解析几何(2020高考)
2020版新高考复习理科数学教学案:解析几何含答案 (2)

A1(-a,0).A2(a,0)
A1(0.-a).A2(0.a)
轴
实轴:线段A1A2.虚轴:B1B2
焦距
|F1F2|=2c
离心率
e= .e∈(1.+∞)
a.b.c的关系
c2=a2+b2
渐近线
y=± x
y=± x
三、离心率e的作用
(1)椭圆:e越大.图形越扁.
(2)双曲线:e越大.开口越小.
四、常见结论
答案:B
7.[20xx·江苏卷]在平面直角坐标系xOy中.P是曲线y=x+ (x>0)上的一个动点.则点P到直线x+y=0的距离的最小值是________.
解析:通解:设P .x>0.则点P到直线x+y=0的距离d= = ≥ =4.当且仅当2x= .即x= 时取等号.故点P到直线x+y=0的距离的最小值是4.
(2)符号语言:||MF1|-|MF2||=2a(2a<|F1F2|).
(3)当|MF1|-|MF2|=2a时.曲线仅表示焦点F2所对应的双曲线的一支;当|MF1|-|MF2|=-2a时.曲线仅表示焦点F1所对应的双曲线的一支;当2a=|F1F2|时.轨迹为分别以F1.F2为端点的两条射线;当2a>|F1F2|时.动点轨迹不存在.
(2)弦长公式:l=2a=2 .
3.切线长公式
圆的方程为f(x.y)=x2+y2+Dx+Ey+F=0.或f(x.y)=(x-a)2+(y-b)2-R2=0.圆外有一点P(x0.y0).由点P向圆引的切线的长为l= .
■自测自评——————————————
1.设a.b.c分别是△ABC中角A.B.C所对的边.则直线sinA·x+ay-c=0与bx-sinB·y+sinC=0的位置关系是( )
2020年全国高考数学一卷(理)20题解法赏析

2020年全国高考数学一卷(理)20题解法赏析陈志年(安徽省合肥市肥西中学㊀231200)摘㊀要:本文给出2020年全国高考数学一卷(理)20题的多种解法及评析.关键词:解析几何ꎻ直线过定点ꎻ引进参数ꎻ参数的去留.中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)31-0038-02收稿日期:2020-08-05作者简介:陈志年(1962.4-)ꎬ男ꎬ安徽人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2020年全国高考数学一卷(理)20题是一道解析几何题ꎬ其中第二问是证明直线过定点.虽然是一类常见常考的题型ꎬ但是解决起来有一定的难度.难点在于:引进一个参数ꎬ思路简单ꎬ可运算量大ꎬ要求运算流畅㊁准确ꎻ引进多个参数ꎬ最后涉及到参数的消去与保留ꎬ要求思维灵活㊁缜密.下面给出该题的多种解法及评析ꎬ欣赏一题多解的妙趣ꎻ领略难点突破的秘诀.题目㊀已知AꎬB分别为椭圆E:x2a2+y2=1(a>1)的左右顶点ꎬG为E的上顶点ꎬAGң GBң=8.P为直线x=6上的动点ꎬPA与E的另一交点为CꎬPB与E的另一交点为D.(1)求E的方程ꎻ(2)证明:直线CD过定点.解㊀(1)由题设得A(-aꎬ0)ꎬB(aꎬ0)ꎬG(0ꎬ1)ꎬ则AGң=(aꎬ1)ꎬGBң=(aꎬ-1).由AGң GBң=8得a2-1=8ꎬ即a=3.所以E的方程为x29+y2=1.(2)解法1㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)则PA的方程为y=t9(x+3).将y=t9(x+3)代入x29+y2=1得(t2+9)x2+6t2x+9t2-81=0ꎬ则-3xc=9t2-81t2+9ꎬ所以xc=-3t2+27t2+9ꎬC点的坐标为(-3t2+27t2+9ꎬ6tt2+9)ꎻ同样求得D点坐标为(3t2-3t2+1ꎬ-2tt2+1).当t2ʂ3时ꎬ直线CD的斜率kCD=4t-3t2+9ꎬ直线CD的方程为y+2tt2+1=4t-3t2+9(x-3t2-3t2+1)ꎬ即y=4t-3t2+9(x-32)ꎻ当t2=3时ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法两次将直线方程代入椭圆方程得到关于x的一元二次方程ꎬ有一定的运算量ꎬ要求零失误ꎻ利用韦达定理求得C㊁D的坐标ꎬ是一个技巧ꎻ写出直线CD的方程还需要化简整理ꎬ方能得到所要证的结论.解法2㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)ꎬC(3cosαꎬsinα)ꎬD(3cosβꎬsinβ)ꎬ则ACң=(3cosα+3ꎬsinα)ꎬAPң=(9ꎬt)ꎬBDң=(3cosβ-3ꎬsinβ)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(3cosα+3)t-9sinα=0ꎬ(3cosβ-3)t-3sinβ=0.当tʂ0时ꎬ则t=3tanα2ꎬt tanβ2=-1ꎬ从而tanα2tanβ2=-13.若cosαʂcosβꎬ直线CD的方程为y-sinα=sinα-sinβ3cosα-3cosβ(x-3cosα)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3sin(α-β)sinα-sinβ)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3cosα-β2cosα+β2)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3(1+tanα2tanβ2)1-tanα2tanβ2).将tanα2 tanβ2=83-13代入得直线CD的方程y=sinα-sinβ3cosα-3cosβ(x-32).若cosα=cosβꎬ由tanα2 tanβ2=-13ꎬ不妨设tanα2=33ꎬtanβ2=-33ꎬ所以cosα=cosβ=12ꎬ直线CD的方程为x=32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法利用椭圆的参数方程设点的坐标ꎬ减少了参数的个数ꎻ整个解答过程中ꎬ利用了多个三角公式ꎬ如:同角三角函数基本关系公式ꎬ两角和与差公式ꎬ二倍角公式及通过角的变换推导的 和差化积 公式等ꎬ可以说三角公式的运用得到了极致.解法3㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0).设P(6ꎬt)ꎬ根据对称性直线CD所过定点在x轴上.当tʂ0时ꎬ设直线CD的方程为my=x-nꎬC(my1+nꎬy1)ꎬD(my2+nꎬy2)ꎬ则ACң=(my1+n+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(my2+n-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(my1+n+3)t-9y1=0ꎬ(my2+n-3)t-3y2=0.消去t得y2(my1+n+3)=3y1(my2+n-3).即2my1y2+3(n-3)y1-(n+3)y2=0.把x=my+n代入x29+y2=1得(m2+9)y2+2mny+n2-9=0.把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ得2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0ꎬ把2mm2+9=-y1+y2n代入2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0消去m得-(n2-9)(y1+y2)+3n(n-3)y1-n(n+3)y2=0ꎬ即(2n2-9n+9)y1-(2n2+3n-9)y2=0.所以2n2-9n+9=0ꎬ2n2+3n-9=0ꎬ从而n=32ꎬ直线CD的方程为my=x-32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进多个参数ꎬ初心是利用韦达定理消去y1和y2保留mꎬ实际把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ结合y1+y2=-2mnm2+9ꎬ发现易消去mꎬ保留y1和y2ꎬ利用y1和y2的任意性就可求得n.解题过程中得到启发㊁灵感ꎬ适时调整我们的解题思路ꎬ体现了思维的多向性和灵活性.解法4㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设C(x1ꎬy1)ꎬD(x2ꎬy2)ꎬP(6ꎬt)ꎬ则ACң=(x1+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(x2-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(x1+3)t-9y1=0ꎬ(x2-3)t-3y2=0.消去t得3y1(x2-3)=y2(x1+3)ꎬ所以9y21(x2-3)2=y22(x1+3)2.又y21=9-x219ꎬy22=9-x229ꎬ从而得9(x1-3)(x2-3)=(x1+3)(x2+3)ꎬ即4x1x2-15(x1+x2)+36=0.根据对称性直线CD所过定点在x轴上.当直线CD的斜率存在时ꎬ设直线CD的方程为y=k(x-n)ꎬ把y=k(x-n)代入x29+y2=1得(9k2+1)x2-18k2nx+9k2n2-9=0.把x1+x2=18k2n9k2+1ꎬx1x2=9k2n2-99k2+1代入4x1x2-15(x1+x2)+36=0得k2(2n2-15n+18)=0ꎬ所以2n2-15n+18=0ꎬ解得n=32或n=6(舍去)ꎬ直线CD的方程为y=k(x-32).当直线CD的斜率不存在时ꎬ则x1=x2ꎬ又4x1x2-15(x1+x2)+36=0ꎬ所以x1=x2=32或x1=x2=6(舍去)ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进更多的参数ꎬ利用C㊁D在椭圆上ꎬ我们首先消去y1和y2ꎬ得到4x1x2-15(x1+x2)+36=0ꎬ至此应用韦达定理解答显而易见ꎬ水到渠成.解析几何中ꎬ设而不求㊁加强韦达定理的应用是解答问题的重要方法.㊀㊀㊀参考文献:[1]2020年普通高等学校招生全国统一考试数学Ⅰ卷.㊀[责任编辑:李㊀璟]93。
2020高考数学总复习第八章解析几何8.2两直线的位置关系课件理新人教A版

解析:方法一 当 a=1 时,l1:x+2y+6=0, l2:x=0,l1 不平行于 l2; 当 a=0 时,l1:y=-3, l2:x-y-1=0,l1 不平行于 l2; 当 a≠1 且 a≠0 时,两直线可化为 l1:y=-a2x-3,
l2:y=1-1 ax-(a+1),
已知两直线一般方程的两直线位置关系的表示
提醒:当直线方程中存在字母参数时,不仅要考虑到斜率存 在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注 意 x,y 的系数不能同时为零这一隐含条件.
(1)已知三条直线 2x-3y+1=0,4x+3y+5=0,mx-y-1=0 不能
构成三角形,则实数 m 的取值集合为( D )
①若直线与对称轴平行,则在直
2.轴对称问题的两种类型及求解方法
若两点 P1(x1,y1)与 P2(x2,y2)关于 直线 l:Ax+By+C=0 对称,由
点关 方程组
于直 线对 称
Ax1+2 x2+By1+2 y2+C=0, yx22--yx11·-BA=-1,
可得到点 P1 关于 l 对称的点 P2 的 坐标(x2,y2)(其中 B≠0,x1≠x2)
法二 设 P(x,y)为 l′上任意一点, 则 P(x,y)关于点 A(-1,-2)的对称点为 P′(-2-x,-4 -y), ∵P′在直线 l 上, ∴2(-2-x)-3(-4-y)+1=0, 即 2x-3y-9=0.
角度 4 线关于线的对称
直线 l1:2x+y-4=0 关于直线 l:x-y+2=0 对称的直线
(1)若动点 A,B 分别在直线 l1:x+y-7=0 和 l2:x+y-5=0 上移
动,则 AB 的中点 M 到原点的距离的最小值为( A )
全国高考数学专题汇编:解析几何(含答案)

全国高考数学专题汇编:解析几何一.选择题(共21小题)1.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.42.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.23.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.4.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.325.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD ⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(2019•新课标Ⅰ)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.D.7.(2019•新课标Ⅰ)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过点F2的直线与椭圆C交于A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=18.(2019•新课标Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.89.(2019•新课标Ⅱ)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.10.(2019•新课标Ⅲ)已知F是双曲线C:﹣=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.12.(2018•新课标Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣113.(2018•新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 14.(2018•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2C.D.215.(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A 的坐标是(1,3),则△APF的面积为()A.B.C.D.16.(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)17.(2017•新课标Ⅱ)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)18.(2017•新课标Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l 为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.319.(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.20.(2016•新课标Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.21.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二.填空题(共4小题)22.(2019•新课标Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.23.(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|=.24.(2017•新课标Ⅲ)双曲线(a>0)的一条渐近线方程为y=x,则a=.25.(2016•新课标Ⅰ)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.参考答案一.选择题(共21小题)1.B;2.B;3.B;4.B;5.B;6.D;7.B;8.D;9.A;10.B;11.C;12.D;13.A;14.D;15.D;16.A;17.C;18.C;19.A;20.B;21.A;二.填空题(共4小题)22.(3,);23.2;24.5;25.4π;三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线P A的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x =c代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)代数方法:由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则(法一)=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.法二:∵P(3,1),Q(6,2),∴直线PQ的方程为:x﹣3y=0,∴点A到直线PQ:x﹣3y=0的距离d=,而|PQ|=,∴S△APQ=••=.数形结合方法:如图示:①当P点在y轴左侧时,过P点作PM⊥AB,直线x=6和x轴交于N(6,0)点,易知△PMB≌△BQN,∴NB=PM=1,故y=1时,+=1,解得:x=±3,(x=3舍),故P(﹣3,1),易得BM=8,QN=8,故S△APQ=S△AQN﹣S△APB﹣S△PBQ﹣S△BQN=(11×8﹣10×1﹣(1+65)﹣1×8)=,②当P点在y轴右侧时,同理可得x=3,即P(3,1),BM=2,NQ=2,故S△APQ=,综上,△APQ的面积是.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解答】解:∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d=,又|AB|=4,∴在Rt△OMB中,d2+(|AB|)2=R2,即①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得或,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.【解答】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故曲线C的离心率e==﹣1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:|y|•2c=16,•=﹣1,+=1,即c|y|=16,①x2+y2=c2,②+=1,③由②③及a2=b2+c2得y2=,又由①知y2=,故b=4,由②③得x2=(c2﹣b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4,当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.【解答】(1)证明:设D(t,﹣),A(x1,y1),则,由于y′=x,∴切线DA的斜率为x1,故,整理得:2tx1﹣2y1+1=0.设B(x2,y2),同理可得2tx2﹣2y2+1=0.故直线AB的方程为2tx﹣2y+1=0.∴直线AB过定点(0,);(2)解:由(1)得直线AB的方程y=tx+.由,可得x2﹣2tx﹣1=0.于是.设M为线段AB的中点,则M(t,),由于,而,与向量(1,t)平行,∴t+(t2﹣2)t=0,解得t=0或t=±1.当t=0时,||=2,所求圆的方程为;当t=±1时,||=,所求圆的方程为.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,所以M(2,2)或M(2,﹣2),直线BM的方程:y=x+1,或:y=﹣x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=+===0,所以直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y =﹣x+5,设所求圆的圆心坐标为(x0,y0),则,解得:或,因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴k=﹣.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,∴x3=1由椭圆的焦半径公式得则|F A|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|F A|+|FB|=4﹣,∴|F A|+|FB|=2|FP|,35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+m sinα﹣2sin2α=1,当α=0时,上式不成立,则0<α<2π,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由•=(﹣1﹣cosα,﹣sinα)•(﹣3,)=3+3cosα﹣3(1+cosα)=0.可得过点P且垂直于OQ的直线l过C的左焦点F.另解:设Q(﹣3,t),P(m,n),由•=1,可得(m,n)•(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,又P在圆x2+y2=2上,可得m2+n2=2,即有nt=3+3m,又椭圆的左焦点F(﹣1,0),•=(﹣1﹣m,﹣n)•(﹣3,t)=3+3m﹣nt=3+3m﹣3﹣3m=0,则⊥,可得过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有•=﹣1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S△AMN=a×2a=a2=;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△P AR≌△F AR,∴∠P AR=∠F AR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠P AF=2∠P AR,∴∠FQB=∠P AR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF=|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.。
2020全国卷高考专题:平面解析几何

10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

解析几何04 椭圆及其性质一、具体目标:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.能处理与椭圆有关的问题.二、知识概述:1. 椭圆方程的第一定义:一个动点到两个定点的距离为一个常数(大于两定点之间的距离)则动点的轨迹就是椭圆.几何表示:()121222PF PF a a F F +=>.当()121222PF PF a a F F +=<无轨迹;当()121222=PF PF a a F F +=,以12,F F 为端点的线段.⑴①椭圆的标准方程:中心在原点,焦点在x 轴上:()222210x y a b a b +=>>.中心在原点,焦点在轴上:()222210y x a b a b+=>>.②一般方程:()2210,0Ax By A B +=>>.③椭圆的标准参数方程:的参数方程为(一象限应是属于02πθ<<).⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长. ③焦点:或.④焦距:.⑤准线:或.⑥离心率:()01c e e a=<<.⑦焦点半径:i. 设为椭圆()222210x y a b a b+=>>上的一点,为左、右焦点,则 y 12222=+b y a x ⎩⎨⎧==θθsin cos b y a x θ),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==c a x 2±=c a y 2±=),(00y x P 21,F F 【考点讲解】⇒-=+=0201,ex a PF ex a PF由椭圆方程的第二定义可以推出.ii.设为椭圆()222210x y a b b a+=>>上的一点,为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:()210000a PF e x a ex x c ⎛⎫=+=+< ⎪⎝⎭()220000a PF e x ex a x c ⎛⎫=-=-> ⎪⎝⎭归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆()222210x y a b a b+=>>的离心率是,方程是大于0的参数,0a b >>的离心率也是 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.(6)椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 对称轴:坐标轴 对称中心:原点 A (-a,0),A (a,0) A (0,-a ),A (0,a ) ),(00y x P 21,F F →)sin ,cos (θθb a N ),(2222a b c a b d -=),(2ab c )(22b a c a c e -==tt b y a x (2222=+ace =12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb a PF PF 221=+2cot 2θ⋅b ⇒-=+=0201,ey a PF ey a PF1.【2019年高考全国Ⅰ卷】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】本题考查椭圆标准方程及其简单性质.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n nn +-⋅⋅⋅=,解得2n =. 22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得【真题分析】223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【答案】B2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .8【解析】本题主要考查抛物线与椭圆的几何性质.因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y pp +=的一个焦点,所以23()2pp p -=,解得8p =,故选D . 【答案】D3.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【解析】本题考查椭圆的标准方程与几何性质.椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B. 【答案】B4.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3【解析】本题主要考查椭圆的方程及离心率.由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【答案】C5.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F∠=︒,则C的离心率为()A.312-B.23-C.312-D.31-【解析】本题主要考查椭圆的定义和简单的几何性质.在12F PF△中,122190,60F PF PF F∠=∠=︒o,设2PF m=,则12122,c F F m PF===,又由椭圆定义可知1221)a PF PF m=+=,则212c cea a====,故选D.【答案】D6.【2018年高考全国Ⅱ理数】已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左、右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.14【解析】因为12PF F△为等腰三角形,12120F F P∠=︒,所以212||2||PF F F c==,由AP的斜率为6可得2tan6PAF∠=,所以2sin PAF∠=,2cos PAF∠=,由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以2225sin()3ca c PAF==+-∠,所以4a c=,14e=,故选D.【答案】D7.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:2213x ym+=长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1][9,)+∞U B.[9,)+∞U C.(0,1][4,)+∞U D.[4,)+∞U【解析】本题考查的是以椭圆知识为背景的求参数范围的问题.解答问题时要利用条件确定ba,的关系,要借助题设条件ο120=∠AMB 转化为360tan =≥οba,简化求解过程. 当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60a b ≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,故选A . 【答案】A8.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用.方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==9.【2019年高考全国Ⅲ卷】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【解析】本题考查椭圆标准方程及其简单性质,解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【答案】(10.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】本题主要考查利用椭圆的性质来求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题, (1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,① 222x y c +=,② 22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥存在满足条件的点P .所以4b =,a的取值范围为)+∞. 【答案】(11;(2)4b =,a的取值范围为)+∞.11.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c +=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t . 因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【答案】(1)12;(2)2211612x y +=.12.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 【解析】主要考查椭圆的标准方程和几何性质、直线方程等基础知识. (1)设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =. 所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P py k x k -=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±.所以,直线PB的斜率为5或5-. 【答案】(1)22154x y +=;(2)230或230-. 13.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题.(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =. 记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,221||uk k PG +=,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.1.【2017年高考浙江卷】椭圆22194x y +=的离心率是( )A B C .23 D .59【解析】椭圆22194x y +=的离心率e ==,故选B . 【答案】B2.【2017年高考全国Ⅲ】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,【模拟考场】直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【答案】A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 【解析】 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.【答案】 A4.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=, 所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值. 【答案】55.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.1 26.【2016北京理】已知椭圆C :22221+=x y a b(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,△OAB 的面积为1.(I )求椭圆C 的方程;(II )设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:BM AN ⋅为定值.【分析】(I)根据离心率为2,即2=c a ,△OAB 的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(II )根据已知条件分别求出BM AN ,的值,求其乘积为定值.【解析】(I )由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (II )由(I )知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.7.已知点M 是圆心为E的圆(2216x y ++=上的动点,点)F,线段MF 的垂直平分线交EM于点P .(1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.【分析】1)利用定义法求椭圆的轨迹方程;(2)设AB 的方程为1y k x m =+, CD 的方程为1y k x m =-,直线AB 与CD 间的距离为1d =,直线BC 与AD 间的距离为2d =,S =S 的范围.【解析】(1)依题PM PF =,所以4PE PF PE PM ME +=+== (为定值),EF =>所以点P 的轨迹是以,E F为焦点的椭圆,其中24,2a c ==所以P 点轨迹C 的方程是2214x y += (2)①当矩形的边与坐标轴垂直或平行时,易得8S =;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设AB 的方程为1y k x m =+, BC 的方程为2y k x n =+,则CD 的方程为1y k x m =-, AD 的方程为2y k x n =-,其中121k k ⋅=-,直线AB 与CD 间的距离为1d ==,同理直线BC 与AD 间的距离为2d ==()12*S d d =⋅=L2222211111{ 21044x y k x k mx m y k x m+=⎛⎫⇒+++-= ⎪⎝⎭=+,因为直线AB 与椭圆相切,所以221410k m ∆=+-=,所以2141m k =+,同理2241n k =+,所以 S ===44==212112k k +≥ (当且仅当11k =±时,不等式取等号),所以4S <≤810S <≤, 由①②可知, 810S ≤≤.【答案】(1) 2214x y +=;(2) 810S ≤≤.。
2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理

等于常数2a(2a>|F1F2|)的点的轨
焦点
,两焦点间的距离叫做椭圆
2.椭圆的标准方程及其简单几何性质
标准 方程
焦点在 x 轴上 x2 + y 2 =1(a>b>0) a2 b2
图形
范围 对称性
|x|≤a;|y|≤b
曲线关于 x轴、 y轴、原点 对称
焦点在 y 轴上 y 2 + x2 =1(a>b>0) a2 b2
答案:④⑤
考点专项突破
在讲练中理解知识
考点一 椭圆的定义及其应用
【例1】 (1)已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点
C的轨迹方程为
.
解析:(1)因为△ABC 的周长为 26,顶点 A(-6,0),B(6,0),所以|AB|=12,|AC|+|BC|=2612=14,且 14>12,点 C 到两个定点的距离之和等于定值,所以点 C 的轨迹是椭圆,因为
【跟踪训练 3】
(1)过椭圆 x2 a2
+ y2 b2
=1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2
为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( )
(A) 2 (B) 3 (C) 1
5 55 以 b2≥1,所以 a2-c2≥1,4-c2≥1,解得 0<c≤ 3 ,所以 0< c ≤ 3 ,所以椭圆的离心率
a2 的取值范围为(0, 3 ).故选 A.
2
反思归纳 (1)求椭圆离心率的方法 ①直接求出a,c的值,利用离心率公式直接求解. ②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e 的方程(或不等式)求解. (2)利用椭圆几何性质求值或范围的思路 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、 焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
2020年高考数学专题讲解:平面解析几何(二)

C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2[答案] B[解析] 考查两平行直线的距离公式、直线与圆相切的性质及圆的标准方程.解:直线y =x 与y =x -4均与圆相切,设两直线间距离为d ,则圆的半径r =d 2=41+1·12=2,设圆心坐标为(a ,-a ),则|a +a |2=2⇒a =±1, ∵当a =-1时,圆不与直线y =x -4相切,∴a =1. ∴圆的方程为(x -1)2+(y +1)2=2,选B.3.(教材改编题)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m >1 C .m <14D .m <14或m >1[答案] D[解析] 原方程表示圆⇔(4m )2+(-2)2-4×5m >0, 解得m <14或m >1.4.已知x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( ) A .9B .14C .14-6 5D .14+6 5[答案] D[解析] 方程表示以(-2,1)为圆心,半径r =3的圆, 令d =x 2+y 2,则d 为点(x ,y )到(0,0)的距离, ∴d max =-2-2+-2+r =5+3,∴x 2+y 2的最大值为(5+3)2=14+6 5.5.圆x 2+(y +1)2=1的圆心坐标是________,如果直线x +y +a =0与该圆有公共点,那么实数a 的取值范围是________.[答案] (0,-1),1-2≤a ≤1+ 2[解析] 可知圆心坐标为(0,-1).直线x +y +a =0与该圆有公共点,则|0-1+a |12+12≤1,∴1-2≤a ≤1+ 2. 6.已知BC 是圆x 2+y 2=25的动弦,且|BC |=6,则BC 的中点的轨迹方程是________. [答案] x 2+y 2=16[解析] 设BC 中点为P (x ,y ),则OP ⊥BC ,∵|OC |=5,|PC |=3,∴|OP |=4,∴x 2+y 2=16. 7.根据下列条件求圆的方程:(1)经过A (6,5),B (0,1)两点,并且圆心在直线3x +10y +9=0上; (2)经过P (-2,4),Q (3,-1)两点,并且在x 轴上截得的弦长等于6.[解析] (1)解法1:∵AB 的中垂线方程为3x +2y -15=0,由⎩⎪⎨⎪⎧3x +2y -15=0,3x +10y +9=0,解得⎩⎪⎨⎪⎧x =7,y =-3,∴圆心为C (7,-3),又|CB |=65.故所求圆的方程为(x -7)2+(y +3)2=65. 解法2:设所求圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧-a 2+-b 2=r2-a 2+-b2=r23a +10b +9=0,解得⎩⎨⎧a=7,b =-3,r =65.所以所求圆的方程为(x -7)2+(y +3)2=65. (2)设圆的方程为x 2+y 2+Dx +Ey +F =0.将P 、Q 点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =203D -E +F =-10①②又令y =0,得x 2+Dx +F =0③设x 1,x 2是方程③的两根. 由|x 1-x 2|=6有D 2-4F =36④由①②④得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.(四)典型例题1.命题方向:求圆的方程[例1] 根据下列条件,求圆的方程.(1)圆心在原点且圆周被直线3x +4y +15=0分成12两部分的圆的方程; (2)求经过两已知圆C 1x 2+y 2-4x +2y =0与C 2x 2+y 2-2y -4=0的交点,且圆心在直线l 2x +4y =1上的圆的方程.[分析] 用直接法或待定系数法.[解析] (1)如图,因为圆周被直线3x +4y +15=0分成12两部分,所以∠AOB =120°.而圆心到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6.所以所求圆的方程为x 2+y 2=36.(2)由题意可设圆的方程为λ(x 2+y 2-4x +2y )+(x 2+y 2-2y -4)=0,(λ≠-1)即(1+λ)x 2+(1+λ)y 2-4λx +(2λ-2)y -4=0,圆心坐标为(2λ1+λ,1-λ1+λ),代入lx +4y =1,得λ=3.所以所求圆的方程为x 2+y 2-3x +y -1=0.[点评] 无论是圆的标准方程还是圆的一般方程,都有三个待定系数,因此求圆的方程,应用三个条件来求.一般地,已知圆心或半径的条件,选用圆的标准式,否则选用一般式.另外,还有几何法可以用来求圆的方程.要充分利用圆的有关几何性质,如“圆心在圆的任一条弦的垂直平分线上”“半径,弦心距,弦长的一半构成直角三角形”等.所以的最大值为3,最小值为- 3.x=3,解得=-2± 6.此时2+6,最小值为-- 6.又圆心到原点的距离为-2+-2=2,∴k max =3+34,k min =3-34.3.命题方向:与圆有关的轨迹问题[例3] 如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连结BC 并延长至D ,使|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[解析] 设动点P (x ,y ),由题意可知点P 是△ABD 的重心,∵A (-1,0)、B (1,0),令动点C (x 0,y 0),则D (2x 0-1,2y 0),∴由重心坐标公式得:⎩⎪⎨⎪⎧ x =-1+1+x 0-3y =2y 03,∴⎩⎪⎨⎪⎧x 0=3x +12y 0=3y2y,代入x 2+y 2=1得,所求轨迹方程为⎝ ⎛⎭⎪⎫x +132+y 2=49 (y ≠0).[点评] 本题求轨迹方程的方法叫相关点法.用相关点法求轨迹方程的基本步骤:(1)设所求点的坐标为P (x ,y )(若x ,y 与题中已知的字母有冲突,则将这些已知字母全部替换成其他字母),与P 相应的符合某已知曲线的点的坐标设为Q (x 0,y 0);(2)建立二者之间的等量关系,从而求得x 0=f (x ,y ),y 0=g (x ,y );(3)将Q (x 0,y 0)的坐标代入点Q 满足的方程进行求解,等价化简得所求轨迹方程.注意:求轨迹与求轨迹方程是不同的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指出方程的曲线是什么图形 .跟踪练习3点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 [答案] A[解析] 设圆上任一点为Q (x 0,y 0),则x 02+y 02=4,又设P 、Q 连线中点为M (x ,y ),则⎩⎪⎨⎪⎧2x =x 0+42y =y 0-2,∴⎩⎪⎨⎪⎧x 0=2x -4y 0=2y +2,代入x 02+y 02=4中得,(x -2)2+(y +1)2=1,故选A.4.命题方向:圆方程的综合问题[例4] 如图,已知圆心坐标为(3,1)的圆M 与x 轴及直线y =3x 分别相切于A 、B 两点,另一圆N 与圆M 外切,且与x 轴及直线y =3x 分别相切于C 、D 两点.(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.[分析] 求圆M 的半径→求圆M 的方程→求圆N 的半径→求圆N 的方程→求弦长[解析] (1)∵M 的坐标为(3,1),∴M 到x 轴的距离为1,即圆M 的半径为1,则圆M 的方程为(x -3)2+(y -1)2=1.设圆N 的半径为r ,连接MA ,NC ,OM ,则MA ⊥x 轴,NC ⊥x 轴,由题意知:M ,N 点都在∠COD 的平分线上, ∴O ,M ,N 三点共线.由Rt △OAM ∽Rt △OCN 可知,OM ON =MA NC ,即23+r =1r⇒r =3, 则OC =33,则圆N 的方程为(x -33)2+(y -3)2=9.(2)由对称性可知,所求的弦长等于过A 点与MN 平行的直线被圆N 截得的弦的长度, 此弦的方程是y =33(x -3), 即x -3y -3=0, 圆心N 到该直线的距离d =32, 则弦长为2r 2-d 2=33.[点评] 1.解决有关圆的问题,常利用数形结合的方法,结合圆的有关性质可简化运算,解题时注意转化与化归的数学思想的应用.2.直线与圆相交所截得的弧,以及弧所对的圆周角或圆心角的有关问题,可转化为由弦心距、半弦长和半径所构成的直角三角形的三边之间的关系求解. 跟踪练习4已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标原点,设圆C 是△OAB 的外接圆(点C 为圆心),求圆的方程.[解析] 解法1:设A 、B 两点坐标分别为⎝ ⎛⎭⎪⎫y 122,y 1,⎝ ⎛⎭⎪⎫y 222,y 2. 由题设知⎝ ⎛⎭⎪⎫y 1222+y 12=⎝ ⎛⎭⎪⎫y 2222+y 22=⎝ ⎛⎭⎪⎫y 122-y 2222+y 1-y 22.-2k2)=2,-2k2)×2=2=-12,±3.为圆心,以5为半径的圆的方程8.已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长之比为12,则圆C的方程为()-4)2=4.4,但应除去两点:⎝⎛y2+2x-4y+1=0的交点且面积最小的圆的方程.位置关系几何法:圆心距d 与r 1,r 2的关系 代数法:两圆方程联立组成方程组的解的情况 相离d >r 1+r 2 无解 相外切d =r 1+r 2 一解 相交|r 1-r 2|<d <r 1+r 2 两解 相内切(r 1≠r 2) 一解 内含(r 1≠r 2)无解 3.计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成计算. (2)代数方法运用韦达定理及弦长公式|AB |=1+k 2|x A -x B |=+k 2x A +x B 2-4x A x B ].说明:圆的弦长、弦心距的计算常用几何方法.4.P (x 0,y 0)在圆x 2+y 2=r 2(r >0)上,则以P 为切点的切线方程为.(三)基础自测1.(2010·江西理)直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范是 ( )A.⎣⎢⎡⎦⎥⎤-34,0B.⎝⎛⎦⎥⎤-∞,-34∪[0,+∞) C.⎣⎢⎡⎦⎥⎤-33,33 D.⎣⎢⎡⎦⎥⎤-23,0 [答案] A[解析] 如图,取MN 中点为H ,连CH 、CN ,则△CHN 为Rt △,又HN = 3.R =2,故CH =1.由HN ≥ 3知圆心到直线的距离等于CH |3k +1|k 2+1≤1. ∴-34≤k ≤0,故斜率范围是[-34,0],选A.2.直线ax -y +2a =0 (a ≥0)与圆x 2+y 2=9的位置关系是( )A .相离B .相交C .相切D .不确定[答案] B[解析] 依题意,画出两圆的位置如图,公共弦为两圆方程相减得,2ay ∴|OC |=1a. 又公共弦长为23,∴于是,由Rt △AOC 可得即1a2=22-(3)2, 整理得a 2=1,又a >0,∴7.直线l 经过点P (5,5)[解析] 若直线l 的斜率不存在,直线则l :y -5=k (x -5).则不论m 为何值,圆心恒在直线l :x -3y -3=0上.(2)设与l 平行的直线是l 1:x -3y +b =0,则圆心到直线l 1的距离为d =|3m -m -+b |10=|3+b |10. ∵圆的半径为r =5,∴当d <r ,即-510-3<b <510-3时,直线与圆相交;当d =r ,即b =±510-3时,直线与圆相切;当d <r ,即b <-510-3或b >510-3时,直线与圆相离.跟踪练习1(2011·启东调研)已知圆C :(x +1)2+(y -2)2=6,直线l :mx -y +1-m =0.(1)求证:无论m 取什么实数,直线l 与圆C 恒交于两点;(2)求直线l 被圆C 截得的弦长最小时l 的方程.[解析] (1)证明:l :mx -y +1-m =0的方程可化为y -1=m (x -1),其恒过定点P (1,1).∵|PC |=+2+-2=5<r =6,∴点P 恒在圆C 内,∴直线l 与圆C 恒交于两点.(2)由(1)及平面几何知识知,当l 垂直于PC 时,直线l 被圆C 截得的弦长最小,又k PC =2-1-1-1=-12, ∴k l =-1k PC =2,∴所求直线l 的方程为y -1=2(x -1),即2x -y -1=0.2.命题方向:弦长问题[例2] 已知点P (0,5)及圆C x 2+y 2+4x -12y +24=0.(1)若直线l 过P 且被圆C 截得的线段长为43,求l 的方程;(2)求过P 点的圆C 的弦的中点的轨迹方程.[分析] (1)根据弦长求法,求直线方程中的参数;(2)由垂直关系找等量关系.[解析] (1)方法1 如图所示,AB =43,D 是AB 的中点,CD ⊥AB ,AD =23,AC =4,在Rt △ACD 中,可得CD =2.设所求直线的斜率为k ,则直线的方程为y -5=kx ,即kx -y +5=0.由点C 到直线AB 的距离公式:|-2k -6+5|k 2+-2=2,得k =34.k =34时,直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0.∴所求直线的方程为3x -4y +20=0或x =0.方法2 设所求直线的斜率为k ,则直线的方程为y -5=kx ,即y =kx +5,联立直线与圆的方程⎩⎪⎨⎪⎧ y =kx +5,x 2+y 2+4x -12y +24=0,消去y ,得(1+k 2)x 2+(4-2k )x -11=0,①设方程①的两根为x 1,x 2,由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=2k -41+k 2,x 1x 2=-111+k 2,② 由弦长公式得1+k 2|x 1-x 2|=+k 2x 1+x 22-4x 1x 2]=43,将②式代入,解得k =34, 此时直线方程为3x -4y +20=0. 又k 不存在时也满足题意,此时直线方程为x =0.∴所求直线的方程为x =0或3x -4y +20=0.v(2)设过P 点的圆C 的弦的中点为D (x ,y ),则CD ⊥PD ,即CD →·PD →=0,(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.[点评] 在研究弦长及弦中点问题时,可设弦AB 两端点的坐标分别为A (x 1,y 1),B (x 2,y 2).(1)若OA ⊥OB (O 为原点),则可转化为x 1x 2+y 1y 2=0,再结合根与系数的关系等代数方法简化运算过程,这在解决垂直关系问题中是常用的;(2)若弦AB 的中点为(x 0,y 0),圆的方程为x 2+y 2=r 2,则⎩⎪⎨⎪⎧ x 12+y 12=r 2,x 22+y 22=r 2,∴k =y 1-y 2x 1-x 2=-x 1+x 2y 1+y 2=-x 0y 0.该法叫平方差法,常用来解决与弦的中点,直线的斜率有关的问题.跟踪练习2已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得弦AB 为直径的圆经过原点,若存在,写出直线l 的方程;若不存在,说明理由.[解析] 假设存在且令l 为y =x +m圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2)则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点即N (-m +12,m -12) 以AB 为直径的圆过原点,∴|AN |=|ON |又CN ⊥AB ,|CN |=|1+2+m |2∴|AN |=CA 2-CN 2=9-+m 22 又|ON |=-m +122+m -122由|AN |=|ON |得m =1或m =-4∴存在直线l 方程为x -y +1=0和x -y -4=0.[点评] 设l :y =x +m 与圆方程联立,其根为A (x 1,y 1),B (x 2,y 2)的坐标,由条件OA ⊥OB ,∴x 1x 2+y 1y 2=0,可求m =1或-4.3.命题方向:圆与圆的位置关系[例3] 已知圆C 1:x 2+y 2-2mx +4y +(m 2-5)=0与C 2:x 2+y 2+2x -2my +(m 2-3)=0,当m 为何值时:(1)两圆外离;(2)两圆外切;(3)两圆相交;(4)两圆内切;(5)两圆内含.[解析] 欲求m 的值,只要列出关于m 的一个等式或不等式就可以了. 因两圆的方程已给定,那么两圆的圆心和半径就可以求出,进而获得含m 的式子,问题变成了圆心距与两圆半径之和或差的关系.把圆C 1与圆C 2的方程变形(x -m )2+(y +2)2=9,(x +1)2+(y -m )2=4.故两圆的半径分别为3和2,圆心距为|C 1C 2|=m +2+-2-m 2=2m 2+6m +5. (1)若两圆外离,则|C 1C 2|>3+2,即2m 2+6m +5>5.两边平方整理得m 2+3m -10>0,解之得 m >2或m <-5.∴当m >2或m <-5时,两圆外离.(2)若两圆外切,则|C 1C 2|=3+2,即 m 2+3m -10=0.解之得 m =2或m =-5.∴当m =2或m =-5时,两圆外切.(3)若两圆相交,则3-2<|C 1C 2|<3+2,即⎩⎨⎧ 2m 2+6m +5<5,2m 2+6m +5>1.解之得,当-5<m <-2或-1<m <2时,两圆相交.(4)若两圆内切,则|C 1C 2|=3-2,即2m 2+6m +5=1. 解之得 m =-1或m =-2.∴当m =-1或m =-2时,两圆内切. (5)若两圆内含,则0<|C 1C 2|<3-2,即⎩⎨⎧2m 2+6m +5<1,2m 2+6m +5≥0,解之得 -2<m <-1.∴当-2<m <-1时,两圆内含.跟踪练习3已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,求动圆圆心的轨迹方程.[解析] 设动圆的圆心坐标为(a ,b ),当两圆外切时,由题意可得a -2+b +2=1+4,即(a -5)2+(b +7)2=25; 当两圆内切时,由题意可得a -2+b +2=4-1,即(a -5)2+(b +7)2=9. 所以动圆圆心的轨迹方程为(a -5)2+(b +7)2=25或(a -5)2+(b +7)2=9. 4.命题方向:圆系方程的简单应用[例4] 已知两个圆C 1:x 2+y 2=4,C 2:x 2+y 2-2x -4y +4=0,直线l :x +2y =0,求经过C 1和C 2的交点且和l 相切的圆的方程.[解析] 所求的圆经过C 1,C 2的交点,故可用圆系方程求解. 设所求圆的方程为x 2+y 2-2x -4y +4+λ(x 2+y 2-4)=0 (λ≠-1) 即(1+λ)x 2+(1+λ)y 2-2x -4y +4(1-λ)=0所以圆心为(11+λ,21+λ),半径为:12-21+λ2+-41+λ2-1-λ1+λ依题意有|11+λ+41+λ|5=4+16--λ2+λ22解之,得λ=±1,舍去λ=-1,故所求圆的方程为x 2+y 2-x -2y =0.[点评] 由于圆系方程中不包括圆x 2+y 2-4=0,故应检验圆x 2+y 2-4=0是否满足条件.而直线l :x +2y =0显然通过该圆的圆心,故不满足条件. 跟踪练习4圆心在直线x +y =0上,且过圆x 2+y 2-2x +10y -24=0与圆x 2+y 2+2x +2y -8=0的点的圆的方程为________. [答案] x 2+y 2+6x -6y +8=0[解析] 设圆的方程为x 2+y 2-2x +10y -24+λ(x 2+y 2+2x +2y -8)=0,即x 2+y 2+λ-λ+1x ++λλ+1y -λ+λ+1=0(λ≠-1),圆心⎝⎛⎭⎪⎫1-λλ+1,-5+λλ+1,∴1-λλ+1-5+λλ+1=0,解得λ=-2..相离D.以上情况都有可能M,连接MO和PF2,则两圆半径分别为+2a,=12|PF =12|PF =(2+1)2+(-1+1)2=9<2若直线y =bx +c 过圆Cx 2+y 2-2x -2y =1的圆心,则△ABC 面积的最大值为( ) A.3B.32 3 D. 3由m ⊥n 得b 2+c 2-a 2=bc ,则cos A =b +c -a 2bc =12⇒A =π3,sin A =32.由于圆Cx 2+y 2-2x -2y =1的圆心为由点到直线的距离公式,得k 2+1=5,=-12,∴切线方程为-12x +52==52,令=12×52×=254.11.(2010·山东文)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l y =x -1被该圆所截得的弦长为22,本题考查了圆的标准方程及圆的弦长问题,圆的弦长问题合理应用特殊直角三角形是关键,设圆心为。
2020年高考试题:解析几何

本题解析:双曲线 : 渐近线: 。
与 联立得到: ; 与 联立得到: 。
, , 的方程: 。
到直线 的距离: 。 。
焦距的最小值是 。
训练八:2020年高考数学新课标Ⅱ卷文科第19题理科第19题:已知椭圆 : ( )的右焦点 与抛物线 的焦点重合, 的中心与 的顶点重合。过 且与 轴垂直的直线交 于 , 两点,交 于 , 两点,且 。
:
。联立 和圆 得到: 。
, ,
的方程:
。
训练六:2020年高考数学新课标Ⅱ卷文科第8题理科第5题:若过点 的圆与两坐标轴都相切,则圆心到直线 的距离为( )
A、 B、 C、 D、
本题解析:假设:圆的方程为: ,圆心 ,半径 。
圆与两个坐标轴相切 整个圆只能在一个象限,圆过点 整个圆在第一象限
, 。
。
(Ⅱ)文科: 。
椭圆 的四个顶点 , , , , ,
, , , 。
抛物线 : 的准线 。
到准线 的距离: ;
到准线 的距离: ;
到准线 的距离: ;
到准线 的距离: ;
的四个顶点到 的准线距离之和为
,
椭圆 的方程为 。抛物线 的方程为 。
(Ⅱ)理科: 椭圆 。
联立椭圆 和抛物线 得到:
十字相乘法计算。
(Ⅰ)求 的离心率;
(Ⅱ)文科:若 的四个顶点到 的准线距离之和为 ,求 和 的标准方程。
理科:设 是 和 的公共点,若 ,求 和 的标准方程。
本题解析:(Ⅰ)椭圆 : 的右焦点 与抛物线 的焦点重合,
方程为 。过 且与 轴垂直的直线: 。
与 联立得到:
, 。
与 联立得到: ,
, ,
2020版高考数学(理) 解析几何 第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题

第2课时 解题上——5大技法破解“计算繁而杂”这一难题中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.因此,本讲从以下5个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程,达到快准解题.策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [题后悟通]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[针对训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由题可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1,故选A.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||PA |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P =(x P +m )2+4mx P ,则⎝⎛⎭⎫|PF ||PA |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22.答案:22设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [题后悟通](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中设而不求的方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[针对训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ),分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka ,由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=aa +c,整理得c a =13,所以椭圆C 的离心率e =13,故选A.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 联立⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1,消去y 0并整理,得x 20=a 2b 2k 2a 2+b 2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2, 解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a 1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [题后悟通]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [针对训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:不妨设直线l 的方程为x =ty +m , A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直,即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t2=2+2t 21+t2=21+t 2=r ,而由0<t 2<3可得2<r <4.平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,那么B ⎝⎛⎭⎫-32a ,b 2,C⎝⎛⎭⎫32a ,b 2,而F (c,0),那么FB ―→=⎝⎛⎭⎫-32a -c ,b 2,FC ―→=⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°,故有FB ―→·FC ―→=⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0, 则有3c 2=2a 2,所以该椭圆的离心率为e =c a =63.[答案]63[题后悟通]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[针对训练]已知椭圆C 的标准方程为x 24+y 22=1,圆O 的方程为x 2+y 2=2,设P ,Q 分别是椭圆C 和圆O 上位于y 轴两侧的动点,若直线P Q 与x 轴平行,直线AP ,BP 与y 轴的交点记为M ,N ,试判断∠M Q N 是否为定值,若是,请证明你的结论;若不是,请举出反例说明.解:∠M Q N 是定值90°,证明如下: 设P (x 0,y 0),直线AP :y =k (x +2)(k ≠0), 令x =0可得M (0,2k ),将x 24+y 22=1与y =k (x +2)联立, 整理可得(2k 2+1)x 2+8k 2x +8k 2-4=0,则-2x 0=8k 2-42k 2+1,可得x 0=2-4k 22k 2+1,y 0=4k2k 2+1,故P ⎝ ⎛⎭⎪⎫2-4k22k 2+1,4k 2k 2+1.直线BP 斜率k BP =y 0x 0-2=-12k ,则直线BP :y =-12k(x -2), 令x =0可得N ⎝⎛⎭⎫0,1k ,设Q (x Q ,y 0), 则QM ―→=(-x Q ,2k -y 0),QN ―→=⎝⎛⎭⎫-x Q ,1k -y 0, 由x 2Q +y 20=2,y 0=4k2k 2+1, 可得QM ―→·QN ―→=x 2Q +y 20+2-2k 2+1k y 0=0, 所以Q M ⊥Q N ,故∠M Q N 是定值90°.某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [题后悟通]本例在第(2)问中应用了根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[针对训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327, 所以S △AF 2B =S △AF 1F 2+S △BF 1F 2=12|F 1F 2|·|y 1-y 2|=12|F 1F 2|·(y 1+y 2)2-4y 1y 2=12t 2+14+3t 2. 而S △AF 2B =12|AB |r 0+12|BF 2|r 0+12|AF 2|r 0=12r 0(|AB |+|BF 2|+|AF 2|) =12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.(2018·惠州二模)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B.59 C.49D.513解析:选D 如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,|PF 2||PF 1|=513,故选D. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A .33 B .23C .22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y 03.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p2=22(当且仅当y 0=2p 时取等号).3.(2019·合肥质检)如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( )A .20B .10C .2 5D .4 5解析:选D 由F 1,H 是线段MN 的三等分点,得H 是F 1N 的中点,又F 1(-c,0),∴点N 的横坐标为c ,联立方程,得⎩⎪⎨⎪⎧x =c ,x 2a 2+y 24=1,得N ⎝⎛⎭⎫c ,4a ,∴H ⎝⎛⎭⎫0,2a ,M ⎝⎛⎭⎫-2c ,-2a .把点M 的坐标代入椭圆方程得4c2a2+⎝⎛⎭⎫-2a 24=1,化简得c 2=a 2-14,又c 2=a 2-4,∴a 2-14=a 2-4,解得a 2=5,∴a = 5.由椭圆的定义知|NF 2|+|NF 1|=|MF 2|+|MF 1|=2a ,∴△F 2MN 的周长为|NF 2|+|MF 2|+|MN |=|NF 2|+|MF 2|+|NF 1|+|MF 1|=4a =45,故选D.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c,0),P 为双曲线上任一点,且PF 1―→·PF 2―→最小值的取值范围是⎣⎡⎦⎤-34c 2,-12c 2,则该双曲线的离心率的取值范围为( )A .(1,2]B .[2,2]C .(0,2]D .[2,+∞)解析:选B 设P (x 0,y 0),则PF 1―→·PF 2―→=(-c -x 0,-y 0)·(c -x 0,-y 0)=x 20-c 2+y 20=a2⎝⎛⎭⎫1+y 20b 2-c 2+y 20, 上式当y 0=0时取得最小值a 2-c 2, 根据已知-34c 2≤a 2-c 2≤-12c 2,所以14c 2≤a 2≤12c 2,即2≤c 2a 2≤4,即2≤c a ≤2,所以所求双曲线的离心率的取值范围是[2,2].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5B .4C .43D .52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2,联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为________. 解析:由已知得c =52, 设椭圆的方程为x 2a 2-50+y 2a 2=1,联立⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0, 设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2), 由根与系数的关系得x 1+x 2=12(a 2-50)10a 2-450,由题意知x 1+x 2=1,即12(a 2-50)10a 2-450=1,解得a 2=75, 所以该椭圆方程为y 275+x 225=1.答案:y 275+x 225=17.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴PA ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴PA ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2) =x 2+(x +2)2-cos 2θ-sin 2θ =2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,PA ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y = 1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b 2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b 2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1过点A (2,0),B (0,1)两点.设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,又A (2,0),B (0,1), 所以,直线PA 的方程为y =y 0x 0-2(x -2), 令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2, 直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1, 所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3,∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
2020高考数学解析几何内容剖析及备考建议

2020高考数学解析几何内容剖析及备考建议解析几何是高中数学的重要内容。
高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。
其中直线与圆、直线与圆锥曲线的位置关系是考查重点。
运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。
试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。
一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。
4 .初步了解用代数方法处理几何问题的思想。
三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.会简单应用空间两点间的距离公式。
四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。
5.理解数形结合思想。
了解圆锥曲线的简单应用。
四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。
一道解析几何高考题的解析与探究——以 2020年全国卷Ⅰ理科第 20题为例

解析:设点 P、C、D 的坐标为 P(6,t),C(x1,y1),D(x2,y2),则
t
t
直线 PA 的方程是 y = ( x + 3 ),直线 PB 的方程是 y = ( x 9
3
t
ì
ïy = 9 ( x + 3 ),
ï
消 元 得 ( t 2 + 9 ) x 2 + 6t 2 x + 9t 2 3 );联 立 í 2
ï + y = 1,
î9
技法点拨
106
2mny + n2 - 9 = 0,设 C(x1,y1),D(x2,y2),则 y 1 + y 2 = y1 y2 =
n2 - 9
m2 + 9
(1)。又直线 AC 的方程为 y =
直线 BD 的方程为 y =
共点 P,所以
9y 1
x1 + 3
=
y2
x2 - 3
后对 C、D 横坐标分两种情况考虑,考查了分类与整合的数学
思想,强调思维的严谨性。
思路 3:先求直线带参数的方程(即共点的直线系方程)。
先引进直线 CD 的方程,当斜率不为零时,设其为 x=my+
n,联立直线 CD 与椭圆 E 的方程,利用韦达定理找到 C、D 坐标
的关系(用参数 m,n 表示),然后写出直线 AC、BD 的方程,利用
功能,以下着重讨论第二问的解法。
二、试题解析
思路 1:从命题者的角度寻找答案。
此题的命题背景是极点和极线的位置关系,即寻找极线
x=6 对应的极点。
解析:由于椭圆及直线 x=6 都是关于 x 轴对称的图形,若
2020届高考数学一轮第九单元解析几何第讲双曲线理新人教A版

即|PC|-|PA|=2,
因为0<|PC|-|PA|<|AC|,
所以由双曲线的定义,知点P
的轨迹是以A,C为焦点,2为实轴
长的双曲线的左支,其中a=1,c=3, 所以b2=c2-a2=9-1=8. 故所求的轨迹方程为x2-y82=1(x≤-1). 答案:x2-y82=1(x≤-1)
x2 4
+
y2 3
=1的左、右焦点,平面内
一个动点M满足|MF1|-|MF2|=2,则动点M的轨迹是( )
A.双曲线
B.双曲线的一支
C.两条射线
D.一条射线
解:对于椭圆有c2=a2-b2=4-3=1,
所以椭圆的左、右焦点为F1(-1,0),F2(1,0), 因为|MF1|-|MF2|=2=|F1F2|, 所以M点的轨迹为一条射线. 答案:D
10
2.(2018·浙江卷)双曲线x32-y2=1 的焦点坐标是( ) A.(- 2,0),( 2,0) B.(-2,0),(2,0) C.(0,- 2),(0, 2) D.(0,-2),(0,2) 解:因为双曲线方程为x32-y2=1, 所以 a2=3,b2=1,且双曲线的焦点在 x 轴上, 所以 c= a2+b2= 3+1=2, 即得该双曲线的焦点坐标为(-2,0),(2,0).
A. 5
B.2
C. 3
D. 2
37
解:(方法 1)如图,过点 F1 向 OP 的反向延长线作垂线, 垂足为 P′,连接 P′F2,
由题意可知,四边形 PF1P′F2 为平行四边形,且△PP′F2 是直角三角形.
因为|F2P|=b,|F2O|=c,所以|OP|=a. 又|PF1|= 6a=|F2P′|,|PP′|=2a,所以|F2P|= 2a=b, 所以 c= a2+b2= 3a,所以 e=ac= 3.
2020年全国各地高中数学真题分类汇编—解析几何(含答案)

2020年全国各地⾼考真题分类汇编—解析⼏何1.(2020•天津)设双曲线C的⽅程为﹣=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的⼀条渐近线与l平⾏,另⼀条渐近线与l垂直,则双曲线C 的⽅程为()A.﹣=1B.x2=1C.﹣y2=1D.x2﹣y2=12.(2020•北京)已知半径为1的圆经过点(3,4),则其圆⼼到原点的距离的最⼩值为()A.4B.5C.6D.73.(2020•浙江)已知点O(0,0),A(﹣2,0),B(2,0).设点P满⾜|PA|﹣|PB|=2,且P 为函数y=3图象上的点,则|OP|=()A.B.C.D.4.(2020•北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的⼀点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点O B.经过点PC.平⾏于直线OP D.垂直于直线OP5.(2020•新课标Ⅲ)点(0,﹣1)到直线y=k(x+1)距离的最⼤值为()A.1B.C.D.26.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)7.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的⾯积为8,则C的焦距的最⼩值为()A.4B.8C.16D.328.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆⼼到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.(2020•新课标Ⅰ)已知A为抛物线C:y2=2px(p>0)上⼀点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.910.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的⻓度的最⼩值为()A.1B.2C.3D.4 11.(2020•新课标Ⅲ)在平⾯内,A,B是两个定点,C是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线12.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的⾯积为()A.B.3C.D.213.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离⼼率为.P是C上⼀点,且F 1P⊥F2P.若△PF1F2的⾯积为4,则a=()A.1B.2C.4D.814.(2020•新课标Ⅰ)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最⼩时,直线AB的⽅程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=015.(2020•上海)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y 轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线⼆.多选题(共1⼩题)16.(2020•海南)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线⽅程为y=±xD.若m=0,n>0,则C是两条直线17.(2020•天津)已知直线x﹣y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为.18.(2020•北京)已知双曲线C:﹣=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.19.(2020•上海)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第⼆象限),若点Q关于x轴对称点为Q′,且满⾜PQ⊥FQ′,求直线l的⽅程是.20.(2020•浙江)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k =,b=.21.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的⼀条渐近线为y=x,则C的离⼼率为.22.(2020•江苏)在平⾯直⻆坐标系xOy中,若双曲线﹣=1(a>0)的⼀条渐近线⽅程为y=x,则该双曲线的离⼼率是.23.(2020•新课标Ⅰ)已知F为双曲线C:﹣=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离⼼率为.24.(2020•海南)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.25.(2020•上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则11与l2的距离为.26.(2020•天津)已知椭圆+=1(a>b>0)的⼀个顶点为A(0,﹣3),右焦点为F,且|OA|=|OF|,其中O为原点.(Ⅰ)求椭圆的⽅程;(Ⅱ)已知点C满⾜3=,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆⼼的圆相切于点P,且P为线段AB的中点.求直线AB的⽅程.27.(2020•北京)已知椭圆C:+=1过点A(﹣2,﹣1),且a=2b.。
2020新高考数学多选题之知识梳理与训练:解析几何

解析几何1.集合{}22(,)|4A x y x y =+=,{}222(,)|(3)(4)B x y x y r=-+-=,其中0r >,若A B 中有且仅有一个元素,则r 的值是( ).A .3B .5C .7D .9 【答案】AC【解析】圆224x y +=的圆心是(0,0)O ,半径为2R =,圆222(3)(4)x y r -+-=圆心是(3,4)C ,半径为r , 5OC =,当25r +=,3r =时,两圆外切,当25r -=,7r =时,两圆内切,它们都只有一个公共点. 故选:AC .2.若P 是圆C :()()22331x y ++-=上任一点,则点P 到直线1y kx =-距离的值可以为( ) A .4B .6C .321+D .8 【答案】ABC【解析】如图,圆C :()()22331x y ++-=的圆心坐标为()3,3-,半径为1, 直线1y kx =-过定点()0,1-,由图可知,圆心C 到直线1y kx =-22(30)(31)5--++=,则点P 到直线1y kx =-距离的最大值为516+=.ABC 中的值均不大于6,只有D 不符合.故选:ABC.3.设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C 上一动点,则下列说法中正确的是( ) A .当点P 不在x 轴上时,12PF F ∆的周长是6B .当点P 不在x 轴上时,12PF F ∆C .存在点P ,使12PF PF ⊥D .1PF 的取值范围是[1,3]【答案】ABD【解析】由椭圆方程可知,2,a b ==,从而1c ==. 据椭圆定义,1224PF PF a +==,又1222F F c ==, 所以12PF F ∆的周长是6,A 项正确. 设点()()000,0P x y y ≠,因为122F F =, 则12120012PF F S F F y y ∆⋅==.因为003y b <=,则12PF F ∆项正确. 由椭圆性质可知,当点P 为椭圆C 短轴的一个端点时,12F PF ∠为最大. 此时,122PF PF a ===,又122F F =, 则12PF F ∆为正三角形,1260F PF ︒∠=,所以不存在点P ,使12PF PF ⊥,C 项错误. 由图可知,当点P 为椭圆C 的右顶点时,1PF 取最大值,此时13PF a c =+=; 当点P 为椭圆C 的左顶点时,1PF 取最小值,此时11PF a c =-=, 所以1[1,3]PF ∈,D 项正确, 故选:ABD .4.设椭圆22:12x C y +=的左右焦点为1F ,2F ,P 是C 上的动点,则下列结论正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何(2020高考)
1.如图,在平面直角坐标系中,已知椭圆C :22
221x y a b
+=(a >b >0)的短轴长为2,F 1,F 2
分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的
直线与椭圆C 交于A 、B 两点.当直线AB 过原点时,PF 1=3PF 2.
(1)求椭圆的标准方程;
(2)若点H(3,0),记直线PH ,QH ,AH ,BH 的斜率依次为1k ,2k ,3k ,4k .①若
122
15
k k +=
,求直线PQ 的斜率;②求1234()()k k k k ++的最小值.
(第18题)
2.在平面直角坐标系xOy 中,已知椭圆221:195
y x C +=与22221(06)36y x C b b +=<<: 的
离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A B ,两点,射线OB 与椭圆2C 交于点C .椭圆2C 的右顶点为D .
(1)求椭圆2C 的标准方程; (2)若ABO △
求直线AB 的方程;
(3)若2AF BF =,求证:四边形AOCD
是平行四边形.
3.
4.如图,在平面直角坐标系xOy 中,椭圆22
22:1(0)x y E a b a b
+=>>的右准线为直线4x =,左
顶点为A ,右焦点为F . 已知斜率为2的直线l 经过点F ,与椭圆E 相交于,B C 两点,且O 到直线l 的距离为25
5
.
(1) 求椭圆E 的标准方程;
(2) 若过O 的直线:m y kx =与直线,AB AC 分别相交于,M N 两点,且OM ON =,求k 的值.
5.在平面直角坐标系xOy中,椭圆C:22
221
x y
a b
+=(a>b>0)左、右焦点分别为F1,F2,离
心率为
2
,两准线间距离为8,圆O的直径为F1F2,直线l与圆O相切于第四象限点T,与y轴交于M点,与椭圆C交于点N(N点在T点上方),且OM=ON.(1)求椭圆C的标准方程;
(2)求直线l的方程;
(3)求直线l上满足到F1,F2距离之和为的所有点的坐标.
参考解答
1.解:(1)因为椭圆C :22
221x y a b
+=(a >b >0)的短轴长为2,所以b =1,
当直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形, 由定义知PF 1+PF 2=2a ,而PF 1=3PF 2,故132PF a =
,212
PF a =, 由222
1212PF PF F F =+得
22222911
44(1)444
a a c a a =+=+-,化简得a 2=2, 故椭圆的方程为2
212
x y +=. (2)①设直线
PQ :(1)y k x =-,代入到椭圆方程得:
2
2
2
2
(12)4(22)0k x k x k +-+-=, 设P(1x ,1y ),Q(2x ,2y ),则2
122
412k x x k +=+,
2122
2212k x x k
-=+, 所以121221121212[(1)(3)(1)(3)]
33(3)(3)
y y k x x x x k k x x x x --+--+=
+=----, 化简可得122
22
8715k k k k +=
=+, 解得:1k =或7
8
k =,即为直线PQ 的斜率.
②当这两条直线中有一条与坐标轴垂直时,1234()()0k k k k ++=, 当两条直线与坐标轴都不垂直时, 由①知122287k k k k +=
+,同理可得342
287k
k k k
-+=+ 故2123442
2244
()()1565611356()113k k k k k k k k k
--++==++++
4225
≥
=-
, 当且仅当2
2
1
k k =
即k =±1时取等号.
综上,1234()()k k k k ++的最小值为4225
-
. 2.
3.
4.
(1) 设椭圆E 的焦距为2c ,
则直线l 的方程为2()y x c =-,即220x y c --=. 因为O 到直线l 25
,222002521
c d ⨯--==+
25
5
=
,则1c =. ………………….3分 因为椭圆E 的右准线的为直线4x =,则2
4a c =,所以24a =,2223b a c =-=,
故椭圆E 的标准方程为22
143
x y +=. ………………….4分
(2) 由(1)知l :2(1)y x =-,设11(,)B x y ,22(,)C x y .
由22
2(1),3412y x x y =-⎧⎨+=⎩得2
193240x x -+=,则212123241940,32,194.19x x x x ⎧
⎪∆=-⨯⨯>⎪⎪+=⎨⎪
⎪=⎪⎩
………….6分 由(2,0)A -,11(,)B x y 可知1
1:(2)2
y AB y x x =
++, 由1
1,
(2)2y kx y y x x =⎧⎪
⎨=+⎪+⎩
得1112(2)M y x k x y =+-, ………………….9分 同理2
22
2(2)N y x k x y =
+-,
因为OM ON =2211M N k k +=+,
由图可知0M N x x +=, ………………….12分 所以1222112[(2)]2[(2)]0y k x y y k x y +-++-=,
即122211(1)[(2)2(1)](1)[(2)2(1)]0x k x x x k x x -+--+-+--=, 所以1212
121
221
12124(1)(1)4[()1]
(1)(2)(1)(2)2()4
x x x x x x k x x x x x x x x ---++=
=-++-+++- ……………….14分 4324[1]
4(43219)
19191432832419241919
-+-+===+-⨯⨯+-. ………………….16分
5.。