(完整版)算术平方根与平方根练习

合集下载

完整版)平方根立方根提高练习题

完整版)平方根立方根提高练习题

完整版)平方根立方根提高练习题平方根和立方根的练一、选择题(共8小题)1.4的平方根是±2,那么9的平方根是(B)。

2.若2m-4与3m-1是同一个数的平方根,则m的值是(C)。

3.一个数的立方根是它本身,则这个数是(A)。

4.数n的平方根是x,则n+1的算术平方根是(C)。

5.如果y=6+2,那么xy的算术平方根是(D)。

6.若a-b=3,则xy的值为(B)。

7.已知:a-b=2,那么xy的算术平方根是(C)。

8.若a<b<c,化简3a-b+c的结果为(B)。

二、填空题(共8小题)9.已知a、b为两个连续的整数,且a>b,则a+b=a+b。

10.若a的一个平方根是b,那么它的另一个平方根是-b,若a的一个平方根是b,则a的平方根是±b。

11.已知:a+b=3,ab=2,则a和b的值分别为1和2.12.设等式(x-1)(y-2)(z-3)=0在实数范围内成立,其中m,x,y是互不相同的值,则z=m+x+y-6.13.如图是一个按某种规律排列的数阵:根据数阵的规律,___第一个数是n(n-1)+1.14.已知有理数a,满足|2016-a|+|2017-a|=1,则a的值为2016或2017.15.若两个连续整数x、y满足x<y,则x+y的值是2x+1.16.一组按规律排列的式子:1,3,7,13,…则第n个式子是n²-n+1.三、解答题(共9小题)17.(1)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。

解:由2a-1的平方根是±3可得2a-1=9或2a-1=-9,解得a=5或a=-4.由3a+b-1的算术平方根是4可得3a+b-1=16,解得a=5,b=4.因此,a+2b=13.2)已知m是x²的整数部分,n是x的小数部分,求m-n的值。

解:由题意可得x²≤m<(x+1)²,即x≤√m<x+1.又因为n=x-√m,所以x=n+√m。

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)本文档包含了60道关于平方根的专项练题,每道题后附有答案供参考。

第一部分:基础练题1. 计算下列数的平方根:- 16- 25- 36- 49- 642. 下列数中,哪个数的平方根是8?- 64- 81- 100- 121- 1443. 判断下列等式是否正确:- √9 = 3- √16 = 4- √25 = 6- √36 = 6- √49 = 74. 计算下列数的平方根,并将结果四舍五入到最接近的整数:- 19- 37- 55- 73- 915. 计算下列平方根的值,并将结果保留两位小数:- √20- √32- √45- √58- √72第二部分:复杂练题1. 计算下列数的平方根,并将结果保留三位有效数字:- 1000----2. 判断下列等式是否成立:- (√4)^2 = 4- (√9)^2 = 9- (√16)^2 = 16- (√25)^2 = 25- (√36)^2 = 363. 解方程:√(x-7) = 54. 解方程:2√x = 105. 计算下列表达式的值:- √(64 + 36)- √(100 - 25)- √(144 - 9)- √(81 + 16)- √(121 + 25)以上为平方根的专项练题,答案请参考附后,希望对你的研究有所帮助。

答案:1.- √16 = 4- √25 = 5- √36 = 6- √49 = 7- √64 = 82. 643.- 正确- 正确- 错误(正确答案是5)- 正确- 正确4.- 19 ≈ 4- 37 ≈ 6- 55 ≈ 7- 73 ≈ 9- 91 ≈ 105.- √20 ≈ 4.47- √32 ≈ 5.66- √45 ≈ 6.71- √58 ≈ 7.62 - √72 ≈ 8.49。

平方根3套练习题(有答案)

平方根3套练习题(有答案)

平方根3套练习题(有答案)篇一:八年级数学平方根练习题包含答案第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)2的算术平方根C、11的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7●拓展提高一、选择1?2,则(m?2)2的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)2=0,则yx三、解答题5、若a是(?2)2的平方根,ba+2b的值6、已知ab-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a?1 22 CD12、(08;若b,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:a=(?2)2= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.22??0.4,所以每块瓷砖的边长篇二:七年级下册第6章-平方根习题题精选(含答案)6.1平方根习题题精选______班别______姓名______考号______一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是() 5.(2021?张家界)若+(y+2)2=0,则(x+y)2021等于()6.(2021?泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()8.(2021?新泰市一模)的平方根是()9.(2021?德州一模)|﹣4|的平方根是() 10.(2021?资阳一模)下列说法正确的是()13.(2021?邻水县模拟)16的算术平方根的平方根是()14.(2021?南充)0.49的算术平方根的相反数是() 15.(2021?黄石模拟)算术平方根等于2的数是()的平方根是() 18.下列说法正确的是() 19.下列说法正确的是()20.一个数如果有两个平方根,那么这两个平方根之和是()21.下列说法正确的()(1)9的平方根是±3(2)平方根等于它本身的数是0和1 (3)﹣2是4的平方根(4)的算术平方根是4.22.81的平方根是±9的数学表达式是()23.已知3m﹣1和m﹣7是数p的平方根,则p的值为() 24.如果一个数的平方根是这个数本身,那么这个数是()27.一个正数的平方根是2m+3和m+1,则这个数为() 28.下列说法正确的是() 30.下列说法正确的是()一.填空题(共8小题)1.(2021?本溪)一个数的算术平方根是2,则这个数是.2.(2021?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为 3.(2021?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=4.(2021?普陀区二模)5.(2021?道里区一模)6.(2021?高港区二模)7.(2021?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为的平方根是的算术平方根是.的平方根是8.(2021?潮安县模拟)如果二.解答题(共12小题) 9.解方程:(1)x﹣与(2x﹣4)互为相反数,那么2x﹣y= _________ .2=0;(2)(x﹣1)=36. 10.解方程:0.25(3x+1)﹣15=0.2211.解方程:196x﹣1=0. 12.解方程:(1)13.解方程:(2x+1)﹣6=0.14.观察下列表格,并完成下列问题(1)求a和b的值;(2)用一句话概括你发现的规律.22=0;(2)(x﹣1)=36.2(1)268.96的平方根是多少?(2)(3)(4)表中与≈ _________ .在哪两个数之间?为什么?最接近的是哪个数?16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值. 17.计算:(1)(2)(3)= _________ ,= _________ ;= _________ ,= _________ .= _________ ;仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值. 19.若 20.己知+(x﹣2)=0,求x﹣y的平方根.,求(x+2)的平方根.26.1平方根习题题精选(参考答案与解析)一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是()5.(2021?张家界)若+(y+2)=0,则(x+y)22021等于()篇三:八年级数学平方根练习题包含平方根检测题◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)的算术平方根C、211的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7◆课下作业●拓展提高一、选择1?2,则(m?2)的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)=0,则y三、解答题25、若a是(?2)的平方根,ba+2b的值 22x26、已知ab-1是400的值●体验1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a2?1CD12、(08;若,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥-2,≥4、D拓展提高:1、C2、D3、04、165、由题意知:a=(?2)= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.222??0.4,所以每块瓷砖的边长。

(word完整版)初一平方根练习题(2)

(word完整版)初一平方根练习题(2)

初一平方根练习题(一)填空1.16的平方根是________.3.49的平方根是____.5.4的平方根是_______7.81的平方根是________.8.25的算术平方根是_________.9.49的算术平方根是_________.]11.62的平方根是______.12.0.0196的算术平方根是________.13.4的算术平方根是________;9的平方根是________.14.64的算术平方根是________.15.36的平方根是________; 4.41的算术平方根是_______.18.4的平方根是____, 4的算术平方根是___.19.256的平方根是____.______.37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.0.1010010001…各数中,属于有理数的有________;属于无理数的有________.40.把下列各数中的无理数填在表示无理数集合的大括号里:无理数集合:{ }41.绝对值最小的实数是________.44.无限不循环小数叫做________数.45.在实数范围内分解因式:2x3+x2-6x-3=________.(二)选择46.36的平方根是 [ ]48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ]A.1个; B.2个; C.3个; D.4个.A.-36; B.36; C.±6; D.±36.50.下列语句中,正确的是 [ ]51.0是 [ ]A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.52.以下四种命题,正确的命题是[ ]A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.53.和数轴上的点一一对应的数为 [ ]A.整数; B.有理数; C.无理数; D.实数.54.和数轴上的点一一对应的数是 [ ]A.有理数; B.无理数; C.实数; D.不存在这样的数.55.全体小数所在的集合是 [ ]A.分数集合; B.有理数集合;C.无理数集合; D.实数集合.56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;(3)一个有理数与一个无理数的和一定是无理数.其中真命题是[ ]A.(1),(2)和(3); B.(1)和(3);C.只有(1);D.只有(3).数是[ ] A.4; B.3; C.6; D.5.A.2360; B.236 C.23.6; D.2.36.59.数轴上全部的点表示的数是[ ]A.自然数 B.整数; C.实数; D.无理数; E.有理数.60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.61.数轴上全部的点表示的数是 [ ]A.有理数;B.无理数;C.实数.63.和数轴上的点是一一对应的数是 [ ]A.自然数; B.整数; C.有理数; D.实数.A.1个; B.2个; C.3个; D.5个.65.不论x,y为什么实数,x2+y2+40-2x+12y的值总是[ ]A.正数; B.负数; C.0; D.非负数.数为 [ ] A.2; B.3; C.4; D.5.A.1; B.是一个无理数; C.3; D.无法确定.A.n为正整数,a为实数; B.n为正整数,a为非负数;C.n为奇数,a为实数; D.n为偶数,a为非负数.69.下列命题中,真命题是[ ] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D.最大的负数不存在.[ ] A.0.0140; B.0.1410; C.4.459; D.0.4459.A.1.525; B.15.25; C.152.5; D.1525.A.4858; B.485.8; C.48.58; D.4.858.A.0.04858; B.485.8; C.0.0004858; D.48580.74.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是 [ ]A.a与b互为相反数;B.a+b<0; C.-a<0;D.b-a<0.练习题(二)一、填空、1.144的平方根是________.5.-216000的立方根是________.6.-64000的立方根是_________.8.0的平方根有_______个,其根值是_______.9.正数a的平方根有_______个,即为_______.10.负数有没有平方根?_______.理由_______.11.25=( )2.12.3=( )2.(二)计算16.求0.000169的平方根.20.求0.0064的平方根.22.求0.000125的立方根. 23.求0.216的立方根.1.求下列各数的平方根,算术平方根:(1)121(2)0.0049(3) (4)4 (5)|a|22.求下列各式中的x: (1)49x2=169 (2) 9(3x-2)2=(-7)2(3) =11 (4) 27(x-3)3=-643.判断正误: (1) 的平方根是±3。

(完整版)《平方根》典型例题及练习

(完整版)《平方根》典型例题及练习

平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根.3、重要公式: (1)=2)(a (2){==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.7.若一个数的立方根等于数的算术平方根,则这个数是_____________.8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、6 D 、 6±例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.下列说法中正确的是( ) A .9的平方根是3 B422. 4的平方的倒数的算术平方根是( ) A .4 B .18C .-14D .143.下列结论正确的是( ) A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个6.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是( )A 、6B 、6±C 、 6D 、 6±9.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-11.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 12.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a- C .2a - D .3a14.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )A .1± B. 4 C. 3或5 D. 515.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A.2- B. 5± C. 5 D. 5- 二、填空题: 1.2)8(-= , 2)8(= 。

算术平方根与平方根

算术平方根与平方根

例1、 求下列各数的算术平方根与平方根(1)()25- (2)100 (3)0例2、 计算(1)81 (2)41(3)-169(4)()264 (5)24925⎪⎪⎭⎫⎝⎛ (6)()22.7 (7)()22- (8(9)例3求x 的值(1)、()x -=292(2)、()3010752x -=..(3) (x -1)2-121=0; (4) 81(3x -2)2=625;例5 已知536.136.2=,858.46.23= ① 求236和00236.0的值; ② 若x =0.4858,求x 的值;例6、求下列各数的立方根(1)512 (2)833- (3)0例7、求下列各式的值:④⑤⎛ ⎝例7.⑴ 填表:⑵ 由上你发现了什么规律?用语言叙述这个规律。

⑶ 根据你发现的规律填空:① 已知442.133=,则=33000 ,=3003.0② 已知07696.0000456.03=,则=3456 ;③已知0157053953..= 15711623..= 15725043..= 00000157157033.和的值。

例8求x 的值(1)(x+3)3+27=0; (2)(x-0.5)3+10-3=0.(3) (x-1)3=8 (4)(0.1+x)3=-27000;例4、若,622=----y x x 求y x的立方根.练习:已知,21221+-+-=x x y 求y x 的值.例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。

②已知互为相反数,求a ,b 的值。

1:求x x +-的值2:已知21140a b -++=,求ab的值3:如果a 为正整数,14-a 为整数,求14-a 的最大值及此时a 的值4:已知x y x y +=-=23424 求x y +的值2.已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。

(完整版)平方根、算术平方根、立方根练习题

(完整版)平方根、算术平方根、立方根练习题

1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。

(完整版)平方根习题精选练习

(完整版)平方根习题精选练习

平方表:【典型例题】例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根;③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个 例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5(2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A.()1+aB .()1+±aC .12+aD .12+±a 例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】 一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A ±2B C.636=± D.992-=- 3.下列说法中正确的是( )A .9的平方根是3B 2 24. 64的平方根是( )A .±8B .±4C .±2 D5. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .146.下列结论正确的是( )A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±= 8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是3 9.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根 11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=± C .43169= D .43169-=- 17.算术平方根等于它本身的数是( )A 、1和0 B 、0 C 、1 D 、 1±和018.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0;(5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个C .5个D .6个21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根23.下列命题正确的是( ) A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a - C .2a - D .3a25.3612892=x ,那么x 的值为( )A .1917±=xB .1917=xC .1817=xD .1817±=x 26.下列各式中,正确的是( )A. 2)2(2-=-B. 9)3(2=-C. 39±=±D. 393-=-27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( ) (A)1± (B) 4 (C) 3或5 (D) 529.若9,422==b a,且0<ab ,则b a -的值为( )(A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;31.满足的整数x 是32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S= B.S 的平方根是aC.a 是S 的算术平方根D.Sa ±=33. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a34.22)4(+x 的算术平方根是( )A 、42)4(+x B 、22)4(+xC 、42+x D 、42+x35.2)5(-的平方根是( )A 、5± B 、 5 C 、5- D 、5±36.下列各式中,正确的是( )A. 2)2(2-=-B. 9)3(2=- C. 39±=±D. 393-=-37.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯C .12)12(2±=-D .12)12(2=-±38.下列各组数中互为相反数的是( ) A 、2)2(2--与 B 、382--与C 、2)2(2-与D 、22与-二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为 3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

算术平方根与平方根专项练习

算术平方根与平方根专项练习

算术平方根与平方根专项练习算术平方根与平方根专项练一、填空1、如果一个数的平方等于a,即x^2=a,那么x叫做a的算术平方根。

注:①数a的算术平方根记作√a,其中a≥0;②0的算术平方根为0;③只有当a≥0时,数a才有算术平方根。

2、如果一个数的平方等于a,即x^2=a,那么x叫做a的平方根(二次方根)。

注:①一个正数a有两个平方根,且它们互为相反数,记为±√a;②有一个正数的平方根,就是正数;③负数没有平方根。

3、4的平方根是2;算术平方根是2.4、36有个正平方根6,一个负平方根-6;它们的和是0;它们互为相反数。

5、0.04的算术平方根是0.2,开平方等于±0.2的数是0.2和-0.2.6、81的正平方根是9;(-5)^2的平方根是5i。

7、算术平方根等于它本身的数只有0和1;平方根等于它本身的数只有1.8、若5x+4的平方根为±1,则x=-3或x=-0.2;若m-4没有实数平方根,则|m-4|=m-4.9、已知2a-1的平方根是±4,3a+b-1的平方根是±4,则a+2b的平方根是±10.10、若实数x,y满足x-2+(3-y)^2=0,则代数式xy-x的值为1.11、在小于或等于100的非负整数中,其平方根是整数的共有10个。

12、已知x+2与y-3互为相反数,则xy=-6.13、因为没有什么数的平方会等于负数,所以负数没有实数平方根,因此被开方数一定是非负数或0.14、当m≥3时,3-m有意义。

二、选择题15、(-3)^2的平方根是B.-3.16、9的算术平方根是B.3.17、下列个数没有平方根的是C.(-1)。

18、如果3x-5有意义,则x可以取的最小整数为D.3.19、x是16的算术平方根,那么x的算术平方根是B.2.20、选B。

因为(-9)的平方是81,而81不等于9.21、选B。

因为64的平方根是8,而8的相反数是-8,故平方根为±8.22、选C。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

算术平方根--平方根--立方根测试题

算术平方根--平方根--立方根测试题

算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。

(完整word版)平方根和算术平方根练习题

(完整word版)平方根和算术平方根练习题

1。

填空题(1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________; (4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_________,4的平方根为_________; (7)(-4)2的平方根是_________,算术平方根是_________. 2。

选择题(1)2)2(-的化简结果是A.2 B 。

-2 C.2或-2D 。

4(2)9的算术平方根是 A.±3B 。

3C 。

±3D.3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根 (4)下列式子中,正确的是A.55-=-B.-6.3=-0。

6 C 。

2)13(-=13D.36=±6(5)7-2的算术平方根是 A.71 B 。

7 C 。

41 D.4(6)16的平方根是 A 。

±4B.24 C 。

±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是 A.a +2B.a -2C.a +2D 。

a 2+2(8)下列说法正确的是A 。

-2是-4的平方根B 。

2是(-2)2的算术平方根C 。

(-2)2的平方根是2D 。

8的平方根是4(9)16的平方根是A。

4 B。

-4 C。

±4 D.±29 的值是(10)16A.7B.-1C.1 D。

-7三、解答题11.已知某数有两个平方根分别是a+3与2a-15,求这个数.12。

已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值。

13。

已知a<0,b<0,求4a2+12ab+9b2的算术平方根。

14.要切一块面积为36 m2的正方形铁板,它的边长应是多少?。

七年级下册《实数》平方根与算术平方根专项分类训练(含答案)

七年级下册《实数》平方根与算术平方根专项分类训练(含答案)

7-平方根与算术平方根专项分类训练学校:___________姓名:___________班级:___________考号:___________一、算术平方根1 )A .BC .2±D .22 _____.310b -=,那么2023()a b +的值为( )A .1-B .1C .20233D .20233-4.实数a 、b 在数轴上的位置如图所示,且|a |>|b |a b +的结果为()A .2a +bB .-2a +bC .bD .2a -b5.下列说法正确的是( )A .4是8的算术平方根B .25的平方根是5C .-5是25的算术平方根D .-3没有平方根6.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0C .916的平方根是34 D .当0x ≠时,2x -没有平方根二、平方根7.已知实数a 的一个平方根是4,则它的另一个平方根是( )A .2B .-2C .4-D .2±8.如果23x =,那么x =( )AB .C .D 9.4的平方根是( )A .2B .-2C .±2D .1610.若数x -2的平方根只有一个,则x 的值是________.11.若24m -与31m -是同一个正数a 的平方根,则m =______,a =______12.若2+=________.(3)0a-=,则2a b13.已知一个正数的平方根是3a-,则这个正数是______.a+和514的平方根是.15.实数a、b______.三、根式整数、小数部分16的整数部分是______.小数部分是_______.17.已知2a,若a=_____.4018.已知a,b2a﹣b的值为______.19.6a,7b,则()2018+=__________.a bn的最小整数值是______.20四、根式估算21)A.3和4之间B.4和5之间C.5和6之间D.8和9之间22+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间231在数轴上的对应点可能是()A.A点B.B点C.C点D.D点2414.14=,则a的值为().A.20B.200C.2000D.0.02五、解答题25=b +8(1)求a 的值;(2)求a 2-b 2的平方根.26.已知2a b +-的平方根是31a b +-的算术平方根是6,求4a b +的平方根.27.有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程.(1)解题与归纳①小明摘选了以下各题,请你帮他完成填空.= ;= ;= ;= ;= ;= ;①归纳:对于任意数a = ①小芳摘选了以下各题,请你帮她完成填空.2= ;2= ;2= ;2= ;2= ; 2= ;①归纳:对于任意非负数a 有2= (2)应用根据他们归纳得出的结论,解答问题.数a 、b 2283,3a ﹣b +1的平方根是±4,c a +b +2c 的平方根.29.已知a ﹣1和5﹣2a 都是非负数m 的平方根,求m 的值. 佳佳的解题过程如下:解:∵a ﹣1和5﹣2a 都是非负数m 的平方根,∴a ﹣1+5﹣2a =0,解得a =4,∴a ﹣1=3,∴m 的值为9.请问佳佳的解题过程正确吗?如果不正确,请说明理由.30.已知m 2=25,|1-n |=2,且m <n ,求m -n 的值.参考答案:1.B ;2.2;3.A ;4.C ;5.D6.C ;7.C ;8.C ;9.C ;10.211. 1 或 −3 ;4或10012.7;13.16;14.±2;15.2b -;16. 3317.2或﹣2或﹣1;18.919.1;20.021.B ;22.B ;23.C ;24.B ;25.(1)17;(2)±15 26.4a b +的平方根是7±;27.(1)①2,5,6,0,3,6,①a(或(0){0(0)(0)a aaa a>=-<或其他答案),①4,9,25,36,49,0,④a(2)-a-b28.±5;29.1或9;30.-4或-8。

算术平方根与平方根练习题

算术平方根与平方根练习题

算术平方根与平方根练习题1.9的算术平方根是3.2.下列计算正确的是22=±2.3.计算(-3)²的结果是9.4.若a=2,则a的值为2.5.下列结论正确的是16的平方根是4.6.有平方根的数共有6个,分别是2,-4,-3,-5,4,-3.7.给出下列各数:49,3,-4,其中有平方根的数共有4个。

8.平方根等于它本身的数是1.9.81的平方根是9.10.下列计算或判断:①±3都是27的立方根;②3a³=a;③6根是4;④3(±8)=±4,其中正确的个数有2个。

11.在下列各式中,正确的是25=±5.12.若a²=25,|b|=3,则a+b的值是±8.13.a²的算术平方根一定是|a|。

14.0.0001≈0.01≈1≈100≈≈300.15.如果3≈1.732,30≈5.477,那么≈5477.16.如果2≈1.414,20≈4.472,那么≈4472.17.在a中,a的取值范围是(-∞。

+∞);在(a²)中,a的取值范围是[0.+∞);在a²中,a的取值范围是(-∞。

+∞);在±a中,a 的取值范围是(-∞。

+∞);在3a中,a的取值范围是(-∞。

+∞)。

18.一个正数的平方根分别是x+1和x-5,则x=13.19.6的整数部分是6,17的整数部分是17,41的整数部分是41.20.化简(a)²=a²,(a²)=(a²)。

3化简(31)3=27;(3(1))=3333化简(38)3=1029;(3(8))=24化简(3-8)= -15;(3(-8))= -24化简(3a)3=27a;(3a3)=27a^321.3-a=3a22.求下列各数的算术平方根.1)196;(2)5.-5;(3)0.2;23.求下列各数的平方根:1)12;(2)0.1,-0.1;(3)7/3,-7/3;24.求下列各式的值:1)25;(2)-0.0004;25.计算下列各式的值:1)-40.875;(2)2.973;26.求下列各式中x的值.1)x=5,-5;(2)x=13,-13;3)x=1/3,-1/3;4)x=±3/2.3)x=2±10.。

算术平方根平方根练习题

算术平方根平方根练习题

一、选择题:1.81的算术平方根是( )C . -9D . 3A .9B . 92 .,;(6的算术平方根是()A.4 B. 293C. 4D.-933.下列说话正确的是()A 、 1是1的算术平方根B 、一 1是1的算术平方根C 、( — 2) 2的算术平方根是—2D 、一个数的算术平方根等于它本身,这个数是04 •下列说法不正确的是()D 、因为x 2 a ,所以x 叫做a 的算)C. 2.55 D . 25.5)-21 D 、 0.01D . -4A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根术平方根5. 如果,1.5,那么y 的值是(A . 2.25B . 22.56. 下列式子书写有意义的是(A \ 2B 匚C 7. 计算_2 2的结果是( )8.下列各式中正确的是(A ..25 5)B .厂6 26D . .3 23-- 2 25. J196_____________ ; p 8_____________6. 当m _________ 时,“3 m 有意义;7. 已知$2a 1 (b 3)2 0,贝卩;3-----------------8. ___________________________ * ―1 2的最小值是 ____________ 此时 a 的取值是 ___________________________ .9. _____________________________________ 2x1的算术平方根是2,则x=___________________________________________ .10算术平方根等于它本身的数有 ______________ 三、解答题: 1. 求下列各数的算术平方根 (1) 3.24⑵目1212. 求下列各式的值(1) 4. 225. 169(2) . 1083. 若| b-1| =0,求(a+b ) 2007。

平方根及算术平方根综合训练题及答案解析

平方根及算术平方根综合训练题及答案解析

第 5 页 共 10 页 ◎ 第 6 页 共 10 页
参考答案与试题解析
一、 选择题 1.【答案】D【解析】依据平方根的性质即可作出判断. 2.【答案】C【解析】������、根据平方根的定义即可判定; ������、根据算术平方根的定义即可判定; ������、根据平方根的定义即可判定; ������、根据平方根的定义即可判定.
Байду номын сангаас
16. 一个正方形的面积为21,估计该正方形边长应在( )
A.2到3之间
B.3到4之间
C.4到5之间
D.1 D.3
D.2 ∼ 3之间 D.5到6之间
C.√5是5的一个平方根 3. 下列语句写成数学式子正确的是( ) A.9是81的算术平方根:±√81 = 9 C.5是(−5)2的算术平方根:√(−5)2 = 5
一、 选择题 1. 下列说法正确的是( ) A.4的平方根是2 C.(−2)2没有平方根 2. 下列叙述正确的是( ) A.如果������存在平方根,则������ > 0
B.−4的平方根是−2 D.2是4的一个平方根
B.√16 = ±4
13. 当√4������ + 1的值为最小值时,������的取值为( )
36. 已知������ = √������ − 4 + √4 − ������ + 9,则������������的算术平方根为_______________________.
37. 若|������ − ������ + 1|与√������ + 2������ + 4互为相反数,则(������ − ������)2013 =___________________.

(完整word版)平方根习题精选练习

(完整word版)平方根习题精选练习

(完整word版)平方根习题精选练习平方表:【典型例题】例1、判断下列说法正确的个数为()①-5是—25的算术平方根;②6是()26-的算术平方根;③0的算术平方根是0;④0。

01是0.1的算术平方根;⑤一个正方形的边长就是这个正方形的面积的算术平方根.A.0 个B.1个C.2个D.3个例2、36的平方根是()A、6B、6±C、6D、6±例3、下列各式中,哪些有意义?(1)5(2)2-(3)4-(4)2)3(-(5)310-例4、一个自然数的算术平方根是a,则下一个自然数的算术平方根是()A.()1+a B.()1+±a C.12+a D.12+±a例5、求下列各式中的x:(1)0252=-x(2)4(x+1)2—169=0【巩固练习】一、选择题1.9的算术平方根是()A.-3 B.3 C.±3 D.812.下列计算正确的是()A±2 BC。

636=±D。

992-=-3.下列说法中正确的是()A.9的平方根是3 B2C. 4 D。

2 4.64的平方根是( )A.±8 B.±4 C.±2 D5.4的平方的倒数的算术平方根是()A.4 B.18C.-14D.146.下列结论正确的是()A6)6(2-=--B9)3(2=-C16)16(2±=-D251625162=⎪⎪⎭⎫⎝⎛--7.以下语句及写成式子正确的是()A、7是49的算术平方根,即749±=B、7是2)7(-的平方根,即7)7(2=-C、7±是49的平方根,即749=±D、7±是49的平方根,即749±=8.下列语句中正确的是()A、9-的平方根是3-B、9的平方根是3C、9的算术平方根是3±D、9的算术平方根是3 9.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A.3个B.2个C.1个D.4个(完整word 版)平方根习题精选练习10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根 11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(—11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±"应是( )A .43169±=B .43169±=± C .43169= D .43169-=- 17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 18.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0;(5)—a 2; (6)π; (7)—a 2-1 A .3个 B .4个 C .5个 D .6个21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1 C 。

第01讲平方根与算术平方根(知识解读真题演练课后巩固)(原卷版)

第01讲平方根与算术平方根(知识解读真题演练课后巩固)(原卷版)

第01讲 平方根与算术平方根1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.3.掌握平方根与算术平方根的有关运算知识点 1 :平方根1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);的算术平方根记作,读作“的算术平方根”,叫做被开方数.注意:当式子有意义时,一定表示一个非负数,即≥0,≥0. 2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为,其中是的算术平方根.知识点2:平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.注意:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个x a 2x a =x a a a a a a a a a 2x a =x a a a a (0)a a ±≥a a a ±a平方根.因此,我们可以利用算术平方根来研究平方根.知识点3:平方根的性质知识点4:平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,.【题型1:平方根的概念和表示】【典例1】(2023•秦都区校级二模)9的平方根是( ) A .±3B .3C .﹣3D .【变式11】(2023•罗山县校级三模)4的平方根是( ) A .−2B .2C .±2D .16【变式12】(2023春•八步区期中)已知a 的平方根是±3,则a 的值是( ) A .±3B .3C .±9D .9【变式13】(2023•常德三模)的平方根是( )A .4B .±4C .±2D .2 【题型2:平方根的性质】【典例2】(2023春•郯城县期中)若关于m 的代数式m ﹣1和3m ﹣5是某个正数的平方根,求这个正数.【变式21】(2023春•惠东县期中)一个正数x 的两个平方根分别是﹣a +2与2a20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()()20a aa =≥62500250=62525= 6.25 2.5=0.06250.25=﹣1,求a和正数x的值.【变式22】(2023春•九龙坡区校级月考)已知正数m有两个平方根,分别是a+3与2a﹣15.①求a的值;②求这个正数m.【题型3:利用开平方解方程】【典例3】(2023春•德城区校级月考)求下列各式中x的值.(1)x2﹣49=0;(2)﹣64x2+=0;(3)(1﹣2x)2=1;(4)9(3x+1)2=64;【变式31】计算:(1)9x2﹣25=0;(2)4(2x﹣1)2=36.【变式32】(2022春•通城县期中)求下列各式中的x.(1)x2﹣143=1;(2)4x2﹣16=0.【变式33】(2023春•昭阳区月考)求下列各式中x的值.(1)x2﹣25=0;(2)(x﹣1)2=64.【题型4:算术平方根的概念】【典例4】(2023春•环江县期末)表示()A.10的算术平方根B.10的平方根C.10的平方D.10的立方【变式41】(2023春•抚顺月考)化简的结果是()A.2B.±2C.D.±【变式42】(2023春•富锦市期中)若|x|=5,y是9的算术平方根,则x+y的值是()A.8B.﹣8C.﹣2D.﹣2或8【变式43】(2023春•番禺区期末)下列运算正确的是()A.B.C.D.【题型5:算术平方根的非负性】【典例5】(2023春•雅安期末)已知实数x、y满足,则2x+y 的平方根是()A.±2B.2C.﹣2D.±4【变式51】(2023春•微山县期中)若,则ab的值为()A.﹣6B.﹣5C.﹣1D.1【变式52】(2023春•汶上县期中)若|a﹣1|与互为相反数,则a+b=()A.﹣8B.﹣6C.6D.8【变式53】(2023春•雷州市校级期中)若,则(x+y)2的值为()A.﹣1B.﹣2C.2D.1【题型6:算术平方根的应用】【典例6】(2023春•桥西区期末)有一张面积为81cm2的正方形卡片.(1)该正方形贺卡的边长为cm;(2)现有一个面积为96cm2的长方形卡袋,长宽之比为4:3,能否将这张卡片不折叠且全部放入此卡袋?请判断并说明理由.【变式61】(2023春•铁东区校级月考)张华想用一块面积为4000cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,张华能用这块纸片裁出符合要求的纸片吗?请说明理由.【变式62】(2023春•西塞山区期中)已知自由下落物体的高度h(单位:m)与下落时间t(单位:s)的关系式是h=4.9t2,现有一物体从78.4m的高楼自由落下,求它到达地面需要的时间.【变式63】(2022秋•长安区校级期末)如图,用两个边长为cm的小正方形剪拼成一个大的正方形,(1)则大正方形的边长是cm;(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为3:2且面积为12cm2,若能,试求出剪出的长方形纸片的长宽;若不能,试说明理由.1.(2023•金昌)9的算术平方根是()A.±3B.±9C.3D.﹣3 2.(2023•云南)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.3.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2 4.(2023•宿迁)计算:=.5.(2023•滨州)一块面积为5m2的正方形桌布,其边长为.6.(2023•荆州)若|a﹣1|+(b﹣3)2=0,则=.7.(2023•湖北)请写出一个正整数m的值使得是整数:m=.8.(2022•贺州)若实数m,n满足|m﹣n﹣5|+=0,则3m+n=.1.(2023•广东模拟)4的平方根是()A.2B.±2C.D.±2.(2023春•商南县期末)若2m﹣4与3m﹣1是同一个数两个不同的平方根,则m的值()A.﹣3B.1C.﹣3或1D.﹣1 3.(2023春•河东区期末)若x使(x﹣1)2=4成立,则x的值是()A.3B.﹣1C.3或﹣1D.±2 4.(2023春•二道区校级期末)若x2=(﹣0.7)2,则x=()A.﹣0.7B.±0.7C.0.7D.0.49 5.(2023春•唐山期末)的值是()A.4B.±4C.8D.±8 6.(2023•扬州三模)的值等于()A.0.3B.±0.3C.0.03D.±0.03 7.(2023春•铁西区期中)已知:=4.858,=1.536,则=()A.0.1536B.48.58C.0.04858D.以上答案全不对8.(2023春•思明区期末)“9的算术平方根是3”用式子表示为()A.B.C.D.9.(2023春•合浦县期末)将实数按如图方式进行有规律排列,则第19行的第37个数是()A.19B.﹣19C.D.﹣10.(2023春•万秀区校级期中)已知x,y都是实数,且|x+1|+=0,则xy =()A.1B.4C.﹣1D.﹣4 11.(2022春•秀山县校级月考)求下列各式中的x.(1)9x2﹣25=0 (2)4(x﹣2)2﹣9=0.12.(2023春•广州期中)一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.13.(2023春•肇源县期中)若实数x,y满足,求的值.14.(2023春•广西期末)综合与实践【问题发现】如图1,把两个面积都为1cm2的小正方形分别沿对角线剪开,将所得的4个直角三角形拼成一个大正方形,则该大正方形的边长为cm.【知识迁移】若一个圆与一个正方形的面积都是2πcm2,设这个圆的周长为C这个正方形的周长为C圆,则C圆C正(填“=”或“<”或“>”).【拓展延伸】李明想用一块面积为400cm2的正方形纸片(如图2所示),沿着边的方向截出一块面积为300cm2的长方形纸片,使它的长宽之比为5:4.李叨能用这块纸片裁出符合要求的纸片吗?请说明理由.。

初中数学平方根算术平方根二次根式综合练习题(附答案)

初中数学平方根算术平方根二次根式综合练习题(附答案)

初中数学平方根算术平方根二次根式综合练习题一、单选题1.课间操时,小华、小军、小刚的位置如图所示.如果小华的位置用()0,0表示,小军的位置用()2,1表示,那么小刚的位置可以表示为( )A.()5,4B.()4,5C.()3,4D.()4,32.已知Rt ABC △中,90C ∠=︒,若14cm a b +=,10cm c =,则ABC S △为( )A.224cmB.236cmC. 248cmD.260cm3.下列各组数中,是勾股数的是( )A.6,9,12B.-9,40,41C.9,12,13D.7,24,254.实数,a b 在数轴上对应点的位置如图所示,化简a 的结果是( )A.2a b -+B.2a b -C.b -D.b5.如图,阴影部分的面积为16 cm 2,则图中长方形的周长为( )A.28 cmB.24 cmC. 25 cmD.不能确定6.若一个正数的两个平方根分别是1a -和3a -,则a 的值为( )A.2B.-2C. 1D. 47.如图,数轴上的点A,B,O,C,D 分别表示数-2,-1,0,1,2,则表示数2的点P 应落在( )A. 线段AB 上B. 线段BO 上C. 线段OC 上D. 线段CD 上8.在3.1?41?5,17,83,0,0.89-,13π-,2011-,0.303?003?000?3,5+,无理数有( )A.2个B.3个C.4个D.5个9.如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A 的豆豆,如果点A 用(-1,2)表示,那么(1,-2)所表示的位置是( )A.点AB.点BC.点CD.点D二、解答题10.已知a b c 、、是ABC △的三边,a b 、使等式2248200a b a b +-+-=成立,且c 是偶数,求ABC △的周长.11.如图,数轴的正半轴上有A B C 、、三点,表示12A B ,,点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x .(1)请你直接写出x 的值;(2)求()22x -的平方根.12.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠︒=,将一直角三角板(30M ∠︒=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周.如图2,经过t 秒后,ON 落在OC 边上,则t =________秒(直接写结果).(2)如图3,三角板继续绕点O 以每秒5°的速度沿逆时针方向旋转到起点OA 上.同时射线OC 也绕O 点以每秒10︒的速度沿逆时针方向旋转一周,①当OC 转动9秒时,求MOC ∠的度数.②运动多少秒时,35MOC ∠︒=?请说明理由.13.探索乘法公式时,我们经常设置图形面积的不同表示方法来验证乘法公式我国著名的数学家赵爽,早在公元3世纪,就把一个长方形分成四个全等的直角三角形(如图①),用四个全等的直角三角形拼成了一个大的正方形(如图②),这个图形称为赵爽弦图,这个图形验证了一个非常重要的结论,即直角三角形中两直角边a b ,与斜边c 满足关系式222a b c +=.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图③),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图④),利用上面探究所得结论,求当3a =,4b =时梯形ABCD 的周长.(3)如图⑤,在每个小正方形边长为1的方格纸中,ABC △的顶点都在方格纸格点上,请在图中画出ABC △的高BD ,利用上面的结论,求高BD 的长.14.已知52a +的立方根是3,31a b +-的算术平方根是4,c.(1)求,,a b c 的值;(2)求3a b c -+的平方根.15.王老师给同学们布置了这样一道习题:一个数的算术平方根为26m -,它的平方根为()2m ±-,求这个数.小张的解法如下:依题意可知, 26m -是2m -、()2m --两数中的一个. (1)当262m m -=-时,解得4m =. (2)所以这个数为262462m -=⨯-=. (3)当()262m m -=--时,解得83m =. (4) 所以这个数为82262633m -=⨯-=-. (5) 综上可得,这个数为2或23-. (6) 王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.16.已知:0=,求实数,a b 的值,的整数部分和小数部分.三、填空题17.如果1a a <+,那么整数a =_________.18.如图,已知圆柱体底面圆的半径为二,高为2,AB CD ,分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是 (结果保留根号)19.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺成的若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为 .20.已知ABC △的三边长分别为a b c 、、,且a b c 、、满足26950a a c -+-=,则ABC △的形状是 三角形.21.已知m ,n 为两个连续的整数,且m n <<,则m n +=__________.22.,那么2x y +=__________.23.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于__________对称.参考答案1.答案:D解析:小华的位置用()0,0表示,小军的位置用()2,1表示,∴每个小方格的边长为1,且确定平面直角坐标系中x 轴为从下数第一条横线,y 轴为从左数第一条竖线.∴可以确定小刚位置点的坐标为()4,3.2.答案:A解析:在Rt ABC △中,90C ∠=︒,222100a b c ∴+==,将14a b +=两边平方得()2214a b +=,即222196a b ab ++=,则48ab =,故2124cm 2ABC S ab ==△. 3.答案:D解析:A 不是,因为2226912+≠;B 不是,因为9-不是正整数;C 不是,因为22291213+≠;D 是,因为22272425+=,且7、24、25是正整数故选D4.答案:A解析:题图知,0,00a b a b <>-<,所以,则()2,a a a b a a b a b =-+-=---=-+故选A5.答案:B4= cm.因为长方形的长等于宽的2倍,所以长方形的长为8 cm ,宽为4cm.所以长方形的周长为2(84)24⨯+=cm.故选B.6.答案:A解析:根据题意得130.a a -+-=解得2a =.故选A.7.答案:B解析:253,120,<<∴-<<∴表示数2的点P 应落在线段BO 上.故选B.8.答案:C解析:,13π-,0.3030030003-,5+,共4 个,其余则为有理数.9.答案:D解析:以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2).10.答案:∵2248200a b a b +--+=,∴()()22448160a ab b -++-+=, ∴()()22240a b -+-=,解得:24a b ==,,∵a b c 、、是ABC △的三边,且c 是偶数,∴4c =.故ABC △的周长长为:24410++=.解析:解析: 12.答案:(1)∵30AOC ∠=︒而三角板每秒旋转5︒∴当ON 落在OC 边上时,有530t =︒得6t =故答案为6.(2)①当OC 转动9秒时,30109120COA ∠=︒+︒⨯=︒而309059165MOA ∠=︒+︒+︒⨯=︒又∵MOC MOA COA ∠=∠-∠即:16512045MOC ∠=︒-︒=︒答:当OC 转动9秒时,MOC ∠的度数为45.②设OC 运动起始位置为射线OP (如图1),运动t 秒时,35MOC ∠=︒,则905MOP t ∠=︒+,10COP t ∠=当35MOC ∠=︒时,有9051035()t t ︒+-=︒或1090535()t t -︒+=︒得11t =或25t =因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数
一、 算方术平根
1. 算术平方根的概念:
4 的算术根平根________________ 0.49的算方术平根________________ 16
25的算术平方根_________________ 144的算术平方根是_________________ 2. 计算:121
09.0
1691
()23-
3、(-2)2的算术平方根是_____________;(-0.05)2 的算术平方根是_________________
4、下列说法正确的是( )
A.1是1的算术平方根
B.-1是-1的算术平方根
C.(-3)2 的算术平方根是-3
D.一个数的的算术平方根等于它本身,这个数是0。

5. 估计16+的值在_________________ A. 39±= B. 33-=- C.39= D -32=9
6. 若x -4是在64的算术平方根,则x -4的算术平方根是______________
7. 已知043=-++b a ,求22b a +的值。

8.若023=++-b a ,则a+b 的值____
9.233+-+
-=x x y ,求x y 的值
10.
二.平方根。

平方根的概念:1.一般地,如果一个数的平方根等于a ,那么这个数叫做a 的______________-
2. 求一个数a 的平方根的运算,叫做________________________
3. 正数有____________个平方根,它们互为_______________;0的平方根是_______________;负数_____________平方根。

4. 下面说法错误的是( )
A.6是36的平方根
B.-6是36的平方根
C.36的平方根是6±
D.36的平方根是6.
5. 若正方形的边长为a ,面积为s ,则( )
A S 的平方根是a .B. a 是s 算术平方根 C. a=s ± D.s=a
7. m 是4的平方根,n 是4的算术平方根,则m,n 的关系是( )
A. m=n ±
B.m=n
C.m=-n
D.n m ≠
8.下列式子中错误的是( ).
A.
24±=± B.11±= C.39-=- D.23412= 9.计算:
(1)()2233-÷
(2)()()82-⨯- (3)()()164-⨯--
10.求下列各式中的x 的值:
(1)x 2=25 (2)9x 2=16 (3)3x 2-12=0
(4) (x+1)2=144 (5)4(x -2)2-25=0 (6)2(x 2-8)=0
(7)
94512=+x (8)174
1152122+=-x x (9)8(x -3)2=5x -3)2+27
11. 已知x,y 为实数,且()0232=++-y x ,求y x 的值
12. 已知2a -1的平方根是3±,3a+b -1的算术平方根是4,求b a 2+的值。

13. 若一个正数的两个不等的平方根是2a -1和4-a,求这个数的值。

14. 已知x 2=16,y=4,x <y,求x+10y 的平方根。

15. 233+-+
-=x x y ,求x y 的值。

16.求x x x x 5421612-+----+的值
17. 071=++-b a ,则a+b 的值。

18. 阅读下列材料:974<< ,即2<37<7∴的整数部分为2,小数部分为b,求a+b 的值。

请你观察上述的规律后试解下面的问题:如果5的小数部分为a ,5-5的小数部分为b,求a+b 的值。

立方根:一。

相关文档
最新文档