高考数学第一轮复习19数列的综合应用
高考数学一轮总复习课件:数列的综合应用
又因为an≤15,所以6×1.2n-1≤15, 所以n-1≤5,所以n≤6. 所以an=611×,1n.2=n-11,,2≤n≤6,
15,n≥7.
(2)由(1)得,2021年全年的投资额是(1)中数列{an}的前12项 和,所以S12=a1+(a2+…+a6)+(a7+…+a12)=11+6×(1.2+… +1.25)+6×15=101+6×1.2×(1.21-.251-1)≈154.64(万元).
(1)证明:an+2-an=λ; (2)是否存在λ,使得{an}为等差数列?并说明理由. 【思路】 (1)已知数列{an}的前n项和Sn与相邻两项an,an+1间 的递推关系式anan+1=λSn-1,要证an+2-an=λ,故考虑利用an+1= Sn+1-Sn消去Sn进行证明. (2)若{an}为等差数列,则有2a2=a1+a3,故可由此求出λ,进 而由an+2-an=4验证{an}是否为等差数列即可.
【解析】 (1)证明:由已知,得bn=2an>0. 当n≥1时,bbn+n 1=2an+1-an=2d. 所以数列{bn}是首项为2a1,公比为2d的等比数列. (2)函数f(x)=2x在(a2,b2)处的切线方程为y-2a2=(2a2ln2)(x -a2),它在x轴上的截距为a2-ln12. 由题意,a2-ln12=2-ln12,解得a2=2. 所以d=a2-a1=1,所以an=n,bn=2n,anbn2=n·4n.
比数列.所以an+1=45+-25190n.
(3)因为an+1>60%,即
4 5
+
-25
9 10
n
>
3 5
,则
9 10
n
<
1 2
,所以
n(lg9-1)<-lg2,n>1-lg22lg3≈6.572 1.
专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(原卷版)
第五篇 数列及其应用专题5.04 数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )【教材衍化】2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 0213.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.【真题体验】4.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.305.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.6.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.【考点聚焦】考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.【规律方法】 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n .【规律方法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n .考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .【规律方法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.【训练3】已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,a n+2log2b n=-1.(1)分别求数列{a n},{b n}的通项公式;(2)求数列{a n·b n}的前n项和T n.考点四数列的综合应用【例4】某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?【规律方法】数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{a n}的通项公式;(2)设b n=3a n a n+1,试求数列{b n}的前n项和T n.【反思与感悟】1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中.【易错防范】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.82.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-4003.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A.9B.99C.10D.1004.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为() A.1 026 B.1 025 C.1 024 D.1 0235.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.7.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________.8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0).10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.【能力提升题组】(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则() A.a n ≥2n +1 B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -112.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.14.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .【新高考创新预测】15.(多填题)已知公差不为零的等差数列{a n}中,a1=1,且a2,a5,a14成等比数列,{a n}的前n项和为S n,b n=(-1)n S n,则a n=________,数列{b n}的前n项和T n=________.。
[精]高三第一轮复习全套课件3数列:数列的综合应用
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
高考理科第一轮复习课件(5.5数列的综合应用)
1.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数 列,则{an}的前n项和Sn=(
n 2 7n (A) 4 4 n 2 5n (B) 3 3
) (D)n 2+n
n 2 3n (C) 2 4
【解析】选A.设数列{an}的公差为d,则根据题意得
(2+2d)2=2·(2+5d),解得 d 1 或d=0(舍去),所以数列{an}
【变式备选】已知{an}是首项为19,公差为-2的等差数列,Sn
为{an}的前n项和. (1)求通项an及Sn. (2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn} 的通项公式及其前n项和Tn.
【解析】(1)因为{an}是首项为a1=19,公差d=-2的等差数
列,所以an=19-2(n-1)=-2n+21, Sn=-n2+20n. (2)由题意知bn-an=3n-1,所以bn=an+3n-1, 即bn=-2n+21+3n-1. Tn=Sn+(1+3+„+3n-1)
3n 2 11n 2 2 , n 2, 所以Sn 2 3n 11n 10, n 2, 2 2 4,
这个式子中n=2时两段函数值相等,
n 1,
故可以写为
Sn 3n 2 11n 10, n 2. 2 2
【互动探究】本例题(1)中将条件“S1,S2,S4成等比数列”改
第五节 数列的综合应用
数列的实际应用 (1)解答数列应用题的步骤. ①审题——仔细阅读材料,认真理解题意. ②建模——将已知条件翻译成数学(数列)语言,将实际问题转 化成数学问题,弄清该数列的结构和特征. ③求解——求出该问题的数学解. ④还原——将所求结果还原到原实际问题中.
0819高二数学数列的综合应用-张心刚
(1) 数列{bn}是等比数列;(2)b2>4;(3)b4>32;(4)b2b4=256. 其中正确命题的个数为________.
解析
设 a1,a2,a3,a4 的公差为 d,则 a1+2d=4,又 0<a1<2,
2
所以 1<d<2.易知数列{bn}是等比数列,故(1)正确; a2=a3-d∈(2,3),所以 b2=2a >4,故(2)正确; 1
基础回顾
1.若 Sn 是等差数列{an}的前 n 项和,且 S8-S3=10,则 S11 的值为 22 ________. a6 2.在等比数列{an}中,an>an+1,且 a7· a11=6,a4+a14=5,则a = 16 3 ________. 2 3.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号” 系列火箭, 在点火第一秒钟通过的路程为 2 km, 以后每秒钟通过的 路程都增加 2 km,在达到离地面 240 km 的高度时,火箭与飞船分 离,则这一过程需要的时间大约是________秒. 15 n 4 .已知数列 {an} 的通项为 an = 2 ,则数列 {an} 的最大项为 第 n +58 8 ________项.
网络课堂——2014年春学期新高二数学暑期学习辅导
第17课时: 数列的综合应用
江阴市南菁高级中学 张心刚
要点梳理
1.数列的综合应用
数列的综合应用一是指综合运用数列的各种知识和方法求解 问题,二是数列与其他数学内容相联系的综合问题.解决此类问题 应注意数学思想及方法的运用与体会. (1)数列是一种特殊的函数, 解数列题要注意运用方程与函数的 思想与方法. (2)转化与化归思想是解数列有关问题的基本思想方法, 复杂的 数列问题经常转化为等差、等比数列或常见的特殊数列问题. (3) 由特殊到一般及由一般到特殊的思想是解决数列问题的重 要思想.已知数列的前若干项求通项,由有限的特殊事例推测出一 般性的结论,都是利用此法实现的. (4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常 要对公比进行讨论;由 Sn 求 an 时,要对 n=1 或 n≥2 进行分类讨 论.
高考数学《数列求和及综合应用》复习
C. 2019
2020
√D. 2020 2021
由
a1
1 2
,an1
1 2 an
,得 a2
1 2 a1
2 3
,a3
3 4
,归纳可得
an
n
n
1
.当
n
1
时,a1
1 2
满足
an
n.
n 1
假设当 n k 时满足,即 ak
k
k 1
,当
n
k
1 时,
ak 1
1 2 ak
1 2 k
k 1 ,满足该式,故
an
SS1n,
n
1 Sn1, n
2, n N
只有 a1 S1 ,满足 n 2 的情形,通项公式才可以统一写成 an Sn . Sn1
1.已知数列an
满足
a1
1 2
,
an1
2
1 an
n N*
,则 a1
a2 22
a3 32
a2020 的值是(
20202
)
A. 2018
2019
B. 1009
3.以等差(比)数列为命题背景,考查等差(比)的前n项和公式、 分组求和 4.以递推数列、等差(比)数列为命题背景, 考查错位相减、裂项相消、倒序相加等求和方法
考点解读
5.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和 6.常与不等式、函数、解析几何相结合考查数列求和函数、 不等式的性质等
2.已知等比数列an 的前 n 项和为 Sn ,且 Sn 2n1 2 ,
则数列
log
2
an
1 log2
an1
2019年高考文科数学题型秘籍【32】数列的综合应用(解析版)
高考数学精品复习资料2019.5专题三十二数列及其综合应用【高频考点解读】能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.【热点题型】题型一数列综合应用题例1、已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()【提分秘籍】数列综合应用题的解题步骤1.审题——弄清题意,分析涉及哪些数学内容,在每个数学内容中,各是什么问题.2.分解——把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等.3.求解——分别求解这些小题或这些“步骤”,从而得到整个问题的解答.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解.【举一反三】数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和S n>1 020,那么n的最小值是()A.7B.8C.9D.10【热点题型】题型二常见的数列模型例2、有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要() A.6秒钟B.7秒钟C.8秒钟D.9秒钟【提分秘籍】1.等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.2.等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.3.递推公式模型:通过读题分析,由题意把所给条件用数列递推表达出来,然后通过分析递推关系式求解.4.分期付款模型设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b=r+r n+r n-1a.【举一反三】等比数列{a n}的前n项和为S n,若a1=1,且4a1,2a2,a3成等差数列,则S4=________.【热点题型】题型三等差与等比数列的综合问题例3、(高考浙江卷)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【提分秘籍】对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,前n 项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法.【举一反三】已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3=( )A .2B .3C .5D .6【热点题型】题型四 数列与函数的综合应用例4、已知函数f(x)=ln x的图象是曲线C,点A n(a n,f(a n))(n∈N*)是曲线C上的一系列点,曲线C在点A n(a n,f(a n))处的切线与y轴交于点B n(0,b n).若数列{b n}是公差为2的等差数列,且f(a1)=3.(1)分别求出数列{a n}与数列{b n}的通项公式;(2)设O为坐标原点,S n表示△OA n B n的面积,求数列{a n S n}的前n项和T n.【提分秘籍】解决函数与数列的综合问题应该注意的事项(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.【举一反三】(高考全国新课标卷Ⅱ)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________.【热点题型】题型五数列的实际应用例5、某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天支付的薪酬是前一天薪酬的2倍,工作时间为n天.(1)设工作n天,记三种付酬方式薪酬总金额依次为A n,B n,C n,写出A n,B n,C n关于n 的表达式;(2)如果n=10,你会选择哪种方式领取报酬?【提分秘籍】求解数列应用问题,必须明确属于哪种数列模型,是等差数列,还是等比数列;是求通项问题,还是求项数问题,或者是求和问题.然后将题目中的量建立关系,利用数列模型去解决.【举一反三】根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (单位:万件)近似地满足S n =n90(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7月C .7月、8月D .8月、9月【高考风向标】1.(20xx·湖南卷) 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.2.(20xx·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.3.(20xx·湖北卷) 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.4.(20xx·江西卷) 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .5.(20xx·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.6.(20xx·四川卷) 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .7.(20xx·浙江卷) 已知数列{a n}和{b n}满足a1a2a3…a n=(2)b n(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n.(2)设c n=1a n-1b n(n∈N *).记数列{cn}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈均有S k≥S n.8.(高考辽宁卷)下面是关于公差d >0的等差数列{a n }的四个命题: P 1:数列{a n }是递增数列; P 2:数列{na n }是递增数列; P 3:数列{a nn }是递增数列;P 4:数列{a n +3nd }是递增数列. 其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 49.(高考重庆卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.10. (高考广东卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.【随堂巩固】1.已知数列{a n},{b n}满足a1=1,且a n,a n+1是函数f(x)=x2-b n x+2n的两个零点,则b8+a9=()A.24 B.32C.48 D.642.已知数列{a n}为等差数列,数列{b n}是各项为正数的等比数列,其公比q≠1,若a4=b4,a12=b12,则()A.a8=b8B.a8>b8C.a8<b8D.a8>b8或a8<b83.已知正项等差数列{a n}满足:a n+1+a n-1=a2n(n≥2),等比数列{b n}满足:b n+1b n-1=2b n(n≥2),则log2(a2+b2)=()A.-1或2 B.0或2C .2D .14.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则q 的值为( )A.1-52B.5-12C.5+12D.5+12或5-125.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,若b =3,则a +c 的最大值为( )A.32B .3C .2 3D .96.若关于x 的方程x 2-x +a =0与x 2-x +b =0(a ≠b )的四个根组成首项为14的等差数列,则a +b 的值是( )A.38B.1124C.1324D.31727.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .18.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一月(按30天计),共织390尺布”,则每天比前一天多织________尺布.(不作近似计算)9.已知数列{a n }满足a n a n +1a n +2a n +3=24,且a 1=1,a 2=2,a 3=3,则a 1+a 2+a 3+…+a 2 013=________.10.已知公比为q 的等比数列{a n }的前6项和S 6=21,且4a 1,32a 2,a 2成等差数列.(1)求a n ;(2)设{b n }是首项为2,公差为-a 1的等差数列,其前n 项和为T n ,求不等式T n -b n >0的解集.11.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.12.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数f (x )=12x 2+12x 的图象上.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +2的前n 项和为T n ,不等式T n >13log a (1-a )对任意正整数n 恒成立,求实数a 的取值范围.。
高中数学复习课件-数列的综合应用
1 种重要思想:转化与化归的思想 数列求和把数列通过分组、变换通项、变换次序、乘以常数 等方法,把数列的求和转化为能使用公式求解或者能通过基本运 算求解的形式,达到求和的目的. 2 点特别注意:数列求和中应注意的两个问题
(1)错位相减法中两式相减后,一定成等比数列的有 n-1 项, 整个式子共有 n+1 项.
例 3 等差数列{an}的前 n 项和为 Sn.已知 a1=10,a2 为整数 且 Sn≤S4. (1)求{an}的通项公式; (2)设 bn=ana1n+1,求数列{bn}的前 n 项和 Tn.
[解] (1)由 a1=10,a2 为整数知,等差数列{an}的公差 d 为
整数.
且 Sn≤S4,故 a4≥0,a5≤0,
课后作业:
1.
数列
11,31,51,7 1 ,…的前 2 4 8 16
n
项和
Sn
为
2. 已知{an}是公差不为零的等差数列,a1=1,且 a2,a5,a14 成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{ 1 }的前 anan+1
n
项和
Sn.
3. 设数列{an}满足 a1+3a2+32a3+…+3n-1an=n3,n∈N*.
=101-2n.当 n=1 时,满足上式. =2S50-(a1+a2+…+an)
综上 an=101-2n(n∈N*).
=2·(100·50-502)-(100n-n2)
(2)bn=|an|=120n1--1201n,,
=n2-100n+5000. 1≤n≤50,
n≥51.
综上有 Tn=1n02-0n1-00nn2,+5000,1≤n≤n≥505,1.
(1)求数列{an}的通项公式及前 n 项和 Sn; (2)设 bn=n+Sn c,若{bn}也是等差数列,试确定非零常数 c, 并求数列{bn·1bn+1}的前 n 项和 Tn.
2019届高考数学(浙江版)一轮配套讲义:6.4数列求和数列的综合应用
§ 6.4 数列乞降、数列的综合应用考纲解读考点考纲内容要求浙江省五年高考统计201420152016201720131. 认识等差数列与一次函数、等比数列与指数函数的18(2),717(2)( 文 17(2)( 文1. 数列的求 关系 .分 19(2),7 掌握),),和2. 能利用等差、 等比数列前 文 ),4 分14(8 分8 分n 项和公式及其性质求一些分特别数列的和 .18(1),720,15 分2. 数列的综 能利用数列的等差关系或 掌握分 19(1), 17(1)( 文 20(2), 22,15 分合应用等比关系解决实质问题 .7 分),8 分19( 文 ),14 分7 分剖析解读1. 等差数列和等比数列是数列的两个最基本的模型 , 是高考取的热门之一 . 基本知识的考察以选择题或填空题的形式体现 , 而综合知识的考察则以解答题形式体现.2. 经过以数列为载体来考察推理概括、类比的能力成为高考的热门 .3. 数列常与其余知识如不等式、函数、概率、分析几何等综合起来进行考察 .4. 估计 2019 年高考取 , 对数列与不等式的综合题的考察还是热门, 复习时应惹起高度重视 .五年高考考点一 数列的乞降1.(2017 课标全国Ⅰ理 ,12,5 分 ) 几位大学生响应国家的创业呼吁 , 开发了一款应用软件 . 为激发大家学习数 学的兴趣 , 他们推出了“解数学题获得软件激活码”的活动 . 这款软件的激活码为下边数学识题的答案 : 已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16, ,, 此中第一项为哪一项 20, 接下来的两项是 20,2 1, 再接下来的三项是 20 ,2 1,2 2, 依此类推 . 求知足以下条件的最小整数 N:N>100 且该数列的前 N 项和为 2 的整数幂 . 那么该款软件 的激活码是 ( ) A.440 B.330 C.220 D.110 答案 A 2.(2015 江苏 ,11,5 分 ) 设数列 {a n } 知足 a 1=1, 且 a n+1-a n =n+1(n ∈N * ), 则数列 前 10 项的和为.答案3.(2016 浙江文 ,17,15 分 ) 设数列 {a } 的前 n 项和为 S . 已知 S =4,a*n =2S +1,n ∈N .n 2n+1n(1) 求通项公式 a n ;(2) 求数列 {|a n -n-2|} 的前 n 项和 .分析 (1) 由题意得 则又当 n ≥ 2 时 , 由 a n+1-a n =(2S n +1)-(2S n-1+1)=2a n , 得 a n+1=3a n .所以 , 数列 {a n } 的通项公式为 a n =3n-1 ,n ∈ N * .(2) 设 b n =|3 n-1 -n-2|,n ∈ N * , 则 b 1=2,b 2=1.n-1n-1当 n ≥ 3 时 , 因为 3 >n+2, 故 b n =3 -n-2,n ≥3.当 n ≥ 3 时 ,T n =3+ - = ,所以 T n =4.(2015 浙江文 ,17,15 分) 已知数列 {a n } 和 {b n } 知足 a 1=2,b 1=1,a n+1=2a n (n ∈ N * ),b 1+ b 2+ b 3+, + b n =b n+1-1(n ∈ N * ).(1) 求 a n 与 b n ;(2) 记数列 {a n b n } 的前 n 项和为 T n , 求 T n .n*分析(1) 由 a 1=2,a n+1=2a n , 得 a n =2 (n ∈ N ).当 n=1 时 ,b 1=b 2-1, 故 b 2=2.当 n ≥ 2 时 , b n =b n+1-b n , 整理得= ,n*所以 b =n(n∈ N).(2) 由 (1) 知 a n b n =n · 2n ,n23n所以 T =2+2· 2 +3· 2 +, +n · 2 ,2T n =22+2· 23+3·24+, +n ·2n+1,n n 2 3nn+1所以 T -2T =2+2 +2 +,+2 -n ·2 .故 T n =(n-1)2n+1+2(n ∈ N * ).} 是各项均为正数的等比数列, 且 a +a =6,a a =a .5.(2017山东文 ,19,12分 ) 已知 {a n121 23(1) 求数列 {a n } 的通项公式 ; (2){b n } 为各项非零的等差数列, 其前 分析 此题考察等比数列与数列乞降 n 项和为.S n .已知S 2n+1=b n b n+1, 求数列的前 n 项和T n .(1) 设 {a n } 的公比为 q,由题意知 :a 1(1+q)=6,q=a 1q 2,又 a n >0, 解得 a 1=2,q=2, 所以 a n =2n .(2) 由题意知 :S ==(2n+1)bn+1 ,2n+1又 S 2n+1=b n b n+1,b n+1≠ 0, 所以 b n =2n+1.令 c =, 则 c =.nn所以 T =c +c +,+c = + + +, ++,n12n又 T n = + + +, ++, 两式相减得 T = +-,n所以 T n =5-.6.(2016 课标全国Ⅱ ,17,12 分 )S 为等差数列 {a } 的前 n 项和 , 且 a =1,S =28. 记 b =[lga n ], 此中 [x] 表示不超nn17n过 x 的最大整数 , 如 [0.9]=0,[lg99]=1.(1) 求 b 1,b 11,b 101;(2) 求数列 {b n } 的前 1000 项和 .分析 (1) 设 {a n } 的公差为 d, 据已知有 解得 d=1.所以 {a n } 的通项公式为 a n =n.7+21d=28, b 1 =[lg1]=0,b 11 =[lg11]=1,b 101=[lg101]=2.(6 分 )(2) 因为 bn = (9分 )所以数列 {b n } 的前 1000 项和为 1× 90+2×900+3×1=1893.(12分 )7.(2015 天津 ,18,13 分 ) 已知数列 {a } 知足 a =qa (q 为实数 , 且 q≠ 1),n ∈ N ,a =1,a =2, 且 a +a ,a +a ,a +an n+2n *1 2 233445 成等差数列 .(1)求 q 的值和 {a n} 的通项公式 ;(2)设 b n=,n ∈ N* , 求数列 {b n} 的前 n 项和 .分析 (1) 由已知 , 有(a 3+a4)-(a 2+a3)=(a 4+a5)-(a 3+a4), 即 a4-a 2=a5-a 3, 所以a2(q-1)=a 3(q-1). 又因为 q≠1, 故 a3=a2=2,由 a3=a1· q, 得 q=2.当 n=2k-1(k ∈ N* ) 时 ,a n=a2k-1 =2k-1 = ;k* n 2k当 n=2k(k ∈ N ) 时 ,a =a =2= .所以 ,{a n}的通项公式为a n=(2) 由 (1) 得b n= =. 设 {b n} 的前n 项和为S n, 则S n=1×+2×+3×+,+(n-1) ×+n×,S n=1×+2×+3×+, +(n-1) ×+n×,上述两式相减, 得S=1++ +, + - = -=2--,n整理得 ,S n=4-.*所以 , 数列 {b n} 的前 n 项和为 4-,n ∈ N .8.(2013 辽宁 ,14,5 分 ) 已知等比数列 {a n} 是递加数列 ,S n是 {a n} 的前 n 项和 . 若 a1,a 3是方程 x2-5x+4=0 的两个根,则 S6= .答案639.(2013 重庆 ,12,5 分 ) 已知 {a n} 是等差数列 ,a 1=1, 公差 d≠ 0,S n为其前 n 项和 , 若 a1,a 2,a 5成等比数列 , 则S8 = .答案6410.(2013 湖南 ,15,5 分 ) 设 S n为数列 {a n} 的前 n 项和 ,S n=(-1) n a n- ,n ∈ N* , 则(1)a 3= ;.(2)S +S +, +S =1 2 100答案(1)- (2)11.(2017 北京文 ,15,13 分 ) 已知等差数列 {a } 和等比数列 {b } 知足 a =b =1,a +a =10,b b =a .n n 11 24 2 45(1)求 {a n} 的通项公式 ;(2)乞降 :b 1+b3 +b5+, +b2n-1 .分析此题考察等差数列及等比数列的通项公式, 数列乞降 . 考察运算求解能力.(1)设等差数列 {a n} 的公差为 d.因为 a2+a4=10, 所以 2a1+4d=10.解得 d=2. 所以 a n=2n-1.(2) 设等比数列 {b n} 的公比为q.2 4511 3因为 b b =a ,所以 b qb q =9.解得 q 2=3.2n-2 n-1所以 b 2n-11 . =b q=31 3 52n-12+3 n-1=.进而 b +b +b +,+b =1+3+3 +,12.(2013浙江 ,18,14分 ) 在公差为 d 的等差数列 {a } 中 , 已知 a =10, 且 a ,2a2+2,5a 3成等比数列 .n11(1) 求 d,a n ;|+|a |+|a |+ , +|a |.(2) 若 d<0, 求 |a1 n23分析 (1) 由题意得 5a 3· a 1=(2a 2+2) 2,2即 d -3d-4=0.故 d=-1 或 d=4.**所以 a =-n+11,n∈ N或 a =4n+6,n ∈ N.nn(2) 设数列 {a n } 的前 n 项和为 S n .因为 d<0, 由 (1) 得 d=-1,a n =-n+11, 则当 n ≤ 11 时 ,|a |+|a2 |+|a |+ , +|an |13n2 n. =S =- n +当 n ≥ 12 时,|a1|+|a 2|+|a 3|+ , +|a n |=-S n +2S 11= n 2-n+110.综上所述 ,|a 1|+|a 2|+|a 3|+ , +|a n |=13.(2017 天津文 ,18,13 分 ) 已知 {a n } 为等差数列 , 前 n 项和为 S n (n ∈ N * ),{b n } 是首项为 2 的等比数列 , 且公比大于 0,b+b =12,b =a -2a ,S=11b4 .2 334111(1) 求 {a n } 和{b n } 的通项公式 ; *(2) 求数列 {a 2n nb } 的前 n 项和 (n ∈ N ).分析 本小题主要考察等差数列、等比数列及其前n 项和公式等基础知识 . 考察数列乞降的基本方法和运 算求解能力 .(1) 设等差数列 {a n } 的公差为 d, 等比数列 {b n } 的公比为 q. 由已知 b 2+b 3=12, 得 b 1(q+q 2)=12, 而 b 1=2, 所以 q 2+q-6=0.又因为 q>0, 解得 q=2.n所以 ,b n =2 .由 b 3=a 4-2a 1, 可得 3d-a 1=8①. 由 S 11=11b 4, 可得 a 1+5d=16②, 联立①② ,解得 a 1=1,d=3, 由此可得 a n =3n-2.所以 ,{a n } 的通项公式为 a n =3n-2,{b n } 的通项公式为 b n =2n .(2) 设数列 {a 2n b n } 的前 n 项和为 T n , 由 a 2n =6n-2, 有 T n =4× 2+10× 22+16× 23+, +(6n-2) ×2n ,n 2 3 4 nn+12T =4× 2 +10×2 +16× 2 +, +(6n-8)×2 +(6n-2) × 2 ,上述两式相减 , 得 -T n =4× 2+6× 22+6× 23+, +6× 2n -(6n-2) × 2n+1 =-4-(6n-2) × 2n+1=-(3n-4)2 n+2-16.得 T n =(3n-4)2 n+2+16.所以 , 数列 {a 2n b n } 的前 n 项和为 (3n-4)2 n+2+16.} 的公比为 q. 已知14.(2015 湖北 ,19,12 分 ) 设等差数列 {a } 的公差为 d, 前 n 项和为 S , 等比数列 {bnnnb 1 =a 1,b 2=2,q=d,S 10 =100.(1) 求数列 {a },{b} 的通项公式 ;nn(2) 当 d>1 时 , 记 c n = , 求数列 {c n } 的前 n 项和 T n .分析(1) 由题意有 ,即解得或故或n n n-1 n=,(2) 由 d>1, 知 a =2n-1,b =2 , 故 c于是 T n=1+ + + + +, + , ①T n= + + + + +, + . ②①- ②可得T=2+ + +, + - =3- ,n故 T n=6-.15.(2014 山东 ,19,12 分 ) 已知等差数列 {a n} 的公差为 2, 前 n 项和为 S n, 且 S1,S 2,S 4成等比数列 .(1)求数列 {a n} 的通项公式 ;(2) 令 b n=(-1) n-1 , 求数列 {b n} 的前 n 项和 T n.分析(1) 因为 S =a ,S =2a + ×2=2a +2,1 12 1 1S4 =4a1+×2=4a1+12,2由题意得 (2a 1+2) =a1(4a 1+12),(2)b n-1 =(-1) n-1=(-1)n=(-1) n-1 .当 n 为偶数时 ,n- +, + -T ==1-=.当 n 为奇数时 ,T n =-+, -+++=1+=.所以 T=n16.(2013 江西 ,17,12n n知足 :2 n 2+n)=0. 分 ) 正项数列 {a } 的前 n 项和 S -(n +n-1)S -(n(1) 求数列 {a } 的通项公式 a ;n n(2) 令 b = , 数列 {b } 的前 n 项和为 T . 证明 : 关于随意的*n∈N , 都有 T < .n n n n分析(1) 由 -(n 2+n-1)S n-(n 2+n)=0, 得 [S n-(n 2+n)](S n+1)=0.因为n n n2{a } 是正项数列 , 所以 S >0,S =n +n.于是 a1=S1=2,n ≥ 2 时 ,a n=S n-S n-1 =n2+n-(n-1) 2-(n-1)=2n. 综上 , 数列 {a n} 的通项 a n=2n.(2) 证明 : 因为 a n=2n,b n= ,则 b = = - .nT n = 1-+-+-+,+ - + -= < = .17.(2013 山东 ,20,12 分 ) 设等差数列 {a n} 的前 n 项和为 S n, 且 S4=4S2,a 2n=2a n+1.(1)求数列 {a n} 的通项公式 ;(2)设数列 {b n} 的前 n 项和为 T n, 且 T n+=λ ( λ为常数 ), 令 c n=b2n(n ∈ N* ), 求数列 {c n} 的前 n 项和 R n. 分析(1) 设等差数列 {a n} 的首项为 a1, 公差为 d.由 S4=4S2,a 2n=2a n+1 得1 n *解得 a =1,d=2. 所以 a =2n-1,n ∈ N.(2) 由题意知 :T n=λ - ,所以 n≥ 2 时 ,b =T -Tn-1 =- + = .nn故 c n=b2n= =(n-1) ,n ∈ N* .所以 R =0×+1×+2×+3×+, +(n-1) ×, n则 R n=0×+1×+2×+, +(n-2) ×+(n-1) ×, 两式相减得R = ++ +, +-(n-1) ×n=-(n-1) ×= -,整理得 R n=.所以数列 {c n} 的前 n 项和 R n=.18.(2013 四川 ,16,12分 ) 在等差数列 {a } 中 ,a +a =8, 且 a 为 a 和 a 的等比中项 , 求数列 {a } 的首项、公差n13429n及前 n 项和 .分析 设该数列公差为d, 前 n 项和为 S . 由已知 , 可得n2a 1+2d=8,(a 1+3d) 2=(a 1+d)(a 1+8d).所以 a +d=4,d(d-3a1)=0,1解得 a 1=4,d=0, 或 a 1=1,d=3, 即数列 {a n } 的首项为 4, 公差为 0, 或首项为 1, 公差为 3.所以数列的前 n 项和 S n =4n 或 S n =.考点二数列的综合应用1.(2015 福建 ,8,5 分 ) 若 a,b 是函数 f(x)=x 2-px+q(p>0,q>0) 的两个不一样的零点 , 且 a,b,-2 这三个数可适合排序后成等差数列 , 也可适合排序后成等比数列 , 则 p+q 的值等于 ( )A.6B.7C.8D.9 答案 D2.(2017 北京理 ,10,5 分 ) 若等差数列 {a n } 和等比数列 {b n } 知足 a 1=b 1=-1,a 4=b 4=8, 则=.答案 13.(2016 浙江 ,20,15 分 ) 设数列 {a n } 知足 ≤ 1,n ∈ N * .(1) 证明 :|a n | ≥ 2n-1 (|a 1|-2),n ∈ N * ;(2) 若 |a n | ≤ ,n ∈ N * , 证明 :|a n | ≤ 2,n ∈ N * .证明 (1) 由≤ 1 得 |a |- |a | ≤1,故-≤ ,n ∈N ,nn+1*所以 -=++, +≤+ +,+ <1,所以 |a nn-1(|a 1 |-2).|≥ 2(2) 任取 n ∈ N * , 由 (1) 知, 关于随意 m>n,-=++, +≤ ++,+<,nnnn故 |a |<· 2 ≤·2 =2+·2 .进而关于随意nnm>n,均有 |a |<2+·2.①由 m 的随意性得 |a n | ≤2.不然 , 存在 n 0∈ N * , 有 ||>2, 取正整数 m 0>lo 且 m 0>n 0, 则 · < · =| |-2, 与①式矛盾 .综上 , 关于随意 n ∈ N * , 均有 |a n | ≤2.4.(2015 浙江 ,20,15 分 ) 已知数列 {a n } 知足 a 1= 且 a n+1=a n - (n ∈ N * ). (1) 证明 :1 ≤ ≤ 2(n ∈ N * );(2) 设数列 { } 的前 n 项和为 S n , 证明 : ≤ ≤(n ∈ N * ).证明(1) 由题意得 a n+1-a n =- ≤ 0, 即 a n+1≤ a n ,故 a n ≤ .由 a n =(1-an-1)a n-1 得 a n =(1-a n-1 )(1-a n-2 ) , (1-a 1)a 1>0.由 0<a ≤ 得==∈ [1,2],n即 1≤≤ 2.(2) 由题意得 =a -a,nn+1n1n+1所以 S =a -a . ①由- =和 1≤ ≤2得 1≤- ≤2,所以 n ≤- ≤ 2n, 所以 ≤ a n+1≤ (n ∈N * ). ②由①②得≤ ≤(n ∈ N * ).5.(2014 浙江 ,19,14 分 ) 已知数列 {a n} 和 {b n 1 2 3 n * n} 知足 a a a , a =((n ∈ N ). 若 {a } 为等比数列 , 且a 1 =2,b 3=6+b 2. (1) 求 a n 与 b n ;(2) 设c n = -(n ∈ N * ).记数列{c n } 的前n 项和为S n .(i) 求 S n ;(ii) 求正整数 k, 使得对随意 n ∈ N * 均有 S k ≥ S n .分析 (1) 由 a 1a 2a 3, a n =( ,b 3-b 2=6,知 a =(=8.31得公比 q=2(q=-2 舍去 ), 所以数列 nn n*又由 a =2, {a } 的通项为 a =2 (n ∈ N ), 所以 ,a 1 23n=() n(n+1).a a ,a =故数列 n } 的通项为 n*{b b =n(n+1)(n ∈N ).(2)(i)由 (1) n- =- *知 c =(n ∈ N ),所以 S n =- (n ∈ N * ).(ii) 因为 c 1=0,c 2>0,c 3>0,c 4>0;当 n ≥ 5 时 ,c n =,而-=>0,得 ≤ <1,所以 , 当 n ≥ 5 时 ,c <0.n综上 , 对随意 n ∈ N * , 恒有 S 4≥ S n , 故 k=4.} 的前 n 项和为 S , 等比数列 {b } 的前 n 项和为6.(2017课标全国Ⅱ文 ,17,12分 ) 已知等差数列 {annnT n ,a 1=-1,b 1=1,a 2+b 2=2.(1) 若 a 3+b 3=5, 求 {b n } 的通项公式 ; (2) 若 T 3=21, 求 S 3.分析 此题考察了等差、等比数列 .设 {a n } 的公差为 d,{b n } 的公比为 q, 则 a n =-1+(n-1)d,b n=q n-1 .由 a 2+b 2=2 得 d+q=3. ①(1) 由 a 3+b 3=5 得 2d+q 2=6. ②联立①和②解得(舍去), 或所以 {b n } 的通项公式为 b n =2n-1 .(2) 由 b =1,T23=21 得 q +q-20=0.1解得 q=-5 或 q=4.当 q=-5时 , 由①得 d=8, 则 S =21.3当 q=4 时 , 由①得 d=-1, 则 S 3 =-6.7.(2017 课标全国Ⅲ文 ,17,12 分 ) 设数列 {a n } 知足 a 1+3a 2+, +(2n-1)a n =2n. (1) 求 {a n } 的通项公式 ; (2) 求数列的前 n 项和 .分析 (1) 因为 a 1+3a 2+, +(2n-1)a n =2n, 故当 n ≥ 2 时, a 1 +3a 2+, +(2n-3)a n-1 =2(n-1). 两式相减得 (2n-1)a n=2.所以 a =(n ≥2).n又由题设可得 a =2,1进而 {a } 的通项公式为*a =(n ∈ N ).nn(2) 记的前 n 项和为 S n .由(1) 知== -.则 S n = - + - +, +-=.8.(2017 山东理 ,19,12 分 ) 已知 {x n } 是各项均为正数的等比数列 , 且 x 1+x 2=3,x 3-x 2=2.(1) 求数列 {x n } 的通项公式 ; (2) 如图 , 在平面直角坐标系 xOy 中 , 挨次连结点 P (x ,1),P (x ,2), , ,P (x ,n+1) 获得折线 P P , P , 求1122n+1n+11 2n+1由该折线与直线y=0,x=x 1,x=x n+1 所围成的地区的面积T n .分析 此题考察等比数列基本量的计算 , 错位相减法乞降 .(1) 设数列 {x n } 的公比为 q, 由已知知 q>0.由题意得所以 3q 2-5q-2=0. 因为 q>0,所以 q=2,x=1.1所以数列 {x n } 的通项公式为 x n =2n-1 .,Q.(2) 过 P,P, ,,Pn+1向 x 轴作垂线 , 垂足分别为 Q,Q , ,n+1 1212由 (1) 得 x n+1-x n =2n -2 n-1 =2n-1,记梯形 P n P n+1Q n+1Q n 的面积为 b n ,由题意 b n =×2n-1 =(2n+1) ×2n-2 ,所以 T n =b 1+b 2+, +b n=3× 2-1 +5× 20+7× 21+, +(2n-1) × 2n-3 +(2n+1) × 2n-2, ① 2T n =3× 20+5× 21+7× 22+, +(2n-1) × 2n-2 +(2n+1) × 2n-1 . ② ①- ②得 -T n =3× 2-1 +(2+2 2+, +2n-1)-(2n+1) × 2n-1 = + -(2n+1) × 2n-1 .所以 T=.n9.(2015 重庆 ,22,12 分 ) 在数列 {a } 中 ,a =3,aa +λ a +μ =0(n ∈ N ).n1n+1 nn+1+(1) 若 λ =0, μ =-2, 求数列 {a n } 的通项公式 ;(2) 若 λ = (k∈N ,k ≥ 2), μ =-1, 证明 :2+<<2+.+分析(1) 由 λ =0, μ=-2, 有 a a =2(n ∈ N). 若存在某个 n ∈ N , 使得 =0, 则由上述递推公式易得=0.n+1 n+0+重复上述过程可得a 1=0, 此与 a 1=3 矛盾 , 所以对随意 n ∈ N +,a n ≠ 0.进而 a=2a (n ∈ N ), 即 {a} 是一个公比 q=2 的等比数列 .n+1n+n故 a n =a 1q n-1 =3· 2n-1 .(2) 证明 : 由λ = , μ =-1, 数列 {a n } 的递推关系式变成a a + a -=0, 变形为 an+1= (n ∈ N ).n+1 n n+1+由上式及 a 1=3>0, 概括可得 3=a 1>a 2>, >a n >a n+1>, >0.因为 a n+1= ==a n - + ·,所以对 n=1,2, , ,k 0乞降得=a +(a -a )+ , +(- )121=a 1-k 0· + ·>2+ ·=2+ .另一方面 , 由上已证的不等式知 a >a >, > >>2, 得12=a 1-k 0· + ·<2+ · =2+.综上 ,2+<<2+.教师用书专用 (10 — 16)10.(2013 课标全国Ⅰ ,12,5 分 ) 设△ A n B n C n 的三边长分别为 a n ,b n ,c n , △A n B n C n 的面积为 S n ,n=1,2,3, , . 若b 1 >c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1= ,c n+1= , 则 ( )A.{S n } 为递减数列B.{S n } 为递加数列C.{S 2n-1 } 为递加数列 ,{S 2n } 为递减数列D.{S 2n-1 } 为递减数列 ,{S 2n } 为递加数列答案 B, 公差为 d. 对随意的 n ∈ N * ,b n 是 a n 和 a n+1 的等 11.(2016 天津 ,18,13 分 ) 已知 {a n } 是各项均为正数的等差数列 比中项 . (1) 设 c n =- ,n ∈ N * , 求证 : 数列 {c n } 是等差数列 ;1n = (-1) k,n * < . (2) 设 a =d,T ∈N, 求证 :证明 (1) 由题意得 =a a , 有 c = - =a · a -a a =2da, 所以 c n+1-c =2d(a -a )=2d ,n n+1nn+1 n+2n n+1 n+1nn+2n+12所以 {c } 是等差数列 .n(2)T =(-+)+(-+ )+, +(-+)n=2d(a +a +,+a )242n=2d ·=2d 2n(n+1).所以=== · < .12.(2017 江苏 ,19,16 分) 关于给定的正整数 k, 若数列 {a n } 知足 :a n-k +a n-k+1 +, +a n-1 +a n+1+, +a n+k-1 +a n+k =2ka n 对任意正整数 n(n>k) 总建立 , 则称数列 {a } 是“ P(k) 数列” .n(1) 证明 : 等差数列 {a n } 是“ P(3) 数列” ;(2) 若数列 {a n } 既是“ P(2) 数列” , 又是“ P(3) 数列” , 证明 :{a n } 是等差数列 .证明 本小题主要考察等差数列的定义、通项公式等基础知识 , 考察代数推理、转变与化归及综合运用数学知识研究与解决问题的能力 .(1) 因为 {a n } 是等差数列 , 设其公差为 d, 则 a n =a 1+(n-1)d,进而 , 当 n ≥ 4 时 ,a n-k +a n+k =a 1+(n-k-1)d+a 1+(n+k-1)d=2a 1+2(n-1)d=2a n ,k=1,2,3,所以 a n-3 +a n-2 +a n-1 +a n+1+a n+2+a n+3=6a n ,所以等差数列 {a n } 是“ P(3) 数列” .(2) 数列 {a n } 既是“ P(2) 数列” , 又是“ P(3) 数列” , 所以 , 当 n ≥ 3 时 ,a n-2 +a n-1 +a n+1+a n+2=4a n , ①当 n ≥ 4 时 ,a n-3 +a n-2 +a n-1 +a n+1+a n+2+a n+3=6a n . ② 由①知 ,a n-3 +a n-2 =4a n-1 -(a n +a n+1), ③ a n+2+a n+3=4a n+1-(a n-1+a n ). ④将③④代入② , 得 a n-1 +a n+1=2a n , 此中 n ≥ 4, 所以 a 3,a 4,a 5, , 是等差数列 , 设其公差为 d'. 在①中 , 取 n=4, 则 a 2+a 3+a 5+a 6=4a 4, 所以 a 2=a 3-d', 在①中 , 取 n=3, 则 a 1+a 2+a 4+a 5=4a 3, 所以 a 1=a 3-2d',所以数列 {a n } 是等差数列 .n*13.(2014 湖南 ,20,13 分 ) 已知数列 {a n } 知足 a 1=1,|a n+1-a n |=p ,n ∈ N . (1) 若 {a n } 是递加数列 , 且 a 1,2a 2,3a 3 成等差数列 , 求 p 的值 ;(2) 若 p= , 且 {a 2n-1 } 是递加数列 ,{a 2n } 是递减数列 , 求数列 {a n } 的通项公式 .分析(1) 因为 {a n } 是递加数列 , 所以 |a n+1-a n |=a n+1-a n =p n . 而 a 1=1, 所以 a 2=p+1,a 3=p 2+p+1.又 a 1,2a 2,3a 3 成等差数列 , 所以 4a 2=a 1+3a 3, 因此 3p 2-p=0, 解得 p= 或 p=0. 当 p=0 时 ,a n+1=a n , 这与 {a n } 是递加数列矛盾 . 故 p= . (2) 因为 {a 2n-1 } 是递加数列 , 因此 a 2n+1-a 2n-1 >0,于是 (a 2n+1-a 2n )+(a 2n -a 2n-1 )>0. ①但<,所以 |a 2n+1-a 2n |<|a 2n -a 2n-1 |. ② 由①②知 ,a 2n -a 2n-1 >0,所以 a -a2n-1 ==. ③2n因为 {a 2n } 是递减数列 , 同理可得 ,a 2n+1 -a 2n <0, 故 a -a=-=. ④2n+12n由③④知 ,a n+1 -a n = .于是 a =a +(a 2-a )+(a -a )+ , +(a -an-1 )n1132n=1+ - +, +=1+ ·=+· ,故数列 {a n } 的通项a = + ·.n14.(2014 四川 ,19,12 分 ) 设等差数列 {a n } 的公差为 d, 点 (a n ,b n ) 在函数 f(x)=2 x 的图象上 (n ∈ N * ).(1) 若 a 1=-2, 点 (a 8,4b 7) 在函数 f(x) 的图象上 , 求数列 {a n } 的前 n 项和 S n ; (2) 若 a 1=1, 函数 f(x) 的图象在点 (a 2,b 2) 处的切线在 x 轴上的截距为 2- , 求数列的前 n 项和 T n .分析 (1) 由已知 , 得 b 7= ,b 8= =4b 7, 有 =4× =.解得 d=a 8-a 7=2.所以 ,S n =na 1+d=-2n+n(n-1)=n 2-3n.(2) 函数 f(x)=2 x 在 (a 2,b 2) 处的切线方程为 y-=( ln2)(x-a2),它在 x 轴上的截距为 a 2-.由题意 , 得 a 2-=2-,解得 a 2=2.所以 d=a2-a 1=1.进而 a n=n,b n=2n.所以 T n= + + +, ++,2T n= + + +, +.所以 ,2T n-T n=1+ + +, +- =2-- =.所以 ,T n=.15.(2014江西,17,12分)已知首项都是1 的两个数列 {a n},{b n}(b n≠0,n∈N*)知足a n b n+1-a n+1b n+2b n+1b n=0.(1)令 c n= , 求数列 {c n} 的通项公式 ;(2)若 b n=3n-1 , 求数列 {a n} 的前 n 项和 S n.分析(1) 因为 a n b n+1-a n+1b n+2b n+1b n=0,b n≠ 0(n ∈ N* ),所以- =2, 即 c n+1-c n=2.所以数列 {c n} 是以 1 为首项 ,2 为公差的等差数列,故 c n=2n-1.n-1n-1(2) 由 b n=3知a n=c n b n=(2n-1)3,于是数列 {a n} 的前 n 项和 S n=1· 30+3· 31+5· 32 +,+(2n-1) ·3 n-1 ,3S n=1·31+3· 32+, +(2n-3) · 3n-1 +(2n-1) ·3n,1 2 n-1 n n相减得 -2S =1+2· (3 +3 +, +3 )-(2n-1) · 3 =-2-(2n-2)3 ,nn n所以 S =(n-1)3 +1.16.(2014 湖北 ,18,12 分 ) 已知等差数列 {a n} 知足 :a 1=2, 且 a1,a 2,a 5成等比数列 .(1)求数列 {a n} 的通项公式 ;(2)记 S n为数列 {a n } 的前 n 项和 , 能否存在正整数 n, 使得 S n>60n+800?若存在 , 求 n 的最小值 ; 若不存在 , 说明原因 .分析(1) 设数列 {a n} 的公差为d, 依题意 ,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得 d2-4d=0, 解得 d=0 或 d=4.当 d=0 时 ,a n=2;当 d=4 时 ,a n=2+(n-1) · 4=4n-2,进而得数列 {a n} 的通项公式为a n=2 或 a n=4n-2.(2)当 a n=2 时,S n=2n. 明显 2n<60n+800,此时不存在正整数 n, 使得 S n >60n+800 建立 .当 a n=4n-2 时,S n= =2n2.令 2n2>60n+800, 即 n2-30n-400>0,解得 n>40 或 n<-10( 舍去 ),此时存在正整数n, 使得 S n>60n+800 建立 ,n 的最小值为41.综上 , 当 a n=2 时 , 不存在知足题意的n;当 a n=4n-2 时, 存在知足题意的n, 其最小值为41.三年模拟A 组2016— 2018 年模拟·基础题组考点一数列的乞降1.(2018浙江9+1高中结盟期中,7)已知等差数列{a n} 、 {b n} 的前 n 项和分别为S n、T n, 若=, 则的值是 ()A. B.C. D.答案 A2.(2018 浙江高考模拟卷 ,8) 在等差数列 {a n} 中 , 前 n 项和 S n= , 前 m项和 S m= (m≠n), 则 S m+n的值 ( )A.小于 4B.等于 4C.大于 4D.大于 2 且小于 4答案 C3.(2017 浙江“超级全能生” 3 月联考 ,11) 已知等比数列 {a n} 的前 n 项和为 S n,a 1=1, 若 a1,S 2,5 成等差数列 , 则数列 {a n} 的公比 q= ,S n= .答案2;2 n-1已知正项数列 {a } 知足 log a =1+log a , 若 a =1, 则其前 10 项和4.(2016 浙江名校 ( 镇海中学 ) 沟通卷二 ,12)n 2 n+1 n 12S10 = ; 若 a5=2, 则 a1a2, a9= .答案1023;512考点二数列的综合应用5.(2016 浙江温州二模 ,7) 数列 {a n} 是递加数列 , 且知足 a n+1=f(a n),a 1∈(0,1), 则 f(x) 不行能是 ( )A.f(x)=B.f(x)=2 x-1C.f(x)=D.f(x)=log 2(x+1)答案 B,13) 已知等差数列 {a } 的前 n 项和是 S , 若 S =4,S =9, 则6.(2018 浙江“七彩阳光”结盟期初联考kn n k-1a k = ,a 1的最大值为.答案5;47.(2018 浙江杭州二中期中 ,22) 设数列 {a } 知足 a = ,a =ln +2(n ∈ N ).n 1 n+1 *(1) 证明 :a n+1≥;(2) 记数列的前 n 项和为 S , 证明 :S < + .n n分析(1) 设 f(x)=lnx+ -1, 则 f'(x)= - = ,所以 f(x) 在 (0,1) 上单一递减 , 在 (1,+ ∞ ) 上单一递加 ,所以 f(x)=lnx+ -1 ≥ f(1)=0.则 ln+-1 ≥ 0, 即 ln≥ 1-=.∴ a n+1=ln+2≥+2=, 得证 .(2) ∵ a1>1, ∴a2=ln+2>ln +2>1, 同理可得 a3>1, , ,a n>1.∵ a n+1≥,a n>0, ∴≤= ·+ ,即-≤·,∴当 n≥ 2 时 , -≤ ·≤,≤·= ·,当 n=1 时 , - = ≤ ·,∴-≤ ·,n ∈ N* .∴≤== -·< , 即 S n< + .*8.(2017浙江宁波二模(5月),22)已知数列{a n}中,a1=4,a n+1=,n ∈ N ,S n为{a n} 的前 n 项和 .(1) 求证 : 当 n∈ N*时 ,a n>a n+1;(2) 求证 : 当 n∈ N*时 ,2 ≤ S n-2n<.证明(1) 当 n≥ 2 时, 因为 a -an+1 = -n=,(2分)所以 a n-a n+1与 a n-1 -a n同号 .(3分)又因为 a1=4,a 2=,a 1-a 2>0,所以当 n∈N*时 ,a n>a n+1.(5分)(2) 由条件易得2=6+a n, 所以 2(-4)=a n-2,所以 2(a n+1-2)(a n+1+2)=a n-2, ①所以 a n+1-2 与 a n-2 同号 .又因为 a1=4, 即 a1-2>0,所以 a n>2.(8分)又 S n=a1+a2+, +a n≥a1+(n-1) ×2=2n+2.所以 S n-2n ≥2.(10 分)由①可得= < ,所以 ,a -2 ≤(a -2) ×, 即 a ≤ 2+2×,(12 分) n 1 n所以 S n=a1+a2+,+a n≤ 2n+2=2n+ <2n+ .综上可得 ,2 ≤ S n-2n< .(15 分)9.(2017 浙江湖州期末调研,22) 已知数列 {a } 知足 a = ,an+1 = ,n ∈ N.n 1 *(1) 求 a2;(2) 求的通项公式 ;(3) 设 {a n} 的前 n 项和为 S n, 求证 :≤S n<.分析(1) 由条件可得 a = = .(3 分)2(2) 由 a n+1= 得= · - ,所以-1= ,(6 分 )又-1= , 所以是以首项为, 公比为的等比数列 ,所以 , = +1.(7 分)(3) 由 (2) 可得 a n=≥= ×,(9分)所以 S =a +a +, +a ≥ + ·+, + ·= .(11 分 )n12 n又a n= < = ,(13 分)所以 S n=a1+a2+a3+, +a n< + ++, +=+ - ·< ,n ≥ 3,(14 分 )又S1=< ,S2= < ,所以,S < *,n ∈ N .n综上 , ≤ S n< .(15 分)B 组2016— 2018 年模拟·提高题组一、选择题1.(2018 浙江要点中学12 月联考 ,7) 设 S n是等差数列 {a n} 的前 n 项和 , 若 a1=-2015,S 6-2S 3=18, 则 S2017=()A.2016B.2017C.-2015D.-2018答案 B2x,0 ≤ x 0<x 1<x 2<,2.(2017 浙江“七彩阳光”新高考研究结盟测试 ,9) 已知函数 f(x)=sinxcosx+cos<x n ≤,a n =|f(x n )-f(x n-1)|,n ∈ N * ,S n =a 1+a 2+, +a n , 则 S n 的最大值等于 () A. B.C.+1D.2答案 A3.(2016 浙江镇海中学测试 ( 七 ),6) 已知数列 {a n } 知足 :a 1=1,a n+1= (n ∈ N * ), 若 a 2k ,a 2k+1,9+a 2k+2 成等比数列 , 则正整数 k 的值是 () A.1 B.2 C.3 D.4 答案 B 二、解答题4.(2018 浙江“七彩阳光”结盟期中 ,22) 已知正项数列 {a n } 知足 a 1=3,*+a n+1=2a n ,n ∈ N.(1) 求证 :1<a n ≤ 3,n ∈N * ;(2) 若关于随意的正整数n, 都有<M 建立 , 求 M 的最小值 ;123n*(3) 求证 :a +a +a +, +a <n+6,n ∈ N . 分析 (1) 证明:由+a n+1=2a n ,得+a n+2=2a n+1,两式相减得- +(a n+2-a n+1)=2(a n+1-a n ),即 (a n+2-a n+1)(a n+2+a n+1+1)=2(a n+1-a n ), 因为 a n >0, 所以 a n+2+a n+1+1>0, 所以 a n+2-a n+1 与 a n+1-a n 同号 .∵ +a 2=2a 1=6, ∴ a 2=2, 则 a 2-a 1<0,所以 a n+1-a n <0, ∴数列 {a n } 是单一递减数列 ,所以 a ≤ a =3.n1由+a=2a , 得+a -2=2a -2, 即 (a n+1 +2)(a-1)=2(a -1),n+1nn+1nn+1n由 a n+1+2>0, 知 a n+1-1 与 a n -1 同号 ,因为 a 1-1=2>0, 所以 a n -1>0, 即 a n >1,*综上知 1<a n ≤ 3,n ∈ N .(2) 由 (1) 知= , 而 3<a +2≤a +2=4,n+12则≤<,所以M ≥.故 M 的最小值为 .(3) 证明 : 由(2) 知 n ≥ 2 时 ,a n -1=(a 1-1) ×××, ×<(a 1-1)=2 ×,又 n=1 时 ,a 1-1=2, 故 a n -1 ≤ 2×,n ∈ N * . 即 a ≤ 1+2×*,n ∈ N .n则 a 1+a 2+a 3+, +a n ≤n+2=n+2×=n+6<n+6.5.(2018 浙江杭州地域要点中学第一学期期中 ,22) 已知函数 f(x)=x2nn-1)(n ≥ 2,n ∈+x,x ∈ [1,+∞ ),a =f(aN).(1) 证明 :- ≤ f(x) ≤ 2x 2;(2) 设数列 {nn 1= ,证明:≤ ≤ .} 的前 n 项和为 A , 数列的前 n 项和为 B ,a证明(1)f(x)- 2= >0, ∴ f(x) ≥- .=x +x-f(x)-2x 2=x 2+x-2x 2=x-x 2=x(1-x) ≤ 0(x ≥ 1), ∴ f(x) ≤ 2x 2, ∴- ≤ f(x) ≤ 2x 2.(2)a =f(a n-1 )=+a? =a -an-1 (n ≥ 2),nn-1 n则 A n = + +, + =a n+1-a 1=a n+1- , a =+a =a (an-1 +1) ?==-?=- (n ≥ 2),nn-1n-1累加得 :B n =++, + = -= - ,∴== a n+1.由 (1) 得 a n ≥- ? a n+1+ ≥ ≥ ≥, ≥ ,∴ a n+1≥ - ∴ = a n+1≥ 3· - .a n =f(a n-1 ) ≤ 2? a n+1≤2 ≤ 23≤, ≤ == · .∴ = a ≤ × · = ·,n+1∴3·-≤ ≤·,即-1≤≤ ,而-1≥ ,∴ ≤≤ .6.(2017 浙江名校协作体 ,22) 已知函数 f(x)= .(1) 求方程 f(x)-x=0 的实数解 ;* *(2) n 1 n+1 n 2n 2n-1 都建立 ?并证明假如数列 {a } 知足 a =1,a =f(a )(n ∈ N ), 能否存在实数c, 使得 a <c<a 对全部的 n∈N你的结论 .分析(1)f(x)-x=0 ?=x? x=-4 或 x= .(2) 存在 c= , 使得 a2n< <a2n-1 .由题意可知 ,a n+1= , 所以 a2= ,a 3= ,下边用数学概括法证明0<a2n< <a2n-1≤ 1.当 n=1 时 ,0<a 2= < <a1=1≤ 1, 结论建立 .假定当n=k 时结论建立, 即0<a2k< <a2k-1≤ 1. 因为f(x)= 为(0,1] 上的减函数, 所以f(0)>f(a 2k)>f >f(a 2k-1 )≥f(1), 进而>a2k+1> >a2k≥,所以 f <f(a 2k+1)<f <f(a 2k)≤f ,即 0<f<a2k+2< <a2k+1≤ f故当 n=k+1 时 , 结论也建立.≤ 1.综上所述, 对全部 n∈ N* ,0<a 2n<<a2n-1≤ 1 都建立 ,即存在c= 使得a2n< <a2n-1 .7.(2017浙江测试卷,22)已知数列{a n}知足a1=1,a n+1=,n ∈ N* , 记 S n,T n分别是数列 {a n},{} 的前 n 项和 ,*证明 : 当 n∈ N 时 ,(1)a n+1<a n;(2)T n= -2n-1;(3) -1<S n<.证明(1) 由 a =1 及 a = , 知 a >0,1 n+1 n故 a n+1-a n=-a n=<0, ∴ a n+1<a n,n ∈N* .(2) 由= +a n , 得= + +2,进而= + + +2× 2=, =+++, + +2n,1∴=1+ + +, + n *又 a =1, +2n, ∴ T = -2n-1,n ∈ N.(3) 由 (2) 知,a = ,由T≥=1, 得 a ≤,n+1 n n+1∴当 n≥ 2 时 ,a n≤= < = ( - ),∴ S <a + [( -1)+(- )+, +( - )]=1+ ( -1)<,n ≥ 2, n1又 a1=1, ∴ S n<* ,n ∈ N,由 a = - ,n得 S n= - ≥-1> -1,综上 , -1<S n<.C 组 2016— 2018 年模拟·方法题组方法 1 数列乞降的解题策略1.(2017 浙江宁波期末 ,22) 已知数列 {a n} 知足 a1=2,a n+1=2(S n+n+1)(n ∈ N* ),b n=a n+1.(1)求证 :{b n} 是等比数列 ;(2)记数列 {nb n} 的前 n 项和为 T n, 求 T n;(3)求证: -< + + +, + <.分析(1) 证明 : 由 a1=2, 得 a2=2(a 1 +1+1)=8.由 a n+1=2(S n+n+1), 得 a n=2(S n-1 +n)(n ≥ 2),两式相减 , 得 a n+1=3a n+2(n ≥2),(3分)当 n=1 时上式也建立 , 故 a n+1=3a n+2(n ∈ N* ).所以有 a n+1+1=3(a n+1), 即 b n+1=3b n,又 b1=3, 故 {b n} 是等比数列 .(5 分 )(2) 由 (1) 得 b n=3n,n 2 3 +n·3 n ,所以 T =1× 3+2× 3 +3×3 +,3T n=1× 32+2× 33+3× 34+, +n· 3n+1,两式相减 , 得 -2T n=3+32 +33+, +3n-n · 3n+1= -n · 3n+1,故 T n= · 3n+1+ .(10 分 )(3) 证明 : 由 a n=b n-1=3 n-1, 得 = > ,k ∈N* ,所以+ + +, + > + + +, + = =- · ,(12分)又 = = < = ,k ∈N* ,所以+ + +, + < += + = + - ·< .故 - < + + +, + < .(15 分)方法 2数列综合应用的解题策略2019届高考数学(浙江版)一轮配套讲义:6.4数列乞降数列的综合应用 21 / 212.(2017 浙江金华十校联考 (4 月 ),22) 已知数列 {a n } 知足 a 1=1,a n+1·a n = (n ∈ N * ).(1) 证明 :=; (2) 证明 :2( -1)≤ + +, + ≤ n.证明(1) ∵ a n+1· a n = , ①∴ a n+2·a n+1=, ②②÷①得 , == ,∴ =(2) 由 (1) . 得,(n+1)an+2=na n ,∴ + +, + = ++, +.令 b n =na n , 则 b n ·b n+1=na n · (n+1)an+1= =n+1, ③∴ b n-1 ·b n =n(n ≥ 2), ④由 b 1=a 1=1,b 2=2, 易得 b n >0,③ - ④得 , =b n+1-b n-1 (n ≥ 2),∴ b 1<b 3<, <b 2n-1 ,b 2<b 4<, <b 2n , 得 b n ≥ 1,依据 b n · b n+1=n+1 得 ,b n+1≤ n+1, ∴1≤ b n ≤ n,∴+ +,+ =++, = +(b 3-b 1 )+(b4-b 2)+ , +(b+ n -b n-2 )+(b n+1-b n-1 )= +b n +b n+1-b 1-b 2=b n +b n+1-2,又 b +b -2 ≥2-2=2( -1),n n+1且由 1≤ b n ≤n 可知 ,b n +b n+1-2=b n +-2 ≤ min≤ n.综上可知 ,2( -1) ≤ + +, +≤n.。
2025届高考数学一轮复习教案:数列-等比数列
第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
数列综合应用教案
数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。
教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。
检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。
二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。
三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。
等差数列的前n项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
一轮复习课时训练§5.5: 数列的综合应用
第五章§5:数列的综合应用(与一轮复习课件对应的课时训练)满分100,训练时间50钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.等差数列{a n }的前n 项和记为S n ,若a 2+a 6+a 10为一个确定的常数,则下列各数也是常数的是A .S 6B .S 11C .S 12D .S 132.△ABC 中,tanA 是以-4为第三项,-1为第七项的等差数列的公差,tanB 是以12为第三项,4为第六项的等比数列的公比,则tanC 等于 A .-12B .12C .-112D .1123.某厂在2002年底制订生产计划,要使2014年底的总产量在原有基础上翻两番,则年平均增长率为A .2121-1 B .2111-1 C .4121-1 D .4111-14.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的 横纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2 011+a 2 012等于A .1 509B .503C .1 006D .2 011 5.设f(x)是定义在R 上恒不为0的函数,对任意x ,y ∈R ,都有f(x)·f(y)=f(x +y), 若a 1=12,a n =f(n)(n 为常数),则数列{a n }的前n 项和S n 的取值范围是A .[12,2)B .[12,2]C .[12,1]D .[12,1)二、填空题:本大题共3小题,每小题8分,共24分.6.已知函数f(x)=sinx +tanx.项数为27的等差数列{a n }满足a n ∈(-π2,π2),且公差d ≠0.若f(a 1)+f(a 2)+…+f(a 27)=0,则当k =________时,f(a k )=0.7.在数列{a n }中,a n =3n -7,数列{b n }满足b 1=13,b n -1=27b n (n ≥2),若a n +log k b n 为常数,则满足条件的k 值为______. 8.在数列{a n }中,如果对任意n ∈N *都有a n +2-a n +1a n +1-a n=k(k 为常数),则称{a n }为等差比数列,k 称为公差比.现给出下列命题: ①等差比数列的公差比一定不为0; ②等差数列一定是等差比数列;③若a n =-3n +2,则数列{a n }是等差比数列; ④若等比数列是等差比数列,则其公比等于公差比. 其中正确的命题的序号为________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)设数列{a n }的前n 项和为S n ,且a 1=1,S n =na n -2n(n -1). (1)求数列{a n }的通项公式;(2)设数列{1a n a n +1}的前n 项和为T n ,试求T n 的取值范围.10.(本小题满分18分,(1)小问8分,(2)小问10分)一辆邮政车自A 城驶往B 城,沿途有n 个车站(包括起点站A 和终点站B),每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,设该车从各站出发时邮政车内的邮袋数构成一个有穷数列{a k }(k =1,2,3,…,n). 试求:(1)a 1,a 2,a 3;(2)邮政车从第k 站出发时,车内共有邮袋多少个?参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:∵a 2+a 6+a 10=3a 6,∴a 6为定值.S 11=11(a 1+a 11)2=11a 6为定值.答案:B2.解析:由题意知:tanA =-1-(-4)7-3=34,tan 3B =412=8, ∴tanB =2,∴tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-34+21-34×2=112.答案:D3.解析:设2002年底总产量为a ,年平均增长率为x ,则到2014年的总产量为 a(1+x)12=4a ,解得x =4121-1.答案:C 4.解析:由题意知观察其规律可得 a 2 012=2 0122=1 006,a 2 011=-1 0062=-503. ∴a 2 011+a 2 012=503. 答案:B5.解析:由f(x)·f(y)=f(x +y),a n =f(n),令x =n ,y =1,得a n ·a 1=a n +1,∴a n +1a n=a 1,又∵a 1=12,∴数列{a n }是公比为12,首项为12的等比数列,∴S n =12(1-12n )1-12=1-12n ,∴当n ∈N *时,12≤1-12n <1. 答案:D二、填空题:本大题共3小题,每小题8分,共24分.6.解析:由题意,函数f(x)=sinx +tanx 是奇函数,所以f(0)=0,因为a n ∈(-π2,π2),且f(a 1)+f(a 2)+…+f(a 27)=0,所以f(a 1),f(a 2),…,f(a 27)应分布在x 轴两侧,且中间的数f(a 14)=0,即k =14. 答案:147.解析:∵b n =b 1·(127)n -1=13·(13)3n -3=(13)3n -2,∴a n +log k b n =3n -7+log k (13)3n -2=3n -7+(3n -2)·log k 13=(3+3log k 13)n -7-2log k 13.若a n +log k b n 为常数,则3+3log k 13=0,则k =3.答案:38.解析:若k =0,{a n }为常数列,分母无意义,①正确;公差为0的等差数列不是等差比数列,②错误;a n +2-a n +1a n +1-a n =3,满足定义,③正确;设a n =a 1q n -1,则a n +2-a n +1a n +1-a n =a 1q n +1-a 1q n a 1q n -a 1q n -1=q ,④正确. 答案:①③④三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)由S n =na n -2n(n -1),得a n +1=S n +1-S n =(n +1)a n +1-na n -4n , ∴a n +1-a n =4.所以,数列{a n }是以1为首项,4为公差的等差数列. ∴a n =4n -3. (2)∵T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14[1-15+15-19+19-113+…+14n -3-14n +1] =14(1-14n +1)<14. 又易知T n 单调递增,故T n ≥T 1=15.∴15≤T n <14,即T n 的取值范围是[15,14).10.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)由题意得a 1=n -1, a 2=(n -1)+(n -2)-1=2n -4,a 3=(n -1)+(n -2)+(n -3)-1-2=3n -9. (2)在第k 站出发时,放上的邮袋共 (n -1)+(n -2)+…+(n -k)个,而从第二站起,每站放下的邮袋共1+2+3+…+(k -1)个,故a k =(n -1)+(n -2)+…+(n -k)-[1+2+…+(k -1)]=kn -12k(k +1)-12k(k -1)=kn -k 2(k =1,2,…,n),即邮政车从第k 站出发时,车内共有邮袋个数为kn -k 2(k =1,2,…,n).。
2019版理科数学一轮复习第6章第4讲 数列求和、数列的综合应用(考题帮.数学理) Word版含解析
第四讲数列求和、数列的综合应用题组等差、等比数列的综合应用.[新课标全国Ⅱ分]等差数列{}的公差为,若成等比数列,则{}的前项和() () ()...[北京分][理]若等差数列{}和等比数列{}满足,则..[湖南分][理]设为等比数列{}的前项和.若,且成等差数列,则..[安徽分][理]数列{}是等差数列,若构成公比为的等比数列,则..[天津分][理]设{}是首项为,公差为的等差数列为其前项和.若成等比数列,则的值为..[北京分]已知{}是等差数列,{}是等比数列,且.(Ⅰ)求{}的通项公式;(Ⅱ)设,求数列{}的前项和..[天津分][理]已知{}是各项均为正数的等差数列,公差为.对任意的∈*是和的等比中项. (Ⅰ)设∈*,求证:数列{}是等差数列;(Ⅱ)设()∈*,求证:<.题组数列的实际应用.[全国卷Ⅰ分][理]几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推.求满足如下条件的最小整数>且该数列的前项和为的整数幂.那么该款软件的激活码是()题组数列与其他知识的综合.[浙江分]如图,点列{},{}分别在某锐角的两边上,且≠∈*≠∈*(≠表示点与不重合).若为△的面积,则()图.{}是等差数列.{}是等差数列.{}是等差数列.{}是等差数列.[福建分][理]若是函数()(>>)的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于().[四川分][理]已知数列{}的首项为为数列{}的前项和,其中>∈*.(Ⅰ)若成等差数列,求数列{}的通项公式;(Ⅱ)设双曲线的离心率为,且,证明…>..[安徽分][理]设∈*是曲线在点()处的切线与轴交点的横坐标.(Ⅰ)求数列{}的通项公式;(Ⅱ)记…,证明≥.组基础题.[武汉市部分学校调研]已知等比数列{}中成等差数列,设为数列{}的前项和,则等于() . 或..[东北三省四市一模]已知数列{}为等差数列,数列{}为等比数列,且满足π,则() . ..[石家庄市一模]已知函数()在(∞)上单调,且函数()的图象关于直线对称,若数列{}是公差不为的等差数列,且()(),则数列{}的前项的和为()。
高考数学一轮复习数列求和
解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.
高三数学数列的综合应用知识精讲
高三数学数列的综合应用【本讲主要内容】数列的综合应用等差数列与等比数列的综合问题,数列与其他数学知识的综合问题,数列在实际问题中的应用。
【知识掌握】 【知识点精析】1. 等差数列与等比数列的综合问题,主要是运用它们的性质、通项公式、前n 项和公式将已知条件转化为数学式子(方程或不等式等)。
2. 在解决数列与其他数学知识的综合问题中,应该注意思维的角度和解题途径的选择,从“数列是特殊的函数”的角度出发,运用运动变化的观点,将问题变形转换,要分清所给问题中的数列是哪种类型,与其他数学知识的关系如何,以达到解决问题的目的。
3. 用数列解决实际应用性问题,主要有增长率问题,存贷款的利息问题,几何模型中的问题等等。
要把实际应用题转化为某种数列的模型,要分清是等差数列还是等比数列,还是有递推关系的数列,分清所涉及的量是数列中的项n a ,还是各项和n S ,有时还要注意数清项数,以使问题准确解决。
【解题方法指导】例1. (2005年全国卷三)在等差数列}{n a 中,公差d ≠0,2a 是1a 与4a 的等比中项,已知数列 ,,,,,,n k k k a a a a a 2131成等比数列,求数列}{n k 的通项n k 。
解题思路分析:这是一道等差数列与等比数列的综合问题,只需依题设条件,按已知的公式列式即可。
解:依题意得41221)1(a a a d n a a n ⋅=-+=,)3()(1121d a a d a +=+∴,整理得d a d 12= 10a d d =∴≠, ,得nd a n =所以,由已知得 ,,,,,,d k d k d k d d n 213是等比数列 由d ≠0,所以数列1,3,21k k ,,…,n k ,…也是等比数列 首项为1,公比为q=3,由此得91=k等比数列{n k }的首项91=k ,公比q=3,所以)21(33911 ,,==⨯=+-n k n n n即得到数列{n k }的通项*)(31N n k n n ∈=+例2. (2005年上海卷)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?解题思路分析:这是一道实际应用题,依题意,先分析出中低价房面积逐年增长后,每年的面积数成等差数列,首项为250(万平方米),公差为50(万平方米);而每年新建住房面积逐年增长后,每年的面积数成等比数列,首项是400(万平方米),公比为(1+8%),然后再依据题中条件列式,而第(1)问中,指的是中低价房的累计面积,所以应为数列的前n 项和;而第(2)问中,指的是该年建造的住房面积,应为数列的第n 项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学第一轮复习19数列的综合应用
19.数列的综合应用
班级 姓名
一.选择题: 1.在100与500之间能被9整除的所有数之和为
( ) (A)12699 (B )13266 (C )13832
(D )1450
2.一个直角三角形三内角的正弦值成等比数列,其最小内角的正弦值为 ( ) (A )251- (B ) 2
252- (C )
2
15-
(D )
2
252+
3.设数列{a n }的前n 项和为S n ,令n
S S S T
n
21n
+++=
,
称T n 为数列a 1,a 2,…,a n 的“理想数”,已知数列a 1,a 2,…,a 500的“理想数”为2004,那么数列2,a 1,a 2,…,a 500的“理想数”为
( ) (A )2002 (B )2004 (C )2006
(D )2008
4.已知f(x+y)=f(x)+f(y),且f(1)=2,则
f(1)+f(2)+…+f(n)不能等于 ( ) (A )f(1)+2f(1)+…+nf(1) (B )]2)1n (n [f + (C )n(n+1) (D )n(n+1)f(1)
5.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿,比上年增长7.3%”,如果“十五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十五”末我国国内年生产总值约为 ( ) (A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元 二.填空题:
6.若等比数列{a n }的前n 项和S n =3n +a ,则a 的值为 .
7.等差数列{a n }为1,3,5,7,…,若数列{b n }满足b 1=3,且)
N n (,a b
n b 1
n *+∈=,则{b n }的一个通项
公式是 .
8.已知数列{a n }满足a 1=24,且a n+1-a n =2n ,那么a 45的值是 .
9.设F 是椭圆
16
y 7x 2
2=+的右焦点,且椭圆上至少
有21个不同的点P i (i=1,2,3,…),使,
FP ,FP ,FP 321
…
组成公差为d 的等差数列,则d 的取值范围
为 . 三.解答题:
10.已知等差数列前三项为a ,4,3a ,前n 项和为S n ,S k =2550 (1)求a 及k 的值; (2)(文)求n
21
S 1
S 1S 1+++
的值;(理)求)S 1
S 1S 1
(lim n
21
n +++
∞
→ .
11.数列{a n }的前n 项和为S n ,已知a 1=1,
n
1
n S n
2n a +=+, (n=1,2,3,…)
证明:(1)数列⎭
⎬⎫
⎩⎨⎧n
S n
是等比数列;(2)S n+1=4a n .
12.设直线y=-x+1与椭圆1y 2
n n
x
22
=++
交于A n , B n
两点,线段A n B n 的中点为C n ,P n (a n ,a n+1)在直线OC n 上,(O 为原点),*
∈N n ,且P 1与C 1
重合.
(1)求数列{a n }的通项公式; (2)(理)求n
n
2n OP OC n lim ⋅∞→的值.。