第二章 基本初等函数(Ⅰ) 章末复习课 教案(人教A版必修1)

第二章 基本初等函数(Ⅰ) 章末复习课 教案(人教A版必修1)
第二章 基本初等函数(Ⅰ) 章末复习课 教案(人教A版必修1)

1. 指数、对数的运算应遵循的原则

指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地使用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.

2. 对于底数相同的对数式的化简,常用的方法:

(1)“收”,将同底的两对数的和(差)收成积(商)的对数.

(2)“拆”,将积(商)的对数拆成对数的和(差).

例1 (1)化简;)21(2483332332

3134ab a

b a ab b b

a a ?-÷++- (2)计算:2log 32-log 3329

+log 38-25log 53. 解 (1)原式=.8)8(331

313131b a b a a b a b a a =??--

(2)原式=log 34-log 3329

+log 38-52log 53 =log 3???

?4×932×8-5log 59 =log 39-9=2-9=-7.

跟踪训练1 计算80.25×42+(32×3)6+log 32×log 2(log 327)的值为________.

答案 111

解析 ∵log 32×log 2(log 327)=log 32×log 23

=lg 2lg 3×lg 3lg 2

=1, ∴原式=234×214

+22×33+1=21+4×27+1=111. 题型二 数的大小比较

数的大小比较常用方法:

(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查幂函数、指数函数、对数函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.

(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.

(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,然后再在各部分内利用函数的性质比较大小.

例2 比较下列各组数的大小:

(1)40.9,80.48,????12-1.5;

(2)log 20.4,log 30.4,log 40.4.

解 (1)40.9=21.8,80.48=21.44,????12-1.5=21.5,

∵y =2x 在(-∞,+∞)上是增函数,

∴40.9>????12-1.5>80.48.

(2)∵对数函数y =log 0.4x 在(0,+∞)上是减函数,

∴log 0.44

又幂函数y =x -1在(-∞,0)上是减函数,

所以1log 0.42<1log 0.43<1log 0.44

, 即log 20.4

(1)27,82;(2)log 0.22,log 0.049;(3)a 1.2,a 1.3;(4)0.213,0.233.

解 (1)∵82=(23)2=26,

由指数函数y =2x 在R 上单调递增知26<27即82<27.

(2)∵log 0.049=lg 9lg 0.04=lg 32

lg 0.22

=2lg 32lg 0.2=lg 3lg 0.2

=log 0.23. 又∵y =log 0.2x 在(0,+∞)上单调递减,

∴log 0.22>log 0.23,

即log 0.22>log 0.049.

(3)因为函数y =a x (a >0且a ≠1),当底数a 大于1时在R 上是增函数;当底数a 小于1时在R 上是减函数,

而1.2<1.3,故当a >1时,

有a 1.2

当0a 1.3.

(4)∵y =x 3在R 上是增函数,

且0.21<0.23,∴0.213<0.233.

题型三 复合函数的单调性

1.一般地,对于复合函数y =f (g (x )),如果t =g (x )在(a ,b )上是单调函数,并且y =f (t )在(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,那么y =f (g (x ))在(a ,b )上也是单调函数.

2.对于函数y =f (t ),t =g (x ).

若两个函数都是增函数或都是减函数,则其复合函数是增函数;如果两个函数中一增一减,则其复合函数是减函数,即“同增异减”,但一定要注意考虑复合函数的定义域. 例3 已知a >0,且a ≠1,试讨论函数f (x )=1762++x x a

的单调性. 解 设u =x 2+6x +17=(x +3)2+8,

则当x ≤-3时,其为减函数,

当x >-3时,其为增函数,

又当a >1时,y =a u 是增函数,

当0

所以当a >1时,原函数f (x )=1762++x x a

在(-∞,-3]上是减函数,在(-3,+∞)上是增函数.

当0

在(-∞,-3]上是增函数,在(-3,+∞)上是减函

数.

(1)y =log 0.2(9x -2×3x +2);

(2)y =log a (a -a x ).

解 (1)令t =3x ,

u =9x -2×3x +2=t 2-2t +2=(t -1)2+1≥1>0.

又y =log 0.2u 在定义域内递减,

∴当3x ≥1(t ≥1),即x ≥0时,u =9x -2×3x +2递增,

∴y =log 0.2(9x -2×3x +2)递减.

同理,当x ≤0时,y =log 0.2(9x -2×3x +2)递增.

故函数y =log 0.2(9x -2×3x +2)的递增区间为(-∞,0],递减区间为[0,+∞).

(2)①若a >1,则y =log a t 递增,且t =a -a x 递减,而a -a x >0,即a x

②若00,即a x 1, ∴y =log a (a -a x )在(1,+∞)上递减.

综上所述,函数y =log a (a -a x )在其定义域上递减.

题型四 幂、指数、对数函数的综合应用

指数函数与对数函数性质的对比:

指数函数、对数函数是一对“姊妹”函数,它们的定义、图象、性质、运算既有区别又有联系.

(1)指数函数y =a x (a >0,a ≠1),对数函数y =log a x (a >0,a ≠1,x >0)的图象和性质都与a 的取值有密切的联系.a 变化时,函数的图象和性质也随之变化.

(2)指数函数y =a x (a >0,a ≠1)的图象恒过定点(0,1),对数函数y =log a x (a >0,a ≠1,x >0)的图象恒过定点(1,0).

(3)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1,x >0)具有相同的单调性.

(4)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1,x >0)互为反函数,两函数图象关于直线y =x 对称.

例4 已知函数f (x )=lg 1+2x +a ·4x 3

在x ∈(-∞,1]上有意义,求实数a 的取值范围. 解 因为f (x )=lg 1+2x +a ·4x 3

在(-∞,1]上有意义, 所以1+2x +a ·4x >0在(-∞,1]上恒成立.

因为4x >0,所以a >-???

?????14x +????12x 在(-∞,1]上恒成立. 令g (x )=-???

?????14x +????12x ,x ∈(-∞,1].

由y =-????14x 与y =-???

?12x 在(-∞,1]上均为增函数,可知g (x )在(-∞,1]上也是增函数, 所以g (x )max =g (1)=-????14+12=-34

. 因为a >-???

?????14x +????12x 在(-∞,1]上恒成立, 所以a 应大于g (x )的最大值,即a >-34

. 故所求a 的取值范围为???

?-34,+∞. 跟踪训练4 已知函数f (x )=lg(1+x )+lg(1-x ).

(1)判断函数的奇偶性;

(2)若f (x )=lg g (x ),判断函数g (x )在(0,1)上的单调性并用定义证明.

解 (1)由?????

1+x >01-x >0, 得-1

又f (-x )=lg(1-x )+lg(1+x )=f (x ),

∴f (x )为偶函数.

(2)g (x )在(0,1)上单调递减.

证明如下:

∵f (x )=lg(1-x 2)=lg g (x ),

∴g (x )=1-x 2,

任取0

则g (x 1)-g (x 2)=1-x 21-(1-x 22)

=(x 1+x 2)(x 2-x 1),

∵0

∴x 1+x 2>0,x 2-x 1>0,

∴g (x 1)-g (x 2)>0,

∴g (x )在(0,1)上单调递减.

1.函数是高中数学极为重要的内容,函数思想和函数方法贯穿整个高中数学的过程,纵观历年高考试题,对本章的考查是以基本函数形式出现的综合题和应用题,一直是常考不衰的热点问题.

2.从考查角度看,指数函数、对数函数概念的考查以基本概念与基本计算为主;对图象的考查重在考查平移变换、对称变换以及利用数形结合的思想方法解决数学问题的水平;对幂函数的考查将会从概念、图象、性质等方面来考查.

高一数学必修一第二章知识总结

高一数学必修一第二章知识总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: )1,,,0(* >∈>= n N n m a a a n m n m , )1,,,0(1 1 * >∈>= =- n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a 〃s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a a b =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;

(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真 数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 指数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log 〃=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log = . (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5 x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a .

(完整word)高中数学必修一对数函数

2.3对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用; ②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点; ③知道对数函数是一类重要的函数模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知f(logax)=,其中a>0,且a≠1. (1)求f(x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A.B.C.D. 2.设表示的小数部分,则的值是() A.B.C.0 D. 3.函数的值域是() A.B.[0,1] C.[0,D.{0} 4.设函数的取值范围为() A.(-1,1)B.(-1,+∞)C.D. 5.已知函数,其反函数为,则是() A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增 6.计算= .

7.若2.5x=1000,0.25y=1000,求. 8.函数f(x)的定义域为[0,1],则函数的定义域为. 9.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是. 10.函数图象恒过定点,若存在反函数,则的图象必过定点. 11.若集合{x,xy,lgxy}={0,|x|,y},则log8(x2+y2)的值为多少. 12.(1) 求函数在区间上的最值. (2)已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求m的值; (2)判断f(x) 在上的单调性,并根据定义证明. 14.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称. (1)求函数y=g(x)的解析式及定义域M; (2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数. 参考答案:

必修一数学第二章测试卷答案

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________ 1、已知函数,若函数有四个零点,则实数的取值范围为( ?) A.?????? B.?????? ?? ??? C.?????? ? D. 2、若函数在(,)上既是奇函数又是增函数,则函数 的图象是??????????????????????????????????????? (? ???) 3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ( ??) A.-1?? ??? ??? B.1 ??? ??? ??? ??? C.0 ??? ??? ??? ??? ??? D.20152 4、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( ??) A.?????? B.??????? C.????? D. 5、下图可能是下列哪个函数的图象(???? ) . ?????????. . ?????????.

6、?已知 ,, ,则的大小关系是(??) A .?????? B .?????? C .?????? D . 7、设 ,, ,则的大小关系是 A.??????? B. ?????? C.??????? D. 8、?下列函数中值域为(0,)的是(??? ) A. ????? B. ????? C. ????? D. 9、 已知函数为自然对数的底数) 与的图象上存在关于轴对称的点, 则实数的取值范围是( ??) A .?????? B .??????? C .????? D . 10、? 已知函数,若,则的取值范围是( ???) A .??????? B .?????? C .???????? D . 11 、已知函数 的最小值为(??? ) ??? A.6????????? ? ??? B.8????????????? ? C.9???????????? ?? D.12

苏教版高一数学必修一第二章章末检测

章末检测 一、填空题 1.f (x )=2x +13x -1 的定义域为________. 2.y =2x 2+1的值域为________. 3.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是________. 4.设f (x )=? ?? x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是______. 5.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________. 6.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________. 7.若函数f (x )=x 2+(a +1)x +a x 为奇函数,则实数a =________. 8.若函数f (x )=x 2-mx +m +2是偶函数,则m =______. 9.函数f (x )=x 2+2x -3,x ∈[0,2],那么函数f (x )的值域为________. 10.用min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线 x =-12 对称,则t 的值为________. 11.已知函数f (x )=? ?? x +2, x <1,x 2+ax , x ≥1,当f [f (0)]=4a ,则实数a 的值为________. 12.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+3,则f (-2)的值为________. 13.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________. 14.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是________函数(填“增”或“减”). 二、解答题 15.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数且1满足f (1)=52,f (2)=174 ,求f (x )的解析式.

高中数学必修一对数函数

高中数学必修一对数函数 卷I(选择题) 一、选择题(本题共计 12 小题,每题 5 分,共计60分,) 1. 若对数式log (t?2) 3有意义,则实数t的取值范围是() $ A.[2,?+∞) B.(2,?3)∪(3,?+∞) C.(?∞,?2) D.(2,?+∞) 2. 函数t(t)=log t(t2?tt)(t>0,?t≠1)在[2,?3]为增函数,则t的取值范围是() A.(1,?+∞) B.(0,?1) C.(0,?1)∪(1,?2) D.(1,?2) # 3. 已知2t=3t,则t t =() A.lg2 lg3B.lg3 lg2 C.lg2 3 D.lg3 2 4. 若log t(2t?1)>log t(t?1),则有() A.00 B.01 C.t>1,t>0 D.t>1,t>1— 5. 对数式log t t=t化为指数式为() A.t t=t B.t t=t C.t t=t D.t t=t 6. 已知函数t(t)=log2(t2?2t?3),则使t(t)为减函数的区间是() ] A.(?∞,??1) B.(?1,?0) C.(1,?2) D.(?3,??1) 7. 对数式log (t?2) (5?t)中实数t的取值范围是() A.(?∞,?5) B.(2,?5) C.(2,?3)∪(3,?5) D.(2,+∞)

. 8. 已知函数t(t)=log t?1?tt t?1 (t>0,且t≠1)在其定义域上是奇函数,则t=() A.1?3 2B.?1 C.?2 3 D.?3 2 9. 设t>0,则lg100t?lg t 100 () A.1 B.2 C.3 D.4 ] 10. 三个数0.76,60.7,log0 .7 6的大小关系为( ) A.0.76

最新高一数学必修一第二章知识点总结(1)

〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值 (1)函数的单调性 ①定义及判定方法 函数的 性质 定义图象判定方法 函数的 单调性 如果对于属于定义域I内某 个区间上的任意两个自变量 的值x1、x2,当x.1 . < x ..2.时,都 有f(x ...1.)f(x .....2.).,那么就说 f(x)在这个区间上是减函数 .... y=f(X) y x o x x 2 f(x ) f(x )2 1 1 (1)利用定义 (2)利用已知函数的 单调性 (3)利用函数图象(在 某个区间图 象下降为减) (4)利用复合函数 ②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数. ③对于复合函数[()] y f g x =,令() u g x =,若() y f u =为增,() u g x =为增,则[()] y f g x =为增;若() y f u =为减,() u g x =为减,则[()] y f g x =为增;若() y f u =为增,() u g x =为减,则[()] y f g x =为减;若() y f u =为减 [()] y f g x =为减. (2)打“√”函数()(0) a f x x a x =+>的图象与性质 () f x分别在(,a -∞、,) a+∞上为增函数,分别在[,a 减函数. (3)最大(小)值定义 ①一般地,设函数() y f x =的定义域为I,如果存在实数M满足:( 对于任意的x I ∈,都有() f x M ≤;

2020新人教A版高中数学必修一第二章基本初等函数Ⅰ章末复习提升

【创新设计】2015-2016学年高中数学第二章基本初等函数(Ⅰ) 章末复习提升新人教A版必修1 1.指数幂、对数式的运算、求值、化简、证明等问题主要依据指数幂、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时函数的单调性及图象特点. 3.应用指数函数y=a x和对数函数y=log a x的图象和性质时,若底数含有字母,要特别注意对底数a>1和0<a<1两种情况的讨论. 4.幂函数与指数函数的主要区别:幂函数的底数为变量,指数函数的指数为变量.因此,当遇到一个有关幂的形式的问题时,就要看变量所在的位置从而决定是用幂函数知识解决,还是用指数函数知识去解决. 5.理解幂函数的概念、图象和性质. 在理解幂函数的概念、图象和性质时,要对幂指数α分两种情况进行讨论,即分α>0和α<0两种情况. 6.比较几个数的大小是幂函数、指数函数、对数函数性质应用的常见题型,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比,分出大于1还是小于1;然后在各

类中两两相比较. 7.求含有指数函数和对数函数复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 8.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图造式、图象变换以及用图象解题.函数图象形象地显示了函数的性质,利用数形结合有时起到事半功倍的效果. 题型一 有关指数、对数的运算问题 指数与指数运算、对数与对数运算是两个重要的知识点,不仅是本章考查的重要题型,也是高考的必考内容. 指数式的运算首先要注意化简顺序,一般负指数先转化成正指数,根式化为指数式;其次若出现分式,则要注意把分子、分母因式分解以达到约分的目的.对数运算首先要注意公式应用过程中范围的变化,前后要等价;其次要熟练地运用对数的三个运算性质,并根据具体问题合理利用对数恒等式和换底公式等.换底公式是对数计算、化简、证明常用的公式,一定要掌握并灵活运用. 例1 (1)化简 a 43-8a 3 1b 4b 3 2 +23 ab +a 3 2÷? ?? ??1-2 3b a ×3 ab ; (2)计算:2log 32-log 3329 +log 38-253 5 log . 解 (1)原式= a 3 1a -8b 2b 3 12 +2a 3 1b 3 1+a 3 12 × a 3 1a 3 1-2b 3 1×a 31b 3 1= a 3 1a -8b a -8b ×a 31×a 31b 3 1 =a 3b . (2)原式=log 34-log 3329 +log 38-53 5 log 2+ =log 3(4×932 ×8)-53 5 log 2+=log 39-9=2-9=-7. 跟踪演练1 (1)求lg 8+lg 125-lg 2-lg 5log 54·log 25 +52 5 log +1643 的值. (2)已知x >1,且x +x -1 =6,求x 2 1-x 2 1- . 解 (1)lg 8+lg 125-lg 2-lg 5log 54·log 25 +52 5log +1643

人教版数学高一-必修一训练 .1对数函数的图象及性质(教师版)

(本栏目内容,在学生用书中以活页形式分册装订!) 一、选择题(每小题5分,共20分) 1.若某对数函数的图象过点(4,2),则该对数函数的解析式为( ) A .y =log 2x B .y =2log 4x C .y =log 2x 或y =2log 4x D .不确定 解析: 由对数函数的概念可设该函数的解析式为y =log a x (a >0,且a ≠1,x >0),则2=log a 4=log a 22=2log a 2,即log a 2=1,a =2.故所求解析式为y =log 2x .故选A. 答案: A 2.已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2 D .3 解析: f (a )=log 2(a +1)=1 ∴a +1=2 ∴a =1.故选B. 答案: B 3.已知函数f (x )=a x (a >0,a ≠1)的反函数为g (x ),且满足g (2)<0,则函数g (x +1)的图象是下图中的( ) 解析: 由y =a x 解得x =log a y , ∴g (x )=log a x . 又∵g (2)<0,∴0

A.????22,2 B .[-1,1] C.????12,2 D.? ???-∞,22∪[2,+∞) 解析: 函数f (x )=2log 12 x 在(0,+∞)为减函数, 则-1≤2log 12 x ≤1, 可得-12≤log 12x ≤12 , 解得22 ≤x ≤ 2.故选A. 答案: A 二、填空题(每小题5分,共10分) 5.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(3,1),则a =________. 解析: 函数f (x )的反函数为y =log a x ,由题意,log a 3=1, ∴a =3. 答案: 3 6.设g (x )=????? e x (x ≤0)ln x (x >0),则g ????g ????12=________. 解析: g ????12=ln 12 <0, g ????ln 12=eln 12=12 , ∴g ????g ????12=12 . 答案: 12 三、解答题(每小题10分,共20分) 7.求下列函数的定义域: (1)f (x )=log 2(9-x 2); (2)f (x )=log (5-x )(2x -3); (3)f (x )=2x +3x -1 log 2(3x -1). 解析: (1)由对数真数大于零,得9-x 2>0,即-3<x <3,∴所求定义域为{x |-3<x <3}.

高中数学必修一第二章公式全总结

指数运算公式 一、根式 1、 () ()02 ≥=a a a 2、???????<-=>==0 ,0,00,2 a a a a a a a 3、 () ()0≥=a n a a n n 为偶数时要求当 4、???? ?=为偶数 为奇数 n a n a a n n ,,二、指数幂 1、()010 ≠=a a 2、() a a a a a n n 101 1 =≠=--特别: 3、n n a a =1 4、n m n m a a = 5、n m n m n m a a a 1 1= = - 6、n m n m a a a +=? 7、n m n m a a a -=÷ 8、() n m n m a a = 9、()n n n b a b a ?=?注:① 0的0次幂没有意义,0没有负指数幂. ②负数没有偶次方根.(即负数不能开偶次方) 对数运算公式 对数的底数大于0且不等于1,真数大于0 1、指对互换: ()10log ≠>=?=a a y x a y a x 且 2、01log =a 3、1log =a a 4、()对数恒等式N a N a =log 5、()N M N M a a a log log log +=? 6、N M N M a a a log log log -= 7、b m n b a n a m log log = 公式7是如下两个公式的结合: () ()b m b b n b a a a n a m l o g 1l o g 2l o g l o g 1== 8、换底公式:

a b b c c a l o g l o g l o g = 换底公式的常用变形: ()() 1 l o g l o g 2l o g 1 l o g 1=?= a b a b b a b a 常用的代数恒等式 1、平方差公式:()()b a b a b a -+=-22 2、完全平方公式:()()?????+-=-++=+2 222 2222b ab a b a b ab a b a 3、十字相乘法公式(不用背,要求会方法): ()()()ab x b a x b x a x +++=++2 4、立方和(差)公式: ()( )()() ?????++-=-+-+=+2 2332 233b ab a b a b a b ab a b a b a 5、完全立方公式: ()()?????-+-=-+++=+3 22333 22333333b ab b a a b a b ab b a a b a 6、三元完全平方公式: ()ca bc ab c b a c b a 2222 222 +++++=++

必修一对数函数

对数函数 典例分析 题型一 对数函数的基本性质 【例1】 下面结论中,不正确的是 A.若a >1,则x y a =与log a y x =在定义域内均为增函数 B.函数3x y =与3log y x =图象关于直线y x =对称 C.2log a y x =与2log a y x =表示同一函数 D.若01,01a m n <<<<<,则一定有log log 0a a m n >> 【例2】 图中的曲线是log a y x =的图象,已知a 的值为2, 43,310,1 5 ,则相应曲线1234,,,C C C C 的a 依次为( ). A. 2, 43,15,310 B. 2,43,310,1 5 C. 15,310,43,2 D. 43,2,310,1 5 【例3】 当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ). A B C D 【例4】 设1a >,函数()log a f x x =在区间[]2a a , 上的最大值与最小值之差为1 2 ,则a =( ). A.2 B. 2 C. 22 D. 4 0 x C 1 C 2 C 4 C 3 1 y x y 1 1 o x y o 1 1 o y x 1 1 o y x 1 1

【例5】 若23 log 1a <,则a 的取值范围是 A.2 03a << B.23 a > C.2 13 a << D.2 03 a << 或a >1 【例6】 比较两个对数值的大小:ln7 ln12 ; 0.5log 0.7 0.5log 0.8. 【例7】 若log 9log 90m n <<,那么,m n 满足的条件是( ). A. 1m n >> B. 1n m >> C. 01n m <<< D. 01m n <<< 【例8】 已知1112 2 2 log log log b a c <<,则() A.222b a c >> B.222a b c >> C.222c b a >> D.222c a b >> 【例9】 下列各式错误的是( ). A. 0.80.733> B. 0.10.10.750.75-< C. 0..50..5log 0.4log 0.6> D. lg1.6lg1.4>. 【例10】 下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<< 【例11】 a 、b 、c 是图中三个对数函数的底数,它们的大小关系是 A.c >a >b B.c >b >a C.a >b >c D.b >a >c 【例12】 指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有 何关系?

高中数学必修一第二章测试题正式

秀全中学2012——2013学年第一学期高一数学 第二章单元检测(满分120分) 一、选择题(本大题共10小题,每小题4分,共40分。在每小题只有一项是符合要求的) 1.函数32+=-x a y (a >0且a ≠1)的图象必经过点 (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2.函数lg y x = A.是偶函数,在区间(,0)-∞ 上单调递增 B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增 D .是奇函数,在区间(0,)+∞上单调递减 3.三个数6 0.70.70.76log 6, ,的大小关系为 A . 60.70.70.7log 66<< B . 60.7 0.7log 60.76<< C .0.7 60.7log 660.7<< D . 60.70.70.76log 6<< 4.函数12 log (32)y x = - A .[1,)+∞ B .2(,)3+∞ C .2(,1]3 D .2[,1]3 5、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是 (A )y =(0.9576) 100 x (B )y =(0.9576)100x (C )y =( )x (D )y =1-(0.0424) 100 x 6、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a = (A ) (B ) 2 (C ) 3 (D ) 7、下列函数中,在区间(0,2)上不是增函数的是 (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22= 8、函数 与 ( )在同一坐标系中的图像只可能是 1009576.02131x a y =x y a log -=1,0≠>a a 且

人教版高中数学必修一《对数函数》课时教学案

对数函数 一.教学目标: 1.知识与技能 ①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能. ②运用对数运算性质解决有关问题. ③培养学生分析、综合解决问题的能力. 培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法 ①让学生经历并推理出对数的运算性质. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观 让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 二.教学重点、难点 重点:对数运算的性质与对数知识的应用 难点:正确使用对数的运算性质 三.学法和教学用具 学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标. 教学用具:投影仪 四.教学过程 1.设置情境 复习:对数的定义及对数恒等式 log b a N b a N =?= (a >0,且a ≠1,N >0), 指数的运算性质. ;m n m n m n m n a a a a a a +-?=÷= (); n m n mn m a a a == 2.讲授新课 探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a +?=,那m n +如何表示,能用对数式运算吗? 如:,,m n m n m n a a a M a N a +?===设。于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =?==?= log m n a MN a m n MN +=?+= log log log ()a a a M N MN ∴+=放出投影

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

人教版高中数学必修一《对数函数及其性质》教案设计

2.2.2 对数函数及其性质 一、教材分析 本节是高中数学新人教版必修1的第二章2.2.2 对数函数及其性质的内容二、三维目标 1.知识与技能 (1)掌握对数函数的概念。 (2)根据函数图象探索并理解对数函数的性质。 2.过程与方法 (1)通过对对数函数的学习,渗透数形结合的思想。 (2)能够用类比的观点看问题,体会知识间的有机联系、 3.情感、态度与价值观 (1)培养学生观察、分析能力,从特殊到一般的归纳能力。 (2)培养学生的合作交流、共同探究的良好品质。 三、教学重点 对数函数的定义、图象和性质 四、教学难点 用数形结合的办法探索并归纳对数函数的性质。 五、教学策略 回顾引入教学法 1.复习引入: (1)指对数互化关系: ? ≠ > =)1 ,0 (a a N a b且 (2) )1 (≠ > =a a a y x且的图象和性质. (3)细胞分裂问题。 2.研习新课 对数函数的概念: 概念中我们要注意什么问题? 六、教学准备 回顾交流,适时引入新课

(教师提出问题)①本章开头2.1问题1中,在2001-2020年,各年的GDP均为00年的倍数,倍数m与时间n的关系式为m=1.073n;②某种细胞分裂过程中,细胞个数a与分裂次数b的关系式为为a=2b。 师:上述关系式都是什么类型的式子? 生:都是指数式。 师:你能把它改写成对数式吗? 生:可以改写成:n=log1.073m a=log2b 师:请大家观察这两个式子有何共同特征? (生合作交流,共同探究,师参与交流探究过程) 生甲:n是m的函数,a是b的函数。 生乙:这是对数式,m与b都是真数,它们应为正数。 师:同学们说的都很好,这里任意给定一个m,有唯一的n与它对应,任意给定一个b,有唯一的a与它对应,所以n是m的函数,a是b的函数。 师:通常表达一个函数,x表示自变量,y表示自变量,你能用含有x、y的解析式表示它们吗? 生:y=log1.073x,y=log2x 师:能用一个共同的解析式表达吗? 部分生(齐答):y=log a x 部分生(抢答):底数a>0且a≠1 师:非常好,这是就是我们本节课所要研究的对数函数。 (引入新课,师板书课题:对数函数) 七、教学环节 一、复习导入: (1)知识方法准备 我们在前面学习了指数函数及其性质,那么指数函数具有哪些性质呢?下面我和同学们

高中数学必修一第二章测试题

高中数学必修一第二章测试题 一、选择题: 1.已知p >q >1,0 B .a a q p > C .q p a a --> D .a a q p --> 2、已知(10)x f x =,则(5)f = ( D ) A 、5 10 B 、10 5 C 、lg10 D 、lg 5 3.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是 ( A ) A . 1221≠≤≤a a 且 B .02121≤<≤> B 、213y y y >> C 、132y y y >> D 、123y y y >> 8.设f (x )=a x ,g (x )=x 3 1,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有 ( B ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .f(x )<g (x )<h (x ) D .f (x )<h (x )<g (x ) 9、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( A ) A 、减少7.84% B 、增加7.84% C 、减少9.5% D 、不增不减 10. 对于幂函数5 4 )(x x f =,若210x x <<,则)2( 21x x f +,2) ()(21x f x f +大小关系是( A ) A .)2( 21x x f +>2 ) ()(21x f x f + B . )2(21x x f +<2 ) ()(21x f x f +

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11-≠ (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y=N(1+p )指数型函数: y=k a3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a— 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数

高一数学对数以及对数函数人教版

高一数学对数以及对数函数人教版 【同步教育信息】 一. 本周教学内容: 对数以及对数函数 二. 学习目标: 1. 理解对数的概念,了解对数运算与指数运算的互逆关系。 2. 能正确利用对数性质进行对数运算。 3. 掌握对数函数的图象性质。 4. 理解指数函数与对数函数的互逆关系。 三. 重点、难点: 1. 对数 (1)对数恒等式 ① b a b a =log (10≠,N 0>,则 ① N M MN a a a log log )(log += ② N M N M a a a log log log -= [例

(1)5lg 2lg 100lg 5lg 20lg 50lg 2lg -+ (2)4log ]18log 2log )3log 1[(6662 6÷?+- 解: (1)原式)2lg 1(2lg 2)2lg 1)(2lg 1()2lg 2(2lg ---++-= 1)2(lg 22lg 2)2(lg 1)2(lg 2lg 22 22=+--+-= (2)原式4log )]3log 1)(3log 1()3(log 3log 21[6662 66÷+-++-= 4log ])3(log 1)3(log 3log 21[62 6266÷-++-= 12 log 2 log 2log )3log 1(2662 66== ÷-= [例2] 已知正实数x 、y 、z 满足z y x 643==,试比较x 3、y 4、z 6的大小。 解:设t z y x ===643(1>t ),则t x 3log =,t y 4log =,t z 6log =,从而 4lg lg 43lg lg 3log 4log 34343t t t t y x -=-=-4 lg 3lg 3 lg 44lg 3lg ?-=t 0)3lg 4(lg 4 lg 3lg lg 43<-?= t 故y x 43< 又由6lg 4lg ) 4lg 36lg 2(lg 2)6lg lg 34lg lg 2(2)log 3log 2(26464?-=-=-=-t t t t t z y 6 lg 4lg ) 4lg 6(lg lg 232?-=t 而0lg >t ,04lg >,06lg >,3 2 4lg 6lg <,则上式0< 故z y 64<,综上z y x 643<< [例3] 已知m 和n 都是不等于1的正数,并且5log 5log n m >,试确定m 和n 的大小关系。 解:由n m n m 55log 1 log 15log 5log > ? >0log log log log 5555>?-?n m m n ???>?>-?0log log 0log log 5555n m m n 或???>>?1,1n m m n 或???<<<<<1 0,10n m m n 综上可得1>>m n 或10<<-+≥-0)32lg(03204222x x x x x ? ????±-≠>-<≥-≤?511322x x x x x 或或 则所求定义域为(∞-,51--)?(51--,3-)?),2[∞+ [例5](1)若函数)1lg(2 ++=ax ax y 的定义域为实数集R ,求实数a 的取值范围;(2)若函数)1lg(2 ++=ax ax y 的值域是实数集R ,求实数a 的取值范围。 解:

相关文档
最新文档