常见递推数列通项公式的求法典型例题及习题(可编辑修改word版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见递推数列通项公式的求法典型例题及习题【典型例题】

[例1] a

n+1

=ka

n

+b 型。

(1)k = 1 时,a n+1 -a n =b ⇒ {a n }是等差数列,a n =b ⋅n + (a1 -b) (2)k ≠ 1 时,设a n+1 +m =k (a n +m) ∴a n+1 =ka n +km -m

比较系数: km -m =b

m =

b ∴k -1

{a

n ∴+

b

}

k -1 是等比数列,公比为k ,首项为

a

1

+

b

k - 1

a n +

b

k -1

= (a

1

+

b

k -1

) ⋅k n-1 a

n

= (a

1

+

b

k -1

) ⋅k n-1-

b

k - 1

[例2] a

n+1

=ka

n

+f (n) 型。

(1)k = 1 时, a n+1 -a n = f (n) ,若f (n) 可求和,则可用累加消项的方法。

例:已知{a

n

}满足a

1

= 1 ,

a

n+1

-a

n

=

1

n(n +1) 求{a n}的通项公式。

解:

a

n+1 ∵-a

n

=

1

n(n +1)

=

1

-

n

1

n + 1

a n -a

∴n-1 =

1

-

1

n -1n

a

n-1 -

a

n-2

=

1

-

n - 2

1

n - 1

a

n-2 -a

n-3

=

1

-

n - 3

1

n - 2 ……

a -a =1 -1 a -a = 1 -1

3 2 2 3 2 1 2

a -a = 1 -1

a = 2 -

1

对这(n -1)个式子求和得:n 1n ∴n n

⎨ (2)

k ≠ 1 时,当 f (n ) = an + b 则可设 a n +1 + A (n + 1) + B = k (a n + An + B ) ∴ a n +1 = ka n + (k - 1) An + (k - 1)B - A

⎧(k -1) A = a ∴ ⎩(k -1)B - A = b

A =

解得:

a

B = k - 1 , b + k - 1 a

(k - 1)2

∴ {a n + An + B } 是以 a 1 + A + B 为首项, k 为公比的等比数列

∴ a n + An + B = (a 1 + A + B ) ⋅ k n -1

∴ a n = (a 1 + A + B ) ⋅ k n -1

- An - B

将 A 、B 代入即可

(3) f (n ) = q n

q ≠ 0,1) a n +1

= k ⋅ a

n + 1 等式两边同时除以q n +1

得 q n +1

q q n q

C =

a n

n

q

n

C n +1 则

= k

C + 1

q n q

∴ {C n }

可归为

a n +1 = ka n

+ b 型

[例 3] a n +1 = f (n ) ⋅ a n 型。

(1) 若 f (n ) 是常数时,可归为等比数列。

(2) 若 f (n ) 可求积,可用累积约项的方法化简求通项。

a 1 例:已知:

=

1

a 3 , n = 2n - 1 a 2n + 1

n -1 (

n ≥ 2 )求数列{a n }的通项。

a n ⋅ a n -1 ⋅ a n -2 a 3 ⋅ a 2 = 2n - 1 ⋅ 2n - 3 ⋅ 2n - 5 5 ⋅ 3 = 3

解: a n -1

a a n -2

= a a n -3 ⋅ 3 a 2 a 1

= 1 2n + 1 2n - 1 2n - 3 7 5 2n + 1 ∴ n 1

2n + 1 2n + 1

[例 4]

a n = k ⋅

m ⋅ a n -1

m + a n -1 型。

a n n

n

1

= k ( 1 + 1 ) 1

= k ⋅ 1 + k

考虑函数倒数关系有

a n a n -1 m ∴ a n

a n -1 m

C = 1

n

n 练习:

则{C n } 可归为 a n +1 = ka n + b 型。

1. 已知{a n }满足 a 1 = 3 , a n +1 = 2a n + 1求通项公式。 解:

设 a n +1 + m = 2(a n + m )

a n +1 = 2a n + m

∴ m = 1

∴ {a n +1 + 1}是以 4 为首项,2 为公比为等比数列

∴ a

+ 1 = 4 ⋅ 2n -1

∴ a = 2n +1

- 1

2. 已知{a n }的首项 a 1 = 1 , a n +1 = a n + 2n (

n ∈ N *

)求通项公式。 解:

a n - a n -1 = 2(n - 1)

a n -1 - a n -2 = 2(n - 2) a n -2 - a n -3 = 2(n - 3) …… a 3 - a 2 = 2 ⨯ 2

+ a 2 - a 1 = 2 ⨯1

a n - a 1 = 2[1 + 2 + + (n - 1)] = n - n 2

∴ a = n 2 - n - 1 a

=

n

a

3. 已知{a n }中,

n +1

n + 2 n 且 a 1 = 2 求数列通项公式。

解:

a n ⋅ a n -1 ⋅ a n -2 a 3 ⋅ a 2

= n - 1 ⋅ n - 2 ⋅ n - 3 ⋅ n - 4 2 ⋅ 1 =

2 a n -1 a n -2 a n -

3 a 2 a 1 n + 1 n n - 1 n - 2

4 3 n (n + 1)

相关文档
最新文档