电力系统稳态分析(课堂PPT)
合集下载
3电力系统稳态分析(第三章)PPT(王)
电力系统稳态分析
第三章 简单电力网络的计算和分析
电力系统潮流分布的概念
1、潮流分布
正常运行情况下,电力系统的电压和功率分布称为电力系统的潮流分 布。
2、潮流计算
正常运行情况下,电力系统电压和功率分布的计算称为潮流计算。
3、潮流计算的目的
为选择电气设备、导线截面和结线方式,为短路、稳定、经济运行计
算提供原始数据,为确定运行方式、安排检修计划提供依据,为继电
GT 2
jBT 2
1
G10
等值电路图
R12
jB10
jX 12
2
G20
R23
jX 23
3
G30
R34
jX 34
4
jB20
jB30
~ S 4 P4 jQ4
简化等值电路图
电力系统的等值电路由阻抗支路和对地导纳支路组成。
计算时,负荷一般以集中负荷表示,并且在计算中总是作为已知量。
Ⅲ G d
4、几个标志电压质量指标的计算
1) 电压降落 U U1 U2 相量差 2) 电压损耗
U U U 标量差 U U 100% 不超过10% 电压损耗百分比: U % U
1 2
1 2 N
3) 电压偏移
4) 电压调整
U U 100% 反映供电电压质量 电压偏移% U
已知首端电压和首端功率时:
S1 2 S12 P 2 Q12 P I R ( ) R 2 R 1 2 R U1 U1 U1
2
S1 2 S12 P 2 Q12 Q I X ( ) X 2 X 1 2 X U1 U1 U1
2
从功率损耗公式可看出:
第三章 简单电力网络的计算和分析
电力系统潮流分布的概念
1、潮流分布
正常运行情况下,电力系统的电压和功率分布称为电力系统的潮流分 布。
2、潮流计算
正常运行情况下,电力系统电压和功率分布的计算称为潮流计算。
3、潮流计算的目的
为选择电气设备、导线截面和结线方式,为短路、稳定、经济运行计
算提供原始数据,为确定运行方式、安排检修计划提供依据,为继电
GT 2
jBT 2
1
G10
等值电路图
R12
jB10
jX 12
2
G20
R23
jX 23
3
G30
R34
jX 34
4
jB20
jB30
~ S 4 P4 jQ4
简化等值电路图
电力系统的等值电路由阻抗支路和对地导纳支路组成。
计算时,负荷一般以集中负荷表示,并且在计算中总是作为已知量。
Ⅲ G d
4、几个标志电压质量指标的计算
1) 电压降落 U U1 U2 相量差 2) 电压损耗
U U U 标量差 U U 100% 不超过10% 电压损耗百分比: U % U
1 2
1 2 N
3) 电压偏移
4) 电压调整
U U 100% 反映供电电压质量 电压偏移% U
已知首端电压和首端功率时:
S1 2 S12 P 2 Q12 P I R ( ) R 2 R 1 2 R U1 U1 U1
2
S1 2 S12 P 2 Q12 Q I X ( ) X 2 X 1 2 X U1 U1 U1
2
从功率损耗公式可看出:
电力系统稳态分析ppt课件
a (3 ) 2 ria2 ialn 1 r ibln D 1 b cialn D 1 a b 1 7 0
三者平均,得a相导线的平均总磁链:
a
13(a(1)
(2) a
) (3)
a
323ialn1r(ibic)(lD nabD 1bcDac)34r ia107
三相正序电流之和为零,将 ib ic ia 代入,得:
第三节 电力线路的参数和数学模型
一.电力线路结构简述
电力线路按结构可分为
架空线:导线、避雷线、杆塔、绝缘子和金具等 电 缆:导线、绝缘层、保护层等
1. 架空线路的导线和避雷线
导 线:主要由铝、钢、铜等材料制成 避雷线:一般用钢线
架空线的标号
×× × × — ×/×
钢线部分额定截面积 主要载流部分额定截面积 J 表示加强型,Q表示轻型 J 表示多股线 表示材料,其中:L表示铝、 G表示钢、T表示铜、HL表示 铝合金 例如:LGJ—400/50表示载流额定截面积为400、钢线额 定截面积为50的普通钢芯铝线。
将距导离 线为内D的部 圆a 的周磁a 以链x 内(加2 的(上l2 外从ln 部D 导n r磁D a线链x表 ,得面2 出开rr)相始)iia 应到 的与1 1总导 磁线7 0 0 7链中:心
r2
b相导线的电流 ib 所产生的磁通匝链a相导线的磁链
由公式:
D221 07idx21 07ilnD2
线路的电纳是由导线之间、导线与大地之间的 电容决定的。
(1).单相架空线路的电纳 单相线路的电场分布如下图所示:
由高斯定理 Dds q 知,单根导线单位长度(m)电
荷为q时,距导s线中心x处的电通密度 D x (c/m)为:
Dx
三者平均,得a相导线的平均总磁链:
a
13(a(1)
(2) a
) (3)
a
323ialn1r(ibic)(lD nabD 1bcDac)34r ia107
三相正序电流之和为零,将 ib ic ia 代入,得:
第三节 电力线路的参数和数学模型
一.电力线路结构简述
电力线路按结构可分为
架空线:导线、避雷线、杆塔、绝缘子和金具等 电 缆:导线、绝缘层、保护层等
1. 架空线路的导线和避雷线
导 线:主要由铝、钢、铜等材料制成 避雷线:一般用钢线
架空线的标号
×× × × — ×/×
钢线部分额定截面积 主要载流部分额定截面积 J 表示加强型,Q表示轻型 J 表示多股线 表示材料,其中:L表示铝、 G表示钢、T表示铜、HL表示 铝合金 例如:LGJ—400/50表示载流额定截面积为400、钢线额 定截面积为50的普通钢芯铝线。
将距导离 线为内D的部 圆a 的周磁a 以链x 内(加2 的(上l2 外从ln 部D 导n r磁D a线链x表 ,得面2 出开rr)相始)iia 应到 的与1 1总导 磁线7 0 0 7链中:心
r2
b相导线的电流 ib 所产生的磁通匝链a相导线的磁链
由公式:
D221 07idx21 07ilnD2
线路的电纳是由导线之间、导线与大地之间的 电容决定的。
(1).单相架空线路的电纳 单相线路的电场分布如下图所示:
由高斯定理 Dds q 知,单根导线单位长度(m)电
荷为q时,距导s线中心x处的电通密度 D x (c/m)为:
Dx
电力系统运行的稳定性分析PPT课件
电力系统中的各同步发电机只有在同步运行(即所有发电机以相同的速度旋 转)状态下,送出的电功率为定值,并维持系统中任何点的电压、频率和功率潮 流为定值。
如果某些发电机之间不能维持同步运行,其送出的电功率以及相应节点的电 压及相应线路的潮流将发生大幅度的周期性振荡,如果失去同步的机组之间不能 迅速恢复同步,即电力系统失去了稳定运行的状态。这种由于机组失去同步造成 的稳定问题实际上是电力系统的功角稳定问题。
。
第1页/共57页
第一节 概述
一、基本概念:
3.功角:表示发电机转子轴线子之间的夹角,又表示各发电机电势间的夹
角。
传输功率的大小与相位角δ密切相关,称δ为“功角”或“功率角”。
~
E q
jxd
jxT 1
U=常数
ω
jx L
U U0 jxT 2
Èq
q
第2页/共57页
δ
IU
第一节 概述
二、电力系统的稳定性分析
Xd
PE=P0与功率特性曲线有两个交点a和b, 即电机的两个运行点。 下面就对a点 和b点进行分析
第23页/共57页
a点扰动过程分析:
稳态时: d d 0 0
扰动使a→a´→δ↑(δ+Δδ) ,PEa´>P0 →ΔPa ´=PT-PEa´<0→ΔM<0→减速→δ↓→a´→a a→a"→δ↓(δ-Δδ), PEa">P0 →ΔPa"=PT-PEa">0→ΔM>0→加速→δ↑→a"→a
第16页/共57页
二.隐极发电机的功-角特性
-----即发电机的电磁功率与功角之间的关系 一台同步发电机与无限大容量电源组成的系统
如果某些发电机之间不能维持同步运行,其送出的电功率以及相应节点的电 压及相应线路的潮流将发生大幅度的周期性振荡,如果失去同步的机组之间不能 迅速恢复同步,即电力系统失去了稳定运行的状态。这种由于机组失去同步造成 的稳定问题实际上是电力系统的功角稳定问题。
。
第1页/共57页
第一节 概述
一、基本概念:
3.功角:表示发电机转子轴线子之间的夹角,又表示各发电机电势间的夹
角。
传输功率的大小与相位角δ密切相关,称δ为“功角”或“功率角”。
~
E q
jxd
jxT 1
U=常数
ω
jx L
U U0 jxT 2
Èq
q
第2页/共57页
δ
IU
第一节 概述
二、电力系统的稳定性分析
Xd
PE=P0与功率特性曲线有两个交点a和b, 即电机的两个运行点。 下面就对a点 和b点进行分析
第23页/共57页
a点扰动过程分析:
稳态时: d d 0 0
扰动使a→a´→δ↑(δ+Δδ) ,PEa´>P0 →ΔPa ´=PT-PEa´<0→ΔM<0→减速→δ↓→a´→a a→a"→δ↓(δ-Δδ), PEa">P0 →ΔPa"=PT-PEa">0→ΔM>0→加速→δ↑→a"→a
第16页/共57页
二.隐极发电机的功-角特性
-----即发电机的电磁功率与功角之间的关系 一台同步发电机与无限大容量电源组成的系统
《电力系统稳态分析》课件
电力系统是线性的 电力系统是平衡的 电力系统是稳定的 电力系统是连续的
确保电力系统的稳定运行 提高电力系统的可靠性和效率 预测和预防电力系统的故障和异常 为电力系统的优化和改进提供依据
潮流分析法的定义:通过分析电力系 统中各节点的电压、电流和功率等参 数,来研究电力系统的稳态运行状态。
潮流分析法的步骤:首先建立电力 系统的数学模型,然后求解该模型, 最后分析求解结果。
与注入电流的 与支路阻抗的 与节点电压的
关系
关系
关系
网络方程:描 述网络中各节 点电压和支路
电流的关系
潮流方程:描 述网络中各节 点电压和支路 电流的相位关
系
阻抗矩阵:描 述网络中各节 点电压和支路 电流的阻抗关
系
电力系统稳态分析 的模型主要包括: 直流模型、交流模 型、混合模型等。
直流模型:主要用 于分析电力系统的 稳态特性,如电压、 电流、功率等。
国际标准:IEC 61850标准 国内标准:GB/T 13730标准 标准化发展:提高电力系统稳态分析的准确性和可靠性 发展: 描述变压器的 电压变换和功
率传输特性
线路模型:描 述线路的阻抗 和功率损耗特
性
负荷模型:描 述负荷的功率 需求和运行状
态
控制设备模型: 保护设备模型:
描述控制设备 描述保护设备
的控制策略和 的保护策略和
运行状态
运行状态
节点电压方程: 支路电流方程: 节点功率方程:
描述节点电压 描述支路电流 描述节点功率
交流模型:主要用 于分析电力系统的 动态特性,如频率 、相位、阻抗等。
混合模型:结合直流 模型和交流模型,可 以更全面地分析电力 系统的稳态和动态特 性。
目标函数:最小化 系统运行成本或最 大化系统运行效益
电力系统稳态分析教学资料02例课件
Pkund软件还提供了多种输出和可视化选项,帮助用 户直观地了解仿真结果和分析数据,为电力系统的规 划和优化提供有力支持。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
涉及知识点: 电力系统稳态分析的基本概念、数学模型的建立、参数分析方法等。
案例二:某发电厂的稳态分析
发电厂运行状态评估
该案例以某发电厂的运行数据为基础,通过稳态分析方法,评估发电厂的运行状态,包括 各机组的出力、效率、污染物排放等。
涉及知识点: 发电厂运行管理、机组性能测试、污染物排放控制等。
案例三:某城市电网的稳态分析
REPORT
CATALMMARY
电力系统稳态分析教 学资料02例课件
目录
CONTENTS
• 电力系统稳态分析概述 • 电力系统元件模型与参数 • 电力系统稳态计算方法 • 电力系统稳态分析案例 • 电力系统稳态分析软件介绍
REPORT
CATALOG
DATE
ANALYSIS
随着能源结构的不断变化和可再生能源的大规模接入,电力系统稳态分
析对于优化资源配置、协调能源发展和促进电力系统的可持续发展具有
重要意义。
电力系统稳态分析的基本方法
潮流分析
负荷建模
通过潮流分析可以求解出电力系统中 各节点的电压、电流、功率等参数, 了解系统中各元件的运行特性和电力 电量平衡情况。
负荷建模是建立电力系统负荷的数学 模型的过程,通过对负荷特性的准确 描述,为电力系统稳态分析和仿真提 供基础数据。
详细描述
变压器模型通常采用理想变压器模型,忽略励磁电流和磁滞效应。参数包括额定容量、额定电压比、短路阻抗和 效率等。这些参数用于描述变压器的电气特性,以及在稳态分析中计算变压器的输入输出功率和电压调节。
电力系统稳态分析教学资料01例课件
。
假设四
电力系统的电压是恒定 的,不考虑电压的波动
。
稳态分析的重要意义
意义一
意义二
意义三
意义四
为电力系统规划和设计提供依 据,确保系统能够满足负荷需 求,并具备足够的稳定性和安 全性。
为电力系统运行和控制提供依 据,帮助调度员制定合理的运 行方案和控制策略,确保系统 运行的经济性和稳定性。
为电力系统故障诊断和预防提 供依据,通过对稳态数据的分 析,发现系统可能存在的隐患 和问题,采取相应的措施进行 预防和解决。
分析。
CHAPTER 05
电力系统稳态分析软件介绍
PSS/E软件介绍
PSS/E是一款功能强大的电力系统稳态分析软件,广泛应用于电力系统的规划、设 计和运行等领域。
该软件提供了丰富的模型库和工具箱,支持多种电力系统和设备的建模,包括发电 机、变压器、线路、负荷等。
PSS/E软件具有友好的用户界面和强大的计算能力,能够进行精确的稳态分析,为 电力系统工程师提供可靠的决策支持。
电网
由输电线路和变电所组成,负 责将电能传输到用户。
负荷
指电力系统的用户,包括工业 、商业和居民等。
调节系统
用于调节和控制电力系统的运 行状态。
电力系统的元件模型
发电机
用数学模型描述发电机的运行 特性。
变压器
用数学模型描述变压器的运行 特性。
输电线路
用数学模型描述输电线路的电 气特性。
负荷
用数学模型描述负荷的运行特 性。
的需求。
Pkund软件介绍
Pkund是一款基于Windows平台的电力系统稳态分析软件,具有简单易 用和高效的特点。
该软件支持多种稳态分析方法,如潮流计算、短路计算、负荷建模等, 能够处理各种类型的电力系统和设备。
假设四
电力系统的电压是恒定 的,不考虑电压的波动
。
稳态分析的重要意义
意义一
意义二
意义三
意义四
为电力系统规划和设计提供依 据,确保系统能够满足负荷需 求,并具备足够的稳定性和安 全性。
为电力系统运行和控制提供依 据,帮助调度员制定合理的运 行方案和控制策略,确保系统 运行的经济性和稳定性。
为电力系统故障诊断和预防提 供依据,通过对稳态数据的分 析,发现系统可能存在的隐患 和问题,采取相应的措施进行 预防和解决。
分析。
CHAPTER 05
电力系统稳态分析软件介绍
PSS/E软件介绍
PSS/E是一款功能强大的电力系统稳态分析软件,广泛应用于电力系统的规划、设 计和运行等领域。
该软件提供了丰富的模型库和工具箱,支持多种电力系统和设备的建模,包括发电 机、变压器、线路、负荷等。
PSS/E软件具有友好的用户界面和强大的计算能力,能够进行精确的稳态分析,为 电力系统工程师提供可靠的决策支持。
电网
由输电线路和变电所组成,负 责将电能传输到用户。
负荷
指电力系统的用户,包括工业 、商业和居民等。
调节系统
用于调节和控制电力系统的运 行状态。
电力系统的元件模型
发电机
用数学模型描述发电机的运行 特性。
变压器
用数学模型描述变压器的运行 特性。
输电线路
用数学模型描述输电线路的电 气特性。
负荷
用数学模型描述负荷的运行特 性。
的需求。
Pkund软件介绍
Pkund是一款基于Windows平台的电力系统稳态分析软件,具有简单易 用和高效的特点。
该软件支持多种稳态分析方法,如潮流计算、短路计算、负荷建模等, 能够处理各种类型的电力系统和设备。
【电气工程】电力系统稳态分析基础(ppt 174页)
08.11.2019
4.1 电力系统元件参数和等值电路
杆塔:用来支撑导线和避雷线,并使导线与导线、导线与大 地之间保持一定的安全距离。 杆塔的分类 按材料分:有木杆、钢筋混凝土杆(水泥杆)和铁塔。 按用途分:有直线杆塔(中间杆塔)、转角杆塔、耐张杆 塔(承力杆塔)、终端杆塔、换位杆塔和跨越杆塔等。
•缺点:造价高;故障后检测故障点位置和修复困难;
•优点:占用土地面积少;受外力及环境破坏的概率低,因 而供电可靠;对人身较安全;可使城市环境美观。
•应用:在发电厂和变电所的进出线处,在线路需穿过江河 处,在缺少空中走廊的大城市中,以及国防或特殊需要的 地区,往往都要采用电力电缆线路。此外,采用直流输电 的电缆线路完成跨海输电会更显示其优越性。
架空导线的型号 TJ——铜绞线 ,特殊应用,例:TJ-16;TJ-25 LJ——铝绞线,用于10kV及以下架空线路,例:TJ-16;TJ-25
GJ——钢绞线,用作避雷线
LGJ——钢芯铝绞线,用于35kV及以上架空线路 ,例:LGJ-400/50 08.11.2019
4.1 电力系统元件参数和等值电路
电压等级与直线杆塔上悬垂绝缘子串中绝缘 子数量的关系
系统标 称电压 (kV)
每串绝缘 子片数
35 63 110 220 330 500
35
7
13
17~ 25~ 19 28
金具
金具种类
并沟线夹(接续金具)
悬垂线夹
耐张线夹
联结金具(Z型挂板)
4.1 电力系统元件参数和等值电路
2.电缆线路
与架空线相比较
08.11.2019
1.架空输电线
避雷线
导线(四分裂)
杆塔
绝缘子串
4.1 电力系统元件参数和等值电路
杆塔:用来支撑导线和避雷线,并使导线与导线、导线与大 地之间保持一定的安全距离。 杆塔的分类 按材料分:有木杆、钢筋混凝土杆(水泥杆)和铁塔。 按用途分:有直线杆塔(中间杆塔)、转角杆塔、耐张杆 塔(承力杆塔)、终端杆塔、换位杆塔和跨越杆塔等。
•缺点:造价高;故障后检测故障点位置和修复困难;
•优点:占用土地面积少;受外力及环境破坏的概率低,因 而供电可靠;对人身较安全;可使城市环境美观。
•应用:在发电厂和变电所的进出线处,在线路需穿过江河 处,在缺少空中走廊的大城市中,以及国防或特殊需要的 地区,往往都要采用电力电缆线路。此外,采用直流输电 的电缆线路完成跨海输电会更显示其优越性。
架空导线的型号 TJ——铜绞线 ,特殊应用,例:TJ-16;TJ-25 LJ——铝绞线,用于10kV及以下架空线路,例:TJ-16;TJ-25
GJ——钢绞线,用作避雷线
LGJ——钢芯铝绞线,用于35kV及以上架空线路 ,例:LGJ-400/50 08.11.2019
4.1 电力系统元件参数和等值电路
电压等级与直线杆塔上悬垂绝缘子串中绝缘 子数量的关系
系统标 称电压 (kV)
每串绝缘 子片数
35 63 110 220 330 500
35
7
13
17~ 25~ 19 28
金具
金具种类
并沟线夹(接续金具)
悬垂线夹
耐张线夹
联结金具(Z型挂板)
4.1 电力系统元件参数和等值电路
2.电缆线路
与架空线相比较
08.11.2019
1.架空输电线
避雷线
导线(四分裂)
杆塔
绝缘子串
电力系统稳态分析PPT
2、联合电力系统的优越性 3、联合电力系统发展现状及趋势
国外:跨国电力系统;
国内:全国联网
电力系统稳态分析
第二讲 电力系统基本概念
(电力系统的电压等级、接线方式、中性点运行方式)
主讲 马士英
一、电力系统的接线方式
1、电力系统接线图
(1)电气接线图
表示电力系统各元件之间电气联系的电路图,一般以
单线图表示。(如第一讲的电力系统接线示意图)
双回路放射式
优点:供电可靠性高、电压质量好 缺点:投资大、经济性差
环形接线
优点:供电可靠性较高、较为经济 缺点:运行调度复杂、故障或检修切除一侧线路时,
电压质量差,供电可靠性下降。
两端供电式 优点:供电可靠性高、经济性好、故障或检修时电压质 量较好; 缺点:受电源分布限制、运行复杂
4、各种接线方式的适用场所
(2)地理接线图
按比例表示电力系统中各发电厂和变电所的相对地理 位置接线图。(如第一讲的各区域电力系统接线示意图)
2、电力系统的接线方式
(1)接线方式分类
无备用接线方式—用户只能从一个方向获得电能的接线 方式,包括单回路放射式、单回路干线式、单回路链式接线;
无备用接线方式 (a)单回路放射式 (b)单回路干线式 (c) 单回路链式
4、电力网中的电压分布与线路、发电机、变压器的额
定电压
(1)电力网的电压分布
(2)输电线路允许的电压损耗
用电设备允许的电压偏移为 5% ,所以线路允许的电压 损耗为10%。
(3)输电线路的额定电压
输电线路的额定电压取线路各点电压的平均值,即用电 设备的额定电压。 (4)发电机的额定电压 在有直配线的情况下,发电机接于线路首端,运行时电 压比用电设备的额定电压高5%,为使发电机在额定电压下 运行,所以发电机额定电压就取线路首端的电压,即用电设 备额定电压的1.05倍。
电力系统稳态分析 (ppt 179页)
计 算 如果通过线路环节的无
UU1 1
功功率为容性的,式中
jU1 dU
的Q需代负号进行计算。
U 2 U2
jU2
电压损耗 电力网中任意两点电压的代数
差。其电压损耗为 |U1| |U2 |
电
力
系 统
由于
U 1 (U2U2)2U2 2
潮
流 计
将其展开成泰勒级数,取前两项可得
电力系统概论
章电力系统稳态分析
宁波大学信息学院
第三章 电力系统稳态分析
3.1 电力网的功率分布和电压计算 3.2 电力系统潮流的计算机算法 3.3 电力系统的频率与有功功率 3.4 电力系统的电压与无功功率 3.5 电力系统经济运行 3.6 电力系统中性点接地方式
3.1电力网的功率分布和电压计算
无备用方式采用双回线路(a)
• —有备用接线方式 单电源单环网(b)
接 闭式电力网
双电源双环网(c)
线
两端电源供电(d)
方 ü双回路网络的优缺点
式
简单方便、可靠性高
(a)
经济性差 ü环网供电的优缺点
可靠、经济
操作复杂、故障时电压质量差
(b)
(c)
(d)
电磁环网
接
线
变压器串联接入的多电压
方
等级环网,称为电磁环网。 QF
一、电力网的功率损耗
电 二、电力网环节的功率平衡和电压平
力 系
衡
统
潮 三、开式电力网的潮流计算
流
计 算
四、两端电源供电网的潮流计算
五、电磁环网的功率分布与电压计算
概述
潮流计算的任务
针对具体的电力网络结构,根据给定的负荷功率和电源
电力系统稳态分析(ppt 74页)
i
i max
电压相角约束条件
线路的热极限约束、联络线潮流约束等
3.4电力网节点分类
电网中的节点因给定变量不同而分为三类: PQ节点
已知P、Q,待求U、δ; 通常为给定PQ的电源节点和负荷节点。大多数节点为PQ节点。
PV节点
已知P、U,待求Q 、δ; 通常为系统调压节点。数量少,可没有。
平衡节点
已知U、δ ,待求P、Q ;
承担电压参考和功率平衡的任务,又名松弛节点,比如系统调频节点或最
大电源节点,通常只设一个平衡节点。
3.4 实际的直角坐标潮流方程
n-1 个
m个 n-m-1 个
注:节点个数为n个,其中PQ节点个数为m个。
3.4 实际的直角坐标潮流方程
P1
x
e1
en1
2.1电力线路电压降落和损耗的分析
空载时,线路末端电压比始端高。
无功功率在电力线路中传输也产生有功功率损耗, 同等大小的无功功率和有功功率在电力线路中传输 产生的有功功率损耗相同。
由电压损耗纵分量 可知降低电压损耗的方法有: 提高电压等级;增大导线截面积;减小线路中流过 的无功功率。
2.1变压器中的功率损耗
3.4直角坐标功率方程
e1
P1
x
en
f1
f
(
x
)
Pn
Q1
0
fn
Qn
未知数=方程数
3.4 功率方程(极坐标系)
n
Pi jQi Uie ji ( Gij jBij )U je j j j 1
3.4极坐标功率方程
3.4 极坐标功率方程
1
P1
阻抗支路中损耗的功率为
导纳支路中的功率为
电力系统稳定性分析PPT课件
根据等面积定则就可 以确定系统暂态稳定 的临界条件(或称极 限条件)。
加速面积=最大减速面积
极限切除角
第28页/共47页
最大可能的减速面积 大于加速面积是保持 暂态稳定的必要条件。
例9-3
• 一简单电力系统如图,并知其线路的零序 等值电抗是正序电抗的4倍,设在输电线 路的某一回路的始端发生两相接地短路, 为 保 持C电lim 力 系 统 暂 态 稳 定 , 试 计 算 其 极 限 切除角
第38页/共47页
9.4.2 改善电力系统元件的特性和参数
• 4.输电线路 • 1)提高输电线路的电压 • 2)采用分裂导线 • 3)采用串联电容补偿
第39页/共47页
9.4.2 改善电力系统元件的特性和参数
• 5.开关等附加设备 • 1)输电线路设置开关站 • 2)发电机采用电气制动
第40页/共47页
KP
Pmax - P0 P0
100%
1 .2 4 6-1 1 0 0 % 1
24.6%
第16页/共47页
9.2.3 励磁调节对静态稳定性的影响
1.无调节励磁时发电机机端电压的变化
UE GG
-
U U
jIXjIX-XG
X - XG
X
发电机端电压的端点位于电 压降 jIX上,位置按阻抗的 比值确定。因为EG是常数,
器,如果故障消失则重合闸成功。如果故障没有消失,就再次断开。
第42页/共47页
9.4.3 改善电力系统运行条件和参数
所的以方随 向着 转动E G,向U G功也角随着增转大动,
且其模(数值)UG变小。
第17页/共47页
9.2.3 励磁调节对静态稳定性的影响
2.自动励磁调节对功率特性的影响
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 发电机端电压的调节受发电机无功极限的限制,达到极限时 则不能进行调压
➢ 发电机端电压允许调节范围:0.95~1.05UN,若端电压低于 0.95UN,输出的最大视在功率要相应减小
适用范围:发电机直供的小系统;对于大系统,尤其是线 路很长且有多级电压的电网,需和其它调压方法相配合
.
5
5.2.4 改变变压器变比调压
.
2
5.2.2 中枢点电压管理
➢ 电压监视中枢点 选择有代表性的节点,监视和控制其电压,若中枢点电压满足要求, 其邻近节点电压基本也能满足要求 中枢点一般选择区域性电厂的高压母线,有大量地方性负荷的电厂 母线及枢纽变的二次母线
➢ 中枢点电压控制 根据中枢点周围节点对电压偏移的要求,确定中枢点电压允许
价格高、运行维护复杂。选择时,可按调压要求和负荷变化情
况,确定所需分接头调节范围和每档分接头的调节量
.
9
5.2.5 应用无功功率补偿装置调节电压
➢并联补偿-同步调相机、静止补偿器、并联电容器
能减小线路和变压器输送的无功及电压损耗,提高电网电压水
平,能减小电网功率损耗。 等值电源S
变压器T U2
未 加 并 联 补 偿 时
➢普通升压变压器
T3
U2U1U
KU1U Ut1 Ut2
Ut1max
U1maxUmax U2
Ut2
Ut1min
U1minUmin U2
Ut2
.
G
U2
U1
U
Ut1
Ut1max
Ut1min 2
8
5.2.4 改变变压器变比调压(续3)
➢三绕组变压器分接头电压的计算 一般三绕组变压器的高、中压绕组侧有分接头可供选择使用,低压
较大的情况。
– 顺调压:高峰负荷时,允许中枢点电压有所降低
(限值102.5%UN);低谷负荷时,允许中枢点电压有 所升高(限值107.5%UN )。适合于小型网络、供电
线路不长、负荷波动不大的情况。
– 常调压:在任何负荷下,保持中枢点电压为一基本
.
4
5.2.3 应用发电机调节电压
➢ 现代同步发电机可以在额定电压的95~105%范围内保持额定 功率运行。改变励磁调节器的电压整定值可改变端电压,并 改变发电机的无功输出
线路l
P+jQ
U1
U2
PRQX U2
jQC
k :1
Var
加 装 并 联 补 偿 时 U1kU2 jxl
rT jxT
U 2 kU 2 P+jQ
P j(Q QC )
绕组无分接头。 计算方法可分两次套用双绕组变压器分接头的选择方法:
1) 首先按低压侧的调压要求,由高、低压两侧之间确定出高压侧分 接头。 2) 按中压侧调压要求,在高压和中压之间确定中压侧分接头。 3) 最后校验中压侧和低压侧的调压效果是否满足要求。
➢有载调压变压器分接头电压的计算
可带负荷改变分接头,调节速度快且便于实现自动化,但
k U t1 Ut2
U1
k :1
U2
P jQ
R jX
(忽略变压器励磁支路)
U 1 U U 2
k :1 U 2
P jQ
R jX
Ut1
Ut1max
Ut1min 2
选 择 一 个 最 接 近 计 算 值 的 分 接 头 ( t 1 ) , 并 校 验 : 最大负荷:U2max
U2max kt1
变化范围
中枢点
C
U CA U CB
UC
A
B
0
为满足UA上限的UC UC
为满足U A上限的U C
不可控
为满足U B下限的U C
为满足U B下限的UC
(时)
8
.16 24 0
8
16
(时)
234
• 中枢点调压方式:
5.2.2 中枢点电压管理(续1)
– 逆调压:高峰负荷时,将中枢点电压调高(限值
105%UN);低谷负荷时,将中枢点电压调低(限值 UN )。适合于大型网络、供电线路较长、负荷波动
通过选择变压器的分接头,改变变压器的变比,进而改变 二次绕组的电压,调整二次母线的电压。
变压器分接头设在高压侧(二绕组变压器)或高、中压侧 (三绕组变压器),对应于额定电压的分接头称为主接头或 主抽头。
变压器改变分接头的方式:
– 带负荷改变分接头,称为有载调压变压器 – 无载调压变压器
只有当系统无功功率电源容量充足时,改变变压器变比调
U’2min;
U2'
U1
PRQX U1
2)根据U’2max 、U’2min求最大负荷、最小负荷对应的分接头电压;Ut1
U1U2UUt2
3)求最大负荷、最小负荷对应的分接头电压的平均值,选择一个与计算值
最接近的分接头电压;
4)用 U’2max 、U’2min和选定分接头电压求U2max 、U2min,之后再校验。
第5章 电力系统的无功功率和电压控制
.
1
5.2 电力系统的电压控制
5.2.1 电压控制的必要性
–电压降低时,发电机定子电流增大,为防治发电机过热,需减 少发电机出力; –电压降低时,异步电动机转差率增大,导致绕组电流增大,效 率降低,寿命缩短,机械输出功率减小;对发电厂厂用电机而 言,会影响汽轮机和锅炉的工作,进而影响发电机的出力;更 严重的是导致电动机启动过程增长,可能会烧毁电动机; –电压降低将使电网功率损耗和电压损耗增大,还可能危及电力 系统运行的稳定性,甚至引起电压崩溃,造成大面积停电。 –电压过高可能引起电气设备绝缘击穿; –电压偏移影响照明设备的寿命和发光效率:过高则寿命减少, 过低则光通量、发光效率减少;
压才能奏效
.
6
5.2.4 改变变压器变比调压(续1)
➢ 普通两绕组降压变压器分接头选择
U 2 U k 2 U U 1 t1 /U U t2 U t1 U 1U 2 U U t2
对无载调压变压器,按最大和最小负荷 时的分接头电压平均值选择分接头
U t1 m axU 1 m ax U 2 R U m ax U t2U U 2 m 2R ax U t2 U t1 m in U 1 m in U 2 R U m in U t2 U U 2 2 m R in U t2
各 种 负 荷 条 件 下 , 要 求 U 2 R m i n U 2 U 2 . R m a x
最小负荷:U2min
U2min kt1
7
5.2.4 改变变压器变比调压(续2)
➢ 普通两绕组降压变压器分接头选择步骤:
1)按给定的最大负荷Smax、最小负荷Smin及已知的一次电压,计算U’2max 、
➢ 发电机端电压允许调节范围:0.95~1.05UN,若端电压低于 0.95UN,输出的最大视在功率要相应减小
适用范围:发电机直供的小系统;对于大系统,尤其是线 路很长且有多级电压的电网,需和其它调压方法相配合
.
5
5.2.4 改变变压器变比调压
.
2
5.2.2 中枢点电压管理
➢ 电压监视中枢点 选择有代表性的节点,监视和控制其电压,若中枢点电压满足要求, 其邻近节点电压基本也能满足要求 中枢点一般选择区域性电厂的高压母线,有大量地方性负荷的电厂 母线及枢纽变的二次母线
➢ 中枢点电压控制 根据中枢点周围节点对电压偏移的要求,确定中枢点电压允许
价格高、运行维护复杂。选择时,可按调压要求和负荷变化情
况,确定所需分接头调节范围和每档分接头的调节量
.
9
5.2.5 应用无功功率补偿装置调节电压
➢并联补偿-同步调相机、静止补偿器、并联电容器
能减小线路和变压器输送的无功及电压损耗,提高电网电压水
平,能减小电网功率损耗。 等值电源S
变压器T U2
未 加 并 联 补 偿 时
➢普通升压变压器
T3
U2U1U
KU1U Ut1 Ut2
Ut1max
U1maxUmax U2
Ut2
Ut1min
U1minUmin U2
Ut2
.
G
U2
U1
U
Ut1
Ut1max
Ut1min 2
8
5.2.4 改变变压器变比调压(续3)
➢三绕组变压器分接头电压的计算 一般三绕组变压器的高、中压绕组侧有分接头可供选择使用,低压
较大的情况。
– 顺调压:高峰负荷时,允许中枢点电压有所降低
(限值102.5%UN);低谷负荷时,允许中枢点电压有 所升高(限值107.5%UN )。适合于小型网络、供电
线路不长、负荷波动不大的情况。
– 常调压:在任何负荷下,保持中枢点电压为一基本
.
4
5.2.3 应用发电机调节电压
➢ 现代同步发电机可以在额定电压的95~105%范围内保持额定 功率运行。改变励磁调节器的电压整定值可改变端电压,并 改变发电机的无功输出
线路l
P+jQ
U1
U2
PRQX U2
jQC
k :1
Var
加 装 并 联 补 偿 时 U1kU2 jxl
rT jxT
U 2 kU 2 P+jQ
P j(Q QC )
绕组无分接头。 计算方法可分两次套用双绕组变压器分接头的选择方法:
1) 首先按低压侧的调压要求,由高、低压两侧之间确定出高压侧分 接头。 2) 按中压侧调压要求,在高压和中压之间确定中压侧分接头。 3) 最后校验中压侧和低压侧的调压效果是否满足要求。
➢有载调压变压器分接头电压的计算
可带负荷改变分接头,调节速度快且便于实现自动化,但
k U t1 Ut2
U1
k :1
U2
P jQ
R jX
(忽略变压器励磁支路)
U 1 U U 2
k :1 U 2
P jQ
R jX
Ut1
Ut1max
Ut1min 2
选 择 一 个 最 接 近 计 算 值 的 分 接 头 ( t 1 ) , 并 校 验 : 最大负荷:U2max
U2max kt1
变化范围
中枢点
C
U CA U CB
UC
A
B
0
为满足UA上限的UC UC
为满足U A上限的U C
不可控
为满足U B下限的U C
为满足U B下限的UC
(时)
8
.16 24 0
8
16
(时)
234
• 中枢点调压方式:
5.2.2 中枢点电压管理(续1)
– 逆调压:高峰负荷时,将中枢点电压调高(限值
105%UN);低谷负荷时,将中枢点电压调低(限值 UN )。适合于大型网络、供电线路较长、负荷波动
通过选择变压器的分接头,改变变压器的变比,进而改变 二次绕组的电压,调整二次母线的电压。
变压器分接头设在高压侧(二绕组变压器)或高、中压侧 (三绕组变压器),对应于额定电压的分接头称为主接头或 主抽头。
变压器改变分接头的方式:
– 带负荷改变分接头,称为有载调压变压器 – 无载调压变压器
只有当系统无功功率电源容量充足时,改变变压器变比调
U’2min;
U2'
U1
PRQX U1
2)根据U’2max 、U’2min求最大负荷、最小负荷对应的分接头电压;Ut1
U1U2UUt2
3)求最大负荷、最小负荷对应的分接头电压的平均值,选择一个与计算值
最接近的分接头电压;
4)用 U’2max 、U’2min和选定分接头电压求U2max 、U2min,之后再校验。
第5章 电力系统的无功功率和电压控制
.
1
5.2 电力系统的电压控制
5.2.1 电压控制的必要性
–电压降低时,发电机定子电流增大,为防治发电机过热,需减 少发电机出力; –电压降低时,异步电动机转差率增大,导致绕组电流增大,效 率降低,寿命缩短,机械输出功率减小;对发电厂厂用电机而 言,会影响汽轮机和锅炉的工作,进而影响发电机的出力;更 严重的是导致电动机启动过程增长,可能会烧毁电动机; –电压降低将使电网功率损耗和电压损耗增大,还可能危及电力 系统运行的稳定性,甚至引起电压崩溃,造成大面积停电。 –电压过高可能引起电气设备绝缘击穿; –电压偏移影响照明设备的寿命和发光效率:过高则寿命减少, 过低则光通量、发光效率减少;
压才能奏效
.
6
5.2.4 改变变压器变比调压(续1)
➢ 普通两绕组降压变压器分接头选择
U 2 U k 2 U U 1 t1 /U U t2 U t1 U 1U 2 U U t2
对无载调压变压器,按最大和最小负荷 时的分接头电压平均值选择分接头
U t1 m axU 1 m ax U 2 R U m ax U t2U U 2 m 2R ax U t2 U t1 m in U 1 m in U 2 R U m in U t2 U U 2 2 m R in U t2
各 种 负 荷 条 件 下 , 要 求 U 2 R m i n U 2 U 2 . R m a x
最小负荷:U2min
U2min kt1
7
5.2.4 改变变压器变比调压(续2)
➢ 普通两绕组降压变压器分接头选择步骤:
1)按给定的最大负荷Smax、最小负荷Smin及已知的一次电压,计算U’2max 、