第五章_线性系统的频域分析法剖析
长安大学:自动控制原理第五章 线性系统的频域分析
![长安大学:自动控制原理第五章 线性系统的频域分析](https://img.taocdn.com/s3/m/272559dd49649b6648d747ab.png)
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。
设
x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()
四、线性系统的频域分析法
![四、线性系统的频域分析法](https://img.taocdn.com/s3/m/1606a8b9700abb68a982fb4f.png)
其中: A()Ac (j) 幅频特性
A
() (j) 相频特性
RC网络频率特性的物理意义:
1 A()
0.707
频带宽度
b
01 2 3 4 5
TTTT T
() 0
相角迟后
90
01 2 3 4 5
TTTT T
对稳定的线性系统,其频率特性如下:
设: (s)C R ((s s))b a 0 0 ssm n b a 1 1 s sm n 1 1 .... a .b .m n 1 1 s s a b n m
微分环节: s 惯性环节: 1/(Ts1) 一阶微分环节: Ts1
振荡环节: 1 /s (2/ n 2 2s/ n 1 )0 , 1
二阶微分环节: s2/n22 s/n 1 ,01
例如:G(s)s(0.5s K 1()ss( 21 )2s5) 由上述的5个环节组成。
A()1/ ()900
db 60 40 20 0 900
[20]
0.1
1
j
0
幅相曲线
对数频率特性曲线
L()2l0g A()
20lg () 900
10
3)微分环节: s 由 G(s)s
A() ()900
db 60 40 20 0 90 0 00
uc
ur
ur Asi nt c u c
设初值为0, 对上式拉氏变换,设A=1,得:
Uc(s)RC 1s1Ur(s) s1/1T/Ts2 2
RC网络
TRC
s1x/Tsy2sz2 (xy)s2( s (z1 /T y)/T s(2) s x 2 )2z/T
线性系统的频域分析
![线性系统的频域分析](https://img.taocdn.com/s3/m/12f7f8681eb91a37f1115cbf.png)
第五章 线性系统的频域分析频域分析法是应用频率特性研究线性系统的一种经典方法。
它以控制系统的频率特性作为数学模型,以伯德图或其他图表作为分析工具,来研究、分析控制系统的动态性能与稳态性能。
频域分析法由于使用方便,对问题的分析明确,便于掌握,因此和时域分析法一样,在自动控制系统的分析与综合中,获得了广泛的应用。
本章研究频率特性的基本概念、典型环节和控制系统的频率特性曲线、奈奎斯特稳定判据以及开环频域性能分析等内容。
§5-1 频率特性的基本概念一、频率特性的基本概念频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性,对于线性系统,若其输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但其幅值和相位都不同与输入量。
下面以RC 电路为例,说明频率特性的基本概念。
图5-1所示的RC 电路,)(t u i 和)(0t u 分别为电路的输入电压和输出电压,电路的微分方程为:)()()(00t u t u dtt du Ti =+ 式中T=RC 为电路的时间常数。
RC 电路的传递函数为11)()(0+=Ts s U s U i (5-1) Rui )t图 5-1 RC 电路当输入电压为正弦函数t U t u i i ωsin )(=,则由式(5-1)可得22011)(11)(ωω+⋅+=+=s U Ts s U Ts s U i i 经拉氏反变换得电容两端的输出电压)sin(11)(122/220T tg t T U e T T U t u iT t i ωωωωω---+++=式中,第一项为输出电压的暂态分量,第二项为稳态分量,当∞→t 时,第一项趋于零,于是)sin(1|)(1220T tg t T U t u i t ωωω-∞→-+=)](sin[)(ωϕωω+=t A U i (5-2)式中:2211)(TA ωω+=,T tgωωϕ1)(--=,分别反映RC 网络在正弦信号作用下,输出稳态分量的幅值和相位的变化,二者皆是输入正弦信号频率ω的函数。
第5章-线性系统的频域分析法
![第5章-线性系统的频域分析法](https://img.taocdn.com/s3/m/654436d7d5d8d15abe23482fb4daa58da0111ccf.png)
0.1 0.2
0.5
1
2
5
10
20
50
() -96.3 -102.5 -116.6 -140.7 -164.7 -195.3 -219.3 -240.6 -257.5
5-4 频率域稳定判据
一、奈氏判据的数学基础 1、幅角原理
设F(s)为复变函数,F(s)
在s平面上任一点 K*(s z1)(s z2) (s zm)
G( j) j L() 20lg () 90
L(dB) 40 20
0 0.01 0.1
1
20
20dB / dec
10
-40
( ) 90
0 0.01 0.1
1
90
10
4、一阶惯性环节
G(
j)
1
Tj
1
1
e arctgT
1 T 22
L() 20 lg 1 T 22
() arg tgT
5-1 引言
频率特性是研究自动控制系统的一种工程方法,它 反映正弦信号作用下系统性能。应用频率特性可以 间接地分析系统的动态性能与稳态性能。频率特性 法的突出优点是组成系统的元件及被控对象的数学 模型若不能直接从理论上推出和计算时,可以通过 实验直接求得频率特性来分析系统的品质。其次, 应用频率特性法分析系统可以得出定性和定量的结 论,并且有明显的物理意义。在应用频率特性法分 析系统时,可以利用曲线,图表及经验公式,因此, 用频率特性法分析系统是很方便的。
1
T
() 45
L(dB) 0
20
40
60 ( )
0
1 T
精确特性
45
90
渐进特性
20dB/ dec
第五章线性系统的频域分析法
![第五章线性系统的频域分析法](https://img.taocdn.com/s3/m/610621daa58da0116c17492c.png)
对 A(ω ) 求导并令等于零,可解得 A(ω ) 的极值对应的频率 ω r 。
ω r = ω n 1 2ζ 2
该频率称为谐振峰值频率。可见,当 ζ = 当ζ
> 1 2
s = jω
G( jω) =| G( jω) | e
j∠G( jω)
= A(ω)e
j (ω)
G( jω) = G(s) |s= jω
G( jω) = G(s)|s= jω =| G( jω)| e j∠G( jω) = A(ω)e j(ω)
A A j (ω ) k1 = G( jω ) e k2 = G( jω ) e j (ω ) 2j 2j
可以作为系统模型
G( jω) = G(s) |s= jω = G( jω) e j(ω)
定义 幅频特性
A(ω ) =| G( jω ) |
(ω ) = ∠G ( jω )
它描述系统对不同频率输入信号在稳态时的放大特性; 它描述系统对不同频率输入信号在稳态时的放大特性; 相频特性
它描述系统的稳态响应对不同频率输入信号的相位移特性; 它描述系统的稳态响应对不同频率输入信号的相位移特性; 幅频特性和相频特性可在复平面上构成一个完整的向量 G ( jω ), 频率特性。 频率特性 G ( jω ) = A(ω )e j (ω ) ,它也是 ω 的函数。G( jω) 称为频率特性 还可将 G ( jω ) 写成复数形式,即
A(ω ) = 1 1 + T 2ω 2 ,
G (s) =
1 Ts + 1
G ( jω ) =
1 jT ω + 1
(ω ) = tg 1T ω
幅频特性 L(ω) = 20log A(ω) = 20log K 20log 1+ T 2ω2 低频段:当Tω << 1时,ω 高频段:当 Tω >> 1时, ω
自动控制原理--第5章 频域分析法
![自动控制原理--第5章 频域分析法](https://img.taocdn.com/s3/m/e26ea3daed3a87c24028915f804d2b160b4e8692.png)
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j
即
G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数
线性系统的频域分析法
![线性系统的频域分析法](https://img.taocdn.com/s3/m/28f5cdb4b0717fd5360cdc24.png)
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
第五章(1,2) 线性系统的频域分析法解析
![第五章(1,2) 线性系统的频域分析法解析](https://img.taocdn.com/s3/m/bbb4cf0ef01dc281e53af0c8.png)
用频率特性求取正弦输入稳态误差的方法:
正弦输入稳态误差求法总结: 1.定义法,求拉式反变换(不能 用终值定理) 2.动态误差系数法 3.频率响应法
2.频率特性的几何表示法(图示法)(重点)
仅从G( j)的表达式中看出的信息不直观,在工程分析和 设计中,通常把线性系统的频率特性画成曲线,观察其在不 同频率段上的变换,再运用图解法进行研究(包括稳态性能、 暂态性能等)。常用的频率特性曲线有三种:
第五章 线性系统的频域分析法
时域分析法是分析控制系统的直接方法,比较直 观、精确。但往往需要求解复杂的微分方程。
复域分析法(根轨迹法)是一种在S平面上由开环零 极点绘制闭环系统特征根的图形分析法。
频域分析法也是一种图解分析法。依据系统的频 率特性,间接地揭示系统正弦输入信号下的暂态特 性和稳态特性。也是一种工程上常用的方法。
1
Re[G(jω)]
0
不足:计算繁琐。不直观,无法看出每个零极 点的影响。增添新的零极点时,只能重新计算。 看不出ω的变化速度。
单位:弧度/秒
半对数坐标系的优点:
对数频率特性采用 的对数分度实现了横坐标的非线性压缩,便于在较大频
率范围内反映频率特性的变化情况。对数幅频特性采用 20lg A()则将幅值的乘 法运算转化为加减运算,可以简化曲线的绘制过程。
对数幅相图实质上将伯德图的两张图合成一张图。
5-2 典型环节与开环系统的频率特性
设典型的线性系统结构如图所示,闭环系统的很多 性能可通过研究开环系统的频率特性来得到。
该线性系统的开环传递函数为 G(s,)H (为s) 了研究开 环系统频率特性曲线,本节先研究开环系统典型环节 的频率特性,进一步研究开环系统的频率特性。
1.频域特性的基本概念 (这种数学模型是怎样的?)
第5章线性系统的频域分析法课件
![第5章线性系统的频域分析法课件](https://img.taocdn.com/s3/m/3140d6d1ba1aa8114531d976.png)
+
+
RC
duo dt
uo
ui
ui(t)
i (t) C
uo(t)
-
-
G(s) Uo(s) 1 1 Ui (s) 1 RCs 1 Ts
其中:T=RC
设 ui (t) Asin t
Ui (s)
A s2 2
U
o
(s)
1 Ts
1
Ui
(s)
1 Ts
1
s
2
A
2
Uo (s) 经拉氏反变换,可得
1 A F
tan T--稳态输出幅值 --稳态输出相位
正弦输入与稳态输出之间: 频率相同;幅值不同;相位不同。
i
o
0
t
ui
u0
A
2
0
线性系统G(s)
t
0
2
t
u输0 出仍为正弦信号,频率与输入信号相同,幅值较输入 0 信号有 一2 定 衰减,相t 位存在一定延迟。
A() Uo 1
第五章 线性系统的频域分析法
5.1 引言 5.2 频率特性 5.3 典型环节和开环频率特性曲线的绘制 5.4 频率域稳定判据 5.5 稳定裕度 5.6 闭环系统的频域性能指标
5.1 引言
1.时域分析法的优缺点
时域法是分析和设计控制系统的直接方法,它的主要优点是: 1)直观、容易理解。借助于MATLAB仿真,可以直接得到 系统的时域响应曲线,以及各种时域指标。 2)典型二阶系统的参数与系统性能指标的关系明确。当系 统的闭环零、极点满足二阶近似条件时,可用主导极点对应 的典型二阶系统的指标来近似估计高阶系统的技术指标。
5)延迟系统的开环传递函数包含延迟环节,其闭环特征方 程是超越方程,不能用劳斯判据判断稳定性,也不能用 MATLAB绘制根轨迹,系统分析很困难。
自动控制原理第五章 线性系统的频域分析法-5-1
![自动控制原理第五章 线性系统的频域分析法-5-1](https://img.taocdn.com/s3/m/106161235bcfa1c7aa00b52acfc789eb172d9eda.png)
如同收音机、电视机一样,任一系统的频率响应反映系统的频率特性,体现系统的控制性能。
系统频率特性物理意义明确。应用频率特性分析研究系统性能的方法称为频域分析法。
控制系统的频域分析法兼顾动态响应和噪声抑制的要求,可以拓展应用于非线性系统。
频率特性定义
分别称为系统的幅频特性和相频特性。
系统数学模型间的关系
控 制 系 统
傅氏变换
拉氏变换
g(t)
数学建模
例5.1-1
图示系统,设输入为r(t)=sin(5t),计算系统的频率响应和稳态误差。
当
1
2
3
4
5
6
7
8
9
10
20
100
1
2
3
4
5
6
7
8
9
10
0
0.301
0.477
0.602
0.699
0.788
0.845
0.903
0.954
1
十倍频程
两倍频程
0.1
0.2
200
十倍频程
十倍频程
对数坐标的单位长度
⑶ 对数频率特性曲线
对数幅频特性曲线 纵坐标: ,线性刻度,单位为分贝(dB) 横坐标:ω ,对数刻度,单位为弧度/秒(rad/s)
绘制一阶系统幅相频率特性曲线
解:系统频率特性为
且有
即
复平面上位于第Ⅳ象限圆心为(1/2,j0),半径为1的半圆。
箭头表示随ω增加,曲线的运动方向
2. 对数频率特性曲线(对数坐标图、伯德(Bode)图)
⑴ 频率特性的常用对数函数
《自动控制原理》 胡寿松 第05#1章 线性系统的频域分析法
![《自动控制原理》 胡寿松 第05#1章 线性系统的频域分析法](https://img.taocdn.com/s3/m/98dbf1e74afe04a1b071dea7.png)
用,它也是经典控制理论中的重点内容。
本章主要学习内容如下: 5.1 频率特性
5.2 典型环节和开环系统频率特性
5.3 频域稳定判据
5.4频域稳定裕度
5.5 闭环系统的频域性能指标
5.1 频率特性的一般概念
1 频率特性的基本概念
首先我们以图示的RC滤波网络为例,建立频
率特性的基本概念。
R i(t) C
②实验方法
(原理后续介绍)
三种数学模型之间的关系
频率特性也是描述系统的一种动态数学模型。
与微分方程和传递函数一样,也表征了系统的运动
规律。
例1 已知系统传递函数 G ( s)
1 ,输入正弦信号 s 1 r (t ) 3sin(2t 30) ,求稳态输出响应 Css (t ) ?
G ( j ) G ( j ) e jG ( j ) 指数形式:
G ( j ) G ( j ) e jG ( j ) U ( ) jV ( ) 实部和虚部形式:
实频特性: 虚频特性:
U () A() cos () V () A( ) sin ( )
(1)频率特性的定义
频率特性:零初始条件下,输出信号与输入信 号的傅氏变换之比,用 G( j) 表示。
C ( j ) G ( j ) G ( s) |s j R( j )
A( ) G ( j ) C ( j ) R ( j )
—幅频特性 —相频特性
( ) G( j )
率的关系曲线;对数相频特性则是相角∠ G(j)
和频率的关系曲线。
伯德图是在半对数坐标纸上绘制出来的。横坐
标采用对数刻度,纵坐标采用线性的均匀刻度。
在绘制伯德图时,为了作图和读数方便,常将
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
![第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的](https://img.taocdn.com/s3/m/4347b00c3c1ec5da50e270ad.png)
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
第5章线性系统的频域分析方法
![第5章线性系统的频域分析方法](https://img.taocdn.com/s3/m/d1c58f0b16fc700aba68fc0c.png)
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程
G(s) s=jw
G(jw)
A2 A()A1, 2 () 1 A(),()
物理意义: 表示系统或环节
对不同频率正弦信号的跟踪能力或复现能力; G(jw)只与系统或环节本身的结构参数有关,是 系统或环节本身的属性; 与输入信号和初始条件无关。
11
『例1』某系统结构图如图,求 rt作 用下的稳态输出 c;t
➢容易研究系统的结构和参数变化对系统性能的 影响,并可指出改善系统性能的途径,便于对系 统进行校正。
➢提供了一种通过实验建立元件或系统数学模型 的方法。
2
系统模型间的关系
3
5-1 频率特性
一. 频率特性的基本概念
r(t)
系统
C(t)
A1 sin(t 1) 数学模型 A2 sin(t 2 )
一个稳定的线性定常系统或环节,当系统输入为正弦信号
eT
Ar sin(t arctanT ) 1 2T 2
式中第一项为动态分量,第二项为稳态分量。
lim
t
uc
(t
)
Ar sin(t arctanT ) 1 2T 2
8
w0
A(w) 1
(w) 0
1/ 2T 1/ T 2 / T 3/ T 4 / T 5 /T
0.89 0.707 0.45 0.32 0.24 0.20 0
(1) rt 3cos 2t 30
(2) rt 3sin 8t 20
r(t)
6
c(t)
- s4
『解』设
输出
ct A2 cost 2
闭环传递函数
(s) C(s) G(s) 6 R(s) 1 G(s) s 10
频率特性
j 6
12
j 10
1. rt 3cos2t 30
幅相频率特性: 幅频特性: 相频特性:
Gs 1
RCs 1
G j 1
jRC 1
A G j 1
T 2 2 1
arctan RC
16
『注』幅频特性是w的偶函数,相频特性是w的奇函数,
当w→∞时,网络输出电压趋 向于0,相角落后90度。所以 RC网络只允许低频信号通过, 具有低通滤波器的性质。9
r(t)的幅值为1保持不变,而频率w由小到大变化,其输出c(t) 为以下波形:
ω=0.5
ω=1
ω=2.5
ω=4
【附】:不稳定系统频率响应
不稳定系统
1 (s 1)
暂态 稳态
10
【小结】线性定常系统频率特性的求法
频率特性表示了稳定系统在正弦信号输入下,其稳态输 出与输入之间的关系。利用频率特性可以很容易求得
稳定系统在正弦信号输入下的稳态输出,即
A2 A() 2 () 1
6
频率特性的物理意义及求解方法
R
ur
C
uc
RC网络微分方程:RC
duC dt
uc
ur
RC网络传递函数:
Gs
uC s ur s
幅频特性 A() A2 ()
A1
相频特性 () 2 () 1
频率特性 G( j) A()e j() G j A()()
A() | G( j) |
() G( j)
5
如何求系统的频率特性?
在系统的传递函数G(s)中,用jw代替s即得系统频率特性 G( jw),其模值为幅频特性A(,) 其幅角为相频特 。()
第五章 线性系统的频域分析法
5-1 频率特性 5-2 典型环节与开环系统频率特性 5-3 频率稳定判据 5-4 频率稳定裕度 5-5 闭环系统的频率性能指标
1
概述
频率法是在频域里对系统进行分析和设计的一种方 法,主要采用图解法。
➢可以根据系统的开环频率特性判断闭环系统的 稳定性,而不必求解特征方程。
当输入正弦信号频率从0变到+∞,矢量 A 的e j终
端便在复平面上描绘出一条轨迹,这条轨迹就是G(jw)
的极坐标图,通常又称为幅相频率特性曲线,也称
Nyquist曲线。
15
正负的定义
用箭头表示w增加的方向,角度以实轴正方向作为相 角的零度线,反时针旋转的角度定义为正。
『例』如RC网络的传递函数:
26.6 45 63.5 71.5 76 78.7 90
A(w) 1
-0.707
A G j 1 T 2 1
G j arctanRC
w
0
1/T 2/T 3/T 4/T
(w)
450
w
900
当频率较低时,输出电压和输 入电压的幅值几乎相等,相角 差不大,随着频率增高,输出 电压的幅值减小,相角滞后增 大,当w=1/T时,输出幅值为 输入幅值的0.707倍,相角落 后45度。
css 1.41 cos 8t 18.7。
14
二. 频率特性的几何表示方法
常用的频率特性图有极坐标图与伯德图。 1. 幅相频率特性曲线(极坐标图)
G(jw)为复数, 在坐标图中,它是一个矢量, 既可用模值和 幅角表示,也可在直角坐标中用实部和虚部表示。即:
G j A e j Re G j jI mG j
( j2) 6 6 (tg1 2 ) 0.59 11.3
j2 10 22 102
10
A 0.59 11.3
A2 A1
A2 3
0.59
2 1 2 30 11.3
ct 1.77 cos 2t 18.7。
A2 1.77
2 18.7
css 1.77 cos 2t 18.7。
1 RCs
1
频率特性:
G j 1 1
jRC 1 jT 1
幅频特性:
A G j 1 T 2 1
相频特性:
G j arctanRC 7
系统的输出为
Uc
(s)
(s)Ur
(s)
1 Ts
1
Ar s2
2
查拉氏变换表,得Uc(s)的原函数uc(t)
uc (t)
ArT 1 2T 2
t
rt A1 sin(t 时1)
系统稳态输出为同频率的正弦信号 ct A2 sin(t 2 ) 。
振幅与相角不一定相同,即 A2 A1, 2 1 ,并且 A2,2 均
为频率w的函数,即 A2,2。
4
两个信号的振幅之比定义为系统的幅频特性,两个信号的 相位之差定义为系统的相频特性。两者合称为系统的频率 特性。
13
2. rt 3sin8t 20。
j8 6 6 tan1 8 0.47 38.7
j8 10 82 102 10
A 0.47 38.7
A2
A1
A2 3
0.47
2 1 2 20 38.7
A22
1.41 18.7
ct 1.41sin 8t 18.7。