常见递推数列通项公式的求法典型例题及习题(可编辑修改word版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见递推数列通项公式的求法典型例题及习题【典型例题】
[例1] a
n+1
=ka
n
+b 型。
(1)k = 1 时,a n+1 -a n =b ⇒ {a n }是等差数列,a n =b ⋅n + (a1 -b) (2)k ≠ 1 时,设a n+1 +m =k (a n +m) ∴a n+1 =ka n +km -m
比较系数: km -m =b
m =
b ∴k -1
{a
n ∴+
b
}
k -1 是等比数列,公比为k ,首项为
a
1
+
b
k - 1
a n +
∴
b
k -1
= (a
1
+
b
k -1
) ⋅k n-1 a
n
= (a
1
+
∴
b
k -1
) ⋅k n-1-
b
k - 1
[例2] a
n+1
=ka
n
+f (n) 型。
(1)k = 1 时, a n+1 -a n = f (n) ,若f (n) 可求和,则可用累加消项的方法。
例:已知{a
n
}满足a
1
= 1 ,
a
n+1
-a
n
=
1
n(n +1) 求{a n}的通项公式。
解:
a
n+1 ∵-a
n
=
1
n(n +1)
=
1
-
n
1
n + 1
a n -a
∴n-1 =
1
-
1
n -1n
a
n-1 -
a
n-2
=
1
-
n - 2
1
n - 1
a
n-2 -a
n-3
=
1
-
n - 3
1
n - 2 ……
a -a =1 -1 a -a = 1 -1
3 2 2 3 2 1 2
a -a = 1 -1
a = 2 -
1
对这(n -1)个式子求和得:n 1n ∴n n
⎨ (2)
k ≠ 1 时,当 f (n ) = an + b 则可设 a n +1 + A (n + 1) + B = k (a n + An + B ) ∴ a n +1 = ka n + (k - 1) An + (k - 1)B - A
⎧(k -1) A = a ∴ ⎩(k -1)B - A = b
A =
解得:
a
B = k - 1 , b + k - 1 a
(k - 1)2
∴ {a n + An + B } 是以 a 1 + A + B 为首项, k 为公比的等比数列
∴ a n + An + B = (a 1 + A + B ) ⋅ k n -1
∴ a n = (a 1 + A + B ) ⋅ k n -1
- An - B
将 A 、B 代入即可
(3) f (n ) = q n
(
q ≠ 0,1) a n +1
= k ⋅ a
n + 1 等式两边同时除以q n +1
得 q n +1
q q n q
C =
a n
令
n
q
n
C n +1 则
= k
C + 1
q n q
∴ {C n }
可归为
a n +1 = ka n
+ b 型
[例 3] a n +1 = f (n ) ⋅ a n 型。
(1) 若 f (n ) 是常数时,可归为等比数列。
(2) 若 f (n ) 可求积,可用累积约项的方法化简求通项。
a 1 例:已知:
=
1
a 3 , n = 2n - 1 a 2n + 1
n -1 (
n ≥ 2 )求数列{a n }的通项。
a n ⋅ a n -1 ⋅ a n -2 a 3 ⋅ a 2 = 2n - 1 ⋅ 2n - 3 ⋅ 2n - 5 5 ⋅ 3 = 3
解: a n -1
a a n -2
= a a n -3 ⋅ 3 a 2 a 1
= 1 2n + 1 2n - 1 2n - 3 7 5 2n + 1 ∴ n 1
2n + 1 2n + 1
[例 4]
a n = k ⋅
m ⋅ a n -1
m + a n -1 型。
a n n
n
1
= k ( 1 + 1 ) 1
= k ⋅ 1 + k
考虑函数倒数关系有
a n a n -1 m ∴ a n
a n -1 m
C = 1
n
令
n 练习:
则{C n } 可归为 a n +1 = ka n + b 型。
1. 已知{a n }满足 a 1 = 3 , a n +1 = 2a n + 1求通项公式。 解:
设 a n +1 + m = 2(a n + m )
a n +1 = 2a n + m
∴ m = 1
∴ {a n +1 + 1}是以 4 为首项,2 为公比为等比数列
∴ a
+ 1 = 4 ⋅ 2n -1
∴ a = 2n +1
- 1
2. 已知{a n }的首项 a 1 = 1 , a n +1 = a n + 2n (
n ∈ N *
)求通项公式。 解:
a n - a n -1 = 2(n - 1)
a n -1 - a n -2 = 2(n - 2) a n -2 - a n -3 = 2(n - 3) …… a 3 - a 2 = 2 ⨯ 2
+ a 2 - a 1 = 2 ⨯1
a n - a 1 = 2[1 + 2 + + (n - 1)] = n - n 2
∴ a = n 2 - n - 1 a
=
n
a
3. 已知{a n }中,
n +1
n + 2 n 且 a 1 = 2 求数列通项公式。
解:
a n ⋅ a n -1 ⋅ a n -2 a 3 ⋅ a 2
= n - 1 ⋅ n - 2 ⋅ n - 3 ⋅ n - 4 2 ⋅ 1 =
2 a n -1 a n -2 a n -
3 a 2 a 1 n + 1 n n - 1 n - 2
4 3 n (n + 1)