第一章 金属的晶体结构

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章金属的晶体结构

1-1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向。

附图1-1 有关晶面及晶向

1-2、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

{111}=(111)+(111)+(111)+(111)

(111)与(111)两个晶面指数的数字与顺序完全相同而符号相反,这两个晶面相互平行,相当于用-1乘某一晶面指数中的各个数字。

x

y z

1-3 (题目见教材)

解:x方向截距为5a,y方向截距为2a,z方向截距为3c=3 2a/3=2a。

取截距的倒数,分别为

1/5a,1/2a,1/2a

化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5)

1-4 (题目见课件)

解:(100)面间距为a/2;(110)面间距为2a/2;(111)面间距为3a/3。 三个晶面中面间距最大的晶面为(110)。

1-5 (题目见课件)

解:方法同1-4题

1-7 证明理想密排六方晶胞中的轴比c/a=1.633。

证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内

的原子相切,构成正四面体,如图所示。 则OD=

2

c

,AB=BC=CA=AD=BD=CD=a 因∆ABC 是等边三角形,所以有OC=3

2CE 因(BC)2

=(CE)2

+(BE)

2

则CE=23a ,OC=3

2

×23a =33a

又(CD)2

=(OC)2

+(

21c )2

,即(CD)2=(33a )2+(2

1c )2=(a )2

因此,

a

c

=38≈1.633

1-8

解:面心立方八面体间隙半径 r=a/2-2a/4=0.146a , 面心立方原子半径R=2a/4,则a=4R/2,代入上试有

C

B

A

D

E

O

r=0.146⨯4R/2=0.414R。

(其他的证明类似)

1-9 a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积的膨胀?b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转变为α-Fe时,试求其体积膨胀? c)分析实际体积膨胀小于理论体积膨胀的原因?

解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别为V

面、V

与a

a

,刚球半径为r,由晶体结构可知,对于面心晶胞有

4r=2a

面,a

=22r,V

= (a

)3=(22r)3

对于体心晶胞有

4r=3a

体,a

=

3

3

4

r,V

= (a

)3=(

3

3

4

r)3

则由面心立方晶胞转变为体心立方晶胞的体积膨胀∆V为

∆V=2×V体-V面=2.01r3

b)按晶格常数计算实际转变体积膨胀∆V

,有

∆V实=2×V体-V面=2×(0.2892)3-(0.3633)3=0.000425 nm3

c)实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转变为α-Fe时,Fe 原子半径发生了变化,原子半径减小了。

1-10已知Fe 和Cu 在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中Fe和Cu的原子数各为多少?

解:室温下Fe为体心立方晶体结构,一个晶胞中含2个Fe原子,Cu为面心立方晶体结构,一个晶胞中含4个Cu原子。

1cm3=1021nm3。

令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe晶胞的体积为V Fe,室温下一个Cu晶胞的体积为V Cu,则

N Fe=1021/V Fe=1021/(0.286)3≈3.5⨯1018(个)

N Cu=1021/V Cu=1021/(0.3607)3≈2.8⨯1018(个)

1-11 解:不能,看混合型位错

1-12 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:

(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.

(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.

(3) 具体写出该柏氏矢量的方向和大小.

(4) 求出此两位错的柏氏矢量和.

解正负刃型位错示意图见附图1-3(a)和附图1-4(a).

(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).

(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.

(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).

(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.

1-13

解:以体心立方{110}晶面为例

相关文档
最新文档