【精选】全等三角形易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .

(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;

(2)如图2,请写出AF 与DG 之间的关系并证明.

【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.

【解析】

【分析】

(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.

(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.

【详解】

解:(1)证明:设BE 与AD 交于点H..如图,

∵AD,BE 分别为BC,AC 边上的高,

∴∠BEA=∠ADB=90°.

∵∠ABC=45°,

∴△ABD 是等腰直角三角形.

∴AD=BD.

∵∠AHE=∠BHD,

∴∠DAC=∠DBH.

∵∠ADB=∠FDE=90°,

∴∠ADE=∠BDF.

∴△DAE ≌△DBF.

∴BF=AE,DF=DE.

∴△FDE是等腰直角三角形.

∴∠DFE=45°.

∵G为BE中点,

∴BF=EF.

∴AE=EF.

∴△AEF是等腰直角三角形.

∴∠AFE=45°.

∴∠AFD=90°,即AF⊥DF.

(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,

∵点G为BE的中点,BG=GE.

∵∠BGM∠EGD,

∴△BGM≌△EGD.

∴∠MBE=∠FED=45°,BM=DE.

∴∠MBE=∠EFD,BM=DF.

∵∠DAC=∠DBE,

∴∠MBD=∠MBE+∠DBE=45°+∠DBE.

∵∠EFD=45°=∠DBE+∠BDF,

∴∠BDF=45°-∠DBE.

∵∠ADE=∠BDF,

∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.

∵BD=AD,

∴△BDM≌△DAF.

∴DM=AF=2DG,∠FAD=∠BDM.

∵∠BDM+∠MDA=90°,

∴∠MDA+∠FAD=90°.

∴∠AHD=90°.

∴AF⊥DG.

∴AF=2DG,且AF⊥DG

【点睛】

本题考查三角形全等的判定和性质,关键在于灵活运用性质.

2.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半

轴上,作

DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.

(1)求m 和n 的值.

(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .

(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.

【答案】(1)42m n =-⎧⎨=⎩

(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.

【解析】

【分析】

(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;

(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明

△ABH ≌△CAN ,即可得到结论.

【详解】

解:(1)由题意()()218122

m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩

; (2)如图2中,

由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),

∴AD =OA =4,OB =2,

∴由勾股定理可得:AB =BD =5

∵AC =OC =2,

∴AC=OB,

∵∠DAC=∠AOB=90°,AD=OA,

∴△DAC≌△AOB(SAS),

∴∠ADC=∠BAO,

∵∠ADC+∠ACD=90°,

∴∠EAC+∠ACE=90°,

∴∠AEC=90°,

∵AF⊥BD,DE⊥AB,

∴S△ADB=

1

2

•AB•AE=

1

2

•BD•AF,

∵AB=BD,

∴DE=AF.

(3)解:如图,取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,

∵AG=BG,

∴∠GAB=∠GBA,

∵G为射线AD上的一点,

∴AG∥y轴,

∴∠GAB=∠ABC,

∴∠ACB=∠EBA,

∴180°﹣∠GBA=180°﹣∠ACB,

即∠ABG=∠ACN,

∵∠GAN=∠GBO,

∴∠AGB=∠ANC,

在△ABG与△ACN中,

ABH ACN

AHB ANC

AB AC

∠=∠

∠=∠

⎪=

∴△ABH≌△ACN(AAS),

∴BF=CN,

∴NB﹣HB=NB﹣CN=BC=2OB,

∵OB=2

∴NB﹣FB=2×2=4(是定值),

即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.

相关文档
最新文档