温州医科大学医用高等数学测试题(答案)

合集下载

医用高等数学知到章节答案智慧树2023年南方医科大学

医用高等数学知到章节答案智慧树2023年南方医科大学

医用高等数学知到章节测试答案智慧树2023年最新南方医科大学第一章测试1.的反函数是:()。

参考答案:2.关于函数的定义域,下面说法错误的是:()。

参考答案:如果含有三角函数,反三角函数时,其自然定义域为R3.关于三角函数,下面说法错误的是:()。

参考答案:反正切函数:4.复合函数可分解为:()。

参考答案:5.已知,则()。

参考答案:6.是什么函数?()参考答案:分段函数7.下面极限错误的是()。

参考答案:8.的极限是()。

参考答案:不存在9.()。

参考答案:110.关于函数,下面说法正确的是()。

参考答案:其他三项都对11.f和g是同一极限过程的两个无穷小下面说法正确的是()。

参考答案:A,B,C都对12.()。

参考答案:13.参考答案:14.()。

参考答案:115.处连续,则()。

参考答案:16.的连续性,下面说法正确的是()。

参考答案:是无穷间断点17.()。

参考答案:118.方程区间有几个根?()参考答案:至少有1个根19.()。

参考答案:20.()。

参考答案:第二章测试1.的导数是()。

参考答案:2.,在处()。

参考答案:连续3.,且()。

参考答案:4.()。

参考答案:5.()。

参考答案:6.=()。

参考答案:-207.()。

参考答案:88.()。

参考答案:0,-19.,若函数在=1处可导,a和b的值分别为()。

参考答案:2,-110.()。

参考答案:11.函数的单调递减区间为()。

参考答案:12.函数的所有极值点为()。

参考答案:(1,4)13.函数在[2, 5]上的最小值和最大值分别为()。

参考答案:5,2514.曲线的所有拐点为()。

参考答案:(0,1)、()15.()。

参考答案:16.()。

参考答案:17.()。

参考答案:118.()。

参考答案:e19.()。

参考答案:120.()。

参考答案:1第三章测试1.如果,则的一个原函数为().参考答案:;2.如果,则的一个原函数为().参考答案:;3.如果是在区间I上的一个原函数,则= ().参考答案:;4.如果,则().参考答案:;5.如果,则()参考答案:;6.不定积分().参考答案:.7.不定积分().参考答案:;8.下列凑微分正确的是().参考答案:.9.不定积分().参考答案:;10.不定积分().参考答案:;11.不定积分().参考答案:;12.不定积分().参考答案:;13.如果是的一个原函数,则().参考答案:;14.不定积分().参考答案:;15.不定积分().参考答案:16.不定积分().参考答案:;17.不定积分().参考答案:;18.不定积分().参考答案:;19.不定积分().参考答案:;20.不定积分().参考答案:;第四章测试1.设函数f (x)连续,,则()。

医科高等数学3.2.3

医科高等数学3.2.3

一.无穷区间上的反常积分 无穷区间上的反常积分
y=
1 1+ x2
1 dx =? ∫−∞ 1+ x2
+∞
义 函 f ) 连 , b 区 定 设 数 (x)在 间 [a, +∞ 上 续取 > a,如 果 限 极 lim ∫ f (x)dx存 ,就 此 限 函 f (x)在 穷 在 称 极 为 数 无
会计算反常积分improperintegralconvergencediverge设函数在区间上连续如果极限存在就称此极限为函数在无穷区间称反常积分存在或否则就称反常积分不存在或反常积分收敛发散ncelileibniznewton公式的记法
第二节 定积分 (Definite Integral)(三)
b a
= ∫a u′vdx + ∫a uv ′dx ,
b
b
b


a
udv = [uv ] − ∫ vdu.
b a a
b
例7.计算 ∫ ln( x + 1) dx.
1
e
例8 药物从患者的尿液中排出,一种典型的 r ( t ) = te − kt 其中k是常数.求 排泄速率函数是 , 在时间间隔 [0 , T ] 内,排出药物的量D
b→ +∞ a b
间 ) 的 常 分 proper integral),记 区 [a, +∞ 上 反 积 (im 作

+∞
a
f (x)dx = lim ∫ f (x)dx ( 1 )
b→ +∞ a +∞
b
称 常 分 并 反 积 ∫
a
f (x)dx存 或 敛convergence) 在 收 (

医用高数精选习题含答案

医用高数精选习题含答案

医用高数精选习题含答案医学生需要学习数学,尤其是高数。

然而,高数知识对于许多医学生来说是非常困难的。

因此,许多医学生需要精选的高数练习题目来加强他们的高数技能。

这里,我们提供一些医用高数精选习题和答案,这些习题涵盖了各种高数问题:导数、极值、曲率、微积分和微分方程。

1. 给出函数f(x) = 3x^2 + 2x的导函数答案:f’(x) = 6x + 2解析:对f(x)求导即可得到f’(x)。

2. 给出函数f(x) = x^3 - 3x^2 - 45的极值点答案:f(x)在x=-3和x=5处达到极小值和极大值解析:对f(x)求导,令f’(x)=0,解得x=-3和x=5,分别代入f(x)求得f(-3)和f(5),即得到极值。

3. 给出函数f(x) = sin(x),在x = 0处的曲率答案:f”(x) = -sin(x),因此,f”(0) = 0,所以曲率为0。

解析:对f(x)求两次导即可得到曲率公式f”(x) = -sin(x),将x=0代入公式即可得到曲率为0。

4. 求以下函数的不定积分:f(x) = 6x^2 - 8x + 9答案:∫f(x)dx = 2x^3 - 4x^2 + 9x + C(其中C为常数)解析:对f(x)进行积分,即可得到不定积分。

5. 给出微分方程dy/dx = 9x^2 - 12x,求其通解答案:y = 3x^3 - 6x^2 + C(其中C为常数)解析:对微分方程求解,得到y的一般解,再带入初始条件求得一个特定解。

练习以上高数习题能够帮助医学生们掌握高数知识并加强自己的技能。

如果你感到这些习题有些困难,可以不断的练习,直到完全理解并掌握。

只要你通过努力,这些数学技能就会变得相对容易了。

医用高等数学完整答案

医用高等数学完整答案

医用高等数学完整答案第一部分:导数及其应用导数是高等数学中的一个重要概念,它描述了函数在某一点的变化率。

在医用高等数学中,导数的应用非常广泛,例如在药物动力学、生物力学等领域。

1. 导数的定义:导数可以理解为函数在某一点的变化率。

对于一个函数 f(x),它在点 x=a 处的导数定义为:f'(a) = lim (h→0) [f(a+h) f(a)] / h其中,h 表示自变量 x 的微小变化量。

2. 导数的几何意义:导数还可以理解为函数图像在某一点的切线斜率。

切线是函数图像在该点附近最接近的直线,斜率则表示切线与x 轴的夹角。

3. 导数的计算:导数的计算方法有很多种,包括求导法则、微分法则、链式法则等。

下面列举一些常用的求导法则:常数函数的导数为 0。

幂函数的导数为幂指数乘以幂函数的导数。

指数函数的导数为指数函数乘以底数的对数。

对数函数的导数为底数的对数除以对数函数。

三角函数的导数可以根据三角函数的和差公式进行计算。

4. 导数的应用:导数在医用高等数学中的应用非常广泛,例如:药物动力学:通过求导可以计算药物在体内的浓度变化率,从而预测药物的疗效和副作用。

生物力学:通过求导可以计算生物体的运动速度和加速度,从而分析生物体的运动状态。

生理学:通过求导可以计算生理参数的变化率,从而分析生理过程的变化规律。

导数是医用高等数学中的一个重要概念,它描述了函数在某一点的变化率,并在药物动力学、生物力学等领域有着广泛的应用。

第二部分:微积分的应用微积分是高等数学的另一个重要分支,它包括微分和积分两部分。

在医用高等数学中,微积分的应用同样非常重要,它可以帮助我们理解和分析医学问题。

1. 微分的应用:微分是微积分的基础,它描述了函数在某一点的变化情况。

在医学中,微分可以用来研究药物在体内的浓度变化、生物体的生长速度等。

例如,我们可以通过微分方程来描述药物在体内的代谢过程,从而预测药物的疗效和副作用。

2. 积分的应用:积分是微积分的另一个重要部分,它描述了函数在某个区间上的累积效果。

医用高等数学(第三版)习题解答

医用高等数学(第三版)习题解答

医用高等数学(第三版)习题解答习题一1( 求下列函数的定义域:(1)要使函数有意义,需且只需,即或,所以函数 (x,2)(x,1),0y,(x,2)(x,1)x,,2x,1的定义域为。

(,,,,2],[1,,,)(2)要使函数有意义,需且只需,即,所以函数 y,arccos(x,3),1,x,3,12,x,4。

的定义域为[2,4]x,1x,1,0(3)要使函数有意义,需且只需且,或,所以函数的定 x,2,0x,,2x,1y,lgx,2x,2义域为。

(,,,,2),(1,,,)ln(2,x),0,ln(2,x),y,2,x,0(4)要使函数有意义,需且只需,解之得函数的定义域为。

[,1,0),(0,4),(4,,,),x(x,4),x(x,4),0,2,2,x,01x,(5)要使函数有意义,需且只需,解之得函数的定义域为。

y,,arcsin(,1)[0,2),22,,1,x/2,1,12,x,xsinx,0y,(6)要使函数有意义,需且只需,即函数的定义域为。

D,{xx,R,x,k,,k为整数}sinx1111122f(),,f(0),f(lg),1,lg,1,(lg2)2(解,,。

222221,0,x,,1,1112,,3f(x,),f(x,)) 要使函数有意义,需且只需3(解(1 解之得函数的定义域为。

,,,,13333,,,0,x,,13,0,sinx,1(2)要使函数有意义,需且只需,即为整数,所以函数的定2k,,x,(2k,1),,kf(sinx)D,{xx,[2k,,(2k,1),],k为整数}义域为。

,1,1[e,1]e,x,1(3)要使函数有意义,需且只需,即,所以函数f(lnx,1)的定义域为。

0,lnx,1,1220,x,1[,1,1](4)要使函数有意义,需且只需,即,所以的定义域为。

f(x),1,x,1312sin332x2y,lgtan(x,1)4(解(1); (2) ; (3) ; (4) 。

医用高等数学习题指导答案

医用高等数学习题指导答案

医用高等数学习题指导答案医用高等数学习题指导答案在医学领域中,数学作为一门重要的工具学科,被广泛运用于各种医学研究和临床实践中。

医用高等数学作为医学生的必修课程之一,旨在培养学生的数学思维能力和解决实际问题的能力。

然而,由于数学知识的抽象性和复杂性,许多医学生在学习过程中会遇到困难。

因此,本文将为医用高等数学习题提供一些指导答案,帮助医学生更好地理解和掌握数学知识。

一、导数与微分1. 求函数f(x) = x^3 + 2x^2 - 3x的导函数f'(x)。

解:首先,我们需要使用求导法则来求解该题目。

根据求导法则,对于多项式函数f(x) = ax^n,其中a为常数,n为自然数,其导函数为f'(x) = anx^(n-1)。

因此,对于本题目中的函数f(x) = x^3 + 2x^2 - 3x,我们可以得到其导函数为f'(x) = 3x^2 + 4x - 3。

2. 求函数f(x) = sin(x) + cos(x)的导函数f'(x)。

解:对于三角函数的求导,我们需要使用三角函数的导数公式。

根据导数公式,sin(x)的导数为cos(x),cos(x)的导数为-sin(x)。

因此,对于本题目中的函数f(x) = sin(x) + cos(x),我们可以得到其导函数为f'(x) = cos(x) - sin(x)。

二、积分与定积分1. 求函数f(x) = 3x^2 + 2x的不定积分F(x)。

解:不定积分是求函数的原函数,即求导的逆运算。

根据不定积分的求解方法,对于多项式函数f(x) = ax^n,其中a为常数,n为自然数,其不定积分为F(x) = (a/(n+1))x^(n+1) + C,其中C为常数。

因此,对于本题目中的函数f(x) = 3x^2+ 2x,我们可以得到其不定积分为F(x) = x^3 + x^2 + C。

2. 求函数f(x) = e^x的定积分∫[0,1]f(x)dx。

医学专升本试题及答案高数

医学专升本试题及答案高数

医学专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^3-6x^2+9x+2在x=1处的导数是:A. 0B. -3C. 3D. 6答案:C2. 曲线y=x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. 4答案:C3. 微分方程dy/dx + y = x^2的通解是:A. y = x^2 - x + CB. y = x^2 + CC. y = x^2 + x + CD. y = x^2 - x^2 + C答案:B4. 若f(x)=e^x,则f'(x)是:A. e^xB. 0C. 1D. x答案:A5. 函数f(x)=sin(x)的n阶导数f^(n)(x)在x=0时的值,当n为奇数时是:A. 0B. 1C. -1D. sin(n)答案:C6. 曲线y=x^3-3x^2+2x在x=0处的切线方程是:A. y = 0B. y = 2xC. y = -3xD. y = x答案:A7. 若f(x)=ln(x),则f'(x)是:A. 1/xB. xC. ln(x)D. 1答案:A8. 函数f(x)=x^2+1在区间[0,1]上的最大值是:A. 0B. 1C. 2D. 5答案:C9. 函数f(x)=x^2-4x+3的极小值点是:A. x=1B. x=2C. x=3D. x=4答案:B10. 若f(x)=x^3-6x^2+11x-6,则f(2)的值是:A. -2B. 0C. 2D. 4答案:C二、填空题(每题2分,共20分)11. 若f(x)=x^4-2x^3+3x^2-4x+5,则f'(x)=________。

答案:4x^3-6x^2+6x-412. 若曲线y=x^2+1在点(2,5)处的切线与x轴平行,则该切线的方程是________。

答案:y=513. 微分方程dy/dx - y = 0的通解是y=________。

答案:Ce^x14. 函数f(x)=cos(x)的二阶导数f''(x)是________。

医用高等数学试题

医用高等数学试题

5. 无限个无穷小的和仍然是无穷小 ( B ) A 、正确 B 、错误6. 0,sin5~ln(15)x x x →+当时 ( A ) A 、正确 B 、错误()217.ln(1)ln(1)t dt t '+=+⎰ ( B )A 、正确B 、错误 8.01ln 0xdx ≥⎰( A )A 、正确B 、错误 9. arctan lim0x xx→∞= ( A )A 、正确B 、错误10.11≤ ( A )A 、正确B 、错误二.单项选择题 (本大题共20题,每题3分,共60分)11. ()f x 在0x 处可微是()f x 在0x 可积的 ( A ).A. 充分条件B. 充要条件C. 必要条件D. 前三者都不是12. 已知函数 1cos 0,()10,xx f x x x x -⎧>⎪=⎨⎪+≤⎩ ,则0lim ()x f x →= ( D ). A. 1 B. 0 C. 2 D. 不存在13.设2221()31x x f x x x ⎧≤⎪=⎨⎪>⎩,则()f x 在1x =处( B )A .左、右导数都存在B . 左导数存在但右导数不存在C .右导数存在但左导数不存在D . 左、右导数都不存在13011333314.lim(1)().....xx x D A e B e C eD e→---=15. 当x →+∞时,下列函数为无穷小量的是( D ). A. 1xe-B.()3100ln x x -C.D.2311001x x x -++.16. 以下各式中能使用洛必达法则计算的是( A ). A. 20sin limln(1)x x x x x →-+ B. 2arctan lim tan 3x xx π→C. sin lim x x x x →∞+D. cos lim x x x →∞ ()()317.()3,()1,3A. B. C. D.f x x x f x A =--设则函数在区间上是 先增后减 先减后增 增函数减函数18. 2cos ()3x f x -=,则()df x = ( C ).A. 2cos sin 23ln 3xx dx -- B. 2cos1sin 23ln 3xx dx -- C. 2cos sin 23ln 3x x dx - D. 2cos 1sin 23ln 3x x dx -19.已知)(x f 在0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim 0=-→xx f x ,则在点0=x 处)(x f ( D )A.不可导;B.可导,且0)0('≠f ;C.取得极大值;D.取得极小值。

医学高等数知识学习题集解答(2,3,6)

医学高等数知识学习题集解答(2,3,6)

第一章 函数、极限与连续习题题解(P27)一、判断题题解1. 正确。

设h (x )=f (x )+f (-x ), 则h (-x )= f (-x )+f (x )= h (x )。

故为偶函数。

2. 错。

y =2ln x 的定义域(0,+∞), y =ln x 2的定义域(-∞,0)∪(0,+∞)。

定义域不同。

3. 错。

+∞=→21limx x 。

故无界。

4. 错。

在x 0点极限存在不一定连续。

5. 错。

01lim =-+∞→xx 逐渐增大。

6. 正确。

设A x f x x =→)(lim 0,当x 无限趋向于x 0,并在x 0的邻域内,有εε+<<-A x f A )(。

7. 正确。

反证法:设F (x )=f (x )+g (x )在x 0处连续,则g (x ) =F (x )-f (x ),在x 0处F (x ),f (x )均连续,从而g (x )在x =x 0处也连续,与已知条件矛盾。

8. 正确。

是复合函数的连续性定理。

二、选择题题解1. ())( 22)]([,2)(,)(222D x f x x x f x x x ====ϕϕ2. y =x (C )3. 01sinlim 0=→xx x (A )4. 0cos 1sinlim0=→xx x x (B ) 5. )1(2)(lim ,2)3(lim )(lim ,2)13(lim )(lim 11111f x f x x f x x f x x x x x ≠=∴=-==-=→→→→→++--Θ (B ) 6. 3092<⇒>-x x (D )7. 画出图形后知:最大值是3,最小值是-10。

(A )8. 设1)(4--=x x x f ,则13)2(,1)1(=-=f f ,)(x f 连续,由介质定理可知。

(D ) 三、填空题题解1. 210≤-≤x ⇒31≤≤x2. )arctan(3x y =是奇函数,关于原点对称。

医用高等数学答案

医用高等数学答案

12kπ(k=±1,±2,…)为第Ⅱ类间断点.1.4 习题解答本节给出了由张选群教授主编,人民卫生出版社出版的统编教材《医用高等数学》习题的解题思路及参考解题过程.1.求下列函数的定义域(1)y=(x+2)(x-1).解 由(x+2)(x-1)≥0定义域为(-∞,-2]∪[1,+∞).(2)y=arccos(x-3).解 由-1≤(x-3)≤1定义域为[2,4].(3)y=lg x-1 x+2.解 由x-1x+2>0定义域为(-∞,-2)∪(1,+∞).(4)y=ln(2+x) x(x-4).解 由ln(2+x)≥0(2+x)≥1x≥-1;又x≠0,x≠4从而定义域为[-1,0)∪(0,4)∪(4,+∞).(5)y=12-x2+arcsin12x-1.解 由(2-x2)>0-2<x<2; 又由-1≤12x-1≤10≤x≤2;故定义域为[0,2).(6)y=x sin x.解 由sin x≠0定义域为(kπ,(k+1)π)(k=0,±1,±2,…).2.设f(x)=1+x2,x<0,12,x=0,-x,x>0.求f(0),f12,f lg12.解 f(0)=12,f12=-12,f lg12=f(-lg2)=1+(-lg2)2=1+(lg2)2.3.设函数y=f(x)的定义域为[0,1],求下列函数的定义域(1)y=f x+13+f x-13.解 由0≤x+13≤10≤x-13≤1-13≤x≤2313≤x≤43定义域为13,23.(2)y=f(sin x).解 由0≤sin x≤1定义域为[2kπ,(2k+1)π](k=0,±1,±2,…).(3)y=f(ln x+1).解 由0≤ln x+1≤11e≤x≤1定义域为1e,1.(4)y=f(x2).解 由0≤x2≤1-1≤x≤1定义域为[-1,1].4.写出y关于x的复合函数(1)y=lg u, u=t an(x+1).解 y=lg[tan(x+1)].(2)y=u3, u=x2+1.解 y=(x2+1)32.(3)y=u+sin u, u=1-v, v=x3.解 y=1-x3+sin(1-x3).(4)y=e u, u=v2, v=sin w, w=1 x.解 y=exp sin21x.5.指出下列各函数是由哪些基本初等函数或简单函数复合而成(1)y=e arc tan(2x+1).解 y=e u, u=arct an v, v=2x+1.(2)y=sin3(x+2).解 y=u32, u=sin v, v=x+2.(3)y=tan 1+x 1-x.解 y=tan u, u=v, v=1+x 1-x.(4)y=cosln3x2+1.解 y=cos u, u=v3, v=12ln w, w=x2+1.6.已知f(e x+1)=e2x+e x+1,求f(x)的表达式.解 f(e x+1)=e2x+e x+1=(e x+1)2-(e x+1)+1f(x)= x2-x+1.7.已知f tan x+1tan x=tan2x+1t an2x+3,x≠kπ2(k=0,±1,±2,…),求f(x)的表达式.解 f t an x+1tan x=tan2x+1tan2x+3=tan x+1tan x2+1f(x)=x2+1.8.求下列函数的极限(1)limn→∞(n+1-n)=limn→∞1n+1+n=0;(2)limn→∞n sin nn+1=limn→∞1n+1/nsin n;因为对于任意的自然数n,有0≤1n+1/nsin n≤1n+1/n,注意到lim n→∞0=limn→∞1n+1/n=0,由夹逼法则得lim n→∞1n+1/nsin n=0,即lim n→∞1n+1/nsin n=0,故lim n→∞n sin nn+1=0. (3)limn→∞1n2+2n2+…+n-1n2=limn→∞1n2·12(n-1)n=limn→∞121-1n=12. 9.求下列函数的极限(1)limx→-1x3-1x-1=limx→-1(x2+x+1)=1;(2)limx→1x2-12x2-x-1=limx→1(x+1)(x-1)(2x+1)(x-1)=limx→1x+12x+1=23;(3)limx→∞x2-13x2-x-1=limx→∞1-1x23-1x-1x2=13;(4)因为limx→1x2-5x+42x-1=0,所以limx→12x-1x2-5x+4=∞;(5)limx→3x+13-2x+1x2-9=limx→33(3-x)(x2-9)(x+13+2x+1)=limx→3-3(x+3)(x+13+2x+1)=-116;(6)limx→+∞x2+1-1x=limx→+∞xx2+1+1=limx→+∞11+1x2+1x=1;(7)limx→111-x-21-x2=limx→1x-11-x2=limx→1-11+x=-12;(8)limx→01-cos xx sin x=limx→02sin2x2x·2sinx2cosx2=limx→0sinx2x cosx2=limx→0sinx22·x2·cosx2=12;(9)limx→1(1-x)tanπ2x=limt→0t tanπ2(1-t)=limt→0t cotπ2t=limt→02π·π2tsinπ2tcosπ2t=2π;(10)limx→0tan x-sin xx3=limx→0sin xx·1cos x·1-cos xx2=limx→0sin xx·12cos x·sinx2x22=12;(11)limx→1x21-x=limt→0(1-t)2t=limt→0(1-t)1-t2=limt→0(1-t)1-t2=e2;(12)limx→0(1-3x)1x=limx→0(1-3x)1-3x-3=limx→0(1-3x)1-3x-3=e-3;(13)limx→∞x-11+xx-1=limx→∞1-21+xx-1=limx→∞1-21+xx+11-21+x-2=limx→∞1-21+xx+1-2-21-21+x-2=limx→∞1-21+xx+1-2-2limx→∞1-21+x-2=e-2;(14)limx→0x+ln(1+x)3x-ln(1+x)=limx→01+1xln(1+x)3-1xln(1+x)=limx→01+ln(1+x)1x3-ln(1+x)1x=1+13-1=1;(15)limx→-1ln(2+x)31+2x+1=limx→-1[(1+2x)23-(1+2x)13+1]ln(2+x)1+2x+1=32limx→-1ln(2+x)1+x=32limt→0ln(1+t)t=32limt→0ln(1+t)1t =32ln limt→0(1+t)1t=32;(16)limx→∞2x+32x+1x+1=limx→∞1+22x+1x+1=limx→∞1+1x+12x+1=limx→∞1+1x+12x+121+1x+1212=limx→∞1+1x+12x+12limx→∞1+1x+1212=e.10.已知limx→1x2+bx+61-x=5,试确定b的值.解 由于分母极限为0,故只有分子的极限也为0时整个分式才可能有极限0型极限,其结果是个非0有限数值时,说明分子分母为同阶无穷小量,即limx→1(x2+bx+6)=0b=-7. 11.已知limx→+∞(2x-ax2-x+1)存在,试确定a的值,并求出极限值.解 limx→+∞(2x-a x2-x+1)=limx→+∞4x2-a x2+x-12x+ax2-x+1=limx→+∞(4-a)x2+x-12x+ax2-x+1存在.所以分子分母为同次式(分母本质上是一次式),即4-a= 0a=4.lim x→+∞(2x-4x2-x+1)=limx→+∞x-12x+4x2-x+1=limx→+∞1-1x2+4-1x+1x2=14. 12.当x→0时,将下列函数与x进行比较,哪些是高阶无穷小?哪些是低阶无穷小?哪些是同阶无穷小?哪些是等价无穷小?(1)tan3x.解 limx→0t an3xx=limx→0sin xx·tan2xcos x=limx→0sin xx·limx→0tan2xcos x=0当x→0时,tan3x是x的高阶无穷小;(2)1+x2-1.解 limx→01+x2-1x=limx→0x1+x2+1=0当x→0时,1+x2-1是x的高阶无穷小;(3)csc x-cot x.解 limx→0csc x-cot xx=limx→01-cos xx sin x=limx→0sin2x2x sinx2cosx2=limx→012sinx2x2cosx2=12当x→0时,csc x-cot x是x的同阶无穷小;(4)x+x2sin 1 x.解 limx→0x+x2sin1xx=limx→01+x sin1x=1当x→0时,x+x3sin 1x是x的等价无穷小;(5)cos π2(1-x).解 limx→0cosπ2(1-x)x=limx→0sinπ2xx=π2limx→0sinπ2xπ2x=π2当x→0时,cos π2(1-x)是x的同阶无穷小;(6)1+tan x -1-sin x .解lim x →01+tan x -1-sin x x=lim x →0tan x +sin x x (1+tan x +1-sin x)=limx →0sin xx 1+1cos x(1+tan x +1-sin x)=1当x →0时,1+t an x -1-sin x 是x 的等价无穷小.13.已知当x →0时,(1+ax 2-1)与sin 2x 是等价无穷小,求a 的值.解 limx →01+ax 2-1sin 2x =lim x →0ax 2(1+ax 2+1)sin 2x=a2=1a =2.14.设 f (x)=e x ,x <0,a +ln (1+x),x ≥0. 在(-∞,+∞)内连续,求a 的值.解 lim x →0-f (x)=lim x →0-e x=1,lim x →0+f (x)=lim x →0+[a +ln (1+x)]=a a =1.15.讨论函数f (x)=e 1x,x <0,0,x =0,x sin1x,x >0. 在点x =0处的连续性.解 因为lim x →0-f (x)=lim x →0-e 1x=0,lim x →0+f (x)=lim x →0+x sin 1x =lim x →0f (x)=0=f (0),所以f (x)在点x =0处连续.16.讨论函数f (x)=1,x =0,x sin 1x,x ≠0. 在点x =0处的连续性.解 因为lim x →0f (x)=lim x →0x sin1x=0≠f (0)=1,所以f (x)在点x =0处不连续.17.设f (x)=2,x =0,ln (1+a x)x,x ≠0. 在点x =0处连续,求a 的值.解 因为lim x →0f (x)=lim x →0ln (1+a x)x=a lim x →0ln (1+ax)1a x=a =f (0)=2,所以a =2.18.确定下列函数的间断点与连续区间:(1)y =x ln x.解 间断点为x =1;连续区间为(0,1)∪(1,+∞).(2)y =x -2x 2-5x +6.解 y =x -2(x -2)(x -3),间断点为x =2,x =3;连续区间为(-∞,2)∪(2,3)∪(3,+∞).(3)f (x)=1-x 2,x ≥0,sin |x |x ,x <0.解 lim x →0-f (x)=limx →0-sin |x |x =-1,lim x →0+f (x)=lim x →0+(1-x 2)=1lim x →0-f (x)≠lim x →0+f (x).因此,间断点为x =0;连续区间为(-∞,0)∪(0,+∞).(4)f (x)=limn →+∞11+xn (x ≥0).解 f(x)=1,0≤x<1,12,x=1,0,x>1,间断点为x=1;连续区间为[0,1)∪(1,+∞).1.5 自测题1.选择题(以下各题均有4个答案,其中只有1个正确答案)(1)对1~6个月的婴儿,由月龄估计体重的经验公式为y= f(t)=3+0.6t(t表示月龄,y表示体重),则在这个实际问题中f(t)的定义域是.A.(-∞,+∞);B.(0,+∞);C.[1,6];D.以上都不是.(2)函数f(x)=3-x+arccos x-23+1的定义域是.A.(-1,3);B.[-1,3);C.(-1,3];D.[-1,3].(3)设f(x)=x+1x,则下式成立的是.A.f(x)=f 1x;B.f(x)=1f(x);C.f(x)=f1f(x);D.f(x)=1f1x.(4)函数y=a x8+8是由复合而成.A.y=a u,u=v12,v=x8+8;B.y=a u,u=x8+8;C.y=au12,u=x8+8;D.y=a12u,u=x8+8.列表讨论如下:t (0,t 1)t 1(t 1,t 2)t 2(t 2,+∞)C ′(t)+0--C ″(t)--0+C(t)↗凸极大值↘凸拐点↘凹 C(t)的最大值:C max=C(t 1)=A σ1σ2σ1σ2σ1-σ2;C(t)的拐点值:C(t 2)=A(σ1+σ2)σ21σ2σ12σ2σ1-σ2.请读者描绘出函数图像.2.4 习题解答本节给出了由张选群教授主编,人民卫生出版社出版的统编教材《医用高等数学》习题的解题思路及参考解题过程.1.若一质点作直线运动,已知路程s 与时间t 的关系是s =3t 2+2t +1.试计算从t =2到t =2+Δt 之间的平均速度,并计算当Δt =0.1,Δt =0.01时的平均速度,再计算t =2时的瞬时速度.解 平均速度 珔v =Δs Δt =s(2+Δt)-s(2)Δt=3Δt +14.当Δt =0.1时,珔v =14.3;当Δt =0.01时,珔v =14.03;因此,t =2时的瞬时速度v ′(2)=lim Δt →0珔v =lim Δt →0(3Δt +14)=14. 2.按导数定义计算下列函数在指定点的导数.(1)f (x)=sin2x,x =0.解 f ′(0)=lim Δx →0f (0+Δx)-f (0)Δx =lim Δx →0sin2ΔxΔx=2.(2)f (x)=11+x,在x(x ≠-1)点.解 f′(x)=limΔx→0f(x+Δx)-f(x)Δx=limΔx→011+(x+Δx)-11+xΔx=limΔx→0-1(1+x+Δx)(1+x)=-1(1+x)2.(3)f(x)=x+1,在x=0点.解 f′(0)=limΔx→0f(0+Δx)-f(0)Δx=limΔx→0Δx+1-1Δx=limΔx→0 1Δx+1+1=2.(4)f(x)=2x-x2,在x点.解 f′(x)=limΔx→0f(x+Δx)-f(x)Δx=limΔx→0(2-2x-Δx)=2-2x.3.设f(x)在x=x0点处可导,试计算下列极限(1)limx→x0f(x)-f(x0)x-x0.解 设x=x0+Δx,则原式=limx→x0f(x0+Δx)-f(x0)Δx=f′(x0).(2)limΔx→0f(x0+2Δx)-f(x0)Δx.解 原式=12limΔx→0f(x0+2Δx)-f(x0)2Δx=12f′(x0).(3)limΔx→0f(x0)-f(x0-Δx)Δx.解 原式=lim-Δx→0f(x0-Δx)-f(x0)-Δx=f′(x0).(4)limn→∞n f x0+1n-f(x0).解 原式=lim1 n →0f x0+1n-f(x0)1n=f′(x0).(5)limh→0f(x0+h)-f(x0-h)h.解 原式=limh→0f(x0+h)-f(x0)-[f(x0-h)-f(x0)]h=2f′(x0).(6)limt→0f(x0+αt)-f(x0+βt)t.解 原式=limt→0α·f(x0+αt)αt-β·f(x0+βt)βt=(α-β)f′(x0).4.讨论下列函数在x=0点是否可导.(1)f(x)=x32sin1x,x>0 0,x≤0.解 f′(0)=limΔx→0f(0+Δx)-f(0)Δx=limΔx→0f(Δx)Δx,而f′-(0)=limΔx→0-f(Δx)Δx=limx→0-0=0,f′+(0)=limΔx→0+f(Δx)Δx=limx→0+(Δx)32sin1ΔxΔx=0.所以,f(x)在x=0点可导且f′(0)=0.(2)f(x)=x1+e1x,x≠0, 0,x=0.解 f′(0)=limΔx→0f(0+Δx)-f(0)Δx=limΔx→0f(Δx)Δx=limΔx→011+e1Δx.而f′-(0)=limΔx→0-11+e1Δx=1, f′+(0)=limΔx→0+11+e1Δx=0.所以f(x)在x=0点不可导.5.确定a,b的值,使f(x)=x2,x≤1,ax+b,x>1在x=1点处可导.解 要使f(x)在x=1处连续,必须有limx→1+f(x)=limx→1-f(x)=f(1).而lim x→1-f(x)=limx→1-x2=1, lim x→1+f(x)=limx→1+(ax+b)=a+b,f(1)=1,从而a+b=1.f′(1)=limΔx→0f(1+Δx)-f(1)Δx=limΔx→0f(1+Δx)-1Δx,f′-(1)=limΔx→0-f(1+Δx)-1Δx=limΔx→0-(1+Δx)2-1Δx=2,f′+(1)=limΔx→0+f(1+Δx)-1Δx=limΔx→0+a(1+Δx)+b-1Δx=a.要使f(x)在x=1处可导,应有f′-(1)=f′+(1),即a=2,又a+b= 1,从而得b=-1.*6.若函数f(x)在x0点可导,且f(x0)≠0,试计算极限lim n→∞f x0+1nf(x0)n.解 limn→∞f x0+1nf(x0)n=limn→∞exp n lnf x0+1nf(x0)=limn→∞expln f x0+1n-ln f(x0)1n=exp limn→∞ln f x0+1n-ln f(x0)1n=expdln f(x)d x x=x0=exp1f(x)·f(x)′x=x=exp1f(x0)·f′(x0)7.设曲线y=2x-x3.(1)求(1,1)点处曲线的切线方程及法线方程;(2)在(x0,y0)点处,曲线的切线通过点(0,-2),求(x0,y0)点及该点处曲线的切线方程和法线方程.解 y′=2-3x2.(1)在(1,1)点处曲线的切线斜率为k切=y′(1)=-1,因此切线方程:y-1=-1·(x-1), 即y=-x+2.法线方程:y-1=1·(x-1), 即y=x.(2)在(x0,y0)点处曲线的切线斜率为k切=y′(x0)=2-3(x0)2,切线方程为y-y0=[2-3(x0)2](x-x0),由于曲线过点(0,-2),有x0=-1,y0=-1.在(-1,-1)点, k切=-1,因此切线方程:y+1=-1·(x+1), 即y=-x-2.法线方程:y+1=1·(x+1), 即y=x.8.求下列函数的导数.(1)y=2x2+x22.解 y′=(2x-2)′+12x2′=-4x-3+x.(2)y=3x+3x+1 x.解 y′=3·x12′+x13′+(x-1)′=32x-12+13x-23-x-2.(3)y=x(2x-1)(3x+2).解 y′=(x)′(2x-1)(3x+2)+x(2x-1)′(3x+2) +x(2x-1)(3x+2)′=(2x-1)(3x+2) +2x(3x+2)+3x(2x-1).(4)y=x sin x+cos x.解 y′=(x)′sin x+x(sin x)′=sin x+x cos x.(5)y=x3+1x2-x-2.解 y′=(x3+1)′(x2-x-2)-(x3+1)(x2-x-2)′(x2-x-2)2=3x2(x2-x-2)-(x3+1)(2x-1)(x2-x-2)2.(6)y=1-ln x 1+ln x.解 y′=(1-ln x)′(1+ln x)-(1-ln x)(1+ln x)′(1+ln x)2=-2x(1+ln x)2.(7)y=x arctan x+sin x x.解 y′=(x)′arctan x+x(arctan x)′+sin xx′=12xarctan x+x1+x2+x cos x-sin xx2.(8)y=x tan x+x4x+xcos x.解 y′=tan x+x sec2x+4x-x4x ln442x+cos x+x sin xcos2x.(9)y=(2x2+3)3.解 y′=3(2x2+3)2·(2x2+3)′=12x(2x2+3)2.(10)y=ln(cot x).解 y′=1cot x·(cot x)′=1cot x·(-csc2x)=-1sin x cos x.(11)y=e sin x+arccos1-x2.解 y′=(e sin x)′+(arccos1-x2)′=e sin x cos x-11-(1-x2)2·-2x21-x2=e sin x cos x+x|x|1-x2.(12)y=x a2-x2+a2arcsin x a.解 y′=(x a2-x2)′+a2arcsin x a=a2-x2+x-2x2a2-x2+a211-xa2·1a=2a2-x2.(13)y= x+x+x.解 y′=12x+x+x(x+x+x)′=12x+x+x 1+12x+x(x+x)′=12x+x+x 1+12x+x1+12x.(14)y=sin(ln x)+ln(cos x).解 y′=cos(ln x)·1x+1cos x(-sin x)=1xcos(ln x)-tan x.(15)y=log2(x2-sin x).解 y′=1(x2-sin x)ln2(x2-sin x)′=2x-cos x(x2-sin x)ln2.(16)y=14ln1+x1-x+12arctan x+sinπ5.解 y′=14ln1+x1-x′+12(arctan x)′+sinπ5′=14·1-x1+x·1+x1-x′+12·11+x2=14·1-x1+x·2(1-x)2+12·11+x2=11-x4.(17)y=x ln x.解 利用对数求导法,有ln y=ln x·ln x1 y ·y′=2ln x·1x,故 y′=2x l n x-1ln x.(18)y=x sin x.解 利用对数求导法,有ln y=sin x·ln x,1 y ·y′=cos x·ln x+sin x·1x,故 y′=x sin x cos x ln x+sin xx.(19)y=(sin x)co s x.解 利用对数求导法,有ln y=cos x·lnsin x,1 y ·y′=-sin x·lnsin x+cos x·cos xsin x,y′=(sin x)co s x(cos x cot x-sin x lnsin x). (20)y=(2x)x.解 利用对数求导法,有ln y=x·ln2x,1 y ·y′=12xln x+x·22x,故y′=(2x)x ln(2x)+22x.(21)y=x2x+(2x)x.解 y=e2x l n x+e x ln(2x).利用对数求导法,有ln y=ln x·ln x,y′=e2x ln x·(2x ln x)′+e x ln(2x)(x ln2x)′=2x2x(ln x+1)+(2x)x(ln2x+1). (22)y=3x(x3+1)(x-1)2.解 利用对数求导法,有ln y=13[ln x+ln(x3+1)-2ln(x-1)],1 y ·y′=131x+3x2x3+1-2x-1,y′=133x(x3+1)(x-1)21x+3x2x3+1-2x-1. (23)y=(x-2)3x-55x+1.解 利用对数求导法,有ln y=3ln(x-2)+12ln(x-5)-15ln(x+1),1 y ·y′=31x-2+121x-5-151x+1,y′=(x-2)3x-53x+13x-2+12(x-5)-13(x+1). (24)y= (x sin x)1-e x.解 利用对数求导法,有ln y=12ln x+lnsin x+12ln(1-e x),1 y ·y′=121x+cos xsin x+12·-e x1-e x,y′=14(x sin x)1-e x2x+2cot x-ex1-e x. 9.求由下列方程确定的隐函数y=f(x)的导数(1)y=1+x e y.解 等式两边关于x求导,有y′=e y+x e y y′y′=e y1-x e y. (2)y=tan(x+y).解 等式两边关于x求导,有y′=sec2(x+y)·(1+y′),y′=sec2(x+y)1-sec2(x+y)=sec2(x+y)-tan2x=-csc2(x+y). (3)x y=y x.解 等式两边取对数,有y ln x=x ln y 等式两边关于x求导,有y′ln x+y·1x =ln y+x·1y·y′,y′=y(x ln y-y) x(y ln x-x). (4)x y=e x+y.解 等式两边关于x求导,有y+xy′=e x+y(1+y′),y′=e x+y-yx-e x+y=xy-yx-x y=y(x-1)x(1-y). 10.试证明曲线x+y=a上任一点处的切线,截两个坐标的截距之和为a.解 对曲线方程两边关于x求导,得1 2x +12y·y′=0, y′=-yx. 曲线上任一点(x0,y0)处的切线方程为y-y0=- y0x0·(x-x0).令x=0,得曲线在y轴上的截距:y0+x0y0;令y=0,得曲线在x轴上的截距:x0+x0y0;曲线在两坐标轴上的截距之和为:y0+x0+2x0y0=(x0+y0)2=a. 11.求下列函数的二阶导数(1)y=x x.解 等式两边取对数,有ln y=x ln x,等式两边关于x求导,有1yy′=ln x+1, y′=x x(1+ln x),对此式关于x再求导,有y″=(x x)′(1+ln x)+x x(1+ln x)′=x x(1+ln x)2+x x-1. (2)ln x2+y2=arctan y x.解 等式两边关于x求导,有1x2+y2·12x2+y2(2x+2yy′)=11+(y/x)2y′x-yx2, x+yy′=x y′-y, y′=x+yx-y,对此式关于x再求导,得y″=(x+y)′(x-y)-(x+y)(x-y)′(x-y)2=(1+y′)(x-y)-(x+y)(1-y′)(x-y)2. 代入y′=x+yx-y, 有y″=2x2+y2(x-y)3.12.设f″(x)存在,求下列函数的二阶导数(1)y=f(x2).解 y′=f′(x2)·2x,y″=[f′(x2)]′·2x+f′(x2)·2=4x2f″(x2)+2f′(x2).(2)y=ln[f(x)].解 y′=1f(x)·f′(x),y″=1f(x)′·f′(x)+1f(x)·f″(x) =-[f′(x)]2f2(x)+f″(x)f(x).13.求下列函数的n阶导数(1)y=sin x.解 y′=cos x=sin π2+x,y″=cos π2+x=sinπ2+π2+x=sin2·π2+x,y=cos2·π2+x=sinπ2+2·π2+x=sin3·π2+x, ⁝y(n)=sin n·π2+x.(2)y=sin2x.解 y′=2sin x cos x=sin2x,y″=2cos2x=2sin π2+2x,y=22cos π2+2x=22sinπ2+π2+2x=22sin2·π2+2x, ⁝y(n)=2n-1sin(n-1)·π2+2x.14.一质点作直线运动,其运动规律为s=t,其中路程s的单位为米,时间t的单位为秒,求质点在第4秒末的速度与加速度?解 质点在时刻t的速度 v(t)=d sd t=12t,加速度a(t)=d v(t)d t=-14t3.在第4秒末的速度v(4)=12t t=4=14,在第4秒末的加速度a(4)=-14t3t=4=-132. 15.许多肿瘤的生长规律为v=v0e A a(1-e-a t).其中,v表示t时刻的肿瘤的大小(体积或重量),v0为开始(t=0)或观察时肿瘤的大小,a和A为正常数,问肿瘤t时刻的增长速度是多少?解 肿瘤的t时刻的增长速度d vd t=v0e A a(1-e-at)′=v0A e A a(1-e-a t)-a t.16.病人服药后,药物通过肾脏排泄的血药浓度c和时间t的关系为c(t)=c0(1-e-k t),c0为血药初始浓度,k为常数,求药物的排泄速率.解 药物排泄速率 v(t)=d(c(t))d t=c0k e-k t.17.设某种细菌繁殖的数量为N=1000+52t+t2,其中时间t 以小时(h)计,求t=2h,t=5h时细菌的繁殖速度.解 在t时刻细菌的繁殖速度:v(t)=d Nd t=52+2t,在t=2h的繁殖速度:v(2)=(52+2t)t=2=56个/h,在t=5h的繁殖速度:v(5)=(52+2t)t=5=62个/h.18.求下列函数的微分(1)y=x2+1-31+x2.解 d y=(x2+1-31+x)′d x=2x-2x33(1+x2)2d x.(2)y=x(1+sin2x).解 d y=[x(1+sin2x)]′d x=1+sin2x2x+x·2sin2x d x(3)y=arctane x+arctan 1 x.解 d y=arctane x+arctan 1x′d x=e x1+e2x+11+1/x2·-1x2d x=e x1+e x-11+x2d x.(4)y=sin(x e x).解 d y=[sin(x e x)]′d x=(1+x)e x cos(x e x)d x.(5)y=x2-x,在x=1处.解 d y=(x2-x)′d x=(2x-1)d x.在x=1处,d y=(2x-1)x=1d x=d x.(6)y=x+1,在x=0,Δx=0.01时.解 d y=(x+1)′d x=12x+1d x.在x=0,Δx=0.01处,d y=12x+1Δxx=0Δx=0.01=0.005.19.在下列各划线处,填入适当的函数(1)d(x)=12xd x; (2)d-1x=1x2d x;(3)d(ax+b)=a d x;(4)d 1ae a x=e a x d x;(5)d 12arctanx2=14+x2d x;(6)d(lnφ(x))=φ′(x)φ(x)d x.20.若函数f(x)可导,且f(0)=0,|f′(x)|<1,试证明x≠0时,|f(x)|<|x|.证明 由拉格朗日中值定理,有f(x)-f(0)=f′(ξ)(x-0),ξ介于x,0之间,从而f(x)=f′(ξ)x,|f(x)|=|f′(ξ)||x|<1·|x|=|x|. *21.试证明,若对于任意x∈R,有f′(x)=a,则f(x)=ax+b.证明 设F(x)=f (x)-ax,则有F ′(x)=f ′(x)-(ax)′=0,F(x)=b (常数),故 f (x)=a x +b .22.利用洛必达法则求下列函数极限(1)lim x →0e x-e -x-2x x -sin x =lim x →0e x+e -x-21-cos x =limx →0e x-e-xsin x=lim x →0e x +e -x cos x=2.(2)lim x →π2lnsin x (π-2x)2=lim x →π2cot x -4(π-2x)=lim x →π2-csc 2x8=limx →π2-18sin 2x =-18.(3)lim x →+∞x e x 2x +e x =lim x →+∞e x 2+12x e x 21+e x =lim x →+∞e x 2+14x ex 2ex=lim x →+∞4+x 4e x 2=lim x →+∞=12ex 2=0.(4)lim x →π2tan x tan3x =lim x →π2sec 2x 3sec 23x =13lim x →π2cos 23x cos 2x =lim x →π2sin6xsin2x =3.(5)lim x →0x 2ln x =limx →0ln x 1x 2=lim x →01x-2·1x3=-2lim x →0x 2=0.(6)lim x →01x -1e x -1=lim x →0e x -x -1x(e x -1)=lim x →0e x -1e x -1+x ex=lim x →0e x 2e x +x e x=12.(7)lim x →π2(tan x)2cos x=lim x →π2e2co s x lnt an x=el im x →π22co s x lnt an x .因为lim x →π22cos x lntan x =lim x →π22lntan x sec x =lim x →π22·1tan x·sec 2xsec x tan x=lim x →π22cos x sin 2x =0,所以原式=e 0=1. (8)lim x →0(e x+x)1x=lim x →0eln (e x +x)x=e lim x →0ln (e x+x)x.因为 lim x →0ln (e x +x)x=lim x →0e x +1e x+x =2,所以 原式=e 2.*(9)设函数f (x)存在二阶导数,f (0)=0,f ′(0)=1,f ″(0)=2,试求lim x →0f (x)-xx2.解 lim x →0f (x)-x x2=lim x →0f ′(x)-12x =12lim x →0f ′(x)-f ′(0)x -0=12f ″(0)=1.*(10)设函数f (x)具有二阶连续导数,且lim x →0f(x)x=0,f ″(0)=4,求lim x →01+f (x)x1x.解 lim x →01+f (x)x1x=lim x →0exp ln 1+f (x)x x =exp limx →0ln 1+f (x)xx, limx →0ln 1+f (x)xx=lim x →01+f (x)x-1·f (x)x′1=lim x →0f ′(x)x -f (x)x 2=lim x →012f ″(x)=12×4=2,所以 limx→01+f(x)x1x=e2.23.试确定下列函数的单调区间(1)f(x)=x e-x.解 定义域为(-∞,+∞): f′(x)=e-x(1-x).令f′(x)=0,得驻点x=1.x∈(-∞,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)的单调递增区间为(-∞,1);单调递减区间为(1,+∞).(2)f(x)=x1+x.解 定义域为[0,+∞); f′(x)=1-x2x(1+x)2.令f′(x)=0,得驻点x=1.x∈(0,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)的单调递增区间为(0,1);单调递减区间为(1,+∞).24.求下列函数极值(1)f(x)=3x-x3.解 定义域为(-∞,+∞);f′(x)=3-3x2=3(1-x)(1+ x).令f′(x)=0,得驻点x=-1,x=1.x∈(-∞,-1)时,f′(x)<0,f(x)单调递减;x∈(-1,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=-1为f(x)的极小值,极小值f(-1)=-2;x=1为f(x)的极大值,极大值f(1)=2. (2)f(x)=xln x.解 定义域为x>0,x≠1; f′(x)=ln x-1ln2x.令f′(x)=0,得驻点x=e.x∈(1,e)时,f′(x)<0,f(x)单调递减;x∈(e,+∞)时,f′(x)>0,f(x)单调递增. 所以,x=e为f(x)的极小值,极小值f(e)=e.(3)f(x)=6xx2+1.解 定义域为(-∞,+∞);f′(x)=6-6x2(x2+1)2=6(1-x)(1+x)(x2+1)2.令f′(x)=0,得驻点x=-1,x=1.x∈(-∞,-1)时,f′(x)<0,f(x)单调递减;x∈(-1,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=-1为f(x)的极小值,极小值f(-1)=-3;x=1为f(x)的极大值,极大值f(1)=3. (4)f(x)=(2x-1)3(x-3)2.解 定义域为(-∞,+∞);f′(x)=23(x-3)2+(2x-1)·23·(x-3)-13=10(x-2)3(x-3)13. 令f′(x)=0,得驻点x=2,不可导点x=3.x<2时,f′(x)>0, x>2时,f′(x)<0;2<x<3时,f′(x)>0, 3<x时,f′(x)>0.所以,x=2为f(x)的极大值,极大值f(2)=3.25.试问a为何值时,函数f(x)=a sin x+13sin3x,在x=π3处具有极值?它是极大值,还是极小值?并求此极值.解 f′(x)=a cos x+cos3x.因为x=π3为极值点,所以有f′π3=a cosπ3+cos3·π3=a2-1=0,即a=2,f(x)=2sin x+13sin3x, f′(x)=2cos x+cos3x,f″(x)=-2sin x-3sin3x,而f″π3=-3<0,所以x=π3为f(x)的极大值,极大值为f π3=3.26.测量某个量,由于仪器的精度和测量的技术等原因,对量A进行n次测量,其测量的数据分别为x1,x2,x3,…,x n,取数x 为量A的近似值.问x取何值时,才能使其与x i(i=1,2,…,n)之差的平方和最小?解 设x与x i(i=1,2,…,n)之差的平方和为y,则y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x n)2, y′=2[nx-(x1+x2+x3+…+x n)]. 令y′=0,得x=x1+x2+x3+…+x nn (惟一驻点).因此,当x=x1+x2+x3+…+x nn时,才能使其与x i(i=1,2,…,n)之差的平方和最小.27.1~9个月婴儿体重W(g)的增长与月龄t的关系有经验公式ln W-ln(341.5-W)=k(t-1.66).问t为何值时,婴儿的体重增长率v最快?解 对经验公式两边关于t求导,得1 W ·d Wd t+1341.5-W·d Wd t=k,婴儿的体重增长率v=d Wd t=k345.1W(345.1-W).而v′=d vd t=k345.1(345.1-2W), 令v′=0,则有W=345.12,从而t=1.66时,婴儿的体重增长率v最快.28.口服一定剂量的某种药物后,其血药浓度c与时间t的关系可表示为c=40(e-0.2t-e-2.3t),问t为何值时,血药浓度最高,并求其最高浓度.解 c=40(e-0.2t-e-2.3t), c′=d cd t=40(-0.2e-0.2t+2.3e-2.3t).令c′=0,则有t=ln2322.1=1.1630(惟一驻点),所以t=1.1630时,血药浓度最高,此最高血药浓度c(1.1630)=28.9423.29.已知半径为R的圆内接矩形,问它的长和宽为多少时矩形的面积最大?解 设圆内接矩形的面积为s,其长为x,宽为y= (2R)2-x2,则有s=xy=x4R2-x2,s′=d sd x=4R2-x2-x24R2-x2=4R2-2x24R2-x2,令s′=0,则有x=2R(惟一驻点),此时y=(2R)2-x2=2R.故,长x=2R,宽y=2R时矩形面积最大.30.已知某细胞繁殖的生长率为r=36t-t2,问时间t为何值时,细胞的生长率最大?最大生长率为多少?解 r=36t-t2,r′=d rd t=36-2t.令r′=0,则有t=18(惟一驻点),所以t=18时,细胞的生长率最大,此最大生长率为r(18)=324.31.在研究阈值水平时电容放电对神经的刺激关系中,Hoor-weg发现引起最小的反应(肌肉的收缩)时,电压U与电容器的电容量c有关,其经验公式为U=aR-bc,其中R是电阻(假设为定值),a,b为正常数.若电容的单位为微法(μF),电容器的电压为伏特(V),由物理知识可知,与负荷相对应的电能为E=5cU2(erg),从而有E=5c aR+bc2.试问,当电容为多少微法时,电能最小,其最小电能为多少?解 E=5c aR+bc2=5a2R2c+10aRb+5b2c,E′=d Ed c=5a2R2-5b2c2.令E′=0,则有c=ba R(惟一驻点),所以c=baR(μF)时,电能最小,此最小电能为EbaR=20abR(erg).32.判别下列曲线的凹凸性(1)y=x arctan x.解 函数定义域为(-∞,+∞).y′=arctan x+x1+x2, y″=2(1+x2)2>0,所以函数在(-∞,+∞)上为凹的.(2)y=4x-x2.解 函数定义域为(-∞,+∞),y′=4-2x, y″=-2<0.所以函数在(-∞,+∞)上为凸的.33.求下列曲线的凹凸区间与拐点(1)y=3x4-4x3+1.解 函数定义域为(-∞,+∞),y′=12x3-12x2, y″=36x2-24x=12x(3x-2).令f″(x)=0,得x=0,x=2/3.当x∈(-∞,0)时,f″(x)>0,函数为凹的;当x∈0,23时,f″(x)<0,函数为凸的;当x∈23,+∞时,f″(x)>0,函数为凹的.所以函数在(-∞,0),23,+∞上为凹的,在0,23上为凸的,拐点为(0,f(0))=(0,1),23,f23=23,1127.(2)y=ln(1+x2).解 函数定义域为(-∞,+∞),y′=2x1+x2, y″=2(1-x)(1+x)(1+x2)2. 令f″(x)=0,得x=-1,x=1.当x∈(-∞,-1)时,f″(x)<0,函数为凸的;当x∈(-1,1)时,f″(x)>0,函数为凹的;当x∈(1,+∞)时,f″(x)<0,函数为凸的.所以函数在(-∞,-1),(1,+∞)上为凸的,在(-1,1)上为凹的,拐点为(-1,f(-1))=(-1,ln2),(1,f(1))=(1,ln2).(3)y=2x ln x.解 函数定义域为(0,+∞),y′=2ln x-2ln2x, y″=4-2ln xx ln3x.令f″(x)=0,得x=e2,f″(x)的不可导点为x=1.当x∈(0,1)时,f″(x)<0,函数为凸的;当x∈(1,e2)时,f″(x)>0,函数为凹的;当x∈(e2,+∞)时,f″(x)<0,函数为凸的.所以函数在(0,1),(e2,+∞)上为凸的,在(1,e2)上为凹的,拐点为(e2,f(e2))=(e2,e2).(4)y=(x-5)53+2.解 函数定义域为(-∞,+∞).y′=53(x-5)23, y″=109·13x-5,f″(x)的不可导点为x=5.当x∈(-∞,5)时,f″(x)<0,函数为凸的;当x∈(5,+∞)时,f″(x)>0,函数为凹的.所以函数在(-∞,5)上为凸的,在(5,+∞)上为凹的,拐点为(5, f(5))=(5,2).34.已知曲线y=ax3+bx2+c x+d在(1,2)点处有水平切线,且原点为该曲线上的拐点,求a,b,c,d之值,并写出此曲线的方程.解 y′=3ax2+2bx+c,y″=6a x+2b,根据题意有y(1)=a+b+c+d=2,y(0)=d=0,y′(1)=3a+2b+c=0,y″(0)=2b=0,从而解得 a=-1,b=0,c=3,d=0.35.求下列曲线渐近线(1)y=x2x2-1.解 因为limx→±1x2x2-1=∞,所以曲线有垂直渐近线x=±1;又因为 limx→∞x2x2-1=1,所以曲线有水平渐近线y=1.(2)y=x e 1x2.解 因为limx→0x e1x2=limx→0e1x21x=limx→02e1x2x=∞,所以曲线有垂直渐近线x=0;又因为 limx→∞x e1x2x=1,且limx→∞(x e1x2-x)=0,所以曲线有斜渐近线y=x.2.5 自测题1.选择题(以下各题均有4个答案,其中只有1个正确答案)(1)设f(x)=|x-8|,则f(x)在x=8处的导数是.A.8;B.不存在;C.0;D.-8.(2)设f(x-1)=x2-1,则f′(x)=.A.2x+2;B.2x+1;C.2x-1;D.2x.(3)设f(x)是可导函数,且limt→0f(x0+2t)-f(x0)t=1,则f′(x0)为.A.1;B.2;C.0;D.0.5.(4)设f(x)=x,当x0>0时,limt→0tf(x0-2t)-f(x0)=.。

温州医学院卫生学试卷(A)标准答案[1].doc

温州医学院卫生学试卷(A)标准答案[1].doc

一.客观题(1-80题,填答题卡)(一)是非题(对的打“A ”,错的打“B ”,每题1分,共 30分)1. 将观察单位按某一属性的不同程度分组,清点各组的观察单位个数,所获得的资料称为等级资料。

( A )2. 抽样研究时,可通过增加样本含量来减少抽样误差。

( A )3. 单位相同时,用标准差比较两组变量值的离散程度是最好的。

( B )4. 总体均数95%可信区间可用S t Xν,2/05.0±表示。

( B ) 5. 方差分析要求资料应符合下列条件:正态分布、方差齐。

(A )6. 构成比是反映某现象发生频率大小的指标,常以百分率(%)表示。

( B )7. χ²检验可用于检验两个或两个以上构成比之间的差异。

( A )8. 非参数统计是检验总体分布的位置,其检验效能低于参数统计. ( A )9. 重复原则主要是指对照组的例数(或实验次数)应具有一定的数量. ( B )10. 相关系数是说明具有直线关系的两个变量间的相关关系的密切程度与相关方向的指标 (A ) 11. 次生环境是天然形成的未受到人为活动影响或影响较少的自然环境( B ) 12. 公害病是指因严重的环境污染引起的区域性疾病(A )。

13. 在我国,各型地方性氟病中最多见的是饮水型。

( A )14. 饮水中检出粪大肠菌群表明饮水已被粪便污染,其意义是有可能存在肠道致病菌和寄生虫卵等病原体的危险。

( A ) 15. 地方性氟病的主要病症是氟斑牙和氟骨症。

( A ) 16. 碘摄入量过高也可导致甲状腺肿。

( A )17. 营养素的供给量是指维持正常生理功能所需的营养素的基本数量 ( B ) 18. 热能是人类维持生命和一切活动所必需的营养素 ( B ) 19. 碳水化合物具有抗生酮作用 (A )20. 蔬菜是人类食物中膳食纤维的主要来源 ( A )21. 预防黄曲霉毒素对食品污染的关键在于针对不同的食品种类进行有效的去毒处理 ( B ) 22. 非血色素型铁主要存在于动物类食品中( B )23. 引起沙门氏菌属食物中毒的食品主要是海产品及盐渍食品 ( B ) 24. 要素膳是一种营养素齐全的胃肠内营养( A ) 25. 铁是人体内含量最多的微量元素( A ) 26. 矽肺病人早期即出现呼吸困难。

医用高等数学 试卷5

医用高等数学 试卷5

一、填空题(每题2分,共16分)答案请写此处: 1. 2. 3. 4. 5. 6. 7. 8. 1、函数)0)((log 22>-=a y x z a 的定义域是________________。

2、椭球面632222=++z y x 在点)1,1,1(处的切平面方程是_____________。

3、极限=-+→→xyxy y x 11lim0___________。

4、函数)2si n(),(y x xy y x f ++=在点)0,0(处沿)2,1(=的方向导数=∂∂)0,0(lf______________。

5、⎰=+Lds y x )(22 ,其中222:a y x L =+。

6、设⎰⎰=202),(x xdy y x f dx I ,交换积分次序后,=I 。

7、方程03=+'y y 的通解为________________。

8、方程x x y y cos tan =+'的通解为______________。

答案请写此处:1. ( ) 2. ( ) 3. ( ) 4. ( ) 5. ( ) 6.( ) 7.( ) 8. ( ) 1、下列论述正确的是( )A .),(y x f 的极值点必是),(y x f 的驻点B .),(y x f 的驻点必是),(y x f 的极值点C .可微函数),(y x f 的极值点必是),(y x f 的驻点D .可微函数),(y x f 的驻点必是),(y x f 的极值点 2、设),(b a f x '存在,则xb x a f b a x f x ),(),(lim--+→=( )A .),(b a f x 'B .0C .2),(b a f x 'D .21),(b a f x ' 3、设函数),(y x f z =有222=∂∂y f,且1)0,(=x f ,x x f y =')0,(,则),(y x f =( ) A .21y xy +- B .21y xy ++ C .221y y x +- D .221y y x ++4、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xyy x f ,则在点(0,0)处( )A .连续且偏导数存在B .连续但偏导数不存在C .不连续但偏导数存在D .不连续且偏导数不存在 5、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=Dd y x I σ21)(,⎰⎰+=Dd y x I σ32)(,则有( ) A .21I I < B .21I I = C .21I I > D .不能比较 6、若积分域D 是由曲线2x y =及22x y -=所围成,则⎰⎰Dd y x f σ),(=( )A .⎰⎰--22211),(x x dy y x f dx B .⎰⎰--22211),(x x dy y x f dx C .⎰⎰-y ydx y x f dy 21),( D .⎰⎰--112),(22dx y x f dy x x7、积分σd eI y x y x ⎰⎰≤++=42222的值为( )A .)1(24-e πB .)1(24-e πC .)1(4-e πD .4e π8、微分方程0)(112='-+''y yy 的通解为( ) A .21c e c y x+= B .21c ey xc += C .x c e c y x 21+= D .112+=x c e c y1、求函数)l n(22z y x u ++=在点)1,0,1(A 沿A 指向点)2,2,3(-B 的方向的方向导数。

医用高等数学题库(供参考)

医用高等数学题库(供参考)

医用高等数学题库第一章函数与极限1.设,求,并作出函数的图形。

2.设,,求,并作出这两个函数的图形。

3.设,求。

4.试证下列函数在指定区间内的单调性:(1)(2)5.下列函数中哪些是是周期函数?对于周期函数,指出其周期:(1)(2)6.设。

试求下列复合函数,并指出x的取值范围。

7.已知对一切实数x均有,且f(x)为单调增函数,试证:8.计算下列极限:(1)(2)(3)9.(1)设,求常数a,b。

(2)已知,求a,b。

10.计算下列极限:(1)(2)(x为不等于零的常数)(3)(4)(5)(k为正整数)11.计算下列极限:(1)(2)(3)(4)(k为常数)(5)(6)(7)(8)(a>0,b>0,c>0)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)12.当时,无穷小1-x和(1)(2)是否同阶?是否等价?13.证明:当时,有(1)(2)14.利用等价无穷小的性质求下列极限:(1)(n,m为正整数)(2)15.试确定常数a,使下列各函数的极限存在:(1)(2)16.讨论下列函数的连续性:(1)的连续性(2)在x=0处的连续性17.设函数在[0,2a]上连续,,试证方程在[0,a]内至少存在一个实根。

18.设函数在开区间(a,b)内连续,,试证:在开区间(a,b)内至少有一点c,使得(其中)。

第二章导数与微分1.讨论下列函数在x=0处的连续性与可导性:(1)(2)2.设存在,求3.设,问a,b为何值时,在x=0处可导?4.已知,求及,并问:是否存在?5.证明:双曲线上任一点处的切线与两坐标轴构成的三角形的面积都等于。

6.问当系数a为何值时,抛物线与曲线相切?7.求下列各函数的导数:(1)(2)(3)(4)(5)(6)(7)(8)(a>0)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)8.求曲线在点处的切线方程和法线方程。

医学数学建模与应用智慧树知到答案章节测试2023年温州医科大学

医学数学建模与应用智慧树知到答案章节测试2023年温州医科大学

第一章测试1.科学家艾伦·劳埃德·霍奇金( Alan Lloyd Hodgkin)和安朱·费尔丁·赫克斯利(Andrew Fielding Huxley),合作研究()而获得诺贝尔奖。

A:基因是活细胞的关键组成部分。

B:血液循环的理论。

C:皮肤癌生长规律。

D:建立了神经细胞膜产生动作电位时膜电位变化的模型。

答案:D2.数学模型应用于生命科学研究的历史可追溯到()世纪。

A:20。

B:19。

C:17。

D:18。

答案:C3.数学建模课程有()特性。

A:知识的广泛性。

B:很强的实用性。

C:教学方式的多样性。

D:内容的趣味性。

答案:ABCD4.科学家杰尼、克勒、米尔斯坦共同提出的免疫系统网络理论,主要因为能够用来进行预防接种抵御抗原而获得1984年的诺贝尔生理学或医学奖。

()A:错B:对答案:B5.真正大范围地将数学应用于生命科学与医学研究则出现在15世纪中叶。

()A:错B:对答案:A第二章测试1.用箱图检测异常数据,下列错误的是()。

A:小于四分之一分位数减1.5倍的四分位数间距的数据为异常数据B:大于四分之三分位数加1.5倍的四分位数间距的数据为异常数据C:小于四分之一分位数减3倍的四分位数间距,或大于四分之三分位数加3倍的四分位数间距的数据为异常数据中的极值D:大于四分之三分位数加四分位数间距,或小于四分之一分位数减四分位数间距的数据为异常数据答案:D2.主成分分析是常用的多元统计方法,下面对于主成分分析叙述错误的是()。

A:主成分分析是一种降维的方法B:主成分分析中,各主成分的方差具有依次递增的特征C:当数据中的p个指标变量具有不同量纲或取值的变异很大时,主成分分析应使用相关系数矩阵D:关于主成分个数的选取,通常要求k个主成分的累积贡献率达到85%以上答案:B3.平均值用于描述数据的集中趋势,该统计指标可以用于分类数据。

()A:错B:对答案:A4.P-P图可以用来判断数据所属的总体是否服从正态分布。

医药高等数学复习题答案

医药高等数学复习题答案

医药高等数学复习题答案医药高等数学复习题答案在医药领域,数学是一门不可或缺的学科。

它在药物计量、药代动力学、生物统计学等方面发挥着重要作用。

然而,数学对于许多医药学生来说并不是一门容易掌握的学科。

为了帮助大家更好地复习医药高等数学,下面将给出一些常见题目的答案和解析。

1. 题目:已知函数 f(x) = 2x^3 - 5x^2 + 3x - 1,求 f'(x)。

答案:f'(x) = 6x^2 - 10x + 3。

解析:对于多项式函数,求导的方法是将指数乘以系数,并将指数减一。

根据这个规则,对于 f(x) = 2x^3 - 5x^2 + 3x - 1,我们可以得到 f'(x) = 3 * 2x^(3-1) - 2 * 5x^(2-1) + 1 * 3x^(1-1) = 6x^2 - 10x + 3。

2. 题目:已知函数 f(x) = e^x,求 f'(x)。

答案:f'(x) = e^x。

解析:对于指数函数 e^x,求导的方法是保持指数不变,即 f'(x) = e^x。

3. 题目:已知函数 f(x) = ln(x),求 f'(x)。

答案:f'(x) = 1/x。

解析:对于自然对数函数 ln(x),求导的方法是将 x 的指数放到系数位置,并将x 的指数减一,即 f'(x) = 1/x。

4. 题目:已知函数 f(x) = sin(x),求 f'(x)。

答案:f'(x) = cos(x)。

解析:对于正弦函数 sin(x),求导的方法是将余弦函数 cos(x) 放到系数位置,即f'(x) = cos(x)。

5. 题目:已知函数 f(x) = cos(x),求 f'(x)。

答案:f'(x) = -sin(x)。

解析:对于余弦函数cos(x),求导的方法是将负正弦函数-sin(x) 放到系数位置,即 f'(x) = -sin(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温州医科大学《高 等 数 学》测试题(A )不定项选择题:将你认为正确的答案填入括号中,可单选,多选,每题4分,共24题。

1. 当0x →时,下列变量中( B )是无穷小量。

xx sin .Axe 1.B -x x x .C 2-x )x 1ln(.D +2. 22x 2sin lim 2sin x x xx x→∞+-=+( A ). A12B 2C 0D 不存在 3.半径为R 的金属圆片,加热后伸长了R ∆,则面积S 的微分dS 是( B )A 、RdR π B 、RdR π2 C 、dR π D 、dR π2注:dS=RdR π2;4.cos x xdx ππ-=⎰( C )A 、 1B 、 2C 、 0D 、 4 注:偶倍奇零1121111105.12,().(12);.2(12);.2(12);.(2).x t f x dx ABCD A f t dt B f t dt C f t dt D f t dt --=-≠-----⎰⎰⎰⎰⎰作变量替换 则().6. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xab x a dt t f x F )()()(,则)(x F 是)(x f 的( B ).A 、不定积分B 、一个原函数C 、全体原函数D 、在[]b a ,上的定积分 7.若()(),f x x φ''=则下列各式 AD 不成立。

()()0Af x x φ-= ()()B f x x C φ-=()()Cd f x d x φ=⎰⎰ ()()d dDf x dx x dx dx dxφ=⎰⎰ 注:()()()().()()()()f x x f x x C d f x f x C d x x Cφφφφ''=⇒-==+=+⎰⎰8.设e -x 是f (x )的一个原函数,则⎰dx x xf )(=( B)。

A. C x e x+--)(1 B. C x e x ++-)(1 C. C x ex+--)(1 D. C x e x ++--)(1注:()xx x x x xf x dx xdexe e dx xe e C -----==-=++⎰⎰⎰9.设()()⎪⎩⎪⎨⎧=≠+=0,0,11x x x x f x α,要使()x f 在0=x 处连续,则=α( C ) A .1 B .0 C .e D .e 110.函数1+=x y 在0=x 处满足条件( A )A .连续但不可导B .可导但不连续C .不连续也不可导D .既连续已可导注:0100()1lim 11(0)010()1010()11,0()(0)(0)lim lim 01,0x x x y f x x x f xx f x xx x f x x x x f x f f x x x →+-→→==+⎡+⎤==⇒⎣⎦+≥⎧=⎨-<⎩>⎧'=⎨-<⎩⎧→-'===⎨--→⎩在点连续。

11.已知()()()()()d x c x b x a x x f ----=且()()()()d c b c a c k f ---=',则=k ( C )A .aB .bC .cD .d120x →当时,1)1(312-+ax 与1cos -x 是等价的无穷小,则常数()a C =A 、23B 、32C 、23-D 、32-注:1223002(1)13lim lim 11cos 12x x a xax x x→→+-==--13.已知21()1ax b x f x A x x +>⎧=⎨≤⎩,当 处处可导,则有(), 当A 、21a b ==-,B 、2,1a b =-=C 、1,2a b =-=D 、12a b ==,注:可导必连续,()121lim 11()111(1)lim 2,()11()2,1x x ax b a b a x f x x a x x f f x x x f x a b -→-→+=+=>⎧'=⎨<⎩>⎧-''==⇒=⎨≤-⎩∴==-Q , 2x , , 2x , 处处可导,14.[]2()(0)ln(13)lim 4,(0)x f x f x f x-+'=a 设 则等于()DA 、3B 、4C 、1D 、43注:[][]200()(0)ln(13)()(0)ln(13)limlim ln(13)(0)lim 3(0)4x x x f x f x f x f x x x xx f f x-+-+=+''===a a a 设 15.(),y f x x x dy =设函数在点处可导则它在点处的微分是指()D A 、()f x ' B 、()f x ∆ C 、x ∆ D 、()f x x '∆16. 设21cos ,01(),10x x f x xx x ⎧<<⎪=⎨⎪-<≤⎩,在0=x 处( BC ).A 连续,不可导 .B 连续,可导 .C 可导,导数不连续 .D 0为间断点 注:20201lim cos01cos 0(0)lim 0x x x xx x f x→→=-'== 112cos sin ,01()00110x x x x f x x x ⎧-<<⎪⎪'=⎨=⎪⎪-<<⎩17.函数)(x f 在0x x =处取得极大值,则不正确的是( AB C )0)(.0='x f A 0)(.0<''x f B .C 0)(0='x f 0)(,0<''x f .D 0)(0='x f 或不存在A,B,C 题目条件不全18..设)(x f 的导函数为x sin ,则不是)(x f 的一个原函数为( ABC ).1sin A x + x x B sin .+ x C cos 1.+ x x D sin .-注:[]1112()sin ,()cos ()()cos sin f x x f x x C f x f x dx x C dx x C x C '=⇒=-+=-+=-++⎰⎰的原函数为19.求由曲线x y ln =,直线)0(ln ,ln ,0>>===a b b y a y x 所围图形的面积为( c ).A a b - 22.B b a - .C b a - .D b a +20. 设函数22,1()1,1x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在1x =处可导,则有( A )A 、1,2a b =-=B 、1,0a b ==C 、1,0a b =-=D 、1,2a b =-=- 21.函数5224+-=x x y 在区间]2,2[-上的最大值为( C ) A 4; B 0 ; C 13; D 322.下列正确的是( AB)A 221d 1x x x ++⎰2ln(1)arctan x x C =+++ B 0cos lim sin x x x x x x→--3= C 2sin d x x x ⎰=21cos 2x =- D 3(2)(3)(4)lim 5n n n n n→+∞+++1=注:222211sin d sin d cos 22x x x x x x C ==-+⎰⎰3(2)(3)(4)1lim55n n n n n →+∞+++= 320000cos (1cos )113lim lim lim lim 3sin sin 2sin 21cos x x x x x x x x x x x x x x x x x x→→→→--====---- 23设3()ln sin 44f x dx x C =+⎰,则()f x =( D )。

A. cot 4x B. cot 4x - C. 3cos4x D. 3cot 4x注:3ln sin 4(),()3cot 44x C f x f x x '⎛⎫+== ⎪⎝⎭24.下列式子中,正确的是( C ).A. ⎰⎰≤1312dxx dx x B. ⎰⎰≤21221ln ln xdxxdxC. ⎰⎰≤21221dxx xdx D. ⎰⎰-≤11dxedx e x x。

相关文档
最新文档