,OF=FC .C △AEF =AE+EF+AF=AE+BE+AF+CF=AB+AC=1.故答案为:1.【点睛】本题考查了等腰三角形的判定与性质,利用等腰三角形的判定与性质是解题关键,又利用了角平分线的性质,平行线的性质.13.实数81的平方根是_____.【答案】±1【分析】根据平方根的定义即可得出结论.【详解】解:实数81的平方根是:±1.故答案为:±1【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.14.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.【答案】5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.我们用[m ]表示不大于m 的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[16=,则x 的取值范围是_____.【答案】1 916x ≤<【分析】(1) 1.414,及题中所给信息,可得答案;(2)先解出3+的取值范围后得出x 的取值范围.【详解】解:(1) ≈1.414,由题中所给信息,可得=1;(2)由题意得:6≤37,可得:1<4,可得:9≤x<16.【点睛】本题主要考查新定义及不等式的性质,找出规律是解题的关键16.25的平方根是______,16的算术平方根是______,-8的立方根是_____.【答案】5±4-1【分析】首先利用平方根的定义求解;接着利用算术平方根的定义求解;最后利用立方根的定义求解.【详解】解:15的平方根是±5,16的算术平方根是4,-8的立方根是-1.故答案为:±5,4,-1.【点睛】此题分别考查了算术平方根、平方根及立方根的定义,解题的关键是熟练掌握这些相关定义才能很好解决问题.17.若a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,则a﹣5b+3的立方根是_____.【答案】-1【分析】运用立方根和平方根和算术平方根的定义求解【详解】解:∵a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,∴a﹣b+6=4,2a+b﹣1=16,解得a=5,b=7,∴a﹣5b+1=5﹣15+1=﹣27,∴a﹣5b+1的立方根﹣1.故答案为:﹣1【点睛】本题考查了立方根和平方根和算术平方根,解题的关键是按照定义进行计算.三、解答题18.解方程组24 326x yx y-=⎧⎨+=⎩①②【答案】2=0 xy=⎧⎨⎩【解析】把①×2+②,消去y,求出x的值,然后把求得的x的值代入①求出y的值即可.【详解】解:24326x yx y-=⎧⎨+=⎩①②,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为20x y =⎧⎨=⎩. 【点睛】 本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.19.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)试说明△ACD ≌△BCE ;(2)若∠D=50°,求∠B 的度数.【答案】(1)见解析;(2)70°.【分析】(1)由C 是线段AB 的中点,得到AC=BC ,根据角平分线的定义得到∠ACD=∠BCE .则可证三角形全等;(2)根据平角的定义得到∠ACD=∠DCE=∠BCE=60°,根据全等三角形的性质得到∠E=∠D=50°,根据三角形的内角和即可得到结论.【详解】(1)证明:∵C 是线段AB 的中点∴AC=BC∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ).(2)解:∵△ACD ≌△BCE ,∴∠D=∠E=50°,∵∠ACD+∠DCE+∠BCE =180°,∠ACD=∠DCE=∠BCE ,∴∠ACD=∠DCE=∠BCE =60°,∴∠B=180°-∠BCE-∠E=70°.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形全等的条件.20.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【答案】(1)300,75,60;(2)y1=100x﹣150(3≤x≤4.5);(3)点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A、B两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E坐标,根据快车比慢车提前0.5小时到达目的地可得点C坐标,然后利用待定系数法求解即可;(3)易得y2与x之间的函数关系式,然后只要求直线EC与直线OD的交点即得点F坐标,为此只要解由直线EC与直线OD的的解析式组成的方程组即可,进而可得点F的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E的横坐标为:2+1=3,则点E的坐标为(3,150),快车从点E到点C用的时间为:300÷60﹣0.5=4.5(小时),则点C的坐标为(4.5,300),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,把E、C两点代入,得:4.5300 3150k bk b+=⎧⎨+=⎩,解得:100150 kb=⎧⎨=-⎩,即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x≤4.5);(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,即点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.21.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17= ,12×14﹣6×20= ,不难发现,结果都是 .(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.【答案】(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x ,则四个数依次为x ﹣7,x ﹣1,x+1,x+7,列式计算即可得出结论.【详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x ,则四个数依次为x ﹣7,x ﹣1,x+1,x+7则(x ﹣1)·(x+1)﹣(x ﹣7)·(x+7) =22(1)(49)x x ---=22149x x --+=1.【点睛】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.22.如图,已知点E ,C 在线段BF 上,BE =CF ,∠ABC=∠DEF ,AB=DE ,(1)求证:△ABC ≌△DEF .(2)求证:AC ∥DF【答案】(1)详见解析;(2)详见解析【分析】(1)先得出BC=EF ,然后利用SAS 可证全等;(2)根据全等,可得出∠ACB=∠DFE ,从而证平行.【详解】(1)证明:∵BE=CF∴BE+EC=CF+EC∴BC=EF在△ABC 与△DEF 中BC=EF ABC=DEF AB=DE ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△DEF(SAS)(2)∵△ABC ≌△DEF∴∠ACB=∠DFE∴AC ∥DF .【点睛】本题考查三角形全等的证明,此题比较基础,注意证全等的书写格式.23.如图,平面直角坐标系中,直线AB :y =﹣x+b 交y 轴于点A (0,4),交x 轴于点B .(1)求直线AB 的表达式和点B 的坐标;(2)直线l 垂直平分OB 交AB 于点D ,交x 轴于点E ,点P 是直线l 上一动点,且在点D 的上方,设点P 的纵坐标为n .①用含n 的代数式表示△ABP 的面积;②当S △ABP =8时,求点P 的坐标;③在②的条件下,以PB 为斜边在第一象限作等腰直角△PBC ,求点C 的坐标.【答案】(1)y =﹣x+1,点B 的坐标为(1,0);(2)①2n ﹣1;②(2,3);③3,1).【分析】(1)把点A 的坐标代入直线解析式可求得b =1,则直线的解析式为y =﹣x+1,令y =0可求得x=1,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P 的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n﹣1;②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】(1)∵把A(0,1)代入y=﹣x+b得b=1∴直线AB的函数表达式为:y=﹣x+1.令y=0得:﹣x+1=0,解得:x=1∴点B的坐标为(1,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+1得:y=﹣2+1=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=12PD•OE+12PD•BE=12(n﹣2)×2+12(n﹣2)×2=2n﹣1.②∵S△ABP=8,∴2n﹣1=8,解得:n=3.∴点P的坐标为(2,3).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC =∠NCB .在△PCM 和△CBN 中,90PMC BNC MPC NCBPC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△PCM ≌△CBN .∴CM =BN ,PM =CN .∴462p q q p -=-⎧⎨=-⎩,解得64p q =⎧⎨=⎩. ∴点C 的坐标为(3,1).如图2所示:过点C 作CM ⊥l ,垂足为M ,再过点B 作BN ⊥CM 于点N .设点C (p ,q ).∵△PBC 为等腰直角三角形,PB 为斜边,∴PC =CB ,∠PCM+∠MCB =90°.∵CM ⊥l ,BN ⊥CM ,∴∠PMC =∠BNC =90°,∠MPC+∠PCM =90°.∴∠MPC =∠NCB .在△PCM 和△CBN 中,90PMC BNC MPC NCBPC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△PCM ≌△CBN .∴CM =BN ,PM =CN .∴462p q q p -=-⎧⎨=-⎩,解得02p q =⎧⎨=⎩. ∴点C 的坐标为(0,2)舍去.综上所述点C 的坐标为(3,1).【点睛】本题考查了一次函数的几何问题,掌握解一次函数的方法以及全等三角形的性质以及判定定理是解题的关键.24.在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.【答案】(1)60 (2)24【分析】本题主要考查分式方程的应用. 等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【详解】解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:1011()20140x x++⨯=解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y天,根据题意得:(114060+)y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.25.(1)-(2)4(3)【答案】(1;(2)2;(3)6【分析】(1)将每个二次根式化简后合并同类二次根式即可;(2)根据二次根式的性质按运算顺序计算即可;(3)根据平方差公式计算即可.【详解】(1)-==;(2)4=42=;2(3)22=-126=-=.6【点睛】本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形是轴对称图形的为()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.小明手中有2根木棒长度分别为4cm和9cm,请你帮他选择第三根木棒,使其能围成一个三角形,则选择的木棒可以是()A.4cm B.5cm C.6cm D.无法确定【答案】C【分析】据三角形三边关系定理,设第三边长为xcm,则9-4<x<9+4,即5<x<13,由此选择符合条件的线段.【详解】解:设第三边长为xcm,由三角形三边关系定理可知,9-4<x<9+4,即,5<x<13,∴x=6cm符合题意.故选:C.【点睛】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.3.若分式325xx--的值为0,则x的值为()A.-3 B.-52C.52D.3【答案】D【分析】根据分式值为0的条件进行列式,再解方程和不等式即可得解.【详解】解:∵分式325x x --的值为0 ∴30250x x -=⎧⎨-≠⎩∴3x =.故选:D【点睛】本题考查了分式值为0的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键. 4. “121的平方根是±11”的数学表达式是( )A 11B =±11C =11D 【答案】D【分析】根据平方根定义,一个a 数平方之后等于这个数,那么a 就是这个数的平方根.D.【点睛】本题考查了平方根的的定义,熟练掌握平方根的定义是解题的关键.5.下列各式:①②17=1;;;其中错误的有( ). A .3个B .2个C .1个D .0个 【答案】A【解析】错误,无法计算;②17 ,错误;不能计算;,正确. 故选A.6.下列命题是真命题的是( )A .三角形的一个外角大于任何一个内角B .如果两个角相等,那么它们是内错角C .如果两个直角三角形的面积相等,那么它们的斜边相等D .直角三角形的两锐角互余【答案】D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【详解】A 、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B. 如果两个角相等,那么它们不一定是内错角,故选项B 错误;C. 如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C 错误;D. 直角三角形的两锐角互余.正确.故选:D.【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.7.下列代数式,3x ,3x ,1a a -,35y -+,2x x y -,2n π-,32x +,x y x +中,分式有( )个. A .5B .4C .3D .2 【答案】A【分析】根据分式的定义逐个判断即可.形如(A 、B 是整式,B 中含有字母)的式子叫做分式.【详解】解:分式有:3x ,1a a -,﹣35y +,2x x y -,x y x+,共5个, 故选:A .【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.8.如图,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A .122A ∠+∠=∠B .12A ∠+∠=∠C .2(12)A ∠=∠+∠D .1122A ∠+∠=∠ 【答案】A 【分析】画出折叠之前的部分,连接AA ',由折叠的性质可知DAE DA E '∠=∠,根据三角形外角的性质可得∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接AA '由折叠的性质可知DAE DA E '∠=∠∵∠1是DAA '的外角,∠2是AA E '的外角∴∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠∴∠1+∠2=DAA DA A ''∠+∠+EAA EA A ''∠+∠=()()DAA EAA DA A EA A ''''∠+∠+∠+∠=DAE DA E '∠+∠=2DAE ∠故选A .【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.9.如图所示,在△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至点G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 ( )A .8+2aB .8aC .6+aD .6+2a【答案】D 【分析】在△MNP 中,∠P=60°,MN=NP ,证明△MNP 是等边三角形,再利用MQ ⊥PN ,求得PM 、NQ 长,再根据等腰三角形的性质求解即可.【详解】解:∵△MNP 中,∠P=60°,MN=NP∴△MNP 是等边三角形.又∵MQ ⊥PN ,垂足为Q ,∴PM=PN=MN=4,NQ=NG=2,MQ=a ,∠QMN=30°,∠PNM=60°,∵NG=NQ ,∴∠G=∠QMN ,∴QG=MQ=a ,∵△MNP 的周长为12,∴MN=4,NG=2,∴△MGQ 周长是6+2a .故选:D .【点睛】本题考查了等边三角形的判定与性质,难度一般,认识到△MNP 是等边三角形是解决本题的关键. 10.如图,在ABC 中,90ACB ∠=,D 是AB 上的点,过点D 作 DE AB ⊥ 交BC 于点F ,交AC 的延长线于点E ,连接CD ,DCA DAC ∠=∠,则下列结论正确的有( )①∠DCB=∠B;②CD=12AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=12AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=12AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【点睛】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.二、填空题11.若分式221xx-+的值为零,则x的值等于_____.【答案】1【解析】根据题意得:x﹣1=0,解得:x=1.此时1x+1=5,符合题意,故答案为1.12.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;【答案】50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.13.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.【答案】1.5【详解】因为甲过点(0,0),(2,4),所以S 甲=2t .因为乙过点(2,4),(0,3),所以S 乙=12t+3,当t=3时,S 甲-S 乙=6-92=3214.如图,在等腰Rt ABC ∆中,90C =∠,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于_______;【答案】1【解析】试题解析:∵AD 平分∠CAB ,AC ⊥BC 于点C ,DE ⊥AB 于E ,∴CD=DE .又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴AC=AE .又∵AC=BC ,∴BC=AE ,∴△DBE 的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.15.如果多边形的每个内角都等于150︒,则它的边数为______.【答案】1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.16.定义运算“※”:a ※b =()()a a b a b b a b b a ⎧⎪⎪-⎨⎪⎪-⎩><,若5※x =2,则x 的值为___. 【答案】2.5或1.【详解】解:当5>x 时,5※x=2可化为525x =-,解得x=2.5,经检验x=2.5是原分式方程的解; 当5<x ,5※x=2可化为25x x =-,解得x=1,经检验x=1是原分式方程的解. 故答案为:2.5或1.【点睛】本题考查了新定义运算,弄清题中的新定义是解本题的关键,解题时注意分类讨论思想.17.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.【答案】9710-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故答案为:9710-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题18.计算下列各题:(1)2101(3)()2020|5|2--⨯-++-;(2)2[()()()]2x y x y x y y -+--÷ .【答案】(1)-20;(2)x -y【分析】(1)根据乘方的意义、负指数幂的性质、零指数幂的性质、算术平方根的定义和绝对值的定义计算即可;(2)根据平方差公式、完全平方公式和多项式除以单项式法则计算即可.【详解】解:(1)2101(3)()2020|5|2--⨯-++-=9(2)125⨯-++-=18125-++-=20-(2)2[()()()]2x y x y x y y -+--÷=2222[(2)]2x y x xy y y ---+÷=2222[2]2x y x xy y y --+-÷=2[22]2xy y y -÷= x -y【点睛】此题考查的是实数的混合运算和整式的混合运算,掌握乘方的意义、负指数幂的性质、零指数幂的性质、算术平方根的定义、绝对值的定义、平方差公式、完全平方公式和多项式除以单项式法则是解决此题的关键.19.解方程:(1)14122x x +=--; (2)224124x x x +-=--; (3)2131x x x =++-. 【答案】(1)1x =-;(2)1x =-;(3)35x =-.【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解; (3)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)14122x x+=-- 14122x x -=-- 142x -=-,解得1x =-,经检验1x =-是原方程的解,(2)224124x x x +-=-- ()22244x x +-=-224444x x x -=+-+44x =-,解得:1x =-经检验1x=-是分式方程的解.(3)2131 xx x=++-()()()() 13123 x x x x x-=+-++ 223326x x x x x x-=-+-++5x=-3解得35 x=-检验:当35x=-时,()()310x x+-≠∴35x=-是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.如图,在平面直角坐标系中,直线AB交x轴于点B(6,0),交y轴于点C(0,6),直线AB与直线OA:y=12x相交于点A,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.【答案】(1)y=﹣x+6;(2)12;(3)存在满足条件的点M,其坐标为(1,12)或(1,5)或(﹣1,7)【分析】(1)由B、C坐标,根据待定系数法可求得直线AB的解析式;(2)联立直线AB和直线OA解析式可求得A点坐标,则可求得△OAC的面积;(3)当△OMC的面积是△OAC的面积的14时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB的解析式是y=kx+b,根据题意得606k bb+=⎧⎨=⎩,解得-16kb=⎧⎨=⎩,。

2018-2019学年河南省洛阳市八年级(上)期末数学试卷(解析版)

2018-2019学年河南省洛阳市八年级(上)期末数学试卷(解析版)

2018-2019学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣22.在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x23.如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD∥OB交OA于点D、若PD=2,PC=()A.1B.2C.3D.44.下列因式分解正确的是()A.12a2b﹣8ac+4a=4a(3ab﹣2c)B.﹣4x2+1=(1+2x)(1﹣2x)C.4b2+4b﹣1=(2b﹣1)2D.a2+ab+b2=(a+b)25.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5B.6C.7D.106.计算:a2﹣(b﹣1)2结果正确的是()A.a2﹣b2﹣2b+1B.a2﹣b2﹣2b﹣1C.a2﹣b2+2b﹣1D.a2﹣b2+2b+17.分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=38.如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF10.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β二、填空题(每小题3分,共15分)11.计算:(a3x4﹣0.9ax3)÷ax3=.12.一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是cm.13.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为.14.化简=.15.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、E,若△ABC的周长为23cm,△ABD的周长为13cm,则AE 为cm.三、解答题16.(8分)解答下列各题:(1)计算:(y﹣2)(y+5)﹣(y+3)(y﹣3)(2)分解因式:3x2﹣1217.(8分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.18.(8分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.20.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.21.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.22.(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?23.(11分)如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.2018-2019学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.2.【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.3.【分析】作PE⊥OA于E,根据直角三角形的性质求出PE,根据角平分线的性质求出PC.【解答】解:作PE⊥OA于E,∵PD∥OB,∴∠EDP=∠AOB=30°,∴PE=PD=1,∵点P在∠AOB的平分线上,PC⊥OB,PE⊥OA,∴PC=PE=1,故选:A.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4.【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式=4a(3ab﹣2c+1),不符合题意;B、原式=(1+2x)(1﹣2x),符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意,故选:B.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.【分析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;5﹣4<6<5+4,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6﹣2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;④选6+2、3、4作为三角形,则三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:C.【点评】此题实际考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.6.【分析】原式利用完全平方公式化简,去括号即可得到结果.【解答】解:原式=a2﹣(b2﹣2b+1)=a2﹣b2+2b﹣1.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.8.【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故B不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.9.【分析】求出∠CAF=∠BAF,∠B=∠ACD,根据三角形外角性质得出∠CEF=∠CFE,即可得出答案;【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∵AF平分∠CAB,∴∠CAE=∠BAF,∴∠ACD+∠CAE=∠B+∠BAF,∴∠CEF=∠CFE,故选:C.【点评】本题考查了直角三角形的性质,等腰三角形的判定,正确的识别图形是解题的关键.10.【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.二、填空题(每小题3分,共15分)11.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(a3x4﹣0.9ax3)÷ax3=2a2x﹣.故答案为:2a2x﹣.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.12.【分析】题目给出等腰三角形有两条边长为3cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.【分析】根据两直线平行,内错角相等求出∠BCE=∠E=30°,然后求出∠ACE的度数.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故答案为:15°.【点评】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.14.【分析】首先将原式化为==﹣,然后进行分式的加减运算.【解答】解:原式==﹣==,故答案为:.【点评】此题考查的知识点是粉饰的加减法,关键明确如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.15.【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:由题意可得:MN是线段AC的垂直平分线,则AE=EC,AD=DC,∵△ABC的周长为23cm,△ABD的周长为13cm,∴AB+BC+AC=23cm,AB+BD=AD=AB+BD+DC=AB+BC=13cm,∴AC=23﹣13=10(cm),∴AE=AC=5cm.故答案为:5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.三、解答题16.【分析】(1)根据整式的乘法计算解答即可;(2)根据平方差公式分解因式即可.【解答】解:(1)原式=y2+3x﹣10﹣y2+9=3x﹣1;(2)3x2﹣12=3(x+2)(x﹣2).【点评】此题考查平方差公式,关键是根据平方差公式解答.17.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.18.【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【点评】本题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.19.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;根据平面直角坐标系写出各点的坐标即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)如图所示,△A′B′C′即为所求,由图知A′(1,3),B′(5,1),C′(2,﹣2);(2)△ABC的面积为5×4﹣×1×5﹣×3×3﹣×2×4=9.【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.21.【分析】(1)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA=∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C=×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.22.【分析】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2700元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶.(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2700,解得:y≥7.答:销售单价至少为7元/瓶.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【分析】【观察猜想】:证明△ACE≌△DCB(SAS),可得AE=BD,∠CAO=∠ODP,由∠AOC=∠DOP,推出∠DPO=∠ACO=60°.【数学思考】:结论成立,证明方法类似.=•AC•DP+•AC•PB=•AC•(DP+PB)=【拓展应用】:证明AC⊥BD,可得S四边形ABCD•AC•BD.【解答】解:【观察猜想】:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.【数学思考】:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.【拓展应用】:设AC交BE于点O.∵△ADC,△ECB都是等腰直角三角形,∴ED=EA,∠AED=∠BEC=90°,CE=EB,∴∠AEC=∠DEB∴△AEC≌△DEB(SAS),∴AC=BD=10,∠PBO=∠OCE,∵∠BOP=∠EOC,∴∠BPO=∠CEO=90°,∴AC⊥BD,=•AC•DP+•AC•PB=•AC•(DP+PB)=•AC•BD=50.∴S四边形ABCD故答案为50.【点评】本题属于四边形综合题,考查了等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣22.(3分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x23.(3分)如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD∥OB交OA于点D、若PD=2,PC=()A.1B.2C.3D.44.(3分)下列因式分解正确的是()A.12a2b﹣8ac+4a=4a(3ab﹣2c)B.﹣4x2+1=(1+2x)(1﹣2x)C.4b2+4b﹣1=(2b﹣1)2D.a2+ab+b2=(a+b)25.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5B.6C.7D.106.(3分)计算:a2﹣(b﹣1)2结果正确的是()A.a2﹣b2﹣2b+1B.a2﹣b2﹣2b﹣1C.a2﹣b2+2b﹣1D.a2﹣b2+2b+17.(3分)分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=38.(3分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 9.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF 10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β二、填空题(每小题3分,共15分)11.(3分)计算:(a3x4﹣0.9ax3)÷ax3=.12.(3分)一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是cm.13.(3分)将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为.14.(3分)化简=.15.(3分)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、E,若△ABC的周长为23cm,△ABD的周长为13cm,则AE为cm.三、解答题16.(8分)解答下列各题:(1)计算:(y﹣2)(y+5)﹣(y+3)(y﹣3)(2)分解因式:3x2﹣1217.(8分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.18.(8分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.20.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.21.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O 重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.22.(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?23.(11分)如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.2.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.3.【解答】解:作PE⊥OA于E,∵PD∥OB,∴∠EDP=∠AOB=30°,∴PE=PD=1,∵点P在∠AOB的平分线上,PC⊥OB,PE⊥OA,∴PC=PE=1,故选:A.4.【解答】解:A、原式=4a(3ab﹣2c+1),不符合题意;B、原式=(1+2x)(1﹣2x),符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意,故选:B.5.【解答】解:已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;5﹣4<6<5+4,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6﹣2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;④选6+2、3、4作为三角形,则三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:C.6.【解答】解:原式=a2﹣(b2﹣2b+1)=a2﹣b2+2b﹣1.故选:C.7.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.8.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故B不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.9.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∵AF平分∠CAB,∴∠CAE=∠BAF,∴∠ACD+∠CAE=∠B+∠BAF,∴∠CEF=∠CFE,∴CE=CF.故选:C.10.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.二、填空题(每小题3分,共15分)11.【解答】解:(a3x4﹣0.9ax3)÷ax3=2a2x﹣.故答案为:2a2x﹣.12.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故答案为:17.13.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故答案为:15°.14.【解答】解:原式==﹣==,故答案为:.15.【解答】解:由题意可得:MN是线段AC的垂直平分线,则AE=EC,AD=DC,∵△ABC的周长为23cm,△ABD的周长为13cm,∴AB+BC+AC=23cm,AB+BD=AD=AB+BD+DC=AB+BC=13cm,∴AC=23﹣13=10(cm),∴AE=AC=5cm.故答案为:5.三、解答题16.【解答】解:(1)原式=y2+3x﹣10﹣y2+9=3x﹣1;(2)3x2﹣12=3(x+2)(x﹣2).17.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.18.【解答】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.19.【解答】解:(1)如图所示,△A′B′C′即为所求,由图知A′(1,3),B′(5,1),C′(2,﹣2);(2)△ABC的面积为5×4﹣×1×5﹣×3×3﹣×2×4=9.20.【解答】证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.21.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA=∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C=×90°=45°,即:∠ACB的大小不发生变化.22.【解答】解:(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶.(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2700,解得:y≥7.答:销售单价至少为7元/瓶.23.【解答】解:【观察猜想】:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.【数学思考】:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠P AO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.【拓展应用】:设AC交BE于点O.∵△ADC,△ECB都是等腰直角三角形,∴ED=EA,∠AED=∠BEC=90°,CE=EB,∴∠AEC=∠DEB∴△AEC≌△DEB(SAS),∴AC=BD=10,∠PBO=∠OCE,∵∠BOP=∠EOC,∴∠BPO=∠CEO=90°,∴AC⊥BD,∴S四边形ABCD=•AC•DP+•AC•PB=•AC•(DP+PB)=•AC•BD=50.故答案为50.。

相关文档
最新文档