第五章频率特性分析法54
自动控制原理 第五章 频率特性法
A() R2 () I 2 ()
() arctan I ( ) R( )
R() A()cos()
I () A()sin()
2023年12月29日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
N(s)
D(s) (s + p1 )(s + p2 )...(s + pn )
为简化分析,假定系统的特征根全为不相等的负实根。
输入信号为 r(t)=Rsinωt
输出信号的拉氏变换为:
N(s)
Rω
C(s) =
(s + p1 )(s + p2 )...(s + pn ) (s + jω)(s - jω)
1.在某一特定频率下,系统输入输出的幅值比与相位差是确定 的数值,不是频率特性。当输入信号的频率ω在0→∞的范围内 连续变化时,则系统输出与输入信号的幅值比与相位差随输入 频率的变化规律将反映系统的性能,才是频率特性 。
2.频率特性反映系统本身性能,取决于系统结构、参数,与外 界因素无关。
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
频域内全面描述系统的性能。只与系统的结构、参数有关,是线性 定常系统的固有特性。
2023年12月29日
A(ω)反映幅值比随频率而变化的规律,称为幅频 特性,它描述在稳态响应不同频率的正弦输入时在幅值上 是放大(A>1)还是衰减(A<1)。
而(ω)反映相位差随频率而变化的规律,称为相
第五章频率特性法
教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性
频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2
1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。
第五章 频率特性分析法
由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
频率特性分析方法
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
第五章 频率特性法(5.4)——稳定裕度
5.4 用频率特性法分析系统稳定性 ——稳定裕量
幅相曲线和对数曲线相对于临界点 的位置即偏离临界点的程度,反映系统 的相对稳定性,即稳定裕量。
一、相位裕量 二、幅值裕量
临界稳定的概念
最小相位系统当G(jω)过(-1,j0)点时(见图),
闭环系统临界稳定。 G(jω) = -1
1+G(jω) = 0 s=jω
稳定裕量的定义 Kg G(jωg) =1
G( jc )-
= –180o G(jωg) -1 ωg
幅值裕量 Kg=
1
G(jωg)
G(jω)
∠G(jωc)
K g dB 20 lg G ( j g )
相位裕量 =180o +∠G(jωc)
0dB
幅值裕量: KgdB=-20lg G ( j g ) c
40 20 0 -20dB/dec 6.32 4 -40dB/dec 10
10 ≈1 0.25ωc2
ω
ωc=6.32
-20
-60dB/dec
(c ) 180
=180o-90o-tg-10.25×6.23 - tg-10.1×6.23
()
0 -90 -180
γ
ω
=90o-57.67o -32.3o = 0.03o
1 3
解:
10
由上式可见G(jω)与坐标轴无交点。 40 0.5 2<ω<10 2.5s ∵G(j∞)=0∠-1800, ∴h=∞
例2 试绘制图示系统开环的伯德图,并确 定系统的相位稳定裕量γ 。
θ r(s)
–
10 s(0.25s+1)(0.1s+1)
θ c(s)
第五章 频率法
2
2 G ( j ) arctan 2 2 1
二阶微分的极坐标图
二阶微分的Bode标图
7.时滞环节(延迟环节)
G( s) e
r (t )
s
s
G( j ) e
j
r(t)
y (t )
t
0 y(t) t 0
e
时滞环节极坐标图
| G( j ) || e j | 1
0°
8.非最小相位环节
1 G( s) Ts 1 1 G( j ) jT 1
பைடு நூலகம்
1 一个正实数极点 T
| G ( j ) |
1
2T 2 1
G ( j ) 180 arctan T
U( )=
1 T 1
2 2
T V( )= 2 2 T 1
-0.5
非最小相位环节Bode图
1 G( s) s 1
相角裕度
G( j ) H ( j )与单位圆相交的角频率计为c 剪切频率
| G( jc ) H ( jc ) | 1
Im
-1
0
1 Re
0
c
G( jc ) H ( jc ) 180
G( j ) H ( j )
2T 1 180 arctan 2 2 , 1 2T 2 0 T 1 T
低频与高频渐进对数幅频特性
低频段 1 T , T 1
20 lg (1 2T 2 ) 2 (2T ) 2 20 lg1 0dB 0dB的水平线
高频段 1 T , T 1
G( j ) H ( j )
1 幅值裕度 K g | G ( j g ) H ( j g ) |
自动控制原理第5章_线性控制系统的频率特性分析法
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
第五章 频率特性法
幅频特性 A(ω) =
r(t )
[ ]
E(s) 输出幅值与输入幅值之比 相频特性 φ (ω) = 幅频? Φ (s) = , 当系统稳定时 ② er R(s)
rt () t ) j (j ) 若 r ( 称为频率特性 Φ(jω) = ( j) e 若系统稳定 , 则c ss (t ) [ 则e ss (t ) [ r(t )
si t lim e 0 系统稳定 t A1 A2 Cs ( s) s j s j
A A ( j) A1 ( s ) ( s j) j2 ( s j)( s j) s j
A A A2 ( s ) ( s j) ( j) ( s j)( s j) j2 s j
倒置的坐标系
( 补充 )
该坐标纸拿反啦!!
频率特性物理意义
C (s) 1 闭环 (s) R ( s ) Ts 1 传函
s j
T RC
频率特性 幅频特性 A() ( j)
1
1 ( j) jT 1
1 T 2 2
相频特性 () ( j) arctan T
改变输入信号的频率, A ( ) 1 , ( ) 0 0 得到一组幅频特性和相 1 1 A() , () 45 T 频特性的数据,绘出曲 2 A() 0, () 90 线——频率特性曲线
频率特性
1 ( j) jT 1
设系统传递函数为
s1 , s2 sn U (s) (s) 特征方程的根 ( s s1 )( s s2 ) ( s sn ) U (s) A C (s) 2 ( s s1 )( s s2 ) ( s sn ) s 2 U (s) A ( s s1 )( s s2 ) ( s sn ) ( s j)( s j)
第五章 频率特性法(5.4)——稳定判据
0dB
180o
1 z=1- 2 ) =2 不稳定 ( 2
270
对数判据例题2
最小相位系统开环对数相频特性曲线
()
180o90o0ຫໍສະໝຸດ oc 12
90
o
180o
c 1或 c 2时
系统稳定
270o
360o
试确定系统闭环稳定时截止频率ωc的范围。
一、奈氏稳定判据
闭环特征根在s右半平面的个数
z=
_2N p
开环极点在s右半平面的个数
开环幅相曲线穿越-1之左实轴的次数
-1
自上向下为正穿越,用N+表示;
G( j) H ( j)
-1
自下向上为负穿越,用N-表示;
G( j) H ( j)
N=N+-N-
Z 闭环特征根在右半s平面上的极点数:
5 o G( j ) 2 0 180 s
5 - 2a
2
-1
0
P=1 a<2.5时
1 5(1 ) Z 1 2(1 ) 0 G( j) 2 2 2 j[ j(2 a ) (a )]
系统稳定!
奈氏判据
对数频率稳定判据
对数频率稳定判据和奈氏判据本质相同,其区别仅在
对数判据例题3
最小相位系统开环对数相频特性曲线
()
360o
180o
0o
1
c
c 1时 系统稳定
经验:只要N为 负,不管P为几, 系统都不可能 稳定!
180o
360o
540o
试确定系统闭环稳定时截止频率ωc的范围。
自动控制原理第5章
8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。
第五章线性系统的频率分析法
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
第五章 频率法
幅频特性为
相频特性为
可得极值点 r n 1 2 2
当0.707<ζ<1时,A(ω)从1单调增至∞;
当0<ζ<0.707时,A(ω)在ωr处有最小值 Ar 2 1,然2 后 单调增至∞。
Im
2
Ar
Re
O
1
5.2.8 延迟环节
(s
sn
)
R s2
2
A1
A2
n
Bi
s j s j i1 s si
用留数法计算系数
A1
lim (s s j
j)G(s) R s2 2
R G(j) R
2j
2j
G( j)
e jG( j)
A2
lim (s
s j
惯性环节的传递函数为 频率特性为 幅频特性为
相频特性为
Im
ω→∞
ω=0 O
Re
1
L / dB
0 0.1/T
20
0° 0.1/T
-90°
精确曲线
3.01dB
1/T
10/T
20dB/dec
1/T
10/T
一阶惯性环节的对数幅频特性曲线通常用两端直 线渐近线来近似,在转折频率以前与0dB线重合,在 转折频率以后是斜率为-20dB/dec的直线。
sC
3
ur (t) Rsint
当初始条件为0时,输出电压的拉氏变换为
Uc
(s)
1 Ts
1Ur
(s)
1 Ts
第5章 频率特性分析法
( ) : 0 900
3. 积分环节
1 G( s) s 1 G ( j ) j
A( )
1
( ) 90o
Im
Re
0
4. 振荡环节 n2 G( s) 2 2 s 2n s n
2 n G ( j ) 2 2 ( j ) 2n ( j ) n 1 ( ) 2 j 2 n n = 22 2 2 [1 ( ) ] 4 ( ) n n
Im
G ( s ) 1
A( ) 1 2 2 P( ) 1 ( ) arctan ,Q ( )
1 0
0
Re
6. 延迟环节
G ( s) e
s
G ( j ) e
j
1* e
j
A( ) 1 常数, 单位圆 ( ) 0, 0 Im
二、对数频率特性曲线
对数幅频特性曲线 20 lg A( )
伯德(Bode)曲线,Bode图
对数相频特性曲线
( )
半对数坐标:横坐标是对数刻度,纵坐标是均匀 刻度。
1
10
100
1000
横坐标采用对数分度,但标出的是 的实际值。
L( ) 20 lg A( ) 对数幅值,单位为分贝(dB)
因此,
G j频率特性 Gs s j 传函
K 例5-1 已知系统的传递函数为, 求频 G( s) Ts 1 率特性
解:令s=jω得系统的频率特性
K K G ( j ) e jarctg T 1 jT 1 (T ) 2
或
K K KT G( j ) j 2 2 1 jT 1 T 1 2T 2
第五章频率特性分析法
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-4
渐近线
5.4 系统开环频率特性绘制
相频特性表达式为
ω
φ(ω)/° -40
-80 -120 -160 -200 -240
arctan 0.25 arctan
5.4 系统开环频率特性绘制
对渐近线进行误差修正 在振荡环节转折处,ζ=0.4/(2*0.5)=0.4, 修正值+6dB; 在惯性环节转折处,修正值-3dB。
40
L(ω)/dB
精确曲线
20dB 1
+6dB
20
0 -20 -40
-40dB/dec ω1=2 ω2=4
振荡
-3dB
10
惯性
ω /s-1
-60dB/dec
1 2 3
5.4 系统开环频率特性绘制
一、极坐标图 方法一: 根据不同的ω值,计算出相应的P(ω)和Q(ω)或A(ω) 和φ (ω) ,并在直角坐标平面上描出相应的点,然 后用光滑线段连接各点。 方法二:利用典型环节的频率特性,步骤为 (1)分别计算出各典型环节的幅频特性和相频特性; (2)各典型环节的幅频特性相乘得到系统的幅频特性, 各典型环节的相频特性相加得到系统的相频特性。 (3)给出不同的ω值,计算出相应的A(ω)和φ (ω),描点 连线。
5.4 系统开环频率特性绘制
起点 G(0) 15 j 零虚频特性为0,解得 1 / 2 将此代入实频特性,求 得与实轴交点为-3.33。
终点
G() 0 j 0
根据幅相频率特性曲线的起 点、与实轴交点及终点,幅 相频率特性曲线如图所示。
5.4 系统开环频率特性绘制
10 例 设系统的频率特性为 Gk ( j ) j ( j 0.2 1)( j 0.05 1)
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
自动控制原理第五章--频率法
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目的
掌握利用频率特性分析系统的方法
内容
系统的频率特性 典型环节的频率特性 频率特性作图 频率特性分析
§5.7 利用开环频率特性分析系统的性能
L() 低频渐近线与系统稳态误差的关系 L() 中频段斜率与系统稳定性关系 开环频域指标与动态性能指标间的关系 L() 高频段反映系统抗干扰能力
闭环频率特性
低频段
闭环频率特性曲线低频段LL() 0 dB, () 0
高频段
闭环频率特性曲线高频段LL(ω)→ L(ω)
() ()
中频段 闭环系统稳定 临界稳定 不稳定
越接近,稳定性变差,会出现谐振峰值
本章小结
控制系统频率分析法的相关概念和原理。 包括频率特性的基本概念和定义 开环频率特性的极坐标图表示法、Bode图表示法 频率特性分析法及其应用 开环频域指标和闭环时域指标的关系 三频段理论 控制系统闭环频率特性
1) % 相同
2) c 越大调节时间 ts 越短
高阶系统
% [0.16 0.4( 1 1)]100 % sin c
(35o c 90 o )
ts
c[2 1.5( 1Fra biblioteksin c
1) 2.5( 1
sin c
1)2 ]100 %
中频段穿越斜率 c 和中频段宽度 h
• 中频段: 0dB线上下约15dB范围内的频率段
二阶系统
G(s)
n2
s(s 2n )
G( j)
n2
j( j 2n )
A()
n2
2 (2 n )2
c 4 4 1 2 2n
() 90o arctan
2 n
c
180o
(c )
180o
90o
arctan
c 2n
arctan
2
1 4 4 2 2
相角裕度 c与超调量 % 的关系
解: (1) 稳态分析
0型系统,有差跟踪 阶跃信号
(2) 动态分析
系统稳定,阶跃响应有振荡
% e 1 2 100%
60 -20 40 20
-20 -40 -60
A
-40
B
10
D
38 40
20
C
100 200
-60
§5.8 利用闭环频率特性分析系统的性能
1.开环频率特性与闭环频率特性的关系
( j) G( j) 1 G( j)
• 高频段
G( j) A() 1
G( j)
( j)
G( j) = 1
1 G( j)
• 高频段的 L() 越低, A() 越小,( j) 越小
• 幅频特性的意义:输出和输入幅值之比 • 噪声是一种高频输入信号 • 高频段的 L() 体现了系统的抗干扰能力
高频衰减率 h : L()在高频段的斜率
开环对数幅频特性的中频段指的是截至频率 c
附近的频段
根据截至频率处的相角是否大于-180°判断闭环 系统的稳定性
稳定性: γc >0 , Lg>0 要求: c 一般不要小于 30
Lg 一般不要小于 6 dB
最小相位系统L()与()的1-1对应性
• 若L()的斜率变得更负,()也往更负的方向
变化
G( j)
i 1 n
j( jTj 1)
j 1
I 型系统的对数幅频特性的低频部分如下图所示
③ II 型系统
II 型系统的开环频率特性有如下形式
m
K( jTi 1)
G( j)
i 1 n
( j)2 ( jTj 1)
j 1
II 型系统的对数幅频特性的低频部分如下图所示
1.由开环频率特性确定系统的稳态性能
60 -20 40 20
-20 -40 -60
A
-40
B
10
D
38 40
20
C
100 200
-60
0型系统的对数幅频特性的低频部分如下图所示
特点:
在低频段,斜率为0dB/ 十倍频; 低频段的幅值为20lgK, 由之可以确定稳态位置误 差系数。
② I 型系统
I 型系统的开环频率特性有如下形式
m
K( jTi 1)
误差系数与稳态误差之间的关系
1(t)
t
1 t2
2
系统 K p ep Kv ev Ka ea
0型
1
1 K 1 K
0
0
型
0
K
1
0
K
型
0
0
K
1 K
低频段斜率确定系统的无差度
积分环节的个数即无差度对应 低频段的斜率
低频段高度确定系统开环放大系数的大小
0型系统
I型系统 II型系统
2.中频斜率与系统稳定性关系
h (n m) 20
表示了系统的抗干扰能力
期望的对数幅频特性
• 稳态性能好:系统型次不能过低,应为I型 或II型,低频斜率为-20 或-40
• 稳定性好、平稳性好:中频斜率不能太负, 理想应为-20;且应具有一定大的中频带宽
• 快速性好:中频截止频率比较大 • 抑制噪声能力:高频的斜率较大
例:已知系统的开环 对数频率特性如图, 试作系统性能分析
本章重点
掌握频率特性的概念与性质 开环频率特性的极坐标图和Bode图的绘制 Nyquist判据、系统稳定裕度的概念和求法 控制系统稳定性和动态性能、稳态性能的频域分析法
• 作业 5-15, 5-16 (频域指标和闭环时域指标)
• 中频段穿越斜率c: c 所在频率段L()的斜率
• 中频段宽度 h: c 所在频段两端转折频率之比
若穿越斜率c=-20 且 h>5 则:
γc >0 且系统动态特性好
若穿越斜率c=-40则:
系统或者不稳定 或稳定(相角裕度小)但平稳性较差
若穿越斜率c=-20 但 h<5 则:
系统动态性能差
L() 高频段对系统性能的影响
c 所在频段的斜率不能太小
幅值裕度
相 角 裕 度
• (c ) 大小除了与该频率下L()的斜率有关之外,
还受到该频率段之外的各转折频率的影响。近者
影响大,远者影响小。
G(s) Ts 1 s
1
10c
T2
T1
1
5c
3.动态性能分析
➢开环频率指标: c,γc >0
➢闭环时域指标: % , ts
定性:γc 越大, % 越小 定量:二阶系统
% e 1 2 100%
(s)
G(s) 1 G(s)
s2
n2 2ns
n2
开环截止频率ωc与调节时间ts的关系
定性:ωc越大,ts越小 定量:二阶系统
c 4 4 1 2 2n
tsc
3
4 4 1 2 2
tsc
6
tan c
若两系统相角裕度相同,则