2019-2020年高三数学一轮复习 周测试卷

合集下载

精选2019年数学高考第一轮复习完整版考核题库(含答案)

精选2019年数学高考第一轮复习完整版考核题库(含答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+(2012天津文)2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.由直线0,3,3==-=y x x ππ与曲线x y cos =所围成的封闭图形的面积为A.21B. 1C. 23D. 3二、填空题4.一份试卷有10个题目,分为,A B 两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有 ▲ 种不同的选答方法.5.已知空间中两点P 1(x ,2,3)和P 2(5,x +3,7)间的距离为6,则x= .6.某小卖部为了了解冰糕销售量y(箱)与气温x(C ︒)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如左所示):由表中数据算得线性回归方程a bx y+=ˆ中的2-≈b ,预测当气温为25C ︒时, 冰糕销量为 杯.分析:线性回归方程a bx y+=ˆ恒过(,)x y ,由表中算得(,)x y =(10,40)代入回归方程,可得a =60,即ˆ260yx =-+,将5x =-代入回归方程,得ˆy =70. 7.已知225,xx-+= 则88x x -+=8.如果在今后若干年内我国国民经济生产总值都保持年平均9%的增长率,则要达到国民经济生产总值比2006年翻两番的年份大约是___.(0374.2109lg ,4771.03lg ,3010.02lg ===)9.已知函数))(2(log )(1*+∈+=N n n n f n ,定义使)()2()1(k f f f ⋅⋅⋅⋅为整数的数)(*∈N k k 叫做企盼数,则在区间[1,2009]内这样的企盼数共有 ▲ 个.10.已知直线,a b 相交于点P 夹角为60,过点P 作直线,又知该直线与,a b 的夹角均为60,这样的直线可作______条11.已知直线l m αβ⊥⊂平面,直线平面,有下列命题:;l m αβ①若∥,则⊥②若αβ∥,则l ∥m ;,,l m l m αβαβ③若∥则⊥;④若⊥则∥。

精选最新版2019年数学高考第一轮复习测试题库(含标准答案)

精选最新版2019年数学高考第一轮复习测试题库(含标准答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于____ ( )A . 4B .3C .2D .1(2013年高考湖南(文))2.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数(2013年高考湖北卷(文))3.(2012浙江文)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是( )A .1cm 3B .2cm 3C .3cm 3D .6cm34.)A .iB .i -C iD i (2006安徽理)5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .0(2005湖北文)6.设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是A.若d <0,则数列﹛S n ﹜有最大项B.若数列﹛S n ﹜有最大项,则d <0C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列7.设ω=-21+23i,A ={x |x =ωk +ω-k ,k ∈Z},则集合A 中的元素有 A.1个B.2个C.3个D.4个分析:本题考查ω的周期性及整数的划分. 解:设ω=-21+23i,则ω3k =1,ω3k +1=ω,ω3k +2=ω(k ∈Z), ①当k =3n ,n ∈Z 时,x =1+1=2; ②当k =3n +1,n ∈Z 时,x =ω+ω1=ω+ω2=ω+ω=-1;③当k =3n +2,n ∈Z 时,x =ω2+21ω=ω2+ω=-1.二、填空题8.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法种数为( B )A .18B .30C .36D .489. 过点A (3,4)及双曲线22163x y -=的两焦点的圆为 .10.函数)(x f 是奇函数,当41≤≤x 时,54)(2+-=x x x f ,则当14-≤≤-x 时,函数)(x f 的最大值是 。

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。

高考数学一轮复习综合测试卷一含解析新人教A版

高考数学一轮复习综合测试卷一含解析新人教A版

综合测试卷(一)时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020浙江超级全能生第一次联考,2)已知复数z =2-i 1+i(i 为虚数单位),则复数z 的模等于( )A.√102B.3√22C.√3D.√52答案 A 由于z =2-i 1+i =(2-i)(1-i)(1+i)(1-i)=1-3i2,∴|z |=|12-32i |=√(12)2+(-32)2=√102.故选A .2.(2019江西南昌外国语学校适应性测试,1)已知集合M ={x |0<x <5},N ={x |m <x <6},若M ∩N ={x |3<x <n },则m +n 等于 ( )A.9B.8C.7D.6答案 B 因为M ∩N ={x |0<x <5}∩{x |m <x <6}={x |3<x <n },所以m =3,n =5,因此m +n =8.故选B . 3.(2020九师联盟9月质量检测,3)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔,令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约为230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为 ( )A.128.4米B.132.4米C.136.4米D.140.4米答案 C 本题主要考查空间几何体的结构特征,考查数学抽象、数学运算的核心素养.由已知条件“胡夫金字塔的底部周长除以其高度的两倍,得到商为3.14159”可得,胡夫金字塔的原高为230×42×3.14159≈146.4米,则胡夫金字塔现高大约为146.4-10=136.4米,故选C . 4.(2019广西梧州调研,6)若抛物线x 2=2py (p >0)上一点(1,m )到其准线的距离为54,则抛物线的方程为( )A.x 2=y B.x 2=2y 或x 2=4y C.x 2=4y D.x 2=y 或x 2=4y答案 D 由已知可得m =12p ,则12p +p 2=54,化简得2p 2-5p +2=0,解得p =12或p =2,所以抛物线方程为x 2=y 或x 2=4y.5.(2018湖南张家界三模,4)已知变量x ,y 之间的线性回归方程为p^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误..的是 ( ) x 6 8 10 12 y6m32A.变量x ,y 之间成负相关关系B.可以预测,当x =20时,p^=-3.7 C.m =4D.该回归直线必过点(9,4)答案 C 由-0.7<0,得变量x ,y 之间成负相关关系,故A 说法正确;当x =20时,p^=-0.7×20+10.3=-3.7,故B 说法正确; 由表格数据可知。

2020年高考数学(文)一轮复习专题2.10 函数与初等函数(单元测试)(原卷版)

2020年高考数学(文)一轮复习专题2.10 函数与初等函数(单元测试)(原卷版)

第二单元 函数与初等函数单元测试【满分:100分 时间:90分钟】一、选择题(本大题共12小题,每小题4分,共48分)1.(2019·安徽芜湖一中模拟)若函数y =f (x +1)的值域为[-1,1],则函数y =f (3x +2)的值域为( )A .[-1,1]B .[-1,0]C .[0,1]D .[2,8]2.(2019·福建双十中学模拟)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( )A .(-9,+∞)B .(-9,1)C .[-9,+∞)D .[-9,1)3.(2019·浙江镇海中学模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( )A .(0,1]B .[1,2]C .[1,+∞)D .[2,+∞)4.(2019·河北唐山一中模拟)奇函数f (x )的定义域为R.若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .15.(2019·江苏启东中学模拟)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)6.(2019·江西高安中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)7.(2019·河南师大附中模拟)已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围为( )A .[-2,2]B .[1,2]C .[2,3]D .[1,2]8. (2019·广东 惠州一中模拟) 已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是( ) A .(1,2) B.⎝⎛⎦⎤1,32 C.⎣⎡⎭⎫32,2D.⎝⎛⎭⎫32,2 9.(2019·湖北 荆州中学模拟)已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为( )A .0B .1C .2D .410.(2019·广西柳州铁一中模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x +3,x ≤1,ln x ,x >1,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( )A.⎝⎛⎭⎫12,e B.⎣⎡⎭⎫12,e C.⎝⎛⎦⎤12,e e D.⎝⎛⎭⎫12,e e 11.(2019·陕西交大附中模拟)已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +2)=f (x ),当-1≤x<1时,f (x )=sin π2x ,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值范围是( ) A.⎝⎛⎦⎤0,15∪(5,+∞) B.⎝⎛⎭⎫0,15∪[5,+∞) C.⎝⎛⎦⎤17,15∪(5,7) D.⎝⎛⎭⎫17,15∪[5,7)12. (2019·四川雅安中学模拟)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a 4L ,则m 的值为( )A.5B.8C.9D.10二、填空题(本大题共4小题,共16分)13.(2019·海南加积中学模拟)函数y =x +-x 2+10x -23的最小值为________.14.(2019·广东广雅中学模拟)对于函数f (x ),如果存在x 0≠0,使得f (x 0)=-f (-x 0),则称(x 0,f (x 0))与(-x 0,f (-x 0))为函数图象的一组奇对称点.若f (x )=e x -a (e 为自然对数的底数)的图象上存在奇对称点,则实数a 的取值范围是________.15.(2019·江西南昌十中模拟)定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.16. (2019·河北辛集中学模拟)函数f (x )=x +1x的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________.三、解答题(本大题共3小题,共36分)17.(12分)(2019·浙江温州中学模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求实数a 的值.18.(12分)(2019·河北石家庄二中模拟)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=f x x-4ln x 的零点个数. 19.(12分)(2019·安徽淮北一中模拟)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x (x >0)件产品的销售收入是R (x )=-14x 2+500x (元),P (x )为每天生产x 件产品的平均利润(平均利润=总利润总产量).销售商从工厂以每件a 元进货后,又以每件b 元销售,且b =a +λ(c -a ),其中c 为最高限价(a <b <c ),λ为销售乐观系数,据市场调查,λ由当b -a 是c -b ,c -a 的比例中项时来确定.(1)每天生产量x 为多少时,平均利润P (x )取得最大值?并求P (x )的最大值;(2)求乐观系数λ的值;(3)若c =600,当厂家平均利润最大时,求a 与b 的值.。

2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理

2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理

2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理基础热身1.设M=2a(a-2),N=(a+1)(a-3),则有()A.M>NB.M≥NC.M<n< bdsfid="83" p=""></n<>D.M≤N2.[xx·襄阳五中模拟]设a,b∈R,则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.若a,b,c∈R,a>b,则下列不等式成立的是()A.<b< bdsfid="92" p=""></b<>B.a2>b2C.>D.a|c|>b|c|4.已知-1≤a≤3,-5<b<3,则a+|b|的取值范围是.< bdsfid="97" p=""></b<3,则a+|b|的取值范围是.<>5.有外表相同,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>c+b,a+c<b,则a,b,c,d由大到小的排列顺序为.< bdsfid="100" p=""></b,则a,b,c,d由大到小的排列顺序为.<> 能力提升6.已知下列四个关系:①若a>b,则ac2>bc2;②若a>b,则<;③若a>b>0,c>d>0,则>;④若a>b>1,c<0,则a cA.1个B.2个C.3个D.4个7.[xx·潮州二模]已知a>b,则下列各式一定正确的是()A.a lg x>b lg xB.ax2>bx2C.a2>b2D.a·2x>b·2x8.[xx·广西玉林质检]已知a=log23,b=,c=log53,则()A.c<a<b< bdsfid="127" p=""></a<b<>B.a<b<c< bdsfid="130" p=""></b<c<>C.b<c<a< bdsfid="133" p=""></c<a<>D.b<a<c< bdsfid="136" p=""></a<c<>9.[xx·南阳一中月考]设a>b>0,x=-,y=-,则x,y的大小关系为()A.x>yB.x<y< bdsfid="143" p=""></y<>C.x=yD.x,y的大小关系不定10.若a<b,d<c,且(c-a)(c-b)0,则a,b,c,d的大小关系是()</b,d<c,且(c-a)(c-b)A.d<a<c<b< bdsfid="153" p=""></a<c<b<>B.a<c<b<d< bdsfid="156" p=""></c<b<d<>C.a<d<b<c< bdsfid="159" p=""></d<b<c<>D.a<d<c<b< bdsfid="162" p=""></d<c<b<>11.[xx·北京东城区二模]据统计,某超市两种蔬菜A,B连续n天的价格(单位:元)分别为a1,a2,a3,…,a n和b1,b2,b3,…,b n.令M={m|a mA.若A?B,B?C,则A?CB.若A?B,B?C同时不成立,则A?C不成立C.A?B,B?A可同时不成立D.A?B,B?A可同时成立12.[xx·南京一模]已知a,b为实数,且a≠b,a<0,则a 2b-(填“>”“<”或“=”).13.[xx·咸阳模拟]已知函数f=ax+b,0<f<2,-1<f<1,则2a-b的取值范围是.< bdsfid="184" p=""></f<2,-1<f<1,则2a-b的取值范围是.<>14.[xx·河南天一大联考]已知实数a∈(-3,1),b∈,,则的取值范围是.难点突破15.(5分)[xx·杭州质检]若实数a,b,c满足对任意实数x,y有3x+4y-5≤ax+by+c≤3x+4y+5,则()A.a+b-c的最小值为2B.a-b+c的最小值为-4C.a+b-c的最大值为4D.a-b+c的最大值为616.(5分)[xx·盐城一模]已知-1≤a+b≤3,2≤a-b≤4,若2a+3b的最大值为m,最小值为n,则m+n= .课时作业(三十四)第34讲一元二次不等式及其解法基础热身1.不等式-x2+3x+10>0的解集为 ()A.(-2,5)B.(-∞,-2)∪(5,+∞)C.(-5,2)D.(-∞,-5)∪(2,+∞)2.[xx·上饶四校联考]设x∈R,则“0<x<2”是“x2-x-2<="" bdsfid="233" p=""></x<2”是“x2-x-2A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.[xx·淮北一中四模]若(x-1)(x-2)<2,则(x+1)(x-3)的取值范围是()A.(0,3)B.C.D.4.若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是.5.若关于x的不等式ax2-6x+a2<0的解集是(1,m),则m= .能力提升6.如果关于x的不等式x2<ax+b的解集是{x|1<x<="" bdsfid="270" p=""></ax+b的解集是{x|1<xA.-81B.81C.-64D.647.若存在x∈[-2,3],使不等式2x-x2≥a成立,则实数a的取值范围是()A.(-∞,1]B.(-∞,-8]C.[1,+∞)D.[-8,+∞)8.[xx·岳阳质检]设函数f(x)=若不等式xf(x-1)≥a的解集为[3,+∞),则实数a的值为()A.-3B.3C.-1D.19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a 的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.[xx·银川二中一模]已知a1>a2>a3>0,则使得(1-a i x)2<1(i=1,2,3)都成立的x的取值范围是()A.B.C.D.11.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减少耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,则t的取值范围是()A.B.C.D.12.已知函数f(x)=x2-2ax+a2-1,若关于x的不等式f[f(x)]<0的解集为空集,则实数a的取值范围是.13.设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,则x的取值范围是.14.[xx·惠州二调]已知函数f(x)=则不等式f[f(x)]≤3的解集为.难点突破15.(5分)[xx·苏北三市(连云港、徐州、宿迁)三模]已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是()A.B.C.D.16.(5分)[xx·湖州、衢州、丽水三市联考]已知函数f=ax2+bx+c(a,b,c∈R),若存在实数a ∈[1,2],对任意x∈[1,2],都有f≤1,则7b+5c的最大值是.课时作业(三十五)第35讲二元一次不等式(组)与简单的线性规划问题基础热身1.(x-2y+1)(x+y-3)<0表示的平面区域为()图K35-12.已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为()A.(-24,7)B.(-∞,-7)∪(24,+∞)C.(-7,24)D.(-∞,-24)∪(7,+∞)3.[xx·阜阳质检]不等式|x|+|3y|-6≤0所对应的平面区域的面积为()A.12B.24C.36D.484.在平面直角坐标系中,不等式组表示的平面区域的形状是.5.[xx·桂林、崇左、百色一模]设x,y满足约束条件则x2+y2的最大值为.能力提升6.已知实数x,y满足约束条件则目标函数z=x-2y的最小值为()A.-1B.1C.3D.77.[xx·南充三诊]若实数x,y满足不等式组则z=2x+y的最大值是()A.B.C.14D.218.设x,y满足约束条件则的最大值为()A.B.2C.D.09.[xx·惠州二模]设关于x,y的不等式组表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则实数m的取值范围是()A.B.C.D.10.[xx·宁德质检]已知约束条件表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为()A.B.1C.D.11.[xx·大庆实验中学一模]已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域上的一个动点,则·的取值范围是.12.[xx·淮南二模]已知实数x,y满足不等式组若目标函数z=y-mx 取得最大值时有唯一的最优解(1,3),则实数m的取值范围是.13.(15分)[xx·天津河东区二模]制定投资计划时,不仅要考虑可能获得的盈利,还要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划的投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问:投资人对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?最大盈利额是多少?14.(15分)某人有一套房子,室内面积共计180 m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18 m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15 m2,可住游客3名,每名游客每天住宿费50元.装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天才能获得最大的房租收益?难点突破15.(5分)[xx·衡阳二联]集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠?,则r的取值范围为()A.B.C.D.16.(5分)[xx·九江模拟]已知实数x,y满足若z=mx+y的最大值为 3,则实数m的值是()A.-2B.3C.8D.2课时作业(三十六)第36讲基本不等式基础热身1.[xx·北京海淀区一模]若m<n<0,则下列不等式中正确的是()< bdsfid="561" p=""></n<0,则下列不等式中正确的是()<>A.>B.>C.+>2D.m+n>mn2.[xx·青岛质检]已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y 有()A.最小值20B.最小值200C.最大值20D.最大值2003.[xx·赤峰模拟]若函数f=x+(x>2)在x=a处取得最小值,则a=()A.1+B.1+C.3D.44.[xx·天津河东区二模]已知a>0,b>0,且2a+b=4,则的最小值是.5.[xx·成都九校联考]设正数a,b满足a+2b=1,则+的最小值为.能力提升6.[xx·郑州三模]若实数a,b,c均大于0,且(a+c)·(a+b)=6-2,则2a+b+c的最小值为()A.-1B.+1C.2+2D.2-27.[xx·雅安三诊]对一切实数x,不等式x2+a+1≥0恒成立,则实数a的取值范围是() A.B.C.D.8.[xx·乌鲁木齐三模]已知x,y∈R,x2+y2+xy=315,则x2+y2-xy 的最小值是()A.35B.105C.140D.2109.[xx·泉州模拟]已知2a+2b=2c,则a+b-2c的最大值为()A.-2B.-1C.D.-10.[xx·深圳调研]若函数f=x+(m为大于0的常数)在(1,+∞)上的最小值为3,则实数m的值为.11.用一根长为12的钢筋焊接一个正三棱柱形状的广告牌支架,则该三棱柱的侧面积的最大值是.12.[xx·日照三模]已知向量a=(m,1),b=(4-n,2),m>0,n>0,若a∥b,则+的最小值为.13.(15分)[xx·盐城三模]已知a,b,c为正实数,且a+b+c=3,证明: ++≥3.14.(15分)[xx·黄冈中学模拟]某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x(x>0)吨,且每吨原材料创造的利润提高了0.5x%.若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12a-x万元,其中a>0.(1)若设备升级后生产这批A产品的利润不低于原来生产这批A产品的利润,求x的取值范围;(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.难点突破15.(5分)[xx·河南豫南六市联考]已知函数f=ax2+bx+c(b>a),对任意的x∈R,f≥0恒成立,则的最小值为()A.3B.2C.1D.016.(5分)[xx·湛江二模]已知a>b,二次不等式ax2+2x+b≥0对于一切实数x恒成立,又存在x0∈R,a+2x0+b=0,则的最小值为.课时作业(三十七)第37讲合情推理与演绎推理基础热身1.[xx·鹰潭一模]用“三段论”推理:任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0.你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的2.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点3.观察图K37-1中各正方形图案,则所有圆点总和S n与n的关系式为()图K37-1A.S n=2n2-2nB.S n=2n2C.S n=4n2-3nD.S n=2n2+2n4.[xx·兰州模拟]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,….由以上式子可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1= .5.[xx·烟台二模]在正项等差数列中有=成立,则在正项等比数列中,类似的结论为.能力提升6.[xx·郑州一中调研]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.xx年是“干支纪年法”中的丙申年,那么xx年是“干支纪年法”中的()A.丁酉年B.戊未年C.乙未年D.丁未年7.下面说法正确的是()①数列{a n}的前三项是1,2,3,那么这个数列的通项公式为a n=n;②由平面三角形的性质推测空间四面体的性质,这是一种合情推理;③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适;④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④8.[xx·临汾一中、忻州一中、长治二中、康杰中学联考]已知[x]表示不大于x的最大整数,设函数f(x)=log2,得到下列结论:结论1:当2<x< bdsfid="827" p=""></x<>结论2:当4<x< bdsfid="831" p=""></x<>结论3:当6<x< bdsfid="835" p=""></x<>……照此规律,结论6为.9.如图K37-2甲所示,在直角三角形ABC中,AC⊥AB,AD⊥BC,D 是垂足,则有AB2=BD·BC,该结论称为射影定理.如图乙所示,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比直角三角形中的射影定理,则有.图K37-2难点突破10.(5分)[xx·郑州、平顶山、濮阳二模]设函数f(0)(x)=sin x,定义f(1)(x)=f'(0)(x),f(2)(x)=f'(1)(x),…,f(n)(x)=f'(n-1)(x),则f(1)(15°)+f(2)(15°)+f(3)(15°)+…+f(xx)(15°)的值是 ()A.B.C.0D.111.(5分)[xx·江南十校二模]某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向.有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是.课时作业(三十八)第38讲直接证明与间接证明基础热身1.[xx·莱芜一中模拟]用反证法证明命题“设a,b为实数,则方程x2+ax+b=0没有实数根”时,应假设()A.方程x2+ax+b=0至多有一个实根B.方程x2+ax+b=0至少有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根2.要证明a2+b2-1-a2b2≤0,只需证明()A.2ab-1-a2b2≤0B.a2+b2-1≤C.-1-a2b2≤0D.(a2-1)(b2-1)≥03.[xx·南昌二模]已知等差数列的前n项和为S n,若S2k+1>0,则一定有()A.a k>0B.S k>0C.a k+1>0D.S k+1>04.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,+<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设≥1.其中正确说法的序号是.能力提升5.[xx·大连模拟]“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是()A.男护士B.女护士C.男医生D.女医生6.[xx·福建师大附中一模]若O为△ABC平面内一点,且满足(-)·(+-2)=0,则△ABC为()A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形7.设A,B,C为锐角三角形ABC的三个内角,M=sin A+sin B+sinC,N=cos A+2cos B,则()A.M<n< bdsfid="997" p=""></n<>B.M=NC.M>ND.M,N大小不确定8.[xx·武汉模拟]已知f=,a≠b,则|f-f|与|a-b|的大小关系为()A.>B.<C.=D.不确定9.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设命题的结论不成立的正确叙述是(填序号).①假设三个角都不大于60°;②假设三个角都大于60°;③假设三个角至多有一个大于60°;④假设三个角至多有两个大于60°.难点突破10.(5分)[xx·山西运城调研]在△ABC中,AC=5,+-=0,则BC+AB=()A.6B.7C.8D.911.(5分)[xx·北京海淀区二模]已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图K38-1所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90°,记T i(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是()A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数图K38-1课时作业(三十九)第39讲数学归纳法基础热身1.用数学归纳法证明“1+a+a2+…+a n+1=(a≠1,n∈N*)”,在验证n=1时,左端所得的项为()A.1B.1+aC.1+a+a2D.1+a+a2+a32.用数学归纳法证明“凸n边形对角线的条数f=”时,第一步应验证()A.n=1成立B.n=2成立C.n=3成立D.n=4成立3.用数学归纳法证明“1+++…+=”时,由n=k到n=k+1,等式左边需要添加的项是()A.B.C.D.4.在数列{a n}中,a1=2,a n+1=(n∈N*),可以猜想数列的通项公式为.5.用数学归纳法证明“1+++…+<2-(n≥2,n∈N*)”时第一步需要验证的不等式为.能力提升6.已知n为正偶数,用数学归纳法证明“1-+-+…+=2++…+”时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n= 时等式成立()A.k+1B.k+2C.2k+2D.2(k+2)7.用数学归纳法证明“1+++…+< bdsfid="1143" p=""><>A.2k-1B.2k-1C.2kD.2k+18.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k+1成立时,总可推出f(k+1)≥k+2成立.那么,下列说法正确的是()A.若f(1)<2成立,则f(10)<11成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C.若f(2)<3成立,则f(1)≥2成立D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立9.设平面内有n(n≥3)条直线,它们任何2条不平行,任何3条不共点,若k条这样的直线把平面分成f个区域,则k+1条直线把平面分成的区域数f(k+1)=f+ .10.用数学归纳法证明“2n>2n2-2n+1对于n≥n0的正整数n均成立”时,第一步证明中的起始值n0应取.11.设f(n)=1-+-+…+,则f(k+1)=f+ .(不用化简)12.用数学归纳法证明“1-+-+…+-=++…+”时,假设n=k时等式成立,则n=k+1时,等式右边为.13.(10分)[xx·山西孝义质检]数列满足a n+5a n+1=36n+18,且a1=4.(1)写出的前3项,并猜想其通项公式;(2)用数学归纳法证明你的猜想.难点突破14.(5分)如果命题P(n∈N*)对n=k(k∈N*)成立,则它对n=k+1也成立,现已知P对n=4不成立,则下列结论中正确的是 ()A.P对任意n∈N*成立B.P对n>4成立C.P对n<4成立D.P对n≤4不成立15.(5分)已知f(m)=1+++…+(m∈N*),用数学归纳法证明f>时,f-f= .课时作业(三十三)1.A[解析] 因为M-N=2a(a-2)-(a+1)(a-3)=a2-2a+3=(a-1)2+2>0,所以M>N,故选A.2.D[解析] 因为“a>b”不能推出“|a|>|b|”成立,且“|a|>|b|”也不能推出“a>b”成立,所以“a>b”是“|a|>|b|”的既不充分也不必要条件.故选D.3.C[解析] 取a=1,b=-1,排除选项A;取a=0,b=-1,排除选项B;取c=0,排除选项D;显然>0,则不等式a>b的两边同时乘,所得不等式仍成立.故选C.4.[-1,8)[解析] 因为-5<b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以< bdsfid="1228" p=""></b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以<>a+|b|的取值范围是[-1,8).5.d>b>a>c [解析] ∵a+b=c+d,a+d>c+b,∴2a>2c,即a>c,∴b<d.∵a+c<b,∴a<b.综上可得< bdsfid="1235" p=""></d.∵a+c<b,∴a<b.综上可得<>d>b>a>c.6.B[解析] c=0时,①错误;a>0>b时,②错误;根据不等式的性质知③正确;根据指数函数的性质可知④正确.故正确的有2个.7.D[解析] A中,当x=1时,不成立;B中,当x=0时,不成立;C中,当a=0,b=-1时,不成立;D 中,因为2x>0,所以a·2x>b·2x成立.故选D.8.A[解析] 由题可知a=log2<a<b.故选a.< bdsfid="1248" p=""><a<b.故选a.<>9.B[解析] ∵x>0,y>0,==<1,∴x<y,故选b.< bdsfid="1252" p=""></y,故选b.<>10.A[解析] ∵a<b,(c-a)(c-b)0,∴a<c<b,且db,结合d<c,知< bdsfid="1258" p=""></c,知<></c<b,且d</b,(c-a)(c-b) d<a<c<b.故选a.< bdsfid="1262" p=""></a<c<b.故选a.<>11.C[解析] 特例法:例如蔬菜A连续10天的价格分别为1,2,3,4,…,10,蔬菜B连续10天的价格分别为10,9,…,1时,A?B,B?A 同时不成立,故选C.12.< [解析] ∵a≠b,a<0,∴a-2b-=<0,∴a<2b-.13. [解析] 由函数的解析式可知0<a+b<2,-1<-a+b< bdsfid="1272" p=""></a+b<2,-1<-a+b<>14.(-24,8)[解析] 当-3<a<="">15.A[解析] 当x=1,y=-1 时,-6≤a-b+c≤4,所以a-b+c的最小值为-6,最大值为4,故B,D 错误;当x=-1,y=-1 时,-12≤-a-b+c≤-2,则2≤a+b-c≤12,所以a+b-c的最小值为2,最大值为12,故A正确,C错误.故选A.16.2[解析] 设2a+3b=x(a+b)+y(a-b),则解得因为-≤(a+b)≤,-2≤-(a-b)≤-1,所以-≤(a+b)-(a-b)≤,即-≤2a+3b≤,所以m+n=2.课时作业(三十四)1.A[解析] 由x2-3x-10<0,解得-2<x<5.< bdsfid="1289" p=""></x<5.<>2.A[解析] 由x2-x-2<0,得-1<x<2,故选a.< bdsfid="1293" p=""></x<2,故选a.<>3.C[解析] 由(x-1)(x-2)<2,解得0<x< bdsfid="1297" p=""></x<>4.(-∞,-6]∪[2,+∞)[解析] 由已知得方程x2-ax-a+3=0有实数根,即Δ=a2+4(a-3)≥0,故a≥2或a≤-6.5.2[解析] 由题意知,a≠0,方程ax2-6x+a2=0的根为1,m,且m>1,则所以m=2.6.B[解析] 不等式x2<ax+b可化为x2-ax-b<0,其解集是{x|1<x</ax+b可化为x2-ax-b<0,其解集是{x|1<x7.A[解析] 设f(x)=2x-x2,则当x∈[-2,3]时,f(x)=-(x-1)2+1∈[-8,1],因为存在x∈[-2,3],使不等式2x-x2≥a成立,所以a≤f(x)max,所以a≤1,故选A.8.B[解析] 由题意知3是方程xf(x-1)=a的一个根,则a=3f(3-1)=3×(2-1)=3,故选B.9.A[解析] 令g(x)=x2-4x-2,x∈(1,4),易得g(x)<-2.< bdsfid="1317" p=""><-2.<>10.B[解析] 由题意有(1-a i x)2<1?x2-2a i x<0?xx-<0,所以不等式的解集为0,.又0<<<,所以x的取值范围为0,,故选B.11.B[解析] 由题意知征收耕地占用税后每年损失耕地为20-t万亩,则税收收入为20-t×24 000×t%万元,由题意有20-t×24 000×t%≥9000,整理得t2-8t+15≤0,解得3≤t≤5,∴当耕地占用税税率为3%~5%时,既可减少耕地损失又可保证此项税收一年不少于9000万元.∴t的取值范围是3≤t≤5,故选B.12.(-∞,-2][解析] f(x)=x2-2ax+a2-1=[x-(a+1)][x-(a-1)],则f(x)<0?a-1<x<a+1,则f[f(x)]<0?a-1<f(x)< bdsfid="1327" p=""></x<a+1,则f[f(x)]<0?a-1<f(x)<>13.,[解析] 记f(m)=mx2-2x-m+1=(x2-1)m+1-2x(|m|≤2),则f(m)<0恒成立等价于解得<x<.< bdsfid="1334" p=""></x<.<>14. [解析] 由题意,f[f(x)]≤3,则f(x)≥0或∴f(x)≥-3,∴x<0或∴x≤.15.B[解析] 设f(x)=x2-2(a-2)x+a,当Δ=4(a-2)2-4a<0,即1<a0对x∈R恒成立.当Δ=0时,a=1或a=4,当a=1时,f=0,不合题意;当a=4时,f(2)=0,符合题意.当Δ>0时,</a需满足即即4<a≤5.综上,实数a的取值范围是(1,5].< bdsfid="1345" p=""></a≤5.综上,实数a的取值范围是(1,5].<>16.-6[解析] 因为x∈[1,2],所以ax2+bx+c≤1等价于a≤,由题意知存在a∈[1,2],使得不等式a≤对任意x∈[1,2]恒成立,所以≥1,即x2+bx+c-1≤0对x∈[1,2]恒成立,所以即所以7b+5c=3(b+c)+2(2b+c)≤-6,即7b+5c的最大值为-6.课时作业(三十五)1.C[解析] 原不等式等价于不等式组或分别画出两个不等式组所表示的平面区域(图略),观察可知选C.2.C[解析] ∵点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,∴(-9+2-a)(12+12-a)<0,即(a+7)(a-24)<0,解得-7<a<24,故选 c.< bdsfid="1358" p=""></a<24,故选c.<>3.B[解析] 如图,不等式+-6≤0所对应的平面区域为一个菱形及其内部,菱形的对角线长分别为12,4,所以其面积为×12×4=24,故选B.4.正方形[解析] 不等式组表示的平面区域由四条直线x=1,x=-1,y=2,y=4围成,其形状为正方形.5.5[解析] 由约束条件作出可行域如图所示,由得得A(2,-1).由图可知x2+y2的最大值为22+(-1)2=5,故答案为5.6.B[解析] 由约束条件作出可行域如图所示,目标函数z=x-2y可化为y=x-z,其中-z表示斜率为的直线在y轴上的截距,通过平移可知,当直线经过点A(3,1)时-z取到最大值,即z 取得最小值,最小值为1.故选B.7.B[解析] 作出可行域如图所示,目标函数z=2x+y可化为y=-2x+z,其中z表示斜率为-2的直线在y轴上的截距,由图可知,当直线过点A,时z取得最大值,故选B.8.A[解析] 作出不等式组表示的平面区域如图中阴影部分所示,又表示区域内的点与原点连线的斜率,由图知,==,故选A.。

高三数学一轮复习周测试卷

高三数学一轮复习周测试卷

1高三数学一轮复习 周测试卷一:选择题1.命题“对任意x R ∈都有21x ≥”的否定是( )A .对任意x R ∈,都有21x <B .不存在x R ∈,使得21x <C .存在0x R ∈,使得201x ≥D .存在0x R ∈,使得201x <2.设{}62|≤≤=x x A ,{}32|+≤≤=a x a x B ,若A B ⊆,则实数a 的取值范围是( ) A 、[]3,1 B 、),3[+∞ C 、),1[+∞ D 、()3,1 3.已知函数()21f x +的定义域为12,2⎛⎫- ⎪⎝⎭,则()f x 的定义域为( )A . 31,24⎛⎫-⎪⎝⎭ B . 31,2⎛⎫- ⎪⎝⎭C . ()3,2-D . ()3,3-4.函数()22x f x x =-在区间[]1,4-内的零点个数是( ) A .0B .1C .2D .35.定义在R 上的偶函数()f x 满足(2)()f x f x -=,且在[3,2]--上是减函数,,αβ是钝角三角形的两个锐角,则下列不等式中正确的是( )A .(sin )(co s )f f αβ>B .(co s )(co s )f f αβ<C .(co s )(co s )f f αβ>D .(sin )(co s )f f αβ<6.如图,当直线:l y x t =+从虚线位置开始,沿图中箭头方向平行匀速移动时,正方形A B C O 位于直线l 下方(图中阴影部分)的面积记为S ,则S t 与的函数图象大致是( )7.若函数)(log)(3ax xx f a-=)1,0(≠>a a 在区间21(-,0)内单调递增,则a 取值范围是 ( )A.[41,1) B.[43,1) C.49(,)+∞D.(1,49)8.设定义在区间(),b b -上的函数()1lg12a x f x x+=-是奇函数(),,2a b R a ∈≠-且,则ba 的取值范围是( )2A.( B.(0, C.( D.(0,9.函数()3f x m x =-+有零点,则实数m 的取值范围是( )A .0,2⎛⎫ ⎪ ⎪⎝⎭ B .0,2⎡⎢⎣⎦ C .0,4⎡⎢⎣⎦ D .0,4⎛⎫⎪ ⎪⎝⎭ 10.设A 是自然数集的一个非空子集,对于k A ∈,如果2k A ∉,且A ,那么k 是A 的一个“酷元”,给定{}2lg (36)S x N y x =∈=-,设集合M 由集合S 中的两个元素构成,且集合M 中的两个元素都是“酷元”,那么这样的集合M 有( )A .3个B .4个C .5个D .6个二:填空题11.已知函数()322f x x a x b x a =+++在1x =处取得极值10,则a b +取值的集合为 12.若函数3()12f x x x =-在(1,1)k k -+上不是..单调函数,则实数k 的取值范围 为 .13.已知函数()f x 对于任意x R ∈都有()()2f x f x =-,()1y f x =-的图象关于()1,0对称,且当[]1,1x ∈-时,()3f x x =,则()2013f =__. 14.已知函数21(1),0()2,0n x x f x x x x +>⎧=⎨--≤⎩ , 若函数()()g x f x m =-有3个零点,则实数m 的 取值范围是15.若关于x 的方程43210x a x a x a x ++++=有实根,则实数a 的取值范围 三:解答题16.设p:实数x 满足22430x a x a -+<, ,命题:q 实数x 满足.|x-3|<1(Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围;(Ⅱ)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.17.已知数列{}n a 中,)(3,1*11N n a a a a n n n ∈+==+求数列{}n a 的通项公式n a ;318.已知函数()2in c o s c o s f x x x x ωωω=-,其中ω为使()f x 能在23x π=时取得最大值的最小正整数. (1)求ω的值;(2)设A B C 的三边长a 、b 、c 满足2b ac =,且边b 所对的角θ的取值集合为A ,当x A ∈时,求()f x 的值域.19.工厂生产某种产品,次品率P 与日产量x (万件)间的关系()()10623x c xP xc ⎧<≤⎪⎪-=⎨⎪>⎪⎩(c 为常数,且06c <<),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元,(1)将日盈利额y (万元)表示为日产量x (万件)的函数; 18.为使日盈利额最大,日产量应为多少万件?(注: 100⨯次品数次品率=%产品总数)20.已知椭圆2222:1(0)x y C a b ab+=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -+=相切,直线:4l xm y =+与椭圆C 相交于A 、B 两点.(Ⅰ)求椭圆C 的方程; (Ⅱ)求O A O B⋅的取值范围;421.已知函数()()()()()1212ln ,x f x a x x g x x e -=---=(a 为常数,e 为自然对数的底)(1)当1a =时,求()f x 的单调区间; (2)若函数()f x 在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (3)若对任意的(]00,x e ∈,在(]0,e 上存在两个不同的()1,2i x i =使得()()0i f x g x =成立,求a的取值范围.。

2019-2020年高考数学一轮复习第7章立体几何第5讲直线平面垂直的判定及性质增分练

2019-2020年高考数学一轮复习第7章立体几何第5讲直线平面垂直的判定及性质增分练

2019-2020年高考数学一轮复习第7章立体几何第5讲直线平面垂直的判定及性质增分练1.[xx·浙江高考]已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n ⊥β,则( )A.m∥l B.m∥n C.n⊥l D.m⊥n答案 C解析∵α∩β=l,∴l⊂β,∵n⊥β,∴n⊥l.故选C.2.[xx·福建高考]若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析由“m⊥α且l⊥m”推出“l⊂α或l∥α”,但由“m⊥α且l∥α”可推出“l ⊥m”,所以“l⊥m”是“l∥α”的必要而不充分条件,故选B.3.[xx·天津河西模拟]设l是直线,α,β是两个不同的平面,则下列说法正确的是( )A.若l∥α,l∥β,则α∥β B.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥β D.若α⊥β,l∥α,则l⊥β答案 B解析对于A,若l∥α,l∥β,则α∥β或α与β相交,故A错误;易知B正确;对于C,若α⊥β,l⊥α,则l∥β或l⊂β,故C错误;对于D,若α⊥β,l∥α,则l 与β的位置关系不确定,故D错误.故选B.4.[xx·济南模拟]已知如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABCDEF.则下列结论不正确的是( )A.CD∥平面PAFB.DF⊥平面PAFC.CF∥平面PABD.CF⊥平面PAD答案 D解析A中,因为CD∥AF,AF⊂平面PAF,CD⊄平面PAF,所以CD∥平面PAF成立;B中,因为ABCDEF为正六边形,所以DF⊥AF,又因为PA⊥平面ABCDEF,所以PA⊥DF,又因为PA∩AF=A,所以DF⊥平面PAF成立;C中,因为CF∥AB,AB⊂平面PAB,CF⊄平面PAB,所以CF∥平面PAB;而D中CF与AD 不垂直.故选D.5.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D解析若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A不正确,α与β相交.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B,C.故选D.6.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.答案 3解析如图所示.∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB.但AB不一定垂直于BC.7.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α,b∥β,且α∥β,则a∥b;②若a⊥α,且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.答案②③④解析①中a与b可能相交或异面,故不正确.②垂直于同一直线的两平面平行,正确.③中存在γ,使得γ与α,β都垂直.④中只需直线l⊥α且l⊄β就可以.8.[xx·广东模拟]如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有________(写出全部正确命题的序号).①平面ABC⊥平面ABD;②平面ABD⊥平面BCD;③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.答案③解析由AB=CB,AD=CD知AC⊥DE,AC⊥BE,从而AC⊥平面BDE,故③正确.9.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.又CD⊥AC,PA∩AC=A,故CD⊥平面PAC,AE⊂平面PAC.故CD⊥AE.(2)∵PA=AB=BC,∠ABC=60°,故PA=AC.∵E是PC的中点,故AE⊥PC.由(1)知CD⊥AE,由于PC∩CD=C,从而AE⊥平面PCD,故AE⊥PD.易知BA⊥PD,故PD⊥平面ABE.10.[xx·湖南永州模拟]如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD ⊥平面SAB ; (2)求四棱锥S -ABCD 的高.解 (1)证明:如图,取AB 的中点E ,连接DE ,DB ,则四边形BCDE 为矩形, ∴DE =CB =2, ∴AD =BD = 5.∵侧面SAB 为等边三角形,AB =2, ∴SA =SB =AB =2. 又SD =1,∴SA 2+SD 2=AD 2,SB 2+SD 2=BD 2,∴∠DSA =∠DSB =90°,即SD ⊥SA ,SD ⊥SB ,SA ∩SB =S , ∴SD ⊥平面SAB .(2)设四棱锥S -ABCD 的高为h ,则h 也是三棱锥S -ABD 的高. 由(1),知SD ⊥平面SAB .由V S -ABD =V D -SAB ,得13S △ABD ·h =13S △SAB ·SD ,∴h =S △SAB ·SD S △ABD. 又S △ABD =12AB ·DE =12×2×2=2,S △SAB =34AB 2=34×22=3,SD =1, ∴h =S △SAB ·SD S △ABD =3×12=32. 故四棱锥S -ABCD 的高为32. [B 级 知能提升]1.[xx·青岛质检]设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a ⊥b的是( )A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β答案 C解析对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b.故选C.2.[xx·河北唐山模拟]如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF 的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有( )A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF答案 B解析根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;由条件证不出HG⊥平面AEF,∴D不正确.故选B.3.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.答案①②④解析①AE⊂平面PAC,BC⊥AC,BC⊥PA⇒AE⊥BC,故①正确;②AE⊥PC,AE⊥BC⇒AE ⊥平面PBC,PB⊂平面PBC⇒AE⊥PB,AF⊥PB,EF⊂平面AEF⇒EF⊥PB,故②正确;③若AF ⊥BC⇒AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误;由②可知④正确.4.[xx·江西九江模拟]如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF ∥BE ,且DF =2BE =2,EF =3.(1)证明:平面ACF ⊥平面BEFD .(2)若cos ∠BAD =15,求几何体ABCDEF 的体积.解 (1)证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,∵BE ⊥平面ABCD ,AC ⊂平面ABCD , ∴BE ⊥AC .∴AC ⊥平面BEFD ,AC ⊂平面ACF . ∴平面ACF ⊥平面BEFD .(2)设AC 与BD 的交点为O ,AB =a (a >0), 由(1)得AC ⊥平面BEFD ,∵BE ⊥平面ABCD ,∴BE ⊥BD , ∵DF ∥BE ,∴DF ⊥BD ,∴BD 2=EF 2-(DF -BE )2=8,∴BD =22, ∴S 四边形BEFD =12(BE +DF )·BD =32,∵cos ∠BAD =15,∴BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =85a 2=8,∴a =5,∴OA 2=AB 2-OB 2=3,∴OA =3, ∴V ABCDEF =2V A -BEFD =23S 四边形BEFD ·OA =2 6.5.[xx·全国卷Ⅲ]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.解 (1)证明:如图,取AC 的中点O ,连接DO ,BO .因为AD =CD , 所以AC ⊥DO .又由于△ABC 是正三角形, 所以AC ⊥BO .从而AC ⊥平面DOB ,又BD ⊂平面DOB , 故AC ⊥BD . (2)连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.2019-2020年高考数学一轮复习第7章立体几何第7讲立体几何中的向量方法第2课时知能训练轻松闯关理北师大版1.在直三棱柱ABC ­A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90° 解析:选C.不妨设AB =AC =AA 1=1,建立空间直角坐标系如图所示,则B (0,-1,0),A 1(0,0,1),A (0,0,0),C 1(-1,0,1),所以BA 1→=(0,1,1), AC 1→=(-1,0,1),所以cos 〈BA 1→,AC 1→〉=BA 1→·AC 1→|BA 1→|·|AC 1→|=12×2=12,所以〈BA 1→,AC 1→〉=60°,所以异面直线BA 1与AC 1所成的角等于60°.2.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33D.22解析:选B.以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12,D (0,1,0),所以A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧y -z =0,1-12z =0, 所以⎩⎪⎨⎪⎧y =2,z =2.所以n 1=(1,2,2).因为平面ABCD 的一个法向量为n 2=(0,0,1),所以cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.3.在正三棱柱ABC ­A 1B 1C 1中,AB =1,点D 在棱BB 1上,若BD =1,则AD 与平面AA 1C 1C 所成角的正切值为________. 解析:如图,设AD 与平面AA 1C 1C 所成的角为α,E 为AC 的中点,连接BE ,则BE ⊥AC ,所以BE ⊥平面AA 1C 1C ,可得AD →·EB →=(AB →+BD →)·EB →=AB →·EB →=1×32×32=34=2×32×cos θ(θ为AD →与EB →的夹角),所以cos θ=64=sin α,所以所求角的正切值为tan α=cos θsin θ=155. 答案:1554.如图所示,在空间直角坐标系中有直三棱柱ABC ­A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.解析:不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.答案:555.已知单位正方体ABCD ­A 1B 1C 1D 1,E ,F 分别是棱B 1C 1,C 1D 1的中点.试求: (1)AD 1与EF 所成角的大小;(2)AF 与平面BEB 1所成角的余弦值. 解:建立如图所示的空间直角坐标系,得A (1,0,1),B (0,0,1),D 1(1,1,0), E ⎝ ⎛⎭⎪⎫0,12,0, F ⎝ ⎛⎭⎪⎫12,1,0. (1)因为AD 1→=(0,1,-1),EF →=⎝ ⎛⎭⎪⎫12,12,0,所以cos 〈AD 1→,EF →〉=(0,1,-1)·⎝ ⎛⎭⎪⎫12,12,02×22=12,即AD 1与EF 所成的角为60°. (2)FA →=⎝ ⎛⎭⎪⎫12,-1,1,由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ,则sin θ=|cos 〈BA →,FA →〉|=⎪⎪⎪⎪⎪⎪(1,0,0)·⎝ ⎛⎭⎪⎫12,-1,11× ⎝ ⎛⎭⎪⎫122+(-1)2+12=13,所以cos θ=223.即AF 与平面BEB 1所成角的余弦值为223.6.(xx·高考重庆卷)如图,三棱锥P ­ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2. (1)证明:DE ⊥平面PCD ;(2)求二面角A ­PD ­C 的余弦值.解:(1)证明:由PC ⊥平面ABC ,DE 平面ABC ,得PC ⊥DE . 由CE =2,CD =DE =2,得△CDE 为等腰直角三角形, 故CD ⊥DE .由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线, 故DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF=FC =FE =1.又已知EB =1,故FB =2.由∠ACB =π2,得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0), DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0.设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0, 得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0), 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=36,故所求二面角A ­PD ­C 的余弦值为36.1.(xx·山西省考前质量检测)如图,四棱锥P ­ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2. (1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H ­PB ­C 的余弦值.解:(1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,所以CD =2,所以BC ⊥BD . 因为PD ⊥底面ABCD ,所以PD ⊥BC ,又PD ∩BD =D ,所以BC ⊥平面PBD ,又BC 平面PBC , 所以平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角,所以tan ∠BPC =63,所以PB =3,PD =1. 由CH →=2HD →及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎪⎫0,23,0. 设平面HPB 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧HP →·n =0,HB →·n =0,即⎩⎪⎨⎪⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2).设平面PBC 的法向量为m =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧PB →·m =0,BC →·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0, 取x 2=1,则m =(1,1,2).又cos 〈m ,n 〉=m ·n |m ||n |=-217,故二面角HPB C 的余弦值为217. 2.(xx·河南省六市联考)如图①,已知长方形ABCD 中,AB =2,AD =1,M 为DC 的中点.将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM ,如图②.(1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E ­AM ­D 的余弦值为55. 解:(1)证明:连接BM ,则AM =BM =2,AM 2+BM 2=AB 2,所以AM ⊥BM ,又平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM , 所以BM ⊥平面ADM ,因为AD 平面ADM , 所以BM ⊥AD .(2)建立如图所示的空间直角坐标系Mxyz ,由(1)可知,平面ADM 的一个法向量m =(0,1,0),设平面AME 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·MA →=0,n ·ME →=0,因为A (2,0,0),B (0,2,0),D ⎝ ⎛⎭⎪⎫22,0,22,M (0,0,0),DB →=⎝⎛⎭⎪⎫-22,2,-22, 设DE →=λDB →,得E ⎝ ⎛⎭⎪⎫22(1-λ),2λ,22(1-λ),MA →=(2,0,0),ME →=⎝ ⎛⎭⎪⎫22(1-λ),2λ,22(1-λ),则⎩⎪⎨⎪⎧(x ,y ,z )·(2,0,0)=0,(x ,y ,z )·⎝ ⎛⎭⎪⎫22(1-λ),2λ,22(1-λ)=0, 解得n =(0,1-λ,-2λ),二面角E ­AM ­D 的余弦值为55,即m·n |m|·|n|=55,得λ=12,即E 为DB 的中点时满足.。

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)

专题6.2 等差数列及其前n 项和1.(江西师范大学附属中学2019届高三三模)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】5632a a a +=+ 44422a d a d a d ∴++=++-,解得:42a =()177477142a a S a +∴===,本题选C 。

2.(安徽省1号卷A10联盟2019届模拟)等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=( )A .12B .9C .6D .3【答案】B【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==本题选B 。

3.(贵州省贵阳市2019届高三模拟)已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=-8,则公差d=( ) A .6 B .6-C .2-D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=-8, ∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6, ∴a 5=-2,a 6=4, ∴d=a 6-a 5=6, 故选A 。

4.(河北衡水中学2019届高三调研)已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =( )A .2B .2或32C .2或-32D .-1【答案】B【解析】设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或,故选B.5.(浙江省金华十校2019届高三模拟)等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0,故选B 。

最新版精选2019年高考数学第一轮复习测试版题库(含标准答案)

最新版精选2019年高考数学第一轮复习测试版题库(含标准答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若非空集合A,B,C 满足A ∪B=C ,且B 不是A 的子集,则 A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件 B . “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C . “x ∈C ”是“x ∈A ”的充分条件D . “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件(2008湖北理)2.集合A= {x ∣12x -≤≤},B={x ∣x<1},则()R AB ð= (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)3.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知数列{an }满足a1=3,an+1 - an + 1=0 (n ∈N* ), 则数列{an }的通项公式为 A. an= n 2 +2 B. an= n +2 C. an=4-n D. an= 2 n +16.lgx,lgy,lgz 成等差数列是y2=xz 成立的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件二、填空题7.函数2)1(log )(++=x x f a ,0(>a 且)1≠a 必过定点 ▲ ;8.已知函数()f x 是偶函数,并且对于定义域内任意的x ,满足()()12f x f x +=-, 若当23x <<时,()f x x =,则)5.2007(f =__________ _9.已知当椭圆的长半轴长为a ,短半轴长为b 时,椭圆的面积是πab .请针对椭圆2212516x y +=,求解下列问题: (1)若m ,n 是实数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆内的概率;(2)若m ,n 是整数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆外的概率以及点P 落在椭圆上的概率。

2019届高三理科数学一轮复习《充分条件和必要条件》专题测试

2019届高三理科数学一轮复习《充分条件和必要条件》专题测试

2019届高三理科数学一轮复习《充分条件和必要条件》一、选择题(本大题共12小题)1.若两个集合A、B是非空集合,则“AA=⋃”的()BBA=⋂”是“AA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.设,则“”是“”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件3.在中,角所对边分别为,若是钝角三角形,则p是q的()条件A. 充分非必要B. 必要非充分C. 充要条件D. 既不充分也不必要4.设{ a n}是等比数列,则“a1<a2<a3是“数列{ a n}是递增数列”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要5.若实数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.“”是“函数有零点”的()条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要7.若集合A={1,}、B={3,4}, 则“m= 2 ”是“A∩ B={4}”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.在中,角对应的边分别为.若则“”是" ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件10.若a、b、c是常数,则“a>0且b2-4 ac<0”是“对任意x∈R,有ax2+ bx+ c>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 必要条件11.“x>5”的一个必要而不充分条件是()A. B. C. D.12.“是函数在区间内单调递增”的()A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件二、填空题(本大题共4小题)13.有下列四个命题:①命题“若则互为倒数”的逆命题;②命题“面积相等的三角形全等”的否定;③命题“若则有实根”的否命题;④命题“直线和直线垂直的充要条件是”,其中是真命题的序号是_____________14.“函数在上是单调递增函数”是“函数在上是单调递增函数”的条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”);15.若<<是不等式m-1<x<m+1成立的一个充分非必要条件,则实数m的取值范围是______ .16.“”是“”的___________条件. (选填“充要”、“充分不必要”、“必要不充分”“既不充分也不必要”)三、解答题(本大题共6小题)17.命题p:实数满足,其中;命题q:实数满足或,且是的必要不充分条件,求的取值范围.18.已知集合 .(1)能否相等?若能,求出实数的值;若不能,试说明理由;(2)若命题,命题,且是充分不必要条件,求实数的取值范围 .19.已知命题:,命题:.(1)若,求实数的值;(2)若是的充分条件,求实数的取值范围.20.集合A==-+,,,B={x| x+m2≥1}.若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.21.已知p:,q:,若是的必要不充分条件,求实数m的取值范围。

2023届高考数学一轮复习测试卷2

2023届高考数学一轮复习测试卷2

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(考点:随机抽样,★)中国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡应派遣人数为().A.104B.108C.112D.1202.(考点:复数,★)设复数z满足|z+1|=|z-2i|,且z在复平面内对应的点为(x,y),则().A.x+2y-3=0B.2x+4y-3=0C.2x-4y+3=0D.x-2y+3=03.(考点:等差数列,★)已知等差数列{a n}的前n项和为S n,满足a4=5,S n+S n-2=2S n-1+2(n≥3),则().A.a n=nB.a n=2n-3C.a1=-2D.S n=n(n-1)24.(考点:基本初等函数,★)设a=log0.25,b=0.23,c=(14)-0.2,则a,b,c的大小关系为().A.a<b<cB.a<c<bC.b<a<cD.b<c<a5.(考点:直线和圆的综合,★★)圆C:x2+y2-2x-4y+3=0被直线l:ax+y-1-a=0截得的弦长的最小值为().A.1B.2C.√2D.√36.(考点:二项式定理,★★)若(1-2x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则a3a4的值为().A.1B.2C.-23D.127.(考点:函数图象的判断,★★)已知定义在R上的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)={-x2+2x,x∈[0,1),2-x,x∈[1,2],则函数y=f(x)在[2,4]上的大致图象是().8.(考点:函数的零点,★★★)已知函数f (x )={13f (x -2),x >2,1-|x -1|,x ≤2,则函数g (x )=9[f (x )]2+17f (x )-2的零点个数为( ). A .4 B .5 C .6 D .7二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:样本的数学特征,★)如图所示的是某人根据2019年1月至2019年11月期她每月步行的里程(单位:十公里)的数据绘制的折线图.根据该折线图,下列结论正确的是( ).A .月步行里程逐月增加B .月步行里程的最大值出现在10月C .月步行里程的中位数为7月份对应的里程数D .1月至5月的月步行里程相对于6月至11月波动性更小,变化比较平稳10.(考点:立体几何的综合运用,★★)如图,在四棱锥P-ABCD 中,AB ∥CD ,AB=BC=2,CD=4,∠APB=∠CBA=90°,PA=PB ,平面PAB ⊥平面ABCD ,M 为棱PD 上一点,则下列说法正确的是( ).A .PA ⊥平面PB CB .V P-ABCD =43C .AD ⊥平面AMCD .若PB//平面MAC ,则PM MD =1211.(考点:函数的综合运用,★★★)已知定义域为R 的奇函数f (x ),满足f (x )={22x -3,x >2,x 2-2x +2,0<x ≤2,则下列说法正确的是( ).A .存在实数k ,使函数y=f (x )的图象与直线y=kx 有7个不同的交点B .当-1<x 1<x 2<1时,恒有f (x 1)>f (x 2)C .若当x ∈(0,a ]时,f (x )的最小值为1,则a ∈[1,52]D .若关于x 的方程f (x )=32和f (x )=m 的所有实数根之和为零,则m=-3212.(考点:抛物线,★★★)已知抛物线x 2=2py (p>0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q.若抛物线C 上存在一点E (t ,2)到焦点F 的距离等于3,则下列说法正确的是( ).A .抛物线的方程是x 2=2yB .抛物线的准线方程是y=-1C .sin ∠QMN 的最小值是12D .线段AB 的最小值是6 三、填空题:本题共4小题,每小题5分,共20分.13.(考点:三角恒等变换,★)已知θ∈(0,π2),cos θ=2√55,则tanθcos2θ= . 14.(考点:双曲线,★★)已知F 1,F 2分别为双曲线C :x 29-y 227=1的左、右焦点,点M (2,0),点A ∈C ,点I ∈AM ,且I 是△F 1AF 2的内心,则|AI ||IM |= .15.(考点:新定义题型,★★★)如果存在函数g (x )=ax+b (a ,b 为常数),使得对函数f (x )定义域内的任意x 都有f (x )≤g (x )成立,那么称g (x )为函数f (x )的一个“线性覆盖函数”.给出如下四个结论:①函数f (x )=2x 存在“线性覆盖函数”;②对于给定的函数f (x ),其“线性覆盖函数”可能不存在,也可能有无数个;③g (x )=12x+12为函数f (x )=√x 的一个“线性覆盖函数”;④若g (x )=2x+b 为函数f (x )=-x 2的一个“线性覆盖函数”,则b>1.16.(考点:与球有关的计算,★★★)如图,在四棱锥C-ABDE 中,四边形ABDE 为矩形,EA=CA=CB=2,AC ⊥CB ,F ,G 分别为AB ,AE 的中点,平面ABDE ⊥平面ABC ,则四面体CFDG 的体积为 ;若四面体CFDG 的各个顶点均在球O 的球面上,则球O 的体积为 .四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知数列{}n a 中,11a =,且满足12n n a a n +=-,()2*n n b a n n =+∈N .(1)证明:数列{}n b 是等差数列,并求数列{}n b 的通项公式;(2)设n S 为数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,求满足512n S ≥的n 的最小值.18.某学校田径运动会跳远比赛规定:比赛设立及格线,每个运动员均有3次跳远机会,若在比赛过程中连续两次跳不过及格线,则该运动员比赛结束.已知运动员甲跳过及格线的概率为23,且该运动员不放弃任何一次跳远机会.(1)求该运动员跳完两次就结束比赛的概率;(2)设该运动员比赛过程中跳过及格线的总次数为ξ,求ξ的概率分布.19.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,且sin cos 2a C C c =+. (1)求A ;(2)若2a =,且sin sin 2sin B C A +=,求ABC ∆的面积.20.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥(1)证明:DC PM ⊥;(2)求直线AN 与平面PCM 所成角的正弦值.21.已知双曲线)(2222:10,0x y C a b a b -=>>的渐近线方程为:y x =,且过点⎛ ⎭⎝(1)求双曲线C 的标准方程(2)过右焦点F 且斜率不为0的直线l 与C 交于A ,B 两点,点M 坐标为3,02⎛⎫⎪ ⎭⎝,求AM BM k k +22.已知函数2()(2)(3)x f x a x e x =+-+(a R ∈,e 为自然对数的底数). (1)讨论函数()f x 的单调性.(2)当1a e>时,证明:2(2)ln 3f x x x x ->---。

(浙江版)2019年高考数学一轮复习(讲+练+测): 专题6.3 等比数列及其前n项和(测)

(浙江版)2019年高考数学一轮复习(讲+练+测): 专题6.3 等比数列及其前n项和(测)

第03节 等比数列及其前n 项和一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【2018届安徽省合肥一中、马鞍山二中等六校教育研究会高三上第一次联考】已知等比数列{}n a 满足213562,4a a a a ==,则3a 的值为( )A. 1B. 2C. 14D. 12【答案】A2.已知等比数列{}n a 的前n 项和为n S .若321510,9S a a a =+=,则1a =( ) A .13-B .13C .19-D .19【答案】D【解析】由已知可得⎪⎩⎪⎨⎧==+91041211q a q a a ,解之得⎪⎩⎪⎨⎧==3911q a ,应选D 。

3. 【2017届山东省济宁市高三3月模拟考试】设a R ∈,“1, a , 16为等比数列”是“4a =”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】由题意得, 1, a , 16为等比数列21614a a ⇒=⨯⇒=±,因此4a =⇒ 1, a , 16为等比数列,所以“1, a , 16为等比数列”是“4a =”的必要不充分条件,故选B.4. 【原创题】设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 【答案】A【解析】由已知得,3564a a ⋅=,又3520a a +=,则354,16a a ==,故24q =,2q =,11a =,所以55123112S -==-.5. 【改编题】函数y =...成为公比的数是( )A .21B .1 D .33 【答案】A6.【2018届广西钦州市高三上第一次检测】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( )A. 1.3日B. 1.5日C. 2.6日D. 2.8日 【答案】C【解析】设蒲(水生植物名)的长度组成等比数列{a n },其a 1=3,公比为,其前n 项和为A n .莞(植物名)的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n .则A ,B n =,由题意可得:,化为:2n +=7,解得2n =6,2n =1(舍去). ∴n==1+=≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.7. 【2017届浙江台州中学高三10月月考】等比数列{}n a 中,已知对任意正整数n ,12321n n a a a a +++⋅⋅⋅+=-,则2222123na a a a +++⋅⋅⋅+等于( )A.2(21)n -B.1(21)3n- C.1(41)3n- D.41n - 【答案】C.8.【2018届河北省衡水中学高三上学期二调】设正项等比数列{}n a 的前n 项和为n S ,且11n na a +<,若3520a a +=, 3564a a =,则4S =( )A. 63或120B. 256C. 120D. 63 【答案】C 【解析】由题意得353520{64a a a a +==,解得3516{ 4a a ==或354{ 16a a ==.又11n naa +< ,所以数列{}n a 为递减数列,故3516{4a a ==.设等比数列{}n a 的公比为q ,则25314a q a ==,因为数列为正项数列,故12q =,从而164a =,所以4416412120112S ⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦==-.选C. 9.设等比数列}{n a 的前n 项和为n S ,若15m S -=,-11m S =,121m S +=,则=m ( ) A.3 B.4C.5D. 6【答案】C【解析】由已知得,116m m m S S a --==-,1132m m m S S a ++-==,故公比2q =-,又11mm a aq S q-=-11=-,故11a =-,又1116m m a a q-=⋅=-,代入可求得5m =.10.【2017届湖北武汉市蔡甸区汉阳一中高三第三次模拟】已知121,,,9a a --成等差数列, 1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8± B. 8- C. 8 D. 98± 【答案】C11.【2018届河南省洛阳市高三上尖子生第一次联考】在等比数列{}n a 中, 2a , 16a 是方程2620x x ++=的根,则2169a a a 的值为( )A.B.【答案】B【解析】由2a , 16a 是方程2620x x ++=的根,可得: 21621662a a a a +=-⨯=,,显然两根同为负值,可知各项均为负值;21699a a a a ===故选:B.12.【2017年福建省三明市5月质量检查】已知数列的前项和为,且,,则( ) A. B.C.D.【答案】A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2017届浙江省丽水市高三下联考】已知数列{}n a 是公比为q 的单调递增的等比数列,且149a a +=,238a a =, 1a =__________; q =_________.【答案】 1 2【解析】311142322311199,8{ 8a a q a a a a a qa q a q +=+==∴== ,,且101a q >>,, 解得a 1=1,q=2.14.【2017届浙江省ZDB 联盟高三一模】已知{}n a 是等比数列,且0n a >, 243546225a a a a a a ++=,则35a a +=__________, 4a 的最大值为__________.【答案】 552【解析】243546225a a a a a a ++= ()2223355353522525,05n a a a a a a a a a ⇒++=⇒+=>∴+=22354354255242a a a a a a +⎛⎫∴=≤=⇒≤ ⎪⎝⎭,即4a 的最大值为52.15.【2017届浙江省台州市高三上期末】已知公差不为的等差数列,若且成等比数列,则__________._________.【答案】 1,.16.已知{}n a 满足, +⋅+⋅+=232144a a a S n 14-⋅n n a 类比课本中推导等比数列前项和公式的方法,可求得=-n n n a S 45___________. 【答案】n .【解析】因为++⋅+⋅+= 232144a a a S n 14-⋅n n a , 所以++⋅+⋅+= 332214444a a a S n 114--⋅n n a n n a 4⋅+,两式相加可得()()++++++= 322211445a a a a a S n ()n n n a a +--114n n a 4⋅+,所以n a S nn n n =+++=-11145. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【2017届浙江省丽水市高三下测试】已知数列{}n a 的相邻两项1,n n a a +是关于x 的方程()2*20n n x x b n N -+=∈的两实根,且11a =.(1)求234,,a a a 的值;(2)求证:数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式. 【答案】(1)21a =, 33a =, 45a = (2)()1213nn n a ⎡⎤=--⎣⎦【解析】试题分析:(1)由题中所给的递推关系可得21a =, 33a =, 45a =. (2)由题意可得数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是首项为13,公比为-1的等比数列.则()1213nn n a ⎡⎤=--⎣⎦.(2)∵11111122223331111222333n n n n n n n n nnn n n a a a a a a +++⎛⎫--⨯-⨯--⨯ ⎪⎝⎭===--⨯-⨯-⨯,故数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是首项为12133a -=,公比为-1的等比数列. 所以()1112133n nn a --⨯=⨯-,即()1213nn n a ⎡⎤=--⎣⎦.18.【改编题】已知等比数列{n a }的公比为q ,且满足1n n a a +<,1a +2a +3a =913,1a 2a 3a =271.(1)求数列{n a }的通项公式;(2)记数列{n a n ⋅-)12(}的前n 项和为n T ,求.n T【答案】(1)n a =131-n (n *N ∈);(2)n T =3-131-+n n . 【解析】(1)由1a 2a 3a =271,及等比数列性质得32a =271,即2a =31,由1a +2a +3a =913得1a +3a =910由⎪⎪⎩⎪⎪⎨⎧=+=91031312a a a 得⎪⎪⎩⎪⎪⎨⎧=+=910312111q a a q a 所以31012=+q q ,即231030q q +=-解得q =3,或q =31由1n n a a +<知,{n a }是递减数列,故q =3舍去,q =31,又由2a =31,得1a =1, 故数列{n a }的通项公式为n a =131-n (n *N ∈) ………………6分(2)由(1)知n a n ⋅-)12(=1312--n n ,所以n T =1+33+235+⋯+1312--n n ①31n T =31+233+335+…+1332--n n +n n 312- ② ①-② 得:32n T =1+32+232+332+⋯+132-n -nn 312- =12+(31+231+331+⋯+131-n )-nn 312- =12+311)311(311--⋅-n -n n 312-=2-131-n -n n 312-,所以nT =3-131-+n n . 19.【2017全国卷2】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)12n n b -=.(2)6-或21.(2)由(1)及已知得2122121d q q q -++=⎧⎨++=⎩,解得41q d =⎧⎨=-⎩或58q d =-⎧⎨=⎩. 所以313236S a d⨯=+=-或3132321S a d ⨯=+=. 20.已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++= ,*n ∈N . (Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线对于*n ∈N 恒成立,求实数m 的最大值.【答案】(Ⅰ)详见解析;【解析】(Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线因为11b =满足该式,所以n b n =21.【2017届安徽省亳州市二中高三下检测】已知各项均不相等的等差数列{}n a 满足11a =,且125,,a a a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)若()()*111nn n n n n a a b n N a a +++=-∈,求数列{}n b 的前n 项和n S .【答案】(Ⅰ)21n a n =-;(Ⅱ)当n 为偶数时, 221n n S n =-+.当n 为奇数时, 2221n n S n +=-+.(Ⅱ)由21n a n =-,可得()()()()()1141111121212121nn n n n n n n a a n b a a n n n n +++⎛⎫=-=-=-+ ⎪-+-+⎝⎭,当n 为偶数时,111111112113355721212121n n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+++=-+=- ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭. 当n 为奇数时, 1n +为偶数,于是1111111122113355721212121n n S n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+-+=--=- ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭22.设数列{}n x 的前n 项和为n S ,若存在非零常数p ,使对任意n *∈N 都有2n nS p S =成立,则称数列{}n x 为“和比数列”.(1)若数列{}n a 是首项为2,公比为4的等比数列,判断数列{}2log n a 是否为“和比数列”;(2)设数列{}n b 是首项为2,且各项互不相等的等差数列,若数列{}n b 是“和比数列”,求数列{}n b 的 通项公式.【答案】(1)是,证明见解析;(2)()24142n b n n =+-=-试题解析:(1)由已知,121242n n n a --=⋅=,则2log 21n a n =-.设数列{}2log n a 的前n 项和为n S ,则()21212n n S n n +-=⋅=,()22224n S n n ==. 所以24n nS S =,故数列{}2log n a 是“和比数列”. (2)设数列{}n b 的公差为d (0d ≠),前n 项和为n T ,则()122n n n n d -T =+, ()222142n n n n d -T =+,所以()()()()222148*********n n n n n d n d n n n d n d -++-T ==-T +-+ 因为{}n b 是“和比数列”,则存在非零常数p ,使()()822141n d p n d+-=+-恒成立.即()()822141n d p n d +-=+-⎡⎤⎣⎦,即()()()4240p dn p d -+--=恒成立.所以()()()40240p d p d -=⎧⎪⎨--=⎪⎩因为0d ≠,则4p =,4d = 所以数列{}n b 的通项公式是()24142n b n n =+-=-。

江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习典型题精选精练统计与概率一、填空题1、(南京市2018高三9月学情调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为▲.2、(南京市2019高三9月学情调研)已知某地连续5天的最低气温(单位:摄氏度)依次是18,21,22,24,25,那么这组数据的方差为▲.3、(南京市2019高三9月学情调研)不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是▲.4、(南京市六校联合体2019届高三12月联考)若一组样本数据3,4,8,9,a的平均数为6,则该组数据的方差s2=▲.5、(南京市六校联合体2019届高三12月联考)从1,2,3,4这四个数中一次性随机地取出2个数,则所取2个数的乘积为奇数的概率是____▲__.6、(南京市13校2019届高三12月联合调研)已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是▲.7、(南京市13校2019届高三12月联合调研)如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在[6,10)内的频数为▲.8、(南师附中2019届高三年级5月模拟)某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是.9、(南师附中2019届高三年级5月模拟)3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是.10、(苏州市2018高三上期初调研)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2: 3,第2小组的频数为12,则报考飞行员的学生人数是.11、(徐州市2019届高三上学期期中)某水产养殖场利用100个网箱养殖水产品,收获时测量各箱水产品的产量(单位:kg),其频率分布直方图如图所示,则该养殖场有▲个网箱产量不低于50 kg.12、(海安市2019届高三上学期期中)已知某民营车企生产A,B,C三种型号的新能源汽车,库存台数依次为120,210,150,某安检单位欲从中用分层抽样的方法随机抽取16台车进行安全测试,则应抽取B型号的新能源汽车的台数为.13、(海安市2019届高三上学期期中)有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是.14、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)如图是某次青年歌手大奖赛上5位评委给某位选手打分的茎叶图,则这组数据的方差为▲15、(如皋市2019届高三上学期期末)为了解某地区的中小学生视力情况,从该地区的中小学生中用分层抽样的方法抽取300位学生进行调查,该地区小学、初中、高中三个学段学生人数分别为1200、1000、800,则从高中抽取的学生人数为▲16、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为.17、(南京市、盐城市2019届高三上学期期末)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中样本中A型号产品有16件,那么此样本的容量n=▲18、(泰州市2019届高三上学期期末)从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为19、(无锡市2019届高三上学期期末)史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,先从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为.20、(宿迁市2019届高三上学期期末)春节将至,三个小朋友每人自制1张贺卡,然后将3张贺卡装在一盒子中,再由三人依次任意抽取1张,则三人都没抽到自己制作的贺卡的概率为▲.21、(南京市、盐城市2019届高三第二次模拟)某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组、,第二组,……,第五组,右图市根据实验数据制成的频率分布直方图,已知第一组于第二组共有20人,则第三组钟人数为.22、(南京市2019届高三第三次模拟)已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为▲.23、(南通、如皋市2019届高三下学期语数英学科模拟(二))随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60)年龄段抽取的人数为__24、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为▲.25、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为▲.26、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为▲.27、(苏锡常镇四市2019届高三教学情况调查(二))口装中有形状大小完全相同的四个球,球的编号分别为1,2,3,4.若从袋中随机抽取两个球,则取出的两个球的编号之积大于6的概率为.28、(苏锡常镇四市2019届高三教学情况调查(一))箱子中有形状、大小都相同的3只红球、1只白球,一次摸出2只球,则摸到的2只球颜色相同的概率为.29、(盐城市2019届高三第三次模拟)现有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加同一个兴趣小组的概率为_____.30、(江苏省2019年百校大联考)某路口一红绿灯东西方向的红灯时间为45s,黄灯时间为3s,绿灯时间为60s.从西向东行驶的一辆公交车通过该路口,遇到红灯的概率为.二、解答题1、(南京市2018高三9月学情调研)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.2、(南京市六校联合体2019届高三上学期12月联考)将4名大学生随机安排到A,B,C,D四个公司实习.(1)求4名大学生恰好在四个不同公司的概率;(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).3、(南京市13校2019届高三12月联合调研)在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;ξ=-,求随机变量ξ的分布列及数学(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y期望.4、(徐州市2018高三上期中考试)某同学在上学路上要经过A 、B 、C 三个带有红绿灯的路口.已知他在A 、B 、C 三个路口遇到红灯的概率依次是13、14、34,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.5、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.6、(镇江市2018届高三第一次模拟(期末)考试)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立,规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级加5分,记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值。

湖南省2020届高三数学理一轮复习典型题专项训练:立体几何

湖南省2020届高三数学理一轮复习典型题专项训练:立体几何

湖南省2020届高三数学理一轮复习典型题专项训练立体几何一、选择、填空题1、(常德市2019届高三上学期检测)如图,网格线上小正方形的边长为1,粗实线画出的是某几何体的三视图,其正视图,侧视图均为等边三角形,则该几何体的体积为 A .83(1)3π+ B .43(2)π+ C .43(2)3π+ D .83(1)π+2、(衡阳八中2019届高三上学期第二次月考)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是( C )A.316π B. 318π C. 48164πD. 313148π3、(怀化市2019届高三统一模拟(二))某组合体的三视图如图所示.则该组合体的体积为 A. 4 B. 8 C.43 D. 834、(三湘名校教育联盟2019届高三第一次大联考)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为A.8B.16C.24D.485、(邵阳市2019届高三10月大联考)已知三棱锥P ABCA B C在球O的同一个-底面的3个顶点,,大圆上,且ABC-体积的最大值为23,则球△为正三角形,P为该球面上的点,若三棱锥P ABCO的表面积为( )A.12πB.16πC.32πD.64π6、(五市十校教研教改共同体2019届高三12月联考)已知E,F分别是三棱锥P ABC-的棱AP,EF=,则异面直线AB与PC所成的角为()PC=,33BC的中点,6AB=,6A.120︒B.45︒C.30︒D.60︒7、(湘潭市2019届高三下学期第二次模拟)某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8、(益阳市2019届高三上学期期末考试)如图,—个圆柱从上部挖去半球得到几何体的正视图、侧28,则x =视图都是图1,俯视图是图2,若得到的几何体表面积为A.3B. 4C.5D.69、(永州市2019届高三上学期第二次模拟)如图,在正方体中,点在线段上运动,则下列判断中正确的是()①平面平面;②直线平面;③异面直线与所成角的取值范围是;④三棱锥的体积不变.A. ① ②B. ①②④C. ③④D. ①④10、(岳阳市2019届高三教学质量检测(一模))个几何体的三视图如右图所示,已知这个几何10,则h为体的体积为3A. 23B.3 C. 33 D. 3511、(长郡中学2019届高三第六次月考)在三棱锥 P —ABC 中,PA 丄平面 ABC ,∠BAC =32π,AP=3,AB =32, Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P —ABC 的外接球的表面积为A.π45B.π57C. π63D. π8412、(雅礼中学2019届高三第五次月考)如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,若此几何体的俯视图如图2所示,则可以作为其正视图的是13、(株洲市2019届高三教学质量统一检测(一))已知正方体1111ABCD A B C D -的棱长为2,M 为CC 1的中点.若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为( )A .32+25B . 4+42C . 22+25D .6214、(湖南师大附中2019届高三月考试卷(六))正四棱锥S -ABCD 的侧棱长与底面边长相等,E 为SC 的中点,则BE 与SA 所成角的余弦值为(C)A.13B.12C.33D.3215、(湖南湖北八市十二校(湖南师范大学附属中学、衡阳八中等)2019届高三第二次调研联考)已知三棱锥的四个顶点都在半径为3的球面上,,则该三棱锥体积的最大值是A .B .C .D . 6416、(湖南师大附中2019届高三月考试卷(六))已知三棱锥P -ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P -ABC 的体积为163,则此三棱锥的外接球的表面积为__80π3__.参考答案:1、C2、C3、D4、B5、B6、D7、A8、B9、B 10、B 11、12、C 13、A 14、【解析】如图,设AC ∩BD =O ,连接OE ,因为OE 是△SAC 的中位线,故EO ∥SA ,则∠BEO 为BE 与SA 所成的角.设SA =AB =2a ,则OE =12SA =a ,BE =32SA =3a ,OB =22SA =2a ,所以△EOB 为直角三角形,所以cos ∠BEO =OE BE =a 3a =33,故选C.15、A 16、【解析】依题意,记三棱锥P -ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P -ABC =13S △ABC h =13×⎝⎛⎭⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎫2332=203,所以三棱锥P -ABC 的外接球的表面积为4πR 2=80π3.二、解答题1、(常德市2019届高三上学期检测)如图,在直三棱柱111C B A ABC -中,21111==C A B A ,321=CC , ︒=∠120BAC ,O 为线段11C B 的中点,P 为线段1CC 上一动点(异于点1C C 、),Q 为线段BC 上一动点,且OP QP ⊥;(Ⅰ)求证:平面1A PQ ^平面1A OP ;(Ⅱ)若PQ BO //,求直线OP 与平面PQ A 1所成角的正弦值.2、(衡阳八中2019届高三上学期第二次月考)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点. (1)求证:AF ∥平面BCE ;(2)求二面角C -BE -D 的余弦值的大小.3、(怀化市2019届高三统一模拟(二))如图,在四棱锥P-ABCD 中,PC ⊥底面A BCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB //CD ,AB=2AD=2CD=4,PC=4. (1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC (2)求锐二而角A- PB-C 的余弦值.4、(三湘名校教育联盟2019届高三第一次大联考)如图,四棱锥P-ABCD 中,底面ABCD 为正方形,PA 丄底面ABCD,且PA=2AB ,F 是AB 的中点,点E 在线段PC 上,且PE =PC 31. (1)证明:平面DEF 丄平面ABCD; (2)求二面角B-AE-D 的余弦值.5、(邵阳市2019届高三10月大联考)如图,菱形ABCD 的边长为4,60DAB =∠°,矩形BDFE 的面积为8,且平面BDFE ⊥平面ABCD .(1)证明:AC BE ⊥;(2)求二面角E AF D --的正弦值.6、(五市十校教研教改共同体2019届高三12月联考)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,222AB AD DC ===E ,F 分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4,求PA 的长度.7、(湘潭市2019届高三下学期第二次模拟)如图,四棱锥的底面是直角梯形,,,和是两个边长为2的正三角形,,为的中点,为的中点.(1)证明:平面.(2)在线段上是否存在一点,使直线与平面所成角的正弦值为?若存在,求出点的位置;若不存在,说明理由.8、(益阳市2019届高三上学期期末考试)五面体ABCDEF 中,ADEF 是等腰梯形,AD = 2,AB=2,AF=FE = ED=BC = 1,∠SAD=900,平面 BAF 丄平面 ADEF 。

高三数学一轮复习测试卷

高三数学一轮复习测试卷

一、选择题(每题5分,共50分)1. 下列函数中,在其定义域内是增函数的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = -x2. 已知等差数列{an}的首项为a1,公差为d,则下列等式中不正确的是()A. a1 + a2 = 2a1 + dB. a1 + a3 = 2a2C. a1 + a4 = 2a3 + dD. a1 + a5 = 2a43. 已知函数f(x) = x^3 - 3x,则f(x)的对称中心是()A. (0, 0)B. (1, -2)C. (-1, 2)D. (1, 2)4. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 已知等比数列{bn}的首项为b1,公比为q,若b1 = 2,b3 = 8,则b5的值为()A. 16B. 32C. 64D. 1286. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像是()A. 双曲线B. 抛物线C. 直线D. 椭圆7. 在等差数列{an}中,若a1 = 3,a3 = 9,则该数列的公差d是()A. 2B. 3C. 6D. 98. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,则f(x)的极值点是()A. x = 0B. x = 1C. x = 2D. x = 39. 在三角形ABC中,若AB = AC,则下列结论正确的是()A. ∠A = ∠BB. ∠A = ∠CC. ∠B = ∠CD. ∠A = ∠B = ∠C10. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的值域是()A. [-2, 2]B. [0, 2]C. [2, +∞)D. (-∞, 2]二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项为a1,公差为d,若a3 = 5,a5 = 9,则a1 =______,d = ______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三数学一轮复习 周测试卷
一:选择题
1.命题“对任意x R ∈都有2
1x ≥”的否定是( )
A .对任意x R ∈,都有2
1x <
B .不存在x R ∈,使得2
1x <
C .存在0x R ∈,使得2
01x ≥
D .存在0x R ∈,使得2
01x <
2.设{}62|≤≤=x x A ,{}32|+≤≤=a x a x B ,若A B ⊆,则实数a 的取值范围是( ) A 、[]3,1 B 、),3[+∞ C 、),1[+∞ D 、()3,1 3.已知函数()21f x +的定义域为12,2⎛⎫- ⎪⎝⎭
,则()f x 的定义域为( )
A . 31,24⎛⎫-
⎪⎝⎭ B . 31,2⎛
⎫- ⎪⎝
⎭ C . ()3,2- D . ()3,3-
4.函数()22x f x x =-在区间[]1,4-内的零点个数是( ) A .0
B .1
C .2
D .3
5.定义在R 上的偶函数()f x 满足(2)()f x f x -=,且在[3,2]--上是减函数,,αβ是钝角三角形的两个锐角,则下列不等式中正确的是( )
A .(sin )(cos )f f αβ>
B .(cos )(cos )f f αβ<
C .(cos )(cos )f f αβ>
D .(sin )(cos )f f αβ<
6.如图,当直线:l y x t =+从虚线位置开始,沿图中箭头方向平行匀速移动时,正方形ABCO 位于直线l 下方(图中阴影部分)的面积记为S ,则S t 与的函数图象大致是( )
7.若函数)(log )(3ax x x f a -=)1,0(≠>a a 在区间2
1
(-
,0)内单调递增,则a 取值范围是 ( ) A.[
4
1
,1) B.[
4
3
,1)
C.4
9
(,)+∞ D.(1,49)8.设定义在区间
(),b b -上的函数()1lg
12ax f x x
+=-是奇函数(),,2a b R a ∈≠-且,则b
a 的取值范围是( )
A .(
B .(
C .(
D .(
9.函数()3
f x m x =-+有零点,则实数m 的取值范围是( )
A . 0,
2⎛⎫ ⎪ ⎪⎝⎭ B . 0,2⎡⎢⎣⎦ C . 0,4⎡⎢⎣⎦ D . 0,4⎛⎫ ⎪ ⎪⎝⎭
10.设A 是自然数集的一个非空子集,对于k A ∈,如果2
k A ∉,且A ,那么k 是A 的一个
“酷元”,给定{
}
2
lg(36)S x N y x =∈=-,设集合M 由集合S 中的两个元素构成,且集合M 中的两个元素都是“酷元”,那么这样的集合M 有( )
A .3个
B .4个
C .5个
D .6个
二:填空题
11.已知函数()322f x x ax bx a =+++在1x =处取得极值10,则a b +取值的集合为 12.若函数3
()12f x x x =-在(1,1)k k -+上不是..单调函数,则实数k 的取值范围 为 .
13.已知函数()f x 对于任意x R ∈都有()()2f x f x =-,()1y f x =-的图象关于()1,0对称,且
当[]1,1x ∈-时,()3
f x x =,则()2013f =__.
14.已知函数2
1(1),0()2,0
n x x f x x x x +>⎧=⎨--≤⎩ , 若函数()()g x f x m =-有3个零点,则实数m 的 取值
范围是
15.若关于x 的方程4
3
2
10x ax ax ax ++++=有实根,则实数a 的取值范围 三:解答题
16.设p:实数x 满足2
2
430x ax a -+<, ,命题:q 实数x 满足.|x-3|<1
(Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围;
(Ⅱ)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.
17.已知数列{}n a 中,)(3
,1*11N n a a a a n n
n ∈+==+求数列{}n a 的通项公式n a ;
18.已知函数(
)2
cos cos f x x x x ωωω-,其中ω为使()f x 能在23
x π
=
时取得最大值的最小正整数. (1)求ω的值;
(2)设ABC 的三边长a 、b 、c 满足2
b a
c =,且边b 所对的角θ的取值集合为A ,当x A ∈时,求()f x 的值域.
19.工厂生产某种产品,次品率P 与日产量x (万件)间的关系()()1
0623
x c x
P x c ⎧<≤⎪⎪-=⎨⎪>⎪⎩
(c 为常数,且06c <<),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元,(1)将日盈利额y (万元)表示为日产量x (万件)的函数;
18.为使日盈利额最大,日产量应为多少万件?(注: 100⨯次品数
次品率=
%产品总数

20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为1
2
,以原点为圆心,椭圆的短半轴为半径的圆
与直线0x y -+=相切,直线:4l x my =+与椭圆C 相交于A 、B 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求OA OB ⋅的取值范围;
21.已知函数()()()()()
1212ln ,x f x a x x g x xe -=---=(a 为常数,e 为自然对数的底)
(1)当1a =时,求()f x 的单调区间;
(2)若函数()f x 在10,2⎛⎫ ⎪⎝⎭
上无零点,求a 的最小值;
(3)若对任意的(]00,x e ∈,在(]0,e 上存在两个不同的()1,2i x i =使得()()0i f x g x =成立,求
a 的取值范围.。

相关文档
最新文档