七年级有理数中考真题汇编[解析版]
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)2t-4 (4)解:当点 P 在点 C 的左边时,2t=3,则 t=1.5; 当点 P 在点 C 的右边时,2t=7,则 t=3.5. 综上所述,当 t 等于 1.5 或 3.5 秒时,P、C 之间的距离为 2 个单位长度.
【解析】【解答】解:(1)依题意得,点 C 是 AB 的中点,故点 C 表示的数是:
3.如图所示,一个点从数轴上的原点开始,先向右移动 3 个单位长度,再向左移动 5 个单 位长度,可以看到终点表示的数是﹣2,已知点 A、B 是数轴上的点,请参照图并思考,完 成下列各题.
(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终点 B 表示的数是 ________,A、B 两点间的距离是________; (2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么 终点 B 表示的数是________,A、B 两点间的距离为________; (3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长度, 那么终点 B 表示的数是________,A、B 两点间的距离是________; (4)一般地,如果 A 点表示的数为 m , 将 A 点向右移动 n 个单位长度,再向左移动 p 个 单位长度,那么请你猜想终点 B 表示什么数?A、B 两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9 (4)解:一般地,如果 A 点表示的数为 m,将 A 点向右移动 n 个单位长度,再向左移动 p 个单位长度,那么请你猜想终点 B 表示 m+n﹣p,A、B 两点间的距离为|n﹣p|. 【解析】【解答】解:(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终 点 B 表示的数是 4,A、B 两点间的距离是 7;(2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么终点 B 表示的数是 1,A、B 两点间的距离为 2;(3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长 度,那么终点 B 表示的数是﹣13,A、B 两点间的距离是 9; 【分析】(1)根据数轴上的点向右平移加,可得 B 点表示的数,根据数轴上两点间的距 离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得 B 点 表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右 平移加,向左平移减,可得 B 点表示的数,根据数轴上两点间的距离是大数减小数,可得 答案;(4)根据数轴上的点向右平移加,向左平移减,可得 B 点表示的数,根据数轴上 两点间的距离是大数减小数,可得答案;
=1.
故答案是:1;
( 3 )点 P 表示的数是 2t-4.
故答案是:2t-4;
【分析】(1)根据 xc=
可求解;
(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得 AB 的距离,再根据时间
=路程÷速度可求解;
(4)由题意可分两种情况讨论求解:① 当点 P 在点 C 的左边时, 由题意可列关于 t 的方 程求解; ② 当点 P 在点 C 的右边时, 同理可求解.
一、初一数学有理数解答题压轴题精选(难)
1.如图在数轴上 A 点表示数 a,B 点表示数 b,a、b 满足|a+2|+|b﹣4|=0;
(1)点 A 表示的数为________;点 B 表示的数为________; (2)若在原点 O 处放一挡板,一小球甲从点 A 处以 1 个单位/秒的速度向左运动;同时另 一小球乙从点 B 处以 2 个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看 作一点)以原来的速度向相反的方向运动,设运动的时间为 t(秒), ①当 t=1 时,甲小球到原点的距离=________;乙小球到原点的距离=________; 当 t=3 时,甲小球到原点的距离=________;乙小球到原点的距离=________; ②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接 写出甲,乙两小球到原点的距离相等时经历的时间.________ 【答案】 (1)-2 ;4
度; ①当 t=1 时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为 4-2×1=2; 当 t=3 时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为 2×3-4=2; 故答案为:3,2;5,2 【分析】(1)利用几个非负数之和为 0,则每一个数都是 0,建立关于 a,b 的方程组,解 方程组求出 a,b 的值,就可得到点 A,B 所表示的数。 (2)①根据两个小球的运动方向及速度,可以分别用含 t 的代数式表示出当 0<t≤2 时, 甲小球距离原点的距离和乙小球离原点的距离,当 t>2 时,甲小球距离原点的距离和乙小 球离原点的距离,然后将 t=1 和 t=3 分别代入相关的代数式,即可求解;②利用(2)中的 结论,分情况分别根据甲,乙两小球到原点的距离相等时经历的时间 ,建立关于 t 的方 程,解方程求出 t 的值。
2.如图,已知数轴上的点 表示的数为 ,点 表示的数为
,点 到点 、点 的
距离相等,动点 从点 出发,以每秒 个单位长度的速度沿数轴向右匀速运动,设运动
时间为 ( 大于 秒.
(1)点 表示的数是________. (2)求当 等于多少秒时,点 到达点 处? (3)点 表示的数是________(用含字母 的式子表示) (4)求当 等于多少秒时, 、 之间的距离为 个单位长度. 【答案】 (1)1 (2)解:[6-(-4)]÷2=10÷2=5(秒) 答:当 t=5 秒时,点 P 到达点 A 处.
(2)3 ;2 ;5 ;2 ;能. 理由: 当 0<t≤2 时,t+2=4-2t
解之: 当 t>2 时,t+2=2t-4 解之:t=6
∴当
或 6 时,甲乙两小球到原点的距离相等.
【解析】【解答】解:(1)∵ a、b 满足|a+2|+|b﹣4|=0, ∴ a+2=0 且 b-4=0 解之:a=-2 且 b=4, ∵ 在数轴上 A 点表示数 a,B 点表示数 b, ∴ 点 A 表示的数是-2,点 B 表示的数是 4. 故答案为:-2,4. (2)当 0<t≤2 时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个 单位长度; 当 t>2 时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长