开关电源的电磁干扰及其滤波措施

合集下载

开关电源电磁干扰(EMI)抑制措施总结

开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。

对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。

1 引言随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。

开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰( ElectromagneticInterference , EMI )。

EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容( ElectromagneticCompatibility )性。

随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。

本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。

2 电磁干扰的产生和传播方式开关电源中的电磁干扰分为传导干扰和辐射干扰两种。

通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。

下面将对这两种干扰的机理作一简要的介绍。

2.1传导干扰的产生和传播传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。

由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。

2.1.1 共模( CM )干扰变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。

根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。

1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。

电源进线端通常采用如图1 所示的EMI 滤波器电路。

该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。

在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。

而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。

抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。

当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

因此,即使在大负载电流的情况下,磁芯也不会饱和。

而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。

2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。

采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。

可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。

开关电源emi电路原理

开关电源emi电路原理

开关电源emi电路原理
开关电源EMI电路是指用来抑制电磁干扰(EMI)的电路。

开关电源是一种使用开关元件(如晶体管或MOSFET)工作
的电源,通过周期性地开关电流来提供电能。

开关电源会产生一定的电磁干扰,主要原因有以下几点:
1. 开关元件的快速开关会引起电压和电流的急剧变化,导致高频谐波成分的产生;
2. 开关电源中的变压器和电感器会产生磁场,进一步引起电磁辐射;
3. 开关电源中的电容器会产生串扰电容耦合,导致干扰信号的传导。

为了抑制开关电源的电磁干扰,可以采取以下措施:
1. 在开关电源输入端添加滤波器,用来抑制高频噪声,常见的滤波器包括电容滤波器和电感滤波器;
2. 设计合适的开关元件驱动电路,减小开关元件的开关速度,从而减小高频谐波的产生;
3. 采用引入屏蔽外壳或屏蔽包围电路等的屏蔽手段,减小电磁辐射;
4. 采用良好的地线布局和接地措施,降低地线电阻和噪声干扰;
5. 使用高频绕线技术和特殊布板设计,减少电感和电容器之间的串扰。

通过以上措施,可以有效地抑制开关电源产生的电磁干扰,提高电源的抗干扰能力,确保设备的正常运行。

开关电源的电磁干扰解决方法

开关电源的电磁干扰解决方法
输出整流二极管的反向恢复问题可以通过在输出整流管上串联一个饱和电感来抑制,,饱和电感Ls与二极管串联工作。饱和电感的磁芯是用具有矩形BH曲线的磁性材料制成的。同磁放大器使用的材料一样,这种磁芯做的电感有很高的磁导率,该种磁芯在BH曲线上拥有一段接近垂直的线性区并很容易进入饱和。实际使用中,在输出整流二极管导通时,使饱和电感工作在饱和状态下,相当于一段导线;当二极管关断反向恢复时,使饱和电感工作在电感特性状态下,阻碍了反向恢复电流的大幅度变化,从而抑制了它对外部的干扰。
差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。

开关电源初次级之间的干扰

开关电源初次级之间的干扰

开关电源初次级之间的干扰主要源于以下几个方面:1.开关管负载的感性特性:开关管负载是开关电源的核心部分,由开关管和高频变压器组成。

在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压。

在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。

这种涌流和浪涌尖峰电压具有较大的幅度和频谱较宽的特点,因此会产生较强的电磁干扰。

2.变压器的漏感和输出二极管的反向恢复电流:这些因素会导致潜在的电磁干扰。

开关电源中的干扰源主要集中在电压和电流变化较大的组件上,并且主要显示在开关管、二极管和高频变压器上。

随着电力电子技术的发展,开关电源模块由于其相对较小的尺寸、较高的效率和可靠的操作已开始取代传统的整流器电源,并已广泛应用于社会的各个领域。

3.快速变化的电压和电流:在开关电源中,由于变压器的漏感和输出二极管的反向恢复电流而产生的尖峰会形成潜在的电磁干扰。

此外,由于电力电子设备在开关操作过程中会产生快速变化的电压和电流,因此会产生强烈的谐波干扰和尖峰干扰。

这些干扰可能会通过传导、辐射和串扰等途径影响其自身电路和其他电子系统的正常运行。

为了解决这些干扰问题,可以采取以下措施:1.增加输入滤波器:输入滤波器可以有效地抑制开关电源产生的电磁干扰。

它由共模和差模滤波器组成,可以减小传导干扰并降低电磁辐射。

2.优化开关频率:通过优化开关频率,可以降低电磁干扰的强度和频率范围。

较高的开关频率会导致更强的电磁干扰,因此选择合适的开关频率非常重要。

3.使用软开关技术:软开关技术可以减小开关管和整流二极管的电压和电流变化率,从而减小电磁干扰。

它通过在开关管或整流二极管上增加额外的电路来控制电压和电流的变化过程。

4.屏蔽和接地:对开关电源进行良好的屏蔽和接地可以有效地减小电磁干扰对外界的传播。

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。

但开关电源的突出缺点是产生较强的电磁干扰(EMI)。

EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。

如果处理不当,开关电源本身就会变成一个干扰源。

随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。

2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。

它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。

基本整流器的整流过程是产生EMI最常见的原因。

这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。

实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。

变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。

它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。

产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。

在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。

这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。

(2) 由高频变压器产生的干扰。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。

2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。

3. 地线布局:合理布置地线,减少电磁干扰。

不同元器件的地线要分开布局,避免共
用一个接地点。

4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。

5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。

6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。

7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。

8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。

以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。

开关电源中的电子干扰分析及解决办法

开关电源中的电子干扰分析及解决办法

开关电源中的电子干扰分析及解决办法开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。

但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。

本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。

开关电源的电磁干扰分析开关电源的结构如图1所示。

首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。

电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。

同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。

图1 AC/DC开关电源基本框图1 内部干扰源● 开关电路开关电路主要由开关管和高频变压器组成。

开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。

开关管负载为高频变压器初级线圈,是感性负载。

当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。

● 整流电路的整流二极管输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。

它会在变压器漏感和其他分布参数的影响下产生很大的电流变化di/dt,产生较强的高频干扰,频率可达几十兆赫兹。

● 杂散参数由于工作在较高频率,开关电源中的低频元器件特性会发生变化,由此产生噪声。

在高频时,杂散参数对耦合通道的特性影响很大,而分布电容成为电磁干扰的通道。

2 外部干扰源外部干扰源可以分为电源干扰和雷电干扰,而电源干扰以“共模”和“差模”方式存在。

同时,由于交流电网直接连到整流桥和滤波电路上,在半个周期内,只有输入电压的峰值时间才有输入电流,导致电源的输入功率因数很低(大约为0.6)。

而且,该电流含有大量电流谐波分量,会对电网产生谐波“污染”。

开关电源的EMC设计产生电磁干扰有3个必要条件:干扰源、传输介质、敏感设备,EMC设计的目的就是破坏这3个条件中的一个。

浅谈开关电源电磁干扰及其抑制技术

浅谈开关电源电磁干扰及其抑制技术

浅谈开关电源电磁干扰及其抑制技术摘要:开关电源以其重量轻、体积小、效率高、可靠性高等优点得到了广泛的应用。

然而,开关电源的电磁干扰不容忽视。

近年来,随着科学技术的发展,电磁干扰问题涉及到的领域不断扩大。

特别是消费类电子电源的体积越来越小,功率越来越大,开关电源的功率密度越来越大,电磁干扰越来越严重,将极大地影响人们的生活和设备的运行。

因此,开关电源的电磁干扰抑制技术一直是国内相关技术人员的研究重点。

关键词:开关电源;电磁干扰;抑制技术引言随着电子信息技术的飞速发展,开关电源以其转换效率高、稳定性好等优点被广泛应用于各个领域。

开关电源在实际应用中经常发生电磁干扰,影响开关电源的使用体验。

解决开关电源的电磁干扰问题,促进开关电源的可靠稳定应用。

1.开关电源工作机理开关电源的主要作用是将电网交流电,转换为设备所需要的直流电,保证用电设备的正常运转。

开关电源电路主要由以下的部分组成:一、输入整流滤波电路;二、反馈控制电路;三、初级功率回路;四、次级整流滤波电路。

其中输入滤波电路主要包括过滤电网杂波的输入滤波器,其能阻止开关电源本身产生的干扰影响到电网,同时也能滤除电网的干扰,保证开关电源正常运行。

整流电路,将电网交流电转化为脉冲直流电。

给控制回路提供能量基础;反馈控制电路是是利用现代电力电子技术,通过对输出电压电流的采样比较,反馈控制开关管开通和关断的时间比率,以实现稳定输出,来满足电气设备的要求,保证整个电气部分的正常运行。

初级功率回路主要由高频变压器、初级开关管、功率检测电阻等组成。

接受反馈控制回路的调节,将整流电路的脉冲直流电,通过高频变压器传递到次级;次级整流滤波电路主要由次级二极管,储能及滤波电容和恒流恒压控制电路组成。

和反馈控制电路相关联,将变压器从初级传递的能量整流后进行一系列的处理,以提供设备所需的直流电压和电流。

1.电磁干扰的危害开关电源内部出现的电磁干扰可分为两种,一种是干扰信号通过导线或公共电源线进行传输,互相产生干扰称为传导干扰;另外一种是开关电源产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,称为辐射干扰。

开关电源电磁干扰(EMI)整改汇总要点

开关电源电磁干扰(EMI)整改汇总要点

开关电源电磁干扰(EMI整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。

小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对AV值有效,电容对QP值有效。

当然,这只是一般规律。

电容越大,滤除的频率越低。

电感越大(适可而止),滤除的频率越高。

400K-4M这一段主要是开关管,变压器等的干扰。

可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。

吸收电路上套磁珠有时也很有效。

变压器初次级之间的Y电容也是不容忽视的。

次级对初级高压端合适还是低压端有时候对这段频率影响很大。

除此之外,调整滤波器也可以抑制其骚扰。

4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。

20M以后主要针对齐纳二级管,输出端电源输入端整改。

一般是用到磁珠,接地等。

值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。

镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。

磁珠对高频抑制效果不错。

根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。

(L="Line", N="Neutral", G="Ground"X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压 n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

高频开关电源中的电磁干扰问题及抑制措施

高频开关电源中的电磁干扰问题及抑制措施

高频开关电源中的电磁干扰问题及抑制措施中国人民解放军78156部队重庆市九龙坡区 400039摘要:高频开关电源,在电力系统中属于比较常用的电气设备,也叫开关型整流器。

它的开关频率在50-100kHz可控范围内,主要是在IGBT或MOSFET的帮助下完成高频工作,具有运行稳定和高效率的特点,但同时也会受到电磁干扰的问题困扰。

本文通过对电磁干扰的成因及产生的机理进行分析,探讨能够抑制高频开关电源中的电磁干扰问题的有效策略,以供参考。

关键词:高频开关电源;电磁干扰;抑制措施前言:在电力系统中,由于开关电源本身重量轻、体积小和效率高的特点,被广泛应用在家用电器、计算机、通信、自动控制等电子设施设备上。

同时由于在高频条件下,开关电源工作会产生一定强度的电磁干扰,经过辐射和传导的过程,对周围的电磁环境造成一定程度的污染,进而影响电子设备的使用。

一、电磁干扰的类型在高频开关电源中,电磁干扰的来源主要来自两个方面,即设备电源自己内部出现的电磁干扰,以及设备外的电磁干扰。

设备外的电磁干扰,主要包括电磁脉冲(EMP)干扰、电网中的电磁干扰和静电放电(ESD)干扰等,而在高频开关电源的设备内部,产生电磁干扰的原因,主要是高频变压器、整流器等各种器件。

二、电磁干扰的成因由于高频开关电源本身就是个干扰源,这是由其原理所决定的。

在经过整流时,高频开关电源通过把交流电变成直流电,采用DC/AC变换技术,变成高频,经过滤波电路,滤去电流中输出电压中存在的纹波,可以使直流电压更加稳定。

但是在实现电流转换过程里,难以避免会出现许多谐波干扰问题。

此外,由于变压器存在漏电感应,与输出二极管的反向恢复电流所形成的尖峰,也存在一定的电磁干扰。

三、高频开关电源电磁干扰问题和机理(一)开关电路在高频开关电源中,开关电路既是重要的核心部分,也是主要电磁干扰源。

开关电路一般由两个组成部分。

一是道额雌花冲击电流瞬变,属于传感型的电磁干扰。

对变压器初级和配电系统形成一定影响,使电网收到谐波干扰,影响电气设备的正常运行[2]。

反激开关电源问题解决措施

反激开关电源问题解决措施

反激开关电源问题解决措施激开关电源是一种常见的电源转换方式,具有高效率、小体积和大功率特点,广泛应用于各种电子设备中。

然而,由于其工作原理的特殊性,也存在着一些问题,如电磁干扰、热量过高、噪音大等。

本文将围绕这些问题提出相应的解决措施。

首先是电磁干扰问题。

激开关电源工作时,会产生高频电流和高频噪声,对周围的其他电子设备产生干扰。

针对这个问题,可以采取以下几个解决措施。

1. 优化线路布局:在设计电路板时,合理布局各个元件之间的距离,减小互相之间的电磁干扰。

同时,应尽量将高频信号的传输线路和低频信号的传输线路分开,减少相互干扰。

2. 添加滤波器:在输入和输出端口添加适当的滤波器,可以有效地滤除高频噪声,并减少干扰。

常见的滤波器有LC滤波器和脉冲变压器,能够通过消除回路共振或提供额外的电感来抑制噪声。

3. 外壳屏蔽:对于特别敏感的设备,可以在电源的外壳和线路之间添加合适的屏蔽层,有效地隔绝电磁干扰的传播。

其次是激开关电源热量过高问题。

由于激开关电源工作时会产生较多的热量,如果散热不良,可能会导致设备损坏。

为了解决这个问题,可以采取以下几个措施。

1. 散热设计:在电源的电路板上布置合理的散热元件,如散热片、散热鳍片等,以增加散热面积和散热效果。

如果设备的空间够大,还可以加装散热风扇来提高散热效果。

2. 优化元件选择:选择低损耗的开关管和电容,减少能量的损失和热量的产生。

此外,还可以选择工作频率更高的开关电源,因为频率越高,电源的体积就越小,相同功率下热量产生较少。

3. 合理布局:在设备设计中,应合理布局各个元件和线路,避免堆积,以便热量能够得到有效传导和散发。

另外,噪音问题也是激开关电源常见的一个问题。

激开关电源工作时,会产生一定的噪音,影响设备的稳定性和使用效果。

要解决这个问题,可以采取以下几个手段。

1. 优化电源设计:在设计电源时,应采用合适的开关管和电容,以减少电源开关时产生的噪声。

此外,还可以采取一些降低噪电流的措施,如增大电容容值、提高滤波效果等。

开关电源传导骚扰和辐射骚扰解决方法

开关电源传导骚扰和辐射骚扰解决方法

开关电源传导骚扰和辐射骚扰解决方法开关电源是一种常见的电源供应器,在电子设备中广泛应用。

但是,开关电源工作时会产生电磁辐射和传导骚扰问题。

为了解决这些问题,可以采取以下方法:1.电磁屏蔽材料的使用:使用电磁屏蔽材料将开关电源封装起来,阻挡电磁辐射的传播,减少对周围设备和人员的骚扰。

这种材料通常是在电源外部或内部的铁壳上加上一层导电材料,如铜箔。

通过将电磁波引导到导体上,使其在外部不能通过,并通过接地,排除电磁波。

2.优化电源布线:合理优化电源布线,减少线路长度和交叉区域,减少电磁辐射。

如果电源线和信号线发生交叉,可以采取绕线或分离线路的方式,避免相互干扰,减少传导骚扰。

3.使用滤波器:在开关电源输入和输出端之间安装滤波器,可以抑制输入和输出信号的噪声,减少骚扰。

输入滤波器通常是由电容器和电感器组成,用于消除输入端的高频噪声。

输出滤波器通常是由电容器和电感器组成,用于消除输出端的高频噪声。

4.电源线的屏蔽:使用屏蔽电源线可以减少电磁辐射和传导骚扰。

屏蔽电源线通过在电源线外部包裹一层金属网或箔片,将电磁辐射和传导骚扰限制在金属屏蔽层内部。

5.合理设计散热系统:开关电源工作时会产生较大的热量,如果不能有效散热,会影响电源的工作效率,并可能导致电磁辐射和传导骚扰。

因此,电源的散热系统设计应合理,采用优质散热材料和风扇等散热设备,确保电源的正常工作和延长寿命。

6.选择高质量的开关电源产品:选择经过认证的高质量开关电源产品,这些产品通常具有较低的辐射和骚扰,较好的EMC性能。

这些产品经过专业的测试和验证,能够有效减少对其他设备的影响。

7.定期维护和检修:开关电源在长时间使用后,可能出现故障或老化现象,会导致电磁辐射和传导骚扰的增加。

因此,定期进行维护和检修工作,及时发现和解决问题,可以减少对设备和人员的骚扰。

总之,开关电源的电磁辐射和传导骚扰是一个需要重视的问题,可以通过采取合适的措施来解决。

这些方法包括使用电磁屏蔽材料、优化电源布线、使用滤波器、使用屏蔽电源线、合理设计散热系统、选择高质量产品以及定期维护和检修等。

怎样抑制开关电源的电磁干扰

怎样抑制开关电源的电磁干扰

怎样抑制开关电源的电磁干扰通常开关电源EMI控制主要采用滤波技术、屏蔽技术、密封技术、接地技术等。

EMI干扰按传播途径分为传导干扰和辐射干扰。

开关电源主要是传导干扰,且频率范围最宽,约为10kHz一30MHz。

抑制传导干扰的对策基本上10kHz 一150kHz、150kHz一10MHz、10MHz以上三个频段来解决。

10kHz一150kHz范围内主要是常态干扰,一般采用通用LC滤波器来解决。

150kHz一10 MHz范围内主要是共模干扰,通常采用共模抑制滤波器来解决。

10MHz以上频段的对策是改进滤波器的外形以及采取电磁屏蔽措施。

采用交流输入EMI滤波器通常干扰电流在导线上传输时有两种方式:共模方式和差模方式。

共模干扰是载流体与大地之间的干扰:干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/dt产生的,di/dt也产生一定的共模干扰。

而差模干扰是载流体之间的干扰:干扰大小相等、方向相反,存在于电源相线与中线及相线与相线之间。

干扰电流在导线上传输时既可以共模方式出现,也可以差模方式出现;但共模干扰电流只有变成差模干扰电流后,才能对有用信号构成干扰。

交流电源输人线上存在以上两种干扰,通常为低频段差模干扰和高频段共模干扰。

在一般情况下差模干扰幅度小、频率低、造成的干扰小;共模干扰幅度大、频率高,还可以通过导线产生辐射,造成的干扰较大。

若在交流电源输人端采用适当的EMI滤波器,则可有效地抑制电磁干扰。

电源线EMI滤波器基本原理如图1所示,其中差模电容C1、C2用来短路差模干扰电流,而中间连线接地电容C3、C4则用来短路共模干扰电流。

共模扼流圈是由两股等粗并且按同方向绕制在一个磁芯上的线圈组成。

如果两个线圈之间的磁藕合非常紧密,那么漏感就会很小,在电源线频率范围内差模电抗将会变得很小;当负载电流流过共模扼流圈时,串联在相线上的线圈所产生的磁力线和串联在中线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

开关电源电磁干扰(EMI)整改汇总

开关电源电磁干扰(EMI)整改汇总

开关电源电磁干扰(EMI)整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。

小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对A V值有效,电容对QP值有效。

当然,这只是一般规律。

电容越大,滤除的频率越低。

电感越大(适可而止),滤除的频率越高。

400K-4M这一段主要是开关管,变压器等的干扰。

可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。

吸收电路上套磁珠有时也很有效。

变压器初次级之间的Y 电容也是不容忽视的。

次级对初级高压端合适还是低压端有时候对这段频率影响很大。

除此之外,调整滤波器也可以抑制其骚扰。

4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。

20M 以后主要针对齐纳二级管,输出端电源输入端整改。

一般是用到磁珠,接地等。

值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。

镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。

磁珠对高频抑制效果不错。

根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。

(L="Line", N="Neutral", G="Ground")X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

开关电源电磁干扰的研究及其EMI滤波器设计建议

开关电源电磁干扰的研究及其EMI滤波器设计建议
二、 E MI 问题
起动器管光) 造成的 E MI 引起 电视机的天线辐 射的宽带噪声 。 此外 , 在同一台设备 既可以是源极 , 也可 以是受体。 个例子中 电视是 个受体 , 但是如果放一个收音机在 电视跟前 , 受影响的就是收音机了。 这 是 因为 , 最现代化 的电视机包含 开关模式 电源 , 这 些电源辐射大量 噪声干
气设备的输入端 ( 输 电线 和 中线 ) 都 存 在 这 种 噪声 , 两 者 对 地 的 相 位 保 持
相。
家 用 电气 和 电子 系 统 的广 泛 使 用 , 工业, 通信和其他应用程序 , 使 得 它
所需的 电路操作上接近对 方。 这些电路通常不利影响附近的其他 电路的性 能通 过无意其信 号耦合通过近及远 的区域, 传播电磁领域 。 因此, 这 种 干扰 被 称 为 电磁 干 扰 ( E MI ) , 是 设计 师 的一 个 主 要 问题 。此 外 ,减 少 了集 成 电路 的使 用 电子 设 备 的 大 小 和 多 个 电路 在 更 小 的空 间 , 从 而加大 了干扰的可能。 设备设计者 需要确保他们 的设备将工作在现实世 界中与其他 设备 附 近。 这意味着设备性能不应受外部噪声来源和 设备不应该本身是一个来源 的噪音。 避 免电磁干扰是…个主要设计 目标。 这就 引出了 电磁兼容的概念。 电磁兼 容性( E MC ) 的能力是 电子设 备在 预期的 电磁 干扰环境 中能够 正常 运转, 同样重要的是, 不能过度干扰在 同一环境下工作的其他设备。 过去 2 O年 中已经看到 了虚拟电操作的设备 , 如 电脑 , 电视机 , 录像 机, 通信设备 , 如传真 机, 调制解调器 和高速数字数据传 输的无线 电链 路使用 爆炸 这样的增长, 是非常严重的电磁频谱的压 力, 可用的频段现在非常拥 挤, 进一 一步增加 了E MI 导致故障的可能性。如果 N 是设备的数鼍, 可能会 互相干扰, 干扰 事 件 的 数 目将 上 升为 NN! 三、 E MI 的 干 扰 形式 电磁 下扰 有 些 是 天 然 的 , 如 宇宙 辐 射 , 太 阳活 动 或 大 气 照 明放 电 。 其 他 的, 无论是有意还是无意, 或是由高压电源 线或 无线电发射器, 可能会干扰

抑制开关电源电磁干扰的对策

抑制开关电源电磁干扰的对策

抑制开关电源电磁干扰的对策人们总是想方设法地将电磁干扰三要素之中的一个去掉:屏蔽掉骚扰源、隔离开敏感设备或者切断耦合途径。

从能量的角度来讲,电磁干扰是一种能量,无法不让它产生,只有用肯定的方法去减小其对系统的干扰。

可用到的方法可分为两大类:一种是让能量泄放掉;另一种是把能量给挡在外部。

可以说一种方法是减小其产生的幅度,另一种则切断其传播途径。

下面针对详细的方面一一分析:1、外界干扰的耦合(输入端和输出端)(1)输入端输入端是整个电源的入口处,电源内部的噪声也可由此传播到外部,对外界造成干扰。

通常采纳的策略是在输入加X电容、Y电容、差模电感和共模电感对噪声和干扰进行过滤。

图1就是一种比较常见的EMI滤波电路。

图1 EMI滤波电路其中L1、CY1和CY2组成的滤波电路可以抑制电源线上存在的共模干扰信号。

当有共模干扰电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模干扰。

差模电感L2和X 电容,组成的低通滤波可抑制电源线上的差模干扰。

(2)输出端对于输出,特殊是有长输出引线的状况,电源模块跟系统搭配后,电源内部一些噪声干扰就可能由输出线而耦合到外界,干扰其他用电设备。

对此,最好的方法是同应付输入端的干扰一样去加一些共模滤波和差模滤波。

此外,还可以在输出线串套磁珠环;采纳双绞线或是屏蔽线,以达到抑制EMI干扰的目的。

2、开关管在电源模块的工作过程中,由于开关管结电容的存在,开关管在快速开关的时候就会产生毛刺和尖峰,这样就会有一些传递或放射出来。

另外开关管的结电容和变压器的绕组漏感也有可能产生谐振而发出干扰。

对此可采纳的对策有:(1)开关管D极和G极串加磁珠环,这样等于加了一个小电感,减小开关管的电流变化率,从而达到减小尖峰的目的。

(2)在开关管处加缓冲电路或采纳软开关技术,减小开关管在快速工作时的尖峰,使其电压或电流能缓慢上升。

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。

但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。

因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。

首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。

导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。

对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。

常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。

2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。

同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。

3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。

将开关电源的地线与其他设备的接地点连接,共用同一个地线。

对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。

金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。

2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。

同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。

3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。

此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。

2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。

3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。

4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。

但开关电源的突出缺点是产生较强的电磁干扰(EMI)。

EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。

如果处理不当,开关电源本身就会变成一个干扰源。

随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。

2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。

它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。

基本整流器的整流过程是产生EMI最常见的原因。

这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。

实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。

变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。

它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。

产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。

在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。

这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。

(2) 由高频变压器产生的干扰。

当原来饱和的开关管关断时,变压器的漏感所产生的反电势eL=-Ldi/dt会使开关管的集-射极之间出现电压上冲。

这是因为开关管从Ton转换到Toff时,由于变压器的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在漏感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰,与集电极的电流变化率(di/dt)成正比,与漏感量成正比。

这种电源电压中断会产生与变压器初级接通时一样的磁化冲击电流瞬变,它是一种传导性电磁干扰,既影响变压器的初级,还会使干扰传导返回配电系统,造成电网谐波电磁干扰,影响其它用电设备的安全和经济运行。

(3) 由输出整流二级管产生的干扰。

在输出整流二级管截止时,有一个反向电流,它恢复到零点的时间与结电容等因素有关。

其中能将反向电流迅速恢复到零点的二级管称为硬恢复特性二级管,这种二极管在变压器漏感和其它分布参数的影响下,将产生较强的高频干扰,其频率可达几十MHz。

对上述开关电源产生的EMI所采取的抑制措施,主要有正确选择半导体元器体、变压器铁芯材料和在开关电源的电路中采取屏蔽、接地、滤波等几种方法。

本文仅介绍滤波措施。

3抑制开关电源EMI的滤波措施滤波技术是抑制干扰的一种有效措施,尤其是在对付开关电源EMI信号的传导干扰和某些辐射干扰方面,具有明显的效果。

任何电源线上传导干扰信号,均可用差模和共模干扰信号来表示。

差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。

在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。

因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下。

除抑制干扰源以外,最有效的方法就是在开关电源输入和输出电路中加装EMI滤波器。

开关电源的工作频率约为10~100 kHz。

EMC很多标准规定的传导干扰电平的极限值都是从10 kHz算起。

对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就不难满足符合EMC标准的滤波效果。

3.1EMI滤波器的结构及工作原理图1为开关电源EMI滤波器的基本网络结构。

图 1 开关电源EMI滤波器网络结构该滤波器是由集中参数元件构成的无源低通网络,其中L1和L2是绕在同一磁环上的2只独立线圈,称为共模电感线圈或共模线圈LCM,L3、L4是独立的差模抑制电感。

如果把该滤波器一端接入干扰源,负载端接被干扰设备,那么L1和CY,L2和CY就分别构成L-E和N-E两对独立端口间的低通滤波器,用来抑制电源线上存在的共模EMI信号,使之受到衰减,被控制到很低的电平上。

共模滤波网络结构等效电路如图2所示,它由LCM和CY组成。

图中右边是开关电源的共模噪声等效电路,并联电容CP包括开关管集电极和地之间的分布电容,高频变压器和次级间的分布电容; RP是电流源的并联电阻。

开关电源共模噪声等效电路的源内阻ZSMPS是高阻抗容性的。

图 2 共模滤波网络结构图1中,L1,L2两个线圈所绕匝数相同、绕向相反,使滤波器接入电路后,两只线圈内电流产生的磁通在磁环内相互抵消,不会使磁环达到磁饱和状态,从而使用两只线圈的电感值保持不变。

但是,由于种种原因,如磁环的材料不可能做到绝对均匀,两个线圈的绕制也不可能完全对称等,使得L1和L2的电感量是不相等的,于是,(L1-L2)形成差模电感LDM,它和L3与L4形成的独立差模抑制电感与Cx电容器又组成L-N独立端口间的一只低通滤波器,用来抑制电源线上存在的差模EMI信号。

差模干扰信号等效电路如图3所示。

它由高阻抗干扰等效电路和低阻抗干扰等效电路两部分组成。

图中,开关S表示桥式整流二极管导通与否,因此高低两个等效电路是不能同时存在的;RS是分布电组,LS是分布电感,数值都很小。

为与共模情况区别,RP和CP用RP′和CP′表示。

图 3 开关电源EMI差模信号等效电路差模EMI信号滤波网络结构等效电路如图4所示。

LDM是差模电感,包含共模线圈形成的差模电感和独立的差模抑制电感;CLL是滤波网络选用的并联电容。

图4(b)与图4(a)相比,增加了一个CLL2,其数值的选择使滤波网络与负载构成失配状态。

图 4 差模滤波网络结构由于图1电路是无源网络,它具有互易性。

当它安装在系统中后,既能有效地抑制电子设备外部的EMI信号传入设备,又能大大衰减设备本身工作时产生的EMI信号传向电网,起到同时衰减两组共模EMI信号和一组差模EMI信号的作用。

3.2 EMI滤波器选用与安装开关电源EMI滤波器中的4只电容器用了2种不同的下标“X”和“Y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。

无论是选用还是设计EMI滤波器,都要认真地考虑CX和CY的安全等级。

在实际应用中,CX电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会迭加L和N之间存在的EMI信号峰值电压,因此要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的CX电容器。

CY电容器是接在电源供电线L、N与金属外壳(E)之间,对于220 V,50 Hz电源,它除符合250 V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全余量,以避免可能出现的击穿短路现象。

EMI滤波器是具有互易性的,即把负载接在电源端还是负载端均可。

在实际应用中,为达到有效抑制EMI信号的目的,必须根据滤波器两端将要连接的EMI 信号源阻抗和负载阻抗来选择该滤波器的网络结构和参数。

当EMI滤波器两端阻抗都处于失配状态时,图5中ZS≠Zin、ZL≠Zout时,EMI信号会在其输入和输出端产生反射,增加对EMI信号的衰减。

其信号的衰减A与反射Γ的关系为:A=-10 lg(1-|Γ|2)图 5 滤波器工作原理电磁兼容设计的目的是在网络结构符合最大失配的原则下,尽可能合理选择元器件参数,使EMI信号衰减最大。

在使用开关电源滤波器时,要注意滤波器在额定电流下的电源频率。

在安装滤波器时,要特别注意滤波器的输入导线与输出导线的间隔距离,不能把它们捆在一起走线,否则EMI信号很容易从输入线上耦合到输出线上,会大大降低滤波器的抑制效果。

具体如图1所示。

输入为交流220V,经功率二极管整流桥变为直流作为反激变换器的输入,输出为三组直流:+5V,15V,12V,另外有一辅助电源5V,用来给光耦PC817供电。

控制电路用反馈控制,选用TOPSwicth系列的TOP223Y芯片。

开关电源工作时,其内部的电压和波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。

开关电源的干扰按噪声源种类分为尖峰干扰和谐波干扰两种。

使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。

本电路中,交流输入电压Ui经功率二极管整流桥变为正弦脉动电压,经电容C12平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。

如图2所示。

由图2中电流波形可知,电流中含有高次谐波。

大量电流谐波分量流入电网,造成对电网的谐波污染。

另外,由于电流是脉冲波,使电源输入功率因数降低。

2.1 高次谐波的抑制在电路中采用共模扼流圈L11来抑制高次谐波。

对开关电源二根进线而言,存在共模干扰和差模干扰,如图3(a)及图3(b)所示。

在差模干扰信号作用下,干扰源产生的电流i,在磁芯中产生方向相反的磁通Φ,磁芯中等于没有磁通,线圈电感几乎为零。

因此不能抑制差模干扰信号。

在共模干扰信号作用下,两线圈产生的磁通方向相同,有相互加强的作用,每一线圈电感值为单独存在时的两倍。

因此,这种接法的电磁线圈对共模干扰有很强的抑制作用。

电路中在电网与整流桥之间插入一共模扼流圈,该扼流圈对电网频率的差模网侧电流呈现极低的阻抗,因而对电网的压降极低;而对电源产生的高频共模噪声,等效阻抗较高,因而可以得到希望的插入损耗。

2.2 扼流圈L11与C11组成低通滤波器扼流圈L11的等效电感为L,以电源端作为输入,电网方向作为输出,则电路图如图4所示。

其传递函数幅值为如图5所示。

由此可见,以上LC网络组成的低通滤波器,可滤除ω0=1/LC11以上的高次谐波。

2.3 共模和差模滤波器方案本电路主要的EMI问题是电源噪声传入电网,将原来的共模扼流圈L11与电容C11及C12组成的滤波电路变为如图6所示电路。

L1,L2,C1可除去差模干扰,L3,C2,C3可除去共模干扰。

L1,L2为不易磁饱和的材料;C1可选陶瓷电容;L3为共模扼流圈;选定C=C2=C3及截止频率fo,则可根据L3=1/〔(2πfo)2C〕计算L3;选定C1及截止频率fo,可根据L1=L2=1/〔2(2πfo)2C1〕计算L1及L2。

相关文档
最新文档