直线的参数方程练习题有答案

合集下载

直线的参数方程

直线的参数方程

直线的参数方程知识精讲:1.直线参数方程的标准式:(1)过点()000,P x y ,倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(2)若12P P 、是直线上两点,所对应的参数分别为12t t 、,则122112P P t t P P t t==-∣,∣∣-∣. (3)若123P P P 、、是直线上的点,所对应的参数分别为123t t t 、、,则P 1P 2中点P 3的参数为1232t t t +=,12032t t P P +=∣∣. (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0.2.直线参数方程的一般式: 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00(t 为参数).一、参数的几何意义323.()______.112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(二星)直线为参数的倾斜角是31:()1x t y t⎧=⎪⎨=-⎪⎩变改为直线为参数呢?答案:6π;变式:56π321.()(3,1)2_______.112x t M y t ⎧=-⎪⎪⎨⎪=+⎪⎩(二星)直线为参数上到点距离为的点的坐标是3()(3,1)2_______.1x t M y t⎧=+⎪⎨=-⎪⎩变式:直线为参数上到点距离为的点的坐标是答案:()()3;3;变式:()()3;31.(三星)已知直线l的参数方程为112x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()6πρθ=-.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面4sin()6πρθ≤-y +的取值范围.备注:直线的参数方程的典型使用解:(1)因为圆C 的极坐标方程为ρ=4sin (θ﹣),所以ρ2=4ρ(sin θ﹣cos θ),所以圆C 的直角坐标方程为:x 2+y 2+2x ﹣2y=0.(2)方法一:直接使用直线的参数方程: 设z=x+y由圆C 的方程x 2+y 2+2x ﹣2y=0,可得(x+1)2+(y ﹣)2=4所以圆C 的圆心是(﹣1,),半径是2将代入z=x+y 得z=﹣t又直线l 过C (﹣1,),圆C 的半径是2, 由题意有:﹣2≤t ≤2 所以﹣2≤t ≤2即x+y 的取值范围是[﹣2,2].方法二:完全化为直角坐标方程来做,运算比较麻烦。

参数方程练习题

参数方程练习题

参数方程练习题参数方程是描述曲线在坐标系中运动的一种方式,通过给定参数的取值范围来表示曲线上的点的位置。

在数学中,参数方程经常用于描述各种曲线的形状和运动特性。

本文将介绍一些参数方程的练习题,帮助读者加深对参数方程的理解和应用。

一、直线的参数方程1. 给定直线L:y = mx + c,写出直线L的参数方程。

解析:直线L可以看作是一个点在以斜率m为速度直线运动的路径上,开始运动的位置为直线与y轴的交点(0,c)。

因此,直线L的参数方程可以表示为:x = ty = mt + c其中,t为参数,表示直线上某一点的位置。

2. 已知直线上两点A(x1, y1)和B(x2, y2),写出直线AB的参数方程。

解析:直线AB可以看作是一个点在路径上从A点运动到B点的轨迹。

设A点的参数为t=0,B点的参数为t=1,则直线AB的参数方程可以表示为:x = x1 + (x2 - x1)ty = y1 + (y2 - y1)t其中,t的取值范围为[0, 1]。

二、圆的参数方程3. 已知圆心C(a, b)和半径r,写出圆的参数方程。

解析:圆可看作是一个点在以圆心C(a, b)为中心,半径为r的圆上运动的轨迹。

设圆上某点的参数为θ,则圆的参数方程可以表示为:x = a + rcosθy = b + rsinθ其中,θ的取值范围为[0, 2π]。

4. 已知圆上两点A(x1, y1)和B(x2, y2),写出圆弧AB的参数方程。

解析:圆弧AB可以看作是一个点在路径上从A点运动到B点的轨迹。

设A点的参数为t=0,B点的参数为t=1,则圆弧AB的参数方程可以表示为:x = x1 + (x2 - x1)sin(tπ/2)y = y1 + (y2 - y1)cos(tπ/2)其中,t的取值范围为[0, 1]。

三、抛物线的参数方程5. 给定抛物线P:y = ax^2 + bx + c,写出抛物线P的参数方程。

解析:抛物线P可以看作是一个点在以速度随时间变化的路径上运动的轨迹。

参数方程与答案

参数方程与答案

参数方程一、单项选择题:本大题共148小题,从第1小题到第148小题每题分小计分;共计分。

一、参数方程中, 参数t的几何意义是[ ]A.定点M0(x0,y0)到原点距离.B.动点M(x,y)到原点距离.C.有向线段的数量.D.有向线段长度.二、直线(t为参数)上两点A、B对应的参数别离为t1和t2,│AB│等于[ ]A. |t1-t2|B.│t1-t2│C.D.3、假设直线参数方程为(t为参数)那么直线的倾斜角为[ ] (-)B.π-arctanD.π-arctan4、直线的参数方程为(t为参数)那么此直线的倾斜角是[ ]五、设为平面上两个定点, 方程(λ≠-1,λ为参数)表示的曲线是[ ]A.以为端点的线段B.直线C.直线除去点D.直线除去点六、参数方程(t是参数)所表示的图形是[ ] A.直线 B.射线 C.线段 D.圆锥曲线7、已知P1,P2是直线(t为参数)上的两点它们所对应的参数别离为t1、t2, 那么线段P1P2的中点P到(1,-2)的距离是 [ ]A.|t1+t2|B.|t1-t2|C.│t1│+│t2│D.八、直线 (t为参数)的倾角为[ ]九、过点(1,-2)倾角为150°的直线l的以t为参数的方程为 [ ]A.B.C.D.10、直线与圆x2+y2=16相交所得的弦长为[ ]1一、已知直线l1的参数方程为(t为参数) l2: ρsin(θ-)=2, 那么直线l1与l2的夹角为[ ]1二、直线(t为参数)与直线x+y-2=0交于P点, 那么点M(7,5)必然[ ]A.在P点上方,│PM│=2B.在P点下方,│PM│=2C.在P点上方,│PM│=2D.在P点下方,│PM│=213、直线(t为参数)上有参数别离为t1,t2的对应点为A和B, 那么A,B两点之间的距离为[ ] A.|t1+t2| B.|t1-t2|C.|t1|+|t2|D.|t1|-|t2|14、直线(t为参数)的倾斜角是[ ] °°°°1五、已知直线(t为参数)与双曲线x2-2y2-8=0相交于P1、P2两点, 那么|P1P2|的长为[ ]1六、已知直线(t为参数)与椭圆x2+2y2=8交A,B两点, 那么│AB│值为[ ] B.D.17、已知一直线方程是(t为参数), 另一直线方程是x-y-2=0, 那么两直线交点与P(1,-5)间的距离是[ ]C.1八、假设直线mx+4y=8与3x+2y=8的交点在第一象限, 那么m的取值范围是[ ]<3 <6 >6 <m<61九、动直线(2k-1)x+(k+l)y-(k-5)=0(k∈R)恒过定点是 [ ]A.(5,2)B.(2,-3)C.(5,9)D.(-,3)20、直线上到点(-2,3)的距离等于的点的坐标是[ ] A.(-4,5) B.(-3,4)C.(-4,5)或(0,1)D.以上结果都不对2一、直线(t为参数)的倾斜角是[ ] A. 20° B. 70° C. 110° D. 160°2二、已知直线方程(t为参数), 那么以下说法中错误的是[ ]A. 直线的斜率是B. 直线过点(3,-4)C. 直线不通过第二象限D. 当t=1时, 直线方程所确信的点到(3,-4)点的距离是123、设直线的参数方程为(t为参数)那么此直线在y轴上截距是[ ]C.24、若是直线的参数方程为(t为参数)那么此直线截抛物线=3x所得弦长是[ ]2五、直线(t为参数)上到点(-2,3)距离等于的点的坐标是[ ] A.(-4,5) B.(-3,4)C.(-4,5)和(0,1)D.(-3,4)和(-1,2)2六、已知:,那么方程(λ为参数,且λ≠-1)表示的曲线是[ ] A.线段 B.直线C.直线,但不含点D.直线,但不含点27、直线(t为参数)的倾角是[ ]2八、直线(t为参数)被圆截得的线段长度是[ ]D.与α有关的数值2九、直线(t为参数)的倾斜角等于[ ]30、直线(t为参数)与圆相交弦的长是[ ]3一、假设点P在过点M(1,5)且斜率为的直线1上运动,那么以的数量t为参数的1的方程为[ ]3二、直线(t为参数)的倾斜角是[ ]33、假设方程(k为参数)与(t为参数),表示同一条直线,那么t与k之间的关系是:[ ]34、直线(t为参数)与直线的交点到点M(1,5)的距离是[ ]3五、通过点P(4,1),且倾角为的直线ι,被圆所截得的弦长是[ ]3六、已知P、Q是直线(t为参数)与曲线的两个交点那么M(1,-)到P、Q两点距离之差为[ ]37、直线(t为参数)被双曲线所截得弦长是[ ]3八、直线(t为参数)与直线10x+5y+7=0交于B,又有点A(-2,1).那么有向线段AB的数量是[ ]D.3九、直线l的参数方程为(t为参数)那么以下参数方程(t为参数)表示的直线与直线l不同是[ ]40、直线l过点M(-1,2),倾角.l上动点为P(x,y).假设以PM=t为参数,那么l的参数方程是[ ]4一、直线(t为参数)的倾斜角为[ ]4二、直线(t为参数)(ab≠0)上有一点P(x,y),它对应的参数t=T,那么P与点Q的距离是[ ]43、参数方程(t为参数)表示的曲线是[ ] A.椭圆 B.圆,但除去(1,0)C.圆D.圆,但除去(-1,0)44、设直线l过点(1,5),倾斜角为,M为直线l上任意一点,以有向线段的数量t为参数,那么它的参数方程为[ ] A.B.C.D.4五、己知直线(t为参数),以下命题中错误的选项是[ ] A.直线过点(7,-1)B.直线的倾斜角为C.直线只是第二象限D.|t|是定点(3,-4)到该直线上对应点M的距离4六、方程中,t为非零常数,θ为变量,那么方程表示的曲线是[ ] A.直线B.圆C.椭圆D.双曲线47、若表示的曲线是[ ] A.线段B.四分之一个圆C.半圆D.圆4八、直线(t为参数)与圆(θ为参数)相交所得的弦长为[ ] A .B .C .D .4九、椭圆9x2+4y2-36=0的参数方程为[]A. x=2sinθy=3cosθB. x=2cosθy=3sinθC. x=2sinθy=3secθD.x=2cscθy=3cosθ50、假设方程x2sinα+y2cosα=1表示椭圆且核心在y轴上, 那么α∈ []5一、参数方程(θ为参数)表示的图形是[ ] A.中心为(-1,2)的椭圆 B.一条直线C.中心为(-1,2)的半个椭圆D.一条线段5二、圆锥曲线(ψ为参数)的焦距等于[ ] B.D.53、当│t│≤1时,动点M(sin(arcsint), cos(arcsint))的轨迹是 [ ]A.直线B.圆C.椭圆D.半圆54、线段AB的长为2,端点A,B别离在x,y轴上滑动, 假设P分AB的比值为-, 那么点P轨迹的一般方程是[ ] A.+y2=1 B.+y=1=1 =15五、椭圆的两个核心坐标是[ ] A. (-3,5), (-3,-3) B. (3,3), (3,-5)C. (1,1), (-7,1)D. (7,-1), (-1,-1)5六、椭圆的参数方程为(θ为参数),那么它的核心坐标是[ ] A.(-5,3)和(1,3)B.(-1,-3)和(5,-3)C.(-1,0)和(5,0)D.(3,0)和(-3,0)57、已知:A={(x,y)|(x-1)2+y2=1}B={(x,y)│=-1}D={(x,y)│(θ为参数)θ≠kπ,k∈Z}那么正确的选项是[ ]A. A=BB. B=DC. C=AD. B=C5八、交于A,B两点那么AB中点所对应的参数值为[ ]5九、参数方程(t为参数.t∈R)代表的曲线是[ ] A.直线 B.射线 C.椭圆 D.双曲线60、参数方程(θ是参数)表示的图形是[ ] A.中心为(1,-2)的椭圆 B.一条直线C.一条线段D.中心为(1,-2)的半个椭圆6一、方程(t为参数)的图形是[ ]6二、以下各点中在曲线上的点是[ ] A.(0,2) B.(-1,6) C.(1,3) D.(3,4)63、曲线(t为参数)与(θ为参数,0≤θ<2π)的交点对应于参数θ的值是[ ]64、已知集合M={(x,y) │(0<θ<π)}与集合N={(x,y)│y=x+b}知足M∩N≠φ,那么b知足[ ] ≤b≤3≤b≤3<b≤3<b≤36五、直线x+2y=0与椭圆x2+4y2-4mx-8my=0 (m为参数,m≠0)的位置关系是[ ]A.无公共点.B.只有一个公共点.C.总有两个公共点.D.公共点的多少与m有关.6六、[ ]67、那么直线与圆的位置关系是[ ] A.过圆心 B.相交而只是圆心C.相切D.相离6八、以下参数方程(t为参数)中与方程y2=x表示同一曲线的是[ ]6九、曲线的参数方程是(t是参数,t≠0),它的一般方程是[ ] A. (x-1)2(y-1)=1B. y=C. y=-1D. y=+170、以下各组方程中, 表示同一条曲线的是[ ]B. xy=1与(α∈(0,))7一、曲线(t为参数,t∈R)与(θ是参数,0≤θ<2π)交点对应的参数θ值是[ ]7二、已知:方程①当t是参数②λ是参数③θ是参数;那么以下结论中成立的是[ ]A.①②③均为直线B.只能②是直线C.①②是直线,③是圆锥曲线D.①是直线,①③是圆锥曲线73、直线(t为参数)上不同两点A、B对应的参数别离是、,那么|AB|等于[ ]]74、假设抛物线(p>0,t为参数)上两点E、F所对应的参数知足.那么E、F两点间距离等于[ ]7五、已知曲线(t为参数)上的A、B两点对应的参数别离为。

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)1、若直线l 的参数方程为13{24x ty t=+=- (t 为参数),则直线l 的倾斜角的余弦值为( )A.45-B.45C.35-D.35答案:C解析:方法一:直线l 的参数方程13{24x ty t=+=- (t 为参数)可转化为31'{524'x t y t ⎛⎫=+- ⎪⎝⎭=-('5t t =-为参数),故直线l 的倾斜角的余弦值为35-.方法二:由直线l 的参数方程取得普通方程为43100x y +-=,故斜率4tan 3k α==-,所以3cos 5α=- (α为倾斜角).2、若圆的方程12cos ,{32sin x y θθ=-+=+ (θ为参数),直线的方程为21,{61x t y t =-=- (t 为参数),则直线与圆的位置关系是( )A.相交过圆心B.相交而不过圆心C.相切D.相离 答案:B解析:圆的圆心坐标是(1,3)-,半径是2,直线的普通方程是320x y -+=,圆心到25==<,故直线与圆相交而不过圆心. 3、直线11,2{2x t y =+=- (t 为参数)和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A.(3,3)-B.()C.)3-D.(3,答案:D解析:将直线方程代入圆的方程得2211162t⎛⎫⎛⎫++-=⎪⎪ ⎪⎝⎭⎝⎭,整理得28120t t-+=,所以128t t+=,1242t t+=,依据t的几何意义可知中点坐标为114,422⎛⎫+⨯-⎪⎪⎝⎭,即(3,.4、直线21y x=+的参数方程是( )A.22{21x ty t==+(t为参数) B.21{41x ty t=-=+(t为参数)C.1{21x ty t=-=-(t为参数) D.sin{2sin1xyθθ==+(θ为参数)答案:C解析:选项A中20t≥,选项D中sin[1,1]θ∈-,因此不会是A,D.B中消掉参数得23y x=+,故只有C正确.5、已知O为原点,P为椭圆4cos,{xyαα==(α为参数)上第一象限内一点,OP的倾斜角为3π,则点P坐标为( )A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos,{xyαα==(α为参数)化为普通方程,得2211612x y+=.由题意可得直线OP的方程为y= (0x>).由22(0),{11612y xx y=>+=解得x y==.∴点P的坐标为(,55.故选D.6、直线1cos 2sin x t y t αα=+⎧⎨=-+⎩ (α为参数,0a π≤<)必过点( )A.()1,2-B.()1,2-C.()2,1-D.()2,1- 答案:A解析:直线表示过点()1,2-的直线.7、下列可以作为直线210x y -+=的参数方程的是( )A.13x t y t =+⎧⎨=+⎩ (t 为参数)B.152x t y t =-⎧⎨=-⎩(t 为参数)C.12x t y t =-⎧⎨=-⎩ (t 为参数) D.255x y t⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数) 答案:C解析:题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为230x y -+=,故选C.8、极坐标方程cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩ (t 为参数)所表示的图形分别是( )A.直线、直线B.直线、圆C.圆、圆D.圆、直线 答案:D解析:∵cos ρθ=,∴2cos ρρθ=,即22x y x +=,即221124x y ⎛⎫-+= ⎪⎝⎭,∴cos ρθ=所表示的图形是圆.由12x ty t =--⎧⎨=+⎩(t 为参数)消参得:1x y +=,表示直线.10、在平面直角坐标系 xOy 中,若直线:{x tl y t a==- (t 为参数)过椭圆3cos :{2sin x C y ϕϕ== (ϕ为参数)的右顶点,则常数a 的值为__________.答案:3解析:由直线l 的参数方程:{x tl y t a==- (t 为参数)消去参数t ,得直线l 的一般方程为y x a =-, 由椭圆的参数方程可知其右顶点为(3,0).因为直线l 过椭圆的右顶点,所以30a -=,即 3a =. 11、在平面直角坐标系 xOy 中,若直线121,:{x s l y s=+= ( s 为参数)和直线2,:{21x at l y t ==- (t 参数)平行,则常数a 的值为__________.答案:4解析:将直线方程化为平面直角坐标方程,得1l 的方程是210x y --=,2l 的方程是022a a x y --=.因为两直线平行,所以22a -=-,且12a-≠-,所以4a =. 12、化直线l的参数方程31x t y =-+⎧⎪⎨=⎪⎩,(t 为参数)为普通方程,并求倾斜角,说明t的几何意义.答案:由31x ty =-+⎧⎪⎨=+⎪⎩消去参数t ,得直线l10y -+=.故斜率tan k α==,由于0απ≤<,即3πα=.因此直线l 的倾斜角为3π.又31x t y +=⎧⎪⎨-=⎪⎩得()()222314x y t ++-=,∴t =故t 是t 对应点M 到定点()03,1M -的向量2M M 的模的一半.13、在直角坐标系中,参数方程为212x y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数)的直线l 被以原点为极点,x 轴的正半轴为极轴,极坐标方程为2cos ρθ=的曲线C 所截,求截得的弦长.答案:参数方程为212x y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数)表示的直线l 是过点()2,0A ,倾斜角为30,极坐标方程2cos ρθ=表示的曲线C 为圆2220x y x +-=. 此圆的圆心为()1,0,半径为1,且圆C 也过点()2,0A ;设直线l 与圆C 的另一个交点为B ,在Rt OAB ∆中,2cos30AB =︒=。

直线的参数方程练习题有答案

直线的参数方程练习题有答案

直线的参数方程1.设直线l 过点A (2,-4),倾斜角为56π,则直线l 的参数方程是____________.解析:直线l的参数方程为⎩⎨⎧x =2+t cos 56π,y =-4+t sin 56π(t 为参数), 即⎩⎨⎧x =2-32ty =-4+12t,(t 为参数).答案:⎩⎨⎧x =2-32ty =-4+12t,(t 为参数)2.设直线l 过点(1,-1),倾斜角为5π6,则直线l 的参数方程为____________.解析:直线l的参数方程为⎩⎨⎧x =1+t cos5π6y =-1+t sin 5π6,(t 为参数), 即⎩⎨⎧x =1-32t y =-1+12t,(t 为参数)答案:⎩⎨⎧x =1-32ty =-1+12t,(t 为参数)3.已知直线l 经过点P (1,1),倾斜角α=π6.写出直线l 的参数方程;解:①直线l 的参数方程为⎩⎨⎧x =1+32ty =1+12t,(t 是参数).4.已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6, 写出直线l 的参数方程.[解] (1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t y =1+12t ,(t 为参数).2分5.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,则直线l 的参数方程为____________.解析:∵直线的斜率为-1, ∴直线的倾斜角α=135°. ∴cos α=-22,sin α=22. ∴直线l 的参数方程为⎩⎨⎧x =2-22ty =-1+22t,(t为参数).答案:⎩⎨⎧x =2-22ty =-1+22t,(t 为参数)6.已知直线l :⎩⎨⎧x =-3+32t y =2+12t,(t 为参数) ,求直线l 的倾斜角;解:(1)由于直线l :⎩⎨⎧x =-3+t cos π6,y =2+t sin π6(t为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.7.若直线的参数方程为⎩⎨⎧x =3+12ty =3-32t,(t 为参数),则此直线的斜率为( )A.3 B .- 3C.33D .-33解析:选 B.直线的参数方程⎩⎨⎧x =3+12ty =3-32t,(t 为参数)可化为标准形式⎩⎨⎧x =3+⎝⎛⎭⎫-12(-t )y =3+32(-t ),(-t 为参数).∴直线的斜率为- 3.8.化直线l 的参数方程⎩⎪⎨⎪⎧x =1+3t ,y =3+6t (t 为参数)为参数方程的标准形式.解:由⎩⎪⎨⎪⎧x =1+3t ,y =3+6t ,得令t ′=32+(6)2 t ,得到直线l 的参数方程的标准形式为⎩⎨⎧x =1+155t ′y =3+105t ′,(t ′为参数).9.化直线l 的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t (t 为参数)为参数方程的标准形式.解:10.已知直线l 经过点P (1,1),倾斜角α=π6.①写出直线l 的参数方程;②设l 与圆x 2+y 2=4相交于A ,B 两点,求点P 到A ,B 两点的距离之积.解:①直线l 的参数方程为⎩⎨⎧x =1+32ty =1+12t,(t 是参数).②把直线l 的参数方程⎩⎨⎧x =1+32t ,y =1+12t代入圆x 2+y 2=4,整理得t 2+(3+1)t -2=0,t 1,t 2是方程的根,t 1·t 2=-2.∵A ,B 都在直线l 上,设它们对应的参数分别为t 1和t 2,∴|PA |·|PB |=|t 1|·|t 2|=|t 1t 2|=2. 11.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ,(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.解:(1)曲线 C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t,(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.12.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t y =3t ,(t 为参数),则直线l 与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4t y =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:8513.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l的参数方程为⎩⎨⎧x =3+22t y =22t,(t 为参数),代入椭圆方程x 24+y 2=1,得⎝⎛⎭⎫3+22t 24+⎝⎛⎭⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =⎝⎛⎭⎫-2652+85=85, 所以弦长AB 的长为85.14.已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6,圆C 的极坐标方程为ρ=2·cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于A ,B 两点,求点P 到A ,B 两点的距离之积.[解] (1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t y =1+12t ,(t 为参数).2分由ρ=2cos ⎝⎛⎭⎫θ-π4得ρ=cos θ+sin θ, 所以ρ2=ρcos θ+ρsin θ, 得x 2+y 2=x +y ,即圆C 的直角坐标方程为⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12.5分 (2)把⎩⎨⎧x =12+32t ,y =1+12t代入⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12,得t 2+12t -14=0,7分 设A 、B 两点对应的参数分别为t 1、t 2,则t 1t 2=-14,所以|PA |·|PB |=|t 1·t 2|=14.10分15.(2016·高考江苏卷)在平面直角坐标系xOy中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.[解] 椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎨⎧x =1+12t ,y =32t代入x 2+y 24=1,得(1+12t )2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167. 16.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B.10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0)∴d =(2-5)2+(-1-0)2=10. 17.在直角坐标系中,以原点为极点,x 轴的正半轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎨⎧x =-2+22ty =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ,直线⎩⎨⎧x =-2+22ty =-4+22t,(t 为参数)化为普通方程为y =x -2.(2)将⎩⎨⎧x =-2+22t y =-4+22t,代入y 2=2ax 得t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ), 因为|MN |2=|PM |·|PN |, 所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0, 解得a =1或a =-4(舍去). 故所求a 的值为1.18.已知直线l 1:⎩⎪⎨⎪⎧x =1+3t y =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3ty =2-4t ,代入2x -4y =5,得t =12,则B ⎝⎛⎭⎫52,0.而A (1,2),得|AB |=52. 答案:5219.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求: ①P ,M 间的距离|PM |;②点M 的坐标解:①由题意,知直线l 过点P (2,0),斜率为43, 设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为⎩⎨⎧x =2+35ty =45t ,(t 为参数).(*) ∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,Δ=152+4×8×50>0.设这个二次方程的两个根为t 1,t 2, 由根与系数的关系得t 1+t 2=158,t 1t 2=-254. 由M 为线段AB 的中点, 根据t 的几何意义,得|PM |=⎪⎪⎪⎪t 1+t 22=1516. ②因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎨⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎫4116,34.20.以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C 的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α,所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2。

高考数学常考题型:直线参数方程(含详解答案)

高考数学常考题型:直线参数方程(含详解答案)

高考数学常考题型:直线参数方程1.已知直线l 的参数方程为1324x ty t=+⎧⎨=+⎩(t 为参数),则点()10,,到直线l 的距离是( )A .15B .25C .45D .652.在平面直角坐标系xOy 中,直线l的参数方程为2cos sin x t y t ϕϕ=+⎧⎪⎨=⎪⎩(t 为参数,03πϕ⎡⎤∈⎢⎥⎣⎦,),直线l与22:20C x y x +--=交于, M N 两点,当ϕ变化时,求弦长||MN 的取值范围_______3.在直角坐标系xOy 中,直线l的参数方程为212x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 4sin ρθθ=,l 与C 交于,A B 两点,则AB =_______.4.已知P 1,P 2是直线1122x t y ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.5.直线l :12x aty t=⎧⎨=-⎩(t 为参数),圆C :4sin 4cos ρθθ=-(极轴与x 轴的非负半轴重合,且单位长度相同),若圆C 上恰有三个点到直线l,则实数a =_______.6.以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为221x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的极坐标方程为()4sin cos ρθθ=+.设曲线C 与直线l 交于A 、B 两点,若P 点的直角坐标为()2,1,则PA PB -的值=______. 7.已知直线l 的参数方程为34x ty t m=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为2cos ρθ=若直线l 与圆C,则m 的值为________________.8.已知直线参数方程为355435x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与圆5ρ=交于B 、C 两点,则线段BC 中点直角坐标________.9.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的直角坐标方程为10x y +-=,曲线C 的极坐标方程为(1cos 2)ρθ+2sin (0)a a θ=>(1)设t为参数,若12x t =-,求直线l 的参数方程及曲线C 的普通方程; (2)已知直线l 与曲线C 交于,A B ,设(1,0)P ,且,,PA AB PB 依次成等比数列,求实数a 的值.10.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为(1cos 2)8cos ρθθ-=. (1)求曲线C 的普通方程; (2)直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩,(t 为参数),直线l 与x 轴交于点F ,与曲线C 的交点为A ,B ,当||||FA FB ⋅取最小值时,求直线l 的直角坐标方程. 11.在平面直角坐标系xOy 中,不过原点的动直线l :y=x+m 交抛物线C :x 2=2py (p >0)于A 、B 两点,且22OA OB m m ⋅=-. (1)求抛物线C 的方程;(2)设直线y=x 与C 的异于原点的交点为P ,直线l 与C 在点P 处的切线的交点为D ,设2||PD t DA DB=⋅,问:t 是否为定值?若为定值,求出该定值;若不为定值,试说明理由.12.在直角坐标系xOy 中,曲线C 的参数方程为3cos 3sin x y θθ=⎧⎨=⎩,(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(cos sin )1ρθθ-=.(1)求C 和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点,求11||||MA MB -的值.13.在直角坐标系xOy 中,直线1C的参数方程为323x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin ρθθ=.(1)求1C 和2C 的直角坐标方程;(2)设点()0,2P ,直线1C 交曲线2C 于,M N 两点,求22PMPN +的值.14.在直角坐标系xOy 中,曲线C 的参数方程为:22t tt te e x e e y --⎧+=⎪⎪⎨-⎪=⎪⎩(其中t 为参数),直线l的参数方程为2x y ⎧=⎪⎪⎨⎪=⎪⎩(其中m 为参数)(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程; (2)若曲线C 与直线l 交于,A B 两点,点P 的坐标为()2,0,求PA PB ⋅的值.15.在平面直角坐标系xOy 中,已知直线l的参数方程是22x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos 4πρθ⎛⎫=+ ⎪⎝⎭. (1)求直线l 的普通方程和圆C 的直角坐标方程; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.16.选修4-4:坐标系与参数方程已知曲线C的参数方程为()2cos x y θθθ=⎧⎪⎨=⎪⎩为参数,在同一平面直角坐标系中,将曲线C上的点按坐标变换12x x y y ⎧=⎪⎪⎨=''⎪⎪⎩得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C '的极坐标方程;(Ⅱ)若过点3(,)2A π(极坐标)且倾斜角为6π的直线l 与曲线C '交于,M N 两点,弦MN 的中点为P ,求||||||AP AM AN ⋅的值.参考答案1.D2.4⎤⎦将直线l 的参数方程代入圆C 的方程可得:22cos 30t t ϕ+-=,12122cos 3t t t t ϕ∴+=-=-,,12MN t t ∴=-==03πϕ⎡⎤∈⎢⎥⎣⎦,,1cos 12ϕ⎡⎤∴∈⎢⎥⎣⎦,,21cos 14ϕ⎡⎤∴∈⎢⎥⎣⎦,,MN ⎤∴∈⎦43.8 4.122t t +因为12,P P 对应的参数分别为12,t t 故其中点所对应的参数为122t t +, 又()1,2P -对应的参数为0t =,根据直线的参数方程中t 的几何意义可知:12P P 中点到点P 的距离为12121022t t t t+-=+ 5.4-±l 的一般方程为20xay a +-=, ∵34πρθ⎛⎫=-+⎪⎝⎭,∴24sin 4cos ρρθρθ=-, ∴圆的直角坐标方程为2244x y y x +=-,即()()22228x y ++-=,∴圆心为()2,2C -,半径r =∵圆C 上恰有三个点到直线l, ∴圆心C 到直线l=,解得4a =-±6解:圆C 的极坐标方程为4πρθ⎛⎫=+⎪⎝⎭,即4sin 4cos ρθθ=+, 则24sin 4cos ρρθρθ=+,圆C 的直角坐标系方程为22440x y x y +--=, 点()2,1P 在直线l 上,且在圆C 内,由已知直线l 的参数方程是2212x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入22440x y x y +--=,得270t -=,设两个实根为1t ,2t,则12t t +=1270t t =-<,即1t ,2t 异号,所以1212PA PB t t t t -=-=+=7.12m =-或136m =-. 由参数方程可得:3344x t y m t ==-, 整理可得直线l 的直角坐标方程为4330x y m -+=,圆C 的极坐标方程即222222cos ,2,(1)1x y x x y ρρθ=+=-+=, 设圆心到直线的距离为d ,由弦长公式可得:==解得:12d =, 结合点到直线距离公式可得:403152m -+=,解得:12m =-或136m =-. 8.4433,2525⎛⎫ ⎪⎝⎭直线参数方程为355435x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),转化为普通方程:11433y x =-,圆5ρ=转化为普通方程为2225x y += ,将直线方程代入圆的方程中,整理得225881040x x --= , 设交点为()()1122,,,x y x y ,中点坐标()00,x y ,则1208844252225x x x +===, ()1212012114114112333333223325x x y y y x x -+-+===-+= , 即则线段BC 中点直角坐标为4433,2525⎛⎫⎪⎝⎭.9.(1)l的参数方程为122x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),C 的普通方程为2(0)x ay a =>;(22. (1)由题意将1x =-代入10x y +-=,得y = 所以l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数); 由(1cos2)2sin (0)a a ρθθ+=>和余弦的二倍角公式,可得22cos sin a ρθρθ=,令cos sin x y ρθρθ=⎧⎨=⎩代入化简可得:2(0)x ay a =>,所以曲线C 的普通方程为:2(0)x ay a =>.(2)将直线的参数方程代入2(0)x ay a =>整理得:2)20t t -+= 设,A B 对应的参数为分别为12,t t ,且为上述方程的两实根,则有:1212,2t t t t +=⨯=由题知P 点在直线上并且,,PA AB PB 依次成等比数列可得:2AB PA PB =⋅ 则可得21212t t t t -=,由()221212124t t t t t t -=+-⨯,代入整理得:2410a a +-=,又0a >,则解得2a =-.10.(1)24y x =(2)1x =(1)由题意得(1cos 2)8sin ρθθ+=,得22cos 8sin ρθθ=,得22cos 4sin ρθρθ=,cos x ρθ=,sin y ρθ=,24y x ∴=,即曲线C 的普通方程为24y x =.(2)由题意可知,直线l 与x 轴交于点(1,0)F ,即为抛物线C 的焦点,令1||FA t =,2||FB t =,将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩,代入C 的普通方程24y x =中,整理得22sin 4cos 40t t αα--=,由题意得sin 0α≠,根据根与系数的关系得,1224cos sin t t αα+=,1224sin t t α-=, 121224||||4sin FA FB t t t t α∴===≥(当且仅当2sin 1α=时,等号成立), ∴当||||FA FB ⋅取得最小值时,直线l 的直角坐标方程为1x =.11.(1)22x y =;(2)见解析(1)联立22y x m x py=+⎧⎨=⎩消去y 并整理得:2220x px pm --=,设1(A x ,1)y ,2(B x ,2)y ,则122x x p +=,122x x pm =-,22212121212()()()22y y x m x m x x m x x m pm pm m m ∴=++=+++=-++=,∴22121222OA OB x x y y pm m m m =+=-+=-,22pm m ∴=,又因为0m ≠,1p ∴=,抛物线C 的方程为:22x y =.(2)由22y xx y =⎧⎨=⎩可得(2,2)P ,由22x y =求导得y x '=,所以C 在点P 处的切线为:22(2)y x -=-,即220x y --=,联立220x y y x m--=⎧⎨=+⎩可得(2,22)D m m ++,2222||(22)(222)5PD m m m ∴=+-++-=,又直线l的参数方程为:22(222x m t y m t ⎧=++⎪⎪⎨⎪=++⎪⎩为参数), 将直线l 的参数方程代入到22x y =得22(220t m m +++=, 设A ,B 对应的参数为1t ,2t , 则221212|||||||||||2|2DA DB t t t t m m ====, 222||55||||22PD m t DA DB m ∴===为定值.12.(1)直线l 的直角坐标方程为10x y --=,C 的普通方程229x y +=;(2. 解:(1)因为直线l 的极坐标方程为()cos sin 1ρθθ-=,所以直线l 的直角坐标方程为10x y --=.因为曲线C 的参数方程为33x cos y sin θθ=⎧⎨=⎩(θ为参数),所以曲线C 的普通方程229x y +=.(2)由题可知()0,1M -,所以直线l的参数方程为212x t y ⎧=⎪⎪⎨⎪=-+⎪⎩,(t 为参数),代入229x y +=,得280t --=. 设A ,B 两点所对应的参数分别为1t ,2t ,则12t t +=128t t =-.11MA MB -=12128MB MA t t MA MB t t -+==. 13.(1)1C20y +-=,2C :23x y =(2)90(1)直线1C的参数方程为32x y ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数),消去t20y +-=;由2cos 3sin ρθθ=,得22cos 3sin ρθρθ=,则曲线2C 的直角坐标方程为23x y =.(2)将直线1C的参数方程323x y t ⎧=-⎪⎪⎨⎪=+⎪⎩代入23x y =,得2180t --=,设,M N 对应的参数分别为12,t t,则121218t t t t ⎧+=⎪⎨=-⎪⎩()2221212290PM PN t t t t +=+-=.14.(1)2cos 21((,))44ππρθθ=∈-(2)5解:(1)曲线C :22t t t t e e x e e y --⎧+=⎪⎪⎨-⎪=⎪⎩消去参数t 得到:221(1)x y x -=≥, 由cos x ρθ=,sin y ρθ=, 得2222cos sin 1((,))44ππρθρθθ-=∈-所以2cos 21((,))44ππρθθ=∈-(2)2x y ⎧=⎪⎪⎨⎪=⎪⎩代入221x y -=,23305m m ∴-= 设1PA m =,2PB m =,由直线的参数方程参数的几何意义得:215PA PB m m ∴⋅==15.(1)圆C的直角坐标方程为220x y+-+=,直线l的普通方程为x y-+=(2)(1)2cos cos2sin sin44ππρθθθθ=-=2cos sinρθθ∴=,即22x y+=∴圆C的直角坐标方程为:220x y+-+=由xy⎧=⎪⎪⎨⎪=+⎪⎩消去t得:y x-=∴直线l的普通方程为:0x y-+(2)由(1)知,圆C的圆心为22⎛-⎝⎭,半径1r=∴圆心到直线l距离5d==∴直线l上的点向圆C=16.(1)曲线C'的极坐标方程为:1Cρ'=(2)APAM AN=⋅(I)曲线C的参数方程为()2x cosyθθθ=⎧⎪⎨=⎪⎩为参数,利用平方关系即可化为普通方程.利用变换公式代入即可得出曲线C'的直角坐标方程,利用互化公式可得极坐标方程.(II)点A的直角坐标是3,02A⎛⎫-⎪⎝⎭,将l的参数方程3266x tcosy tsinππ⎧=-+⎪⎪⎨⎪=⎪⎩(t为参数)代入曲线C'的直角坐标方程可得2450t-+=,利用根与系数的关系即可得出.试题解析:(Ⅰ)222::143x cos x y C C y θθ=⎧⎪⇒+=⎨=⎪⎩,将122x x x x y y y ⎧=⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪''⎪'=⎩',代入C 的普通方程可得221x y ''+=,即22:1C x y +=',所以曲线C '的极坐标方程为:1C ρ'=(Ⅱ)点A 的直角坐标是3,02A ⎛⎫- ⎪⎝⎭,将l 的参数方程3266x tcos y tsin ππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数) 代入221x y +=,可得2450t -+=, ∴t 1+t2=,t 1•t 254=,所以12122t t AP AM AN t t +==⋅。

高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析1.已知直线l经过点P(-2,1)(1)若直线l的方向向量为(-2,-1),求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求此时直线l的方程.【答案】(Ⅰ)(Ⅱ)或x+y+1=0【解析】(1)已知直线的方向向量利用方向向量设方程时可设为:,然后根据直线过点P(-2,1)来得直线方程.(2)可先设直线的斜率,然后表示直线方程;根据直线方程来表示直线在两坐标轴上的截距,根据截距相等列出方程即可.试题解析:(1)直线斜率为得(2)或x+y+1=0.【考点】函数及其性质的应用.2.如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为.(1)求所在的直线方程;(2)求出长方形的外接圆的方程.【答案】(1)(2)【解析】(1)由已知条件推导出,设所在的直线方程为,由到的距离和到的距离相等,能求出所在的直线方程.(2)由,得,从而得到,由此能求出长方形的外接圆的方程.试题解析:(1)由于,则由于,则可设直线的方程为:,又点到与的距离相等,则,因此,,或(舍去),则直线所在的方程为.(2)由直线的方程解出点的坐标为,则即为长方形的外接圆半径. 故长方形的外接圆的方程为.【考点】圆的标准方程;直线的一般式方程.3.如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为.(1)求所在的直线方程;(2)求出长方形的外接圆的方程.【答案】(1);(2).【解析】(1)由已知条件推导出,设所在的直线方程为,由到的距离和到的距离相等,能求出所在的直线方程.(2)由,得,从而得到,由此能求出长方形的外接圆的方程.试题解析:(1)由于,则由于,则可设直线的方程为:,又点到与的距离相等,则,因此,,或(舍去),则直线所在的方程为.(2)由直线的方程解出点的坐标为,则即为长方形的外接圆半径.故长方形的外接圆的方程为.【考点】圆的标准方程;直线的一般式方程.4.直线与两坐标轴围成的三角形面积等于__________.【答案】【解析】令,则,令,则,所以【考点】求直线的横纵截距5.光线从点射出,到轴上的点后,被轴反射,这时反射光线恰好过点,求所在直线的方程及点的坐标.【答案】直线方程为:;.【解析】试题分析:先求出点关于轴的对称点,然后根据直线两点式方程求出的直线方程为.试题解析:点关于轴的对称点.因为点在直线上,,所以的直线方程为:.化简后得到的直线方程为:.【考点】直线方程.6.过点(1,2)且在两坐标轴上的截距相等的直线的方程 .【答案】或.【解析】直线的截距式中要求截距不为0,而直线的截距相等进可以全为0,因此本题应该分类讨论,截距不为0时,设直线方程为,把点(1,2)坐标代入,解得;截距为0时,设直线方程为,把点(1,2)坐标代入,解得,∴满足题意的直线有两条:或.【考点】直线的截距及截距式方程.7.已知直线不通过第四象限,则的取值范围是 ________.【答案】【解析】∵直线不过第四象限,所以①,解之得;②,综上所述a的取值范围是.【考点】直线的一般式方程.8.已知直线过点(0,7),且与直线平行,则直线的方程为().A.B.C.D.【答案】C【解析】根据两直线平行斜率相等,设过P与直线l平行的直线方程是 y=-4x+m把点P(0,7)代入可解得 m,从而得到所求的直线方程解:设过P与直线l平行的直线方程是y=-4x+m,把点P(0,7)代入可解得 m=7,故所求的直线方程是y=-4x+7.故选C【考点】直线方程点评:本题考查根据两直线平行和垂直的性质,利用待定系数法求直线方程的方法9.已知直线方程为,且在轴上的截距为,在轴上的截距为,则等于()A.3B.7C.10D.5【答案】A【解析】因为直线方程为,所以令,得令,得所以【考点】本小题主要考查直线在两坐标轴上的截距的求法,考查学生的运算能力.点评:注意直线在坐标轴上的截距与距离不同,截距可正可负也可以为零.10.一束光线通过点射到轴上,再反射到圆上,求反射点在轴上的横坐标的活动范围()A.(0,1 )B.(1-2,0)C.(1-2,1)D.(1,2-1)【答案】C【解析】因为根据求出点关于x轴的对称点M′,利用反射光线过M′与圆心,即可求得直线方程;A的取值范围是反射后射到圆,临界状态时的取值范围.利用圆心到直线的距离等于半径,从而可求得临界状态时反射光线的方程,进而可求A的活动范围(1-2,1),选C11. .过点(2,1)且与直线平行的直线方程是_______.【答案】【解析】设所求直线3x+4y+m=0,因为此直线过点(2,1),所以,所以所求直线方程为.12.在等腰中,,顶点为直线与轴交点且平分,若,求(1)直线的方程;(2)计算的面积.【答案】(1);(2)【解析】第一问中利用等腰中,,,顶点为直线与轴交点且平分,可知两点关于直线对称,利用方程组很容易得到。

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线(为参数)的普通方程为___________.【答案】【解析】联立消可得,故填.【考点】参数方程2.直线与直线为参数)的交点到原点O的距离是()A.1B.C.2D.2【答案】C【解析】将直线化普通方程为.解得两直线交点为,此交点到原点的距离为.故C正确.【考点】1参数方程和普通方程间的互化;2两点间的距离公式.3.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

【答案】【解析】由参数方程知: 曲线C1与C2的普通方程分别为,,所以解方程组可得交点坐标为.【考点】本题考查直线与圆的参数方程与普通方程的互化,以及它们交点坐标的求解.4.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程5.如图,以过原点的直线的倾斜角为参数,则圆的参数方程为 .【答案】(为参数)【解析】x2+y2-x=0圆的半径为,圆心为C(,0).连接CP,则∠PCx=2所以P点的坐标为:(为参数)6.在极坐标系中,圆上的点到直线的距离的最小值为________.【答案】1【解析】圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.【考点】直角坐标与极坐标、距离公式.7.已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.【答案】(1);(2).【解析】本题主要考查参数方程与普通方程的互化、中点坐标公式等基础知识,考查学生的转化能力、分析能力、计算能力.第一问,将曲线C的坐标直接代入中,得到曲线的参数方程,再利用参数方程与普通方程的互化公式,将其转化为普通方程;第二问,设出P、A点坐标,利用中点坐标公式,得出,由于点A在曲线上,所以将得到的代入到曲线中,得到的关系,即为中点的轨迹方程.试题解析:(1)将代入,得的参数方程为∴曲线的普通方程为. 5分(2)设,,又,且中点为所以有:又点在曲线上,∴代入的普通方程得∴动点的轨迹方程为. 10分【考点】参数方程与普通方程的互化、中点坐标公式.8.若直线的参数方程为,(t为参数),求直线的斜率.【答案】-【解析】k=.∴直线的斜率为-.9.将参数方程化为普通方程,并说明它表示的图形.【答案】y=1-2x2,抛物线的一部分.【解析】由可得即+x2=1,化简得y=1-2x2.又-1≤x2=sin2θ≤1,则-1≤x≤1,则普通方程为y=1-2x2,在时此函数图象为抛物线的一部分.10.已知点P(x,y)是圆x2+y2=2y上的动点.(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.【答案】(1)-+1≤2x+y≤+1.(2)a≥-1【解析】(1)设圆的参数方程为2x+y=2cosθ+sinθ+1=sin(θ+φ)+1,∴-+1≤2x+y≤+1.(2)x+y+a=cosθ+sinθ+1+a≥0,∴a≥-(cosθ+sinθ)-1=-sin-1,∴a≥-1.11.在椭圆=1上找一点,使这一点到直线x-2y-12=0的距离最小.【答案】(2,-3)【解析】设椭圆的参数方程为,d=,当cos=1时,dmin=,此时所求点为(2,-3)12.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.13.已知点P是曲线为参数,上一点,O为原点.若直线OP的倾斜角为,则点的直角坐标为.【答案】【解析】不妨设点(),则由两点斜率的计算公式得,由题知(),则,故填【考点】参数方程倾斜角14.在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.(1)求动点P的轨迹方程;(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)x2+2y2=2(2)存在点P为(0,±1)【解析】(1)设点P的坐标为(x,y).由题意知=|2-x|,化简,得x2+2y2=2,所以动点P的轨迹方程为x2+2y2=2.(2)设直线FP的方程为x=ty+1,点P(x1,y1),Q(x2,y2),因为△AQN∽△APM,所以有PM=3QN,由已知得PF=3QF,所以有y1=-3y2,①由得(t2+2)y2+2ty-1=0,Δ=4t2+4(t2+2)=8>0y 1+y2=-②,y1·y2=-③,由①②③得t=-1,y1=1,y2=-或t=1,y1=-1,y2=,所以存在点P为(0,±1).15.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.16.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.17.已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.【答案】(1);(2)【解析】(1)写出过点P(2,0)的直线方程的参数方程,联立抛物线的方程得到一个含参数t 二次方程.通过韦达定理即定点到中点的距离可得故填.(2)弦长公式|AB|=|t2-t1|再根据韦达定理可得故填.本题主要知识点是定点到弦所在线段中点的距离.弦长公式.这两个知识点都是参数方程中的长测知识点.特别是到中点的距离的计算要理解清楚.试题解析:(1)∵直线l过点P(2,0),斜率为设直线的倾斜角为α,tanα=sinα=cosα=∴直线l的参数方程为 (t为参数)(*) 1分∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y2=2x中,整理得8t2-15t-50=0,且Δ=152+4×8×50>0,设这个一元二次方程的两个根为t1、t2,由根与系数的关系,得t1+t2=t1t2= 3分由M为线段AB的中点,根据t的几何意义,得 4分(2)|AB|=|t2-t1|= 7分【考点】1.直线的参数方程的表示.2.定点到中的距离公式.3.弦长公式.18.在直角坐标系xOy中,过椭圆(为参数)的右焦点,斜率为的直线方程为【答案】【解析】由,即,所以右焦点坐标为(4,0).又斜率为,故易得所求直线方程为.即.【考点】参数方程、直线的点斜式方程19.已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为.(Ⅰ)求曲线直角坐标方程;(Ⅱ)若曲线、交于A、B两点,定点,求的值.【答案】(Ⅰ)曲线直角坐标方程为;(Ⅱ).【解析】(Ⅰ)由已知,两边都乘以,得,结合即可求得曲线的直角坐标方程(普通方程);(Ⅱ)由已知条件,把的参数方程为参数)代入,得由韦达定理可得:,进一步可计算出的值.试题解析:(Ⅰ)由已知,得,.3分(Ⅱ)把的参数方程代入,得.5分.7分【考点】直线的参数方程与极坐标方程.20.(坐标系与参数方程选做题)在极坐标系中,圆的圆心到直线的距离是 .【答案】.【解析】化圆的方程为直角坐标方程为,化为标准方程为,圆心坐标为,直线的直角坐标方程为,它的一般方程为,故圆的圆心到直线的距离是.【考点】1.极坐标方程与直角坐标方程之间的转化;2.点到直线的距离21.(坐标系与参数方程选做题)圆的极坐标方程为,则圆的圆心的极坐标是.【答案】【解析】圆的圆心为,半径为的圆的极坐标方程为.因为,所以此圆的圆心坐标为.【考点】圆的极坐标方程22.在平面直角坐标系中,过椭圆的右焦点,且与直线(为参数)平行的直线截椭圆所得弦长为.【答案】【解析】椭圆的普通方程为,则右焦点为(1,0);直线的普通方程为,过(1,0)与直线平行的直线为,由得,所以所求的弦长为.【考点】1.参数方程与普通方程的互化;2.两点间的距离公式和弦长公式.23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.25.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为()(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程【答案】(Ⅰ)、;(Ⅱ)或【解析】(Ⅰ) 利用参数方程化普通方程、极坐标方程化直角坐标方程来求;(Ⅱ)利用点到直线的距离来求试题解析:(Ⅰ)曲线的普通方程为:; 2分由得,∴曲线的直角坐标方程为: 4分(或:曲线的直角坐标方程为: )(Ⅱ)曲线:与轴负半轴的交点坐标为,又直线的参数方程为:,∴,得,即直线的参数方程为:得直线的普通方程为:, 6分设与直线平行且与曲线相切的直线方程为: 7分∵曲线是圆心为,半径为的圆,得,解得或 9分故所求切线方程为:或 10分【考点】参数方程化普通方程、极坐标方程转化为直角坐标方程,考查学生分析问题、解决问题的能力26.已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交?若相交,请求出公共弦长,若不相交,请说明理由.【答案】(1),;(2)相交,两圆的相交弦长为.【解析】本题考查坐标系与参数方程、极坐标与直角坐标方程的互化,考查学生的转化能力和计算能力.第一问,利用互化公式将参数方程化为普通方程,将极坐标方程化为直角坐标方程;第二问,通过数形结合,利用几何性质求相交弦长.试题解析:(1)由(为参数),得,由,得,即,整理得,. 5分(2)由于圆表示圆心为原点,半径为2的圆,圆表示圆心为,半径为2的圆,又圆的圆心在圆上,由几何性质易知,两圆的相交弦长为. 10分【考点】1.参数方程与普通方程的互化;2.极坐标方程与直角坐标方程的互化;3.相交弦问题.27.在直角坐标系中,已知曲线的参数方程是(是参数),若以为极点,轴的正半轴为极轴,则曲线的极坐标方程可写为________________.【答案】或【解析】曲线的标准方程为,令,得到极坐标方程为,也可转化为.【考点】圆的参数方程和极坐标方程.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.30.(坐标系与参数方程)在平面直角坐标系xOy中,直线的参数方程是(t为参数)。

参数方程大题

参数方程大题

参数方程大题1. 在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ=0,M 为l 3与C 的交点,求M 的极径.2. 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为π(2,)3,点B 在曲线2C 上,求OAB △面积的最大值.3. 在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .4. 在直线坐标系xoy 中,曲线C 1的参数方程为{x =√3cosα,y =sinα,(α为参数)。

以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2. (I )写出C 1的普通方程和C 2的直角坐标方程;(II )设点P 在C 1上,点Q 在C 2上,求∣PQ ∣的最小值及此时P 的直角坐标.5. 在直角坐标系xOy 中,圆C 的方程为.(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,学.科网求C 的极坐标方程; (Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,,求l 的斜率.6.在直线坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint ,(t 为参数,a >0)。

高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析1.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.【答案】(1)y=(2±)x或x+y+1=0或x+y-3=0;(2).【解析】(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.试题解析:(1)将圆C配方得:(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得:y=(2±)x.②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由直线与圆相切得:x+y+1=0或x+y-3=0.故切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)由|PO|=|PM|,得:=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上,当|PM|取最小值时即|OP|取得最小值,直线OP⊥l.∴直线OP的方程为:2x+y=0.解方程组得P点坐标为.【考点】直线和圆的方程的应用.2.已知直线,,则它们的图像可能为( )【答案】D【解析】由直线l1:ax-y+b=0,l2:bx-y-a=0,可得直线l1:y=ax+b,l2:y=bx-a.分类讨论:a>0,b>0;a<0,b>0;a>0,b<0;a<0,b<0.根据斜率和截距的意义即可得出.【考点】直线的一般方程.3.已知的顶点,的平分线所在直线方程为,边上的高所在直线方程为.(1)求顶点的坐标;(2)求的面积.【答案】(1)点C的坐标为;(2)..【解析】(1)因为直线,求出,进而求出直线AC的方程,直线AC与CD联立即可求出顶点的坐标;(2)由(1)可求出,再求出B点的坐标,由点到直线的距离公式可求出的高,进而可以求出的面积.试题解析:(1)直线,则,直线AC的方程为, 2分由所以点C的坐标.. 4分(2),所以直线BC的方程为, 5分,即.. 7分, 8分点B到直线AC:的距离为. 9分则.. 10分【考点】点到直线的距离、直线方程.4.已知的顶点A为(3,-1),AB边上的中线所在直线方程为,的平分线所在直线方程为,求BC边所在直线的方程.【答案】2x+9y-65=0【解析】本题考察的知识点主要是写出一个点的坐标和直线的斜率.通过点B在角平分线上,和直线AB的中线可以求出B点的坐标.再通过角平分线定理,求出直线BC的斜率.从而写出直线BC 的方程.试题解析:因为点B在直线上,设B,所以A,B两点的中点坐标为,又因为该点在AB边的中线上,解得,所以B(10,5).设直线BC的斜率为k,,,有角平分线性质可得.,解得k=.所以.【考点】1.三角形中线的性质.2.三角形角平分线的性质.3.直线方程的求解.5.若直线的参数方程为,则直线的斜率为()A.B.C.D.【答案】A【解析】由直线的参数方程为得,,所以,直线的斜率为,选A。

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)

直线的参数方程练习题(带答案)1、直线l的参数方程为x=1+3t,y=2-4t,求直线l的倾斜角的余弦值。

解析:方法一:将直线l的参数方程{(t为参数)}转化为{ x=1-3t',y=2-4t',其中t'=-5t为参数,则直线l的倾斜角的余弦值为-3/5.方法二:由直线l的参数方程得到普通方程为4x+3y-10=0,斜率k=tanα=-4/3,所以cosα=-3/5 (α为倾斜角)。

2、已知圆的方程为x=-1+2cosθ,y=3+2sinθ,直线的方程为y=6t-1,则直线与圆的位置关系是相交而不过圆心。

解析:圆的圆心坐标是(-1,3),半径是2,直线的普通方程是3x-y+2=0,圆心到直线的距离是<2,故直线与圆相交而不过圆心。

3、已知直线x=1+t/2,y=-3+3t/2的参数方程和圆x^2+y^2=16相交于A、B两点,求AB的中点坐标。

解析:将直线方程代入圆的方程得到(1+t/2)^2+(-3+3t/2)^2=16,整理得到t^2+4t-8=0,所以t1=-2+2√3,t2=-2-2√3.依据t的几何意义可知中点坐标为(3,-3)。

4、已知直线y=2x+1,求其参数方程。

解析:直线y=2x+1的参数方程为{x=t,y=2t+1}。

5、已知O为原点,P为椭圆x=4cosα,y=2/3sinα上第一象限内一点,OP的倾斜角为π/3,则点P坐标为(2,3)。

解析:OP的斜率为tan(π/3)=√3,O为原点,P为第一象限内的点,故P的坐标为(2,3)。

解析:根据题目所给的椭圆参数方程,可以化为普通方程,得到 $16x^2+12y^2=9$,同时得到直线 $OP$ 的方程为$y=3x(x>0)$。

根据直线和椭圆的交点为点 $P$,可以解得$x=\frac{4}{\sqrt{5}}。

y=\frac{3}{\sqrt{5}}$,所以答案为D。

解析:根据直线的一般式 $2x-y+1=0$,可以得到其斜率为 $2$,所以排除选项 A 和 D。

直线的参数方程

直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2. (3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。

直线的参数方程

直线的参数方程

直线的参数方程一、直线的参数方程(标准形式)⎩⎨⎧+=+=ααsin cos 00t y y t x x ,其中t 表示参数t 对应的动点(x,y )与直线上的定点(00,y x )之间的距离,α为直线的倾斜角。

当要解决与距离有关的几何问题时,常用直线方程的这一形式,若A 对应参数t 1,B 对应参数t 2,则21t t AB -=二、直线的参数方程(一般形式)⎩⎨⎧+=+=mty y lt x x 00,其中,向量),(m l 与直线平行巩固练习1、直线的参数方程标准形式,t的意义设直线1l 过点)4,2(-A ,倾斜角为65π:(1)求1l 的参数方程; (2)设直线2l :01=+-y x ,2l 与1l 的交点为B ,求点B 与点A 的距离。

解:(1)⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 214232(t 为参数)(2))13(7||-=AB2、已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合.直线l 的参数是⎪⎪⎩⎪⎪⎨⎧+-=+-=ty t x 541531为参数)t (,曲线C 的极坐标方程为).4sin(2πθρ+=(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于N M ,两点,求N M ,两点间的距离。

解:(1)21)21()21(:22=-+-y x C(2)541 3、直线过点)3,1(A ,且与向量)4,2(-共线:(1)写出该直线参数方程;(2)求点)1,2(--P 到此直线的距离。

解:(1)⎩⎨⎧-=+=ty tx 4321(t 为参数)(2)524、极坐标与参数方程 已知直线的参数方程为⎩⎨⎧+=+=t y tx 231(t 为参数),圆的极坐标方程为θθρsin 4cos 2+=(1)求直线的普通方程和圆的直角坐标方程;(2)求直线被圆截得的弦长 解:(1)5)2()1(,01222=-+-=+-y x y x(2)5304 5、设直线的参数方程为⎩⎨⎧-=+=t y tx 41035(t 为参数)(1)求直线的直角坐标方程;(2)把一般形式参数方程化成标准形式参数方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3数方程直线的参??t-x=12?即)为参数,(t1?ty=-1+?25的参数方l,则直线π,倾斜角为(2,-4)1.设直线l过点A63??tx=1-2 程是____________.?)t为参数答案:,(1?5ty=-1+??2,πcos 2+tx=?6?)t为参数,解析:直线l的参数方程为(π5的参=l. 写出直线,倾斜角3.已知直线l经过点P(1,1)α?π?sin t4y=-+6 6 数方程;3??t2x=-23??.(即,t为参数)?t +=1x21??t4=-+y?.(tl解:①直线的参数方程为是参数),21?t=1+y? 23??t-=2x1π??21,??的参数写出直线经过点4.已知直线lP=αl,,倾斜角?2??6t答案:,(为参数)1?t4y=-+? 2.方程π1π5?cos x=+t?的参数方程,则直线l,倾斜角为1),-过点设直线2.l(1 626?,即t为参数),l][解(1)直线的参数方程为(π?.为____________?sin ty=1+6π5?cos =xt1+?31?6?t=+x?为参数的参数方程为l直线解析:t(,),22?π5).2分(,t为参数??sin +=-y1t16?t+=y1?2.π在直线1).点M,经过点k=-1M(2,-5.已知直线l的斜率0(-3M,2)且斜率为tan 的直线,06.上,则直线l的参数方程为____________π.的倾斜角故直线lα=直线的斜率为-1,∵解析:6135°∴直线的倾斜角α=.1?t3+x=?2?22,则此直线的斜率)t,(7.若直线的参数方程为为参数,=-sin α=cos ∴α.322?ty=-3?22??tx=-2)为(2?,(t.为参数l∴直线的参数方程为)23 .-B A.3??t1y=-+233 C.D .-2?33?t-=2x2?1)答案:t,(为参数?t3+x=?22??t+y=-1?可化为)t选解析:B.直线的参数方程,(为参数23?t=3-y?23??t=-x+32?1???求直线为参数(,t) , ll6.已知直线:的倾斜-??)(-tx=3+?12???t2=y+??.标准形式为参数,(-t)23?)=y3(-+t?2角;π3.∴直线的斜率为-?,x+3=-t cos ?6?表示过点为参数t:l(1)解:由于直线(),3t1x=+?π??为参数方程的标准形)l8.化直线的参数方程t(为参数?sin 2=y+t6t+3y=6?式.,1+3tx=3???,t+=x1?由解:得2,+6y=3t??22,整理=②把直线l的参数方程y代入圆x4+1?t+=1y?222,6)令t′=3t+(2得到直线l的参数方程的标准形式为·t=-2.=0,t,t是方程的根,得tt+(3+1)t-2221115?,∴t和t都在直线∵A,Bl上,设它们对应的参数分别为21?′+x=1t5?2.t|=|t|=|t||PA|·|PB=|t|·为参数).′,(t211210??′3t+=y为方程线C的参数曲11.已知在直角坐标系xOy中,5θ+4cos x=1?t2-3x=??,倾斜角为5)l经过定点P(3,,(θ为参数),直线?为参数方程的标准形的参数方程化直线9.l)t(为参数θ2+4sin y=?t1y=+?π式.. 3解:的标准方程;写出直线l的参数方程和曲线C(1)π.Pl10.已知直线经过点(1α,倾斜角,1)=|PB|的值.相交于A,B两点,求|PA|·(2)设直线l与曲线C62216-+(y2),(解:(1)曲线C:x-1)=l①写出直线的参数方程;122?两,A4+xl②设与圆y=相交于,BAPB两点,求点到t+x=3? 2?.,(t直线l:为参数)点的距离之积.3?t+=5y?23??tx1=+2?2-t+3的参数方程代入圆C的方程可得t3)(2+l(2)将直线直线①l解:)t(的参数方程为,是参数.1?t=y1+?3,tt是方程的两个根,则t=-,03=,设t22211t3.=||t||||||P所以|APB=t=t|2121.,以极点为平面直角坐标系=1已知曲线C的极坐标方程为ρ12.2??t3x+=22x?的参数原点,极轴为x轴正半轴,建立平面直角坐标系,直线l2=,(t为参数),代入椭圆方程1,+y42??ty=t4x=-1+?2?相交所截得与曲线Ct,(为参数),则直线l方程是t=3y???22??t3+2????的弦长为________.22??得1=+,t 42??22将1=,程线:曲C的直角坐标方为x+y解析20.-2=整理,得5t6+2tt+x=-14?222?=0,t=0ty+中得=125-8t=,解得,代入xt21,t,t设方程的两实根分别为ty=3?21226822·,tt=-+t=-,t则=tt-||相交所截得的弦长与曲线.故直线lCl=4+3·21125512252884tt=(+t)t-t|-t|212112×=.552588??622??+==,8-555??答案:582.所以弦长xAB的长为25的右焦点,交椭圆于1=y过椭圆l113.已知斜率为的直线+41π??1,??的极坐标方程Cα,倾斜角=,圆经过点14.已知直线lP BA,两点,求弦的长度.AB2??6ππ??解:,所以直线1的倾斜角为l.的斜率为l因为直线-θ??4.cosρ为=2·4??2x2的方程化为直角坐标方C写出直线l的参数方程,并把圆(1)的参数方程为的右焦点为1=y+,直线,椭圆3(0)l4程;两点的距B,A到P两点,求点B,A相交于C与圆l设(2).1 离之积.?,x=1+t?2π1??为圆C的参数数方程为方程参(t为数),椭cos +x=t?362?ty=??,即)t为参数解](1)直线l的参数方程为,([2π??sin =1+ty6θcos x=??两点,求与椭圆C相交于A,B(θ为参数).设直线lθy=2sin ?31??t+x=22?线段AB的长.t为参数).2分,(1?2t+y=1?y22[解椭圆C的普通方程为x]+=1.4π??-θ??ρ=2cosθsin ,由cos 得ρ=θ+1?4??,1+tx=?221y?222)t(1=l的参数方程1,得代入x++将直线θ,sin ρ所以cos =ρθ+ρ243?ty=?222yx++=xy,得11??13222??????-y-x????.5即圆C的直角坐标方程为+=分t2222????16??2=-.1,即=0,7t0+16t=,解得t+t=217431??,t=x+16221111122?????. =-t|t所以AB=|2-x-y????=+t+-(2)把代入t,得=217 22422????1?t=1+y?2t=2+3x??两点间的距离是1=0,16.直线t=tt,(为参数)上对应t+y=-7,0分1?1)(A设、tt,则,=-tt两点对应的参数分别为B、2211410 B.A.1 1=|.10分t·t=|PB||·AP所以||22D..C10214,(2代入参数方程可得两点坐标为1=t,0=t将B.选解析:的参l中,已知直线xOy在平面直角坐标系)高考江苏卷15.(2016·.0)1)和(5,-,a)tt=8(4t+=22(4+a),则有t+2211222,PN||PM|·因为|MN||=10.01-)2=(-5)=+(-∴d2t,)=t·所以(t-t轴的正半轴建立极坐标x 在直角坐标系中,以原点为极点,17.21122220,tt+(tt)=-)即(t+t5-4tt=tt,的直,-4)(a cos θ(>0),过点P-2θ=2a sin系,已知曲线ρC:211212221120,a)a)=-40(4+故8(4+2?tx=-2+2?.4(舍去)a解得=1或a=-C)为参数,直线l与曲线,(线l的参数方程为:t2?t=-y4+1.的值为故所求a2t3=1+x?N两点.M分别交于,?相交5y=:2x-4:,(t已知直线18.l为参数)与直线l21t4-y=2?C的普通方程;的直角坐标方程和直线l写出曲线(1) ________=.,则|AB|于点B,且点A(1,2) (2)若a|||,|MN,PN成等比数列,求的值.||PMt+3x=1?22,化为直角2θ=aρcos θsin曲线的极坐标方程变为ρ(1)解:?5,4y=,代入解析:将2x-t-42y=?2?tx=-2+551??20,??. |=,2,则B,得|AB.而A=得t(1?2222?(ax2y坐标方程为=,直线,t化为普通方?为参数)2??t4=-y+52 答案:2y程为=-2.x4和抛物l0),斜率为,直线l19.如图所示,已知直线过点P(2,2?3?t=-x2+2?22①,求:AB B两点,设线段的中点为MA线y=2x相交于,ax2y,代入将(2)=得2??ty +4=-的坐标;②点M|MP,间的距离|PM242+t)a+2(42-t=)a +8(40.,斜率为,Pl①解:由题意,知直线过点(20),3.315414?,×+=x=2?=,,则tan α设直线l的倾斜角为α161653341???,??M得.即416??315443??,=y×=sin cos α==α,,451655轴正半轴为极轴,并在两种坐为极点,x20.以直角坐标系原点O的参数方程的标准形式为∴直线l为程参数方已知直线l的相标系中取同的长度单位,3?t=x2+?51??).(*)t,(为参数?αcos =+tx42??=ρC的极坐标方程0<α<π),曲线,(t为参数,?t=y5?αsin =ty?和抛物线相交,∵直线lθ2cos . 2θsin2∴将直线l的参数方程代入抛物线方程y =2x中,C的直角坐标方程;(1)求曲线22-15整理得8t-t50=08×50>0.4,Δ=15+×变化时,求αA,B两点,当设直线(2)l与曲线C相交于t,设这个二次方程的两个根为t,21的最小值.|AB|2515t,=+由根与系数的关系得ttt.=-211248θ2cos 22的直角θ,所以曲线Cθ=2ρcos sin得由ρ=ρ解:(1)2θsin M由AB为线段的中点,22x坐标方程为y.=tt+15??21??==.|PM|t根据的几何意义,得162??222=1t cos α--α2sin=t2x的参数方程代入(2)将直线ly,得15,0所对应的参数为M因为中点②t=,M16,t,t设A,B两点对应的参数分别为21(*)的参数方程的标准形式l将此值代入直线,12cos αt=-,·t则t,=+t222211ααsinsin-t=AB所以|||t|21.2t4t(t+t)-=22112α424cos+=,=242αααsinsinsinπ当α=2取得最小值|AB|时,2.。

相关文档
最新文档