立体图形的展开图习题精选(推荐文档)

合集下载

立体图形的表面展开图 课时练习-2022-2023学年 华东师大版七年级数学上册

立体图形的表面展开图 课时练习-2022-2023学年 华东师大版七年级数学上册

4.3立体图形的表面展开图(附解析)一、单选题(共10个小题)1.如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.2.图1、图2中的正方形的大小相同,将图1的正方形放在图2中的①、②、③、④的某个位置,与实线中的正方形所组成的图形能围成正方体的位置是()A.①B.②C.③D.④3.图中不是正方体的表面展开图的是()A.B.C.D.4.小红制做了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面上标的字相对的字应是()A.全B.国C.明D.城5.一个正方体的相对的表面上所标的数都是互为相反数的两个数,如图是这个正方体的表面展开图,那么图中x的值是()A.-8 B.-3 C.-2 D.36.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4 B.6 C.12 D.157.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.8.把一个底面半径是5厘米,高10厘米的圆柱底面分成许多相等的扇形(如下图),切开后,再拼起来,得到一个近似的长方体.拼成后这个长方体的表面积与原来的圆柱体表面积相比,结果().A.不变B.变小C.变大9.下列图形不能作为一个三棱柱的展开图的是()A. B. C.D.10.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和8二、填空题(共10个小题)11.如图是一个长方体的展开图,如果A面在底面,那么_______面在上面.12.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y的值为__________.13.如果五棱柱的底面边长都是2 cm,侧棱长都是4 cm,那么它所有棱长的和是_______ cm,它的侧面展开图的面积是________ cm2.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的积是_______.15.如图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是________.16.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有________种不同的涂法.17.如图①是边长为2的六个小正方形组成的图形,它可以围成如图②所示的正方体,则图①中小正方形的顶点A,B在围成的正方体上的距离是_____.18.一个长方体包装盒展开后如图所示(单位:cm),则其容积为__________cm3.19.如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.20.如图,将3个同样的正方体重叠放置在桌面上,每个正方体的6个面上分别写有-3、-2、-1、1、2、3,相对的两面上写的数字互为相反数,现在有5个面的数字无论从哪个角度都看不到,这5个看不到的面上数字的乘积是________.三、解答题(共3个小题)21.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,求2a b c +-的值.22.把一个正方体的六个面分别标上字母A ,B ,C ,D ,E ,F 并展开如图所示,已知:2243A x xy y =-+ ,2232C x xy y =--,()12B C A =-,若正方体相对的两个面上的多项式的和都相等,试用含x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.23.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(画出一种情况即可)(3)小明说:他剪的所有棱中,最短的一条棱长为a,最长的一条棱是最短的一条棱的5倍.已知纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是88cm,求a的值及长方体纸盒的体积.4.3立体图形的表面展开图解析1.【答案】A【详解】解:A、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A2.【答案】C【详解】解:将图1的正方形放在图2中的①、②、④的位置出现重叠的面,所以不能围成正方体,只有放在图2中的③的位置,能围成正方体.故选:C.3.【答案】B【详解】解:A、符合一四一型,是正方体的表面展开图,则此项不符合题意;B、不符合正方体的展开图的几种模型图,不是正方体的表面展开图,则此项符合题意;C、符合三三型,是正方体的表面展开图,则此项不符合题意;D、符合二二二型,是正方体的表面展开图,则此项不符合题意;故选:B.4.【答案】C【详解】解:由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”.故选:C.5.【答案】D【详解】解:根据正方体表面展开图的特征可知,“-3”与“x”的面是相对的面,“y”与“8”的面是相对的面,“-2”与“2”的面是相对的面,相对的表面上所标的数是互为相反数,x=3,故选:D.6.【答案】B【详解】观察图形可知长方体盒子的长=3,宽=2,高=1,∴盒子的容积=3×2×1=6,故选:B.7.【答案】D【详解】根据展开图,可得空心圆与一个实心圆的面是相对的,只与一个实心圆面相邻,A、B、C都不符合题意,只有D符合题意,故选D.8.【答案】C【详解】解:把圆柱的底面平均分成许多相等的扇形后,拼成近似的长方体,切割前后表面积增加了两个以圆柱的高和底面半径为边长的长方形的面的面积, 即拼成后这个长方体的表面积变大.故选:C .9.【答案】A【详解】解:由图形可知作为一个三棱柱的展开图有B 、C 、D ;故不能作为一个三棱柱的展开图的是:A ;故选:A .10.【答案】D【详解】解:当把这个平面图形折成正方体时,与4重合的数字是2、8.故选:D .11.【答案】C【详解】解:由展开图可知,A 和C 相对,B 和D 相对,E 和F 相对,如果A 面在底面,那么C 面在上面.故答案为:C .12.【答案】-1【详解】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“5”与“23x -”是相对面,“y ”与“x ”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2350x -+=,0x y +=,解得1x =-,1y =,∴32321x y +=-+=-.故答案为:-1.13.【答案】 40 40【详解】解:由题意,得棱长和为2×5×2+4×5=40, 侧面积为2×4×5=40. 故答案为:40,40.14.【答案】316cm ##16立方厘米【详解】解:根据题意得:原长方体的宽的4倍等于8cm,原长方体的高与长的和为6cm,∴原长方体的宽为82cm4=,∵四边形ABCD是正方形,∴原长方体的长等于2×2=4cm,∴原长方体的高等于6-4=2cm,∴原长方体的积是342216cm⨯⨯=.故答案为:316cm15.【答案】7【详解】解:观察图形的特点,动手折一折会更准确,知带数字1,2,4的面交于立方体的一个顶点,且和是最小的为7,故答案为:7.16.【答案】4【详解】如图,由四种不同的涂法.故答案为4.17.【答案】2【详解】解:将图①折成正方体后点A和点B为同一条棱的两个端点,故AB=2.故答案为:2.18.【答案】6000【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm),宽为:32﹣10=20(cm),长为:(70﹣10)÷2=30(cm),故其容积为:30×20×10=6000(cm 3), 故答案为:6000.19.【答案】路【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面, 再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”, 所以第5格朝上的字是“路”.所以答案是路.20.【答案】36【详解】最下面的正方体中,-3对面是3,-1对面是1,故上下两个面的数是2和-2, 中间正方体中,1对面是-1,-2对面是2,故上下两个面的数是3和-3,最上面的正方体中,2对面是-2,3对面是-3,1-对面是1,故无论从哪个角度都看不到的5个面的数字分别是2,-2,3,-3,1,∴它们的乘积是()()2233136⨯-⨯⨯-⨯=,故答案为:36.21.【答案】-2【详解】解:因为相对的两个面的两个数字之和相等,所以845a b c +=+=+,所以3a c -=-,1b c -=,所以2312a b c a c b c +-=-+-=-+=-.22.【答案】22374x xy y -+,5【详解】解:由图形可知A 与C 是相对的面,B 与D 是相对的面,由题意得:B +D =A +C ,∴D =(A +C )-B=(A +C )-()12C A - 1122A C C A =+-+ 3122A C =+ 222231(43)(32)22x xy y x xy y =-++--2222393162222x xy y x xy y =-++-- 22374x xy y =-+,当x =-1,y =-2时,23(1)7(1)(2)4D =⨯--⨯-⨯-+ 2(2)⨯-=5. 23.【答案】(1)8;(2)见解析;(3)2,200cm 3【详解】(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为a cm ,则长与宽相等为5a cm , ∵长方体纸盒所有棱长的和是88cm ,∴4(a +5a +5a )=88,解得a =2,∴这个长方体纸盒的体积为2×10×10=200(cm 3).。

(完整版)长方体和正方体的展开图练习题

(完整版)长方体和正方体的展开图练习题

长方体和正方体展开图1、画图操作。

根据给出的长、宽、高想象并画出长方体的六个面。

2、带有两个正方形面的特殊长方体。

一个长方体最多有()条棱长相等,最多有( )个面是正方形。

3、观察长方体和正方体。

从同一个角度观察长方体或正方体,最少能看到()个面,最多能看到()面。

4、根据棱长总和求问题。

(1)一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。

高是( ?)厘米。

(2)一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是(?? )厘米。

(3)用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是()厘米。

5、长方体和正方体外面的彩带的长度。

(1)一种长方体的礼品盒,长0.9米,宽0.4米,高0.25米,如果用包装带把它捆扎(如图)起来,打结处的包装带长0.2米,一共要多少米的包装带?(2)有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米(如图)。

一共要用绳子多长?6、拼成正方体。

至少要用()块同样的小正方体才能拼成一个稍大的正方体,还可以用()块,()块、()块……也能拼成更大的正方体。

7、会正确判断给定的平面图形能否围成长方体或正方体(如下图)。

8、相对的面。

下图中与5号相对的面是()号,与()号与6号是相对的面。

9、会把展5 61 2 34开图补充完整(如下图)。

10. 下图是一个正方体纸盒展开图,请根据图中数据计算它的棱长总和以及底面积。

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。

立体图形的展开图(有答案)

立体图形的展开图(有答案)
小壁虎的难题
如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到 蚊子,应该走哪条路径?
蚊子

你有何高 招?
壁虎 ●
● 蚊子
壁虎 ●
蚊子


壁虎
4、1、1立体图形的展开图
学习目标:
• 1、理解常见几何体的展开图; • 2、能根据展开图想象相应的几何体.
• 学习重点:
• 了解直棱柱、圆柱、圆锥的展开图
• 8、将三角形绕直线L旋转一周,可以得到如 下图所示立体图形的是(B).
A
B
C
D
课后小测 4.1.2 点、线、面、体
如图,是一个正方体的平面展开图, 每个面内部标注了字母,
则展开前与面E相对的是( D )
A.面A B.面B C.面C D.面D
A
DC E
BF
考考你
有一个正方体,在它的各个面上分别涂了 白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
1

23 45 6
前你 似程

ABC DE F
考考你
1、如果Y: 棒
2、“坚”在下,“就”在后,胜利在哪 里?

持就是


考考你 2.下图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面与右面
所标注代数式的值相等,求 x 的值.
• 学习难点:
• 根据展开图想象相应的几何体.
说一说 在生活中, 制作这些美丽的包装盒 ,我们需 要知道些什么呢? 讨论:如何制作正 方体的墨水盒?
常常需要了解整个立体图形在同一个平面 内展开的形状(即立体图形的平面展开图), 根据它的平面展开图来裁剪纸张。

立体图形的表面展开图测试卷(含答案)初中数学

立体图形的表面展开图测试卷(含答案)初中数学

立体图形的表面展开图测试卷一、选择题(共10小题,每小题3分,满分30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱4.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()A.B.C.D.5.如图1,是一个正方体的侧面展开图,小正方体从图2的位置依次翻到第1格、第2格、第3格、这时小正方体朝上面的字是()A.和B.谐C.社D.会6.如图,用一个平面去截长方体,则截面形状为()A.B.C.D.7.如下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.8.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12个B.13个C.14个D.18个9.如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()A.B.C.D.10.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.一个棱柱有12个顶点,所有侧棱长的和是48cm ,则每条侧棱长是_________cm .12.如图所示,是一个立体图形的展开图,请写出这个立体图形的名称:_________.13.展览厅内要用相同的正方体木块搭成一个三视图如图的展台,则此展台共需这样的正方体_________块.14.如图是一个几何体的三视图,根据图中标注的数据可求出这个几何体的体积为_________.15.如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的_________.(把下图中正确的立体图形的序号都填在横线上)16.下面4个图形均由6个相同的小正方形组成,折叠能围成一个正方体的是_________.17.图1是一个一面靠墙水平摆放的小正方体木块,图2、图3是由这样的小正方体木块靠墙叠放而成,按照这样的规律叠放下去,第5个叠放的图形中,小方体木块的个数是_________个.18.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是_________.19.如图,是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是_________.20.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有_________种走法.三、解答题(共8小题,满分60分)21.下列三个图形都是由其中一个半圆经过变化而得到的,请分别说出每个图形最简单的变化过程.22.请画出下列几何体的主视图、左视图、俯视图.23.如图所示,是一个由小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方块的个数,试画出它的主视图与左视图.24.用白萝卜等材料做一个正方体,并把正方体表面涂上颜色.(1)把正方体的棱二等分,然后沿等分线把正方体切开,得到8个小正方体.观察其中三面被涂色的有a 个,如图①,那么a等于_________;(2)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有a个,各面都没有涂色的b个,如图②,那么a+b=_________;(3)把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中两面被涂成红色有c个,各面都没有涂色的b个,如图③,那么b+c=_________.25.用一个平面去截一个几何体,截得的多边形可能有哪几种?请把结果画出来.26.如图(1)、(2)都是几何体的平面展开图,先想一想,再折一折,然后说出图(1)、(2)折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.27.如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你解答下列问题.(1)“七巧板”的七个图形,可以归纳为三种不同形状的平面图形,即一块正方形,一块_________和五块_________.(2)请按要求将七巧板的七块图形重新拼接(不重叠,并且图形中间不留缝隙),在下面空白处画出示意图.①拼成一个等腰直角三角形;②拼成一个长与宽不等的长方形;③拼成一个六边形.(3)发挥你的想象力,用七巧板拼成一个图案,在下面空白处画出示意图,并在图案旁边写出简明的解说词.28.仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:(1)填空:①正四面体的顶点数V=_________,面数F=_________,棱数E=_________.②正六面体的顶点数V=_________,面数F=_________,棱数E=_________.③正八面体的顶点数V=_________,面数F=_________,棱数E=_________.(2)若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:_________.(3)如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?参考答案与试题解析一、1-5.CBCBD 6-10.BBBAC二、11. 8 12. 圆锥13. 10 14. 24π15. ①②④16. ①②17.35 18. 719.20. 6三、21.22.(6分)请画出下列几何体的主视图、左视图、俯视图.23.解:如图所示:24.8 9 3225.解:截面的形状可能是三角形、四边形、五边形、六边形,如图所示.26.解:图(1)折叠后是长方体,底面是正方形,侧面是长方形,有12条棱,4条侧棱,8个顶点.图(2)折叠后是六棱柱,底面是六边形,侧面是长方形,有18条棱,6条侧棱,12个顶点.27.解:(1)平行四边形、等腰直角三角形;(2)如图所示:(3)如图所示:让我们舞起来吧!28.解:(1)①4,4,6;②8,6,12;③6,8,12;(2)V、F、E之间的数量关系是:V+F﹣E=2;(3)设面数为F,则20+F﹣30=2,解得F=12,答:它有12个面.。

【初中数学】人教版七年级上册第3课时 立体图形的表面展开图(练习题)

【初中数学】人教版七年级上册第3课时  立体图形的表面展开图(练习题)

人教版七年级上册第3课时立体图形的表面展开图(376)1.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来3.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝4.如图是一个正方体,则它的表面展开图可以是()A. B. C. D.5.下列图形中,不是正方体的展开图的是()A. B. C. D.6.如图,是某种几何体表面展开图的图形.这个几何体是()A.圆锥B.球C.圆柱D.棱柱7.把图中第一行中的立体图形与第二行中它们各自的展开图连线.8.下列图形中可以作为一个三棱柱的展开图的是()A. B. C. D.参考答案1.【答案】:A【解析】:因为该几何体有4个面是三角形,一个面是四边形,所以这个几何体是四棱锥2.【答案】:D3.【答案】:B4.【答案】:B【解析】:A项,含有田字形,不能折成正方体,故A错误.B项,能折成正方体,故B正确.C项,含有凹字形,不能折成正方体,故C错误.D项,含有田字形,不能折成正方体.故D错误.故选 B5.【答案】:C6.【答案】:A【解析】:由圆锥的展开图特点作答.因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥.故选A.7.【答案】:解:(1)B,(2)A,(3)D,(4)C8.【答案】:A【解析】:三棱柱展开后,侧面是三个长方形,上、下底面各是一个三角形.由此可得只有A是三棱柱的展开图.故选 A。

初一数学立体图形的展开图含答案

初一数学立体图形的展开图含答案

初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。

特点:是4个连成一排的正方形,其两侧各有一个正方形简称“141型〃第二类:有3种。

特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型〃正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹〃字型或“田〃字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹〃字型和“田〃字型结构。

模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A. L B . I—C C. ---------- D. '— '—【解析】由平面图形的折叠及正方体的展开图解题.选项A, B, C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4 【解析】B. 6【答案】 由图可知,无盖长方体盒子的长是3,宽是2 盒子的容积为3x2x1=6.故选B . B【巩固】 下图是一个长方体纸盒的展开图,请把5, 3,成长方体后,相对面上的两数互为相反数.li1 TI LTD . 15 高是1,所以盒子的容积为3x2x1=6. 5, -1, -3, 1分别填入六个长方形,使得按虚线折 【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.正方体展开图【答案】C展开图;5可以拼成一个正方体.故选C.【答案】C【答案】C【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上0、x两符号.若下列有一图形为此正方体的展开图,则此图为()【解析】此题主要根据0、x两符号的上下和左右位置判断,可用排除法.由已知图可得,0、x两符号的上下位置不同,故可排除A、B;又注意到0、x两符号之间的空行有3列.【答案】C.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.A、B、C、D、【巩固】如图,哪一个是左边正方体的展开图(【答案】D.成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D .扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M, P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.产 F & p p c.尹尸D .尸尸【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M, P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P点在展开图中长边的中点处,圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.【答案】②圆锥体【例8】下列立体图形中,侧面展开图是扇形的是()A. LB.C. ^—■D D , L——U【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA=OB , CB = ED = AB , BE=CD , Z B = Z C = Z D = Z E = 90 .【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形. 【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A. B. C.【解析】根据三棱柱的展开图的特点作答.八、是三棱柱的平面展开图;3、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12]如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()【答案】B.【例13】哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9 (条)棱.总结规律:n棱柱有n+2个面,3n条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n棱柱展成平面图形,共需剪3n- (n+1) =(2n-1)条棱.(n +1)= 2 n -1.【答案】五棱柱;9; 3 n-【例14】下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.课后作业【解析】圆锥的侧面展开图是扇形,故选C .【答案】C【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】 【答案】 正方体;三棱柱;四棱锥;长方体.【答案】故选D ..【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.。

立体图形展开图及摆放练习

立体图形展开图及摆放练习

立体图形展开图及摆放练习
1. 把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案
判断这个正方体是( )
2. 在正方体的表面上画有如图(1)中所示的粗线,图(2)时其展开图的示意图,但只在
A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是
( )
图(1) 图(2)
A B C D
3. 将右图所示的硬纸片围成正方体纸盒(接缝粘贴部分忽略不计),则围成的正方体纸盒是
( )
4.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体
的小正方体最多块数是( ).
A.9
B.10
C.11
D.12 A
(4)(5)5.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为().
A.3
B.4
C.5
D.6
6.
7.将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上O、×两符号.若下列有一图形为此正方体的展开图,则此图为()
A、B、C、D、
(1). C(2). A (3).A (4).C (5) B (7). C。

长方体正方体展开图和练习

长方体正方体展开图和练习


右下图需再添上一个面,折叠后才能围 成一个正方体,下面是四位同学补画的 情况(图中阴影部分),其中正确的是 ( B )
A.
B.
C.
D.
考考你 下面图形中,哪些是正方体的平面展开图? 1 2 3 4 5 6 祝 学 你 进 业 步
A B C D E F
×
综合运用
下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体的左面与 右面所标注代数式的值相等,求 x 的值.
A.
B.
C.
D.
左面
后面
下面
观察这些长方体的展开图,你有什么发现?
虽然展开图的形状会有所不同,但都由3 对长方形组成,每对两个长方形的大小同 样,如果有3个或4个长方形在同一行或同 一排,其中同样大小的两个长方形中间只 隔着一个其他的长方形。
2、“坚”在下,“就”在后,胜利在哪 里?


就 胜

上 前 下 后 右 左
上 前 下 右 后
上 左 前 右 后 下
上 后 左 前 右 下

上 前 下 右 后
• 图形展开图练习
•请把能折成正方体 的图形选出来 (A) ((A)(B) )
(C)
(B)
小丽制作了一个对面图案均相同的正方体礼 品盒(如下图所示),则这个正方体礼品盒 的表面展开图可能是( A ).
p12前前前前下上右后左下上右后左下上右后左下上右后左p146把长方形看成正方形判断下上右后左下上右后左下上右后左下上右后左前前前前前前下上右后左下上右后左p146把长方形看成正方形判断前前前前下上右后左下上右后左下上右后左下上右后左下上右后左下上右后左下上右后左下上右后左前前前前前前下上右后左下上右后左?图形展开图练习abc?请把能折成正方体的图形选出来请把能折成正方体的图形选出来ab小丽制作了一个对面图案均相同的正方体礼品盒如下图所示则这个正方体礼品盒的表面展开图可能是

(完整版)初一数学立体图形的展开图习题精选

(完整版)初一数学立体图形的展开图习题精选

初一数学立体图形的展开图习题精选习题精选一、选择题1.圆锥的侧面展开图是________________.2.三棱柱的侧面展开图是__________________.3.如图所示,下列四个图形是由已知的四个立体图形展开得到的,对应的标号是()A.①②③④ B.②①③④ C.③②①④ D.④②①③4.想一想:将左边的图形折成一个立方体,右边的四个立方体哪一个是由左边的图形折成的?5.如图所示,下列图形中,不是正方体的展开图是()6.如图所示的立方体,如果把它展开,可以是下列图形中的()二、填空题1.如图所示,用字母M表示与A相对的面,请在下面的正方体展开图中填写相应的字母.2.如图所示的是长方体的展开图,若面在前面,则()面会在上面,若从右面看是面C,而D在后面,则()面会在上面.3.一个长方体的长、宽、高分别为3cm,4cm,5cm,则这个长方体的表面积是_________.4.如图是一个正方体纸盒的展开图,当折成纸盒时,与点1重合的点是_________.三、解答题三1.填空题(1)七棱往有____个顶点,有____条棱,有______个侧面.(2)圆锥体的底面是_________形,圆锥体的侧面的平面展开图是_______形.(3)在图中是正方体展开图的有_________.(4)在A组的第4题中,围成的几何体有_____个面,所有的面都是______形,有______个顶点,_______条棱.其中棱长是原三角形边长的_______.(5)一个圆形薄铁,刚好做成两个无底圆锥形容器,则这个圆形薄铁的周长恰好是无底圆锥底面周长的________.(6)如图,圆中阴影部分可以是________体侧面的展开平面图.2.判断题(1)如图中,①是②的表面展开图.()(2)长方体的表面展开图只有一种.()(3)由于圆锥体可以由直角三角形旋转得到,所以圆锥体的侧面展开图也可以是三角形.()(4)圆锥体的侧面展开图只有一种.()3.选择题(1)如图是一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线向上折叠,得到的立体图形是()A.三棱柱 B.三棱锥C.正方体 D.圆锥(2)三棱柱中棱的条数是()A.三条 B.六条 C.八条 D.九条(3)八棱柱有()面.A.2个 B.8个 C.10个 D.12个4.如图,右图是左图表面的展开图,右图已有两个面标出是长方体的下面和右面,请你在右图中把长方体的其他面标出来.5.请你举出利用圆柱体、长方体的表面能展开成平面图形的原理,在生产和生活中做圆柱形和长方体用品的实例.。

立体图形的展开 小学数学 习题集

立体图形的展开 小学数学 习题集

一、填空题
1. 如图是一个正方形纸盒的展开图,当折叠成正方体纸盒时,D点与( )点重合。

2. 仔细观察,上面的图形是下面哪个图形的展开图?
________
________
________
A. B. C.
3. 图11中的正方体A点有一只蚂蚁要沿着棱爬到B点,那么,取最短路线的走法有______种.
4. 用做成一个,□的对面是( )。

二、解答题
5. 用不同的颜色把下面的图形分成大小和形状完全相同的两部分.
6. 棱长是厘米(为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为,此时的最小值是多少?
7. 图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为毫米,问:这卷纸展开后大约有多长?
8. 如下图,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘),这个多面体的面数、顶点数和棱数的总和是多少?。

北师大专题02 立体图形的展开与折叠含答案

北师大专题02 立体图形的展开与折叠含答案

专题02 立体图形的展开与折叠【专题说明】一个立体图形的表面展开图的形状由展开的方式决定,不同的展开方式得到的表面展开图是不一样的,但无论怎样展开,表面展开图都应体现出原立体图形面的个数与形状.一、正方体的展开图1. 有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A. 白B. 红C. 黄D. 黑【答案】C【解析】【详解】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.2. 把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A. 祝B. 你C.顺 D. 利【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“祝”与面“利”相对,面“你”与面“考”相对,面“中”与面“顺”相对.故选:C .【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、长方体的展开图3. 小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.【答案】(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3. 【解析】【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.三、其他立体图形的展开图4. 如图是一些几何体的表面展开图,请写出这些几何体的名称.【答案】①三棱锥;②四棱锥;③五棱锥;④三棱柱;⑤圆柱;⑥圆锥.【解析】【分析】分别根据对应的展开图写出这些几何体的名称即可.【详解】观察几何体的表面展开图可得①三棱锥;②四棱锥;③五棱锥;④三棱柱;⑤圆柱;⑥圆锥.【点睛】本题考查了几何体表面展开图的问题,掌握几何体表面展开图的性质是解题的关键.四、立体图形展开图的相关计算问题5. 如图是一个正方体的表面展开图,还原成正方体后,标注了字母A的面是正方体的正面,若正方体的左面与右面所标注代数式的值相等,则x的值是________.【答案】1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵标注了字母A的面是正面,∴左右面是标注了x与3x-2的面,∴x=3x-2,解得x=1故答案为:1.【点睛】本题主要考查了正方体相对两个面上的文字,解题关键是从相对面和已知条件入手,解答即可.6. 如图形状的铁皮能围成一个长方体铁箱吗?如果能,它的体积有多大?【答案】能围成,它的体积为182000cm3.【解析】【分析】与正方体展开图一样,长方体展开图也是11种特征,分四种类型,即:第一种:“1-4-1”型,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”型,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”型,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”型,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.【详解】解:能围成,是“1-4-1”型,它的体积为70×65×40=182 000(cm3).【点睛】此题考查的目的是理解掌握长方体展开图的特征,准确识图是解题的关键.。

立体图形的展开图专题训练

立体图形的展开图专题训练

立体图形的展开图一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm28.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线A.n-3 B.n-2 C.(3)2n nD.n(n-3)二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.。

立体图形的平面展开图习题

立体图形的平面展开图习题

当堂训练题
1、将正确答案的序号填在横线上:
圆柱的展开图是(),圆椎的展开图是(),三棱柱的展开图是()。

2.下列图形能折叠成什么图形?
()()()()3、下面给出的立体图形,你能画出它们的展开图吗?
自检二
1、下列图形中可以作为一个正方体的展开图的是()
(A) (B)
(C)
(1) (2)
(3)
(4)
2、 把下面的两个展开图折叠成小正方体后,与 “建”字相对的那一面上的字是( ); “和”字相对的那一面上的字是( );与“爱”字相对的那一面上的字是( );与“我”字相对的那一面上的字是( );
当堂训练:
必做题:
1、如图,上面的图型分别是下面哪个图形展开的形状?把它们用线连起来。

2、这些图形都是正方体的展开图吗?请给出正确判断。

(1) (2)
3、下面的正方体展开图中,与“棒”字 相对的那一面上的字是( )
选做题:
1、如图,左边的图形可能是右边哪个图形的展开图?
2、根据所学知识,手工制做一个长方体形状的盒子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方体的十一种平面展开图
正方体的十一种平面展开图可记忆成下面口诀:
一三二,一四一,一在同层可任意,两个三,仅有一个日字连,三个二,成阶梯,整体没有田相连。

相对的两个面之间总隔着一个面
正方体:中间四个面,上下各一面(6种摆法-141) 中间三个面,一二隔河见(3种摆法-132/231) 中间二个面,楼梯天天见(1种摆法-222) 中间没有面,三三连一线(1种摆法-33)
初一数学立体图形的展开图习题精选
一、选择题
1.圆锥的侧面展开图是________________.
2.三棱柱的侧面展开图是__________________.
4.想一想:将左边的图形折成一个立方体,右边的四个立方体哪一个是由左边的图形折成的?
5
.如图所示,下列图形中,不是正方体的展开图是( )
6
.如图所示的立方体,如果把它展开,可以是下列图形中的( )
二、填空题
1.如图所示,用字母M 表示与A 相对的面,请在下面的正方体展开图中填写相应的字母.
2.如图所示的是长方体的展开图,若
面在前面,则( )面会
在上面,若从右面看是面C ,而D 在后面,则( )面会在上面.
3.如图是一个正方体纸盒的展开图,当折成纸盒时,与点
1重合的点是
_________

三、解答题三
1.填空题
(1)七棱往有____个顶点,有____条棱,有______个侧面.
(2)圆锥体的底面是_________形,圆锥体的侧面的平面展开图是_______形.
(3)在图中是正方体展开图的有_________.
(4)在A组的第4题中,围成的几何体有_____个面,
所有的面都是______形,有______个顶点,_______条棱.其
中棱长是原三角形边长的_______.
(5)一个圆形薄铁,刚好做成两个无底圆锥形容器,则
这个圆形薄铁的周长恰好是无底圆锥底面周长的________.
(6)如图,圆中阴影部分可以是________体侧面的展开平面图.
2.判断题
(1)如图中,①是②的表面展开图.()
(2)长方体的表面展开图只有一种.()
(3)由于圆锥体可以由直角三角形旋转得到,所以圆锥体的侧面展开图也可以是三角形.()(4)圆锥体的侧面展开图只有一种.()
3.选择题
(1)如图是一个三边相等的三角形,三边的中点用虚线连接,如果将三角形
沿虚线向上折叠,得到的立体图形是()
A.三棱柱 B.三棱锥C.正方体 D.圆锥
(2)三棱柱中棱的条数是()
A.三条 B.六条 C.八条 D.九条
(3)八棱柱有()面.
A.2个 B.8个 C.10个 D.12个
4.如图,右图是左图表面的展开图,右图已有两个面标出是长方体的下面和右面,请你在右图中把长方体的其他面标出来.
5.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.
6.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.
(1)请你画出这个几何体的一种左视图;
(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.
7.如图是一个正方体的展开图,每个面都标注了字母.
(1)如果面A在多面体的底部,上面是哪一个面?
(2)如果F在前面,从左看是面B,上面是哪一面?
(3)从右面看到面C,面D在后面,上面是哪一面?。

相关文档
最新文档