高考物理动能与动能定理试题(有答案和解析)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能与动能定理试题(有答案和解析)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:
(1)弹簧获得的最大弹性势能;
(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;
(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m
【解析】
【详解】
(1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动
能定理得:−μmgl+W弹=0−m v02
由功能关系:W弹=-△E p=-E p
解得 E p=10.5J;
(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得
−2μmgl=E k−m v02
解得 E k=3J;
(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:
①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得
−2mgR=m v22−E k
小物块能够经过最高点的条件m≥mg,解得R≤0.12m
②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心
等高的位置,即m v12≤mgR,解得R≥0.3m;
设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:
−2mgR =m v 12-m v 02
且需要满足 m ≥mg ,解得R≤0.72m ,
综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。 【点睛】
解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;
(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.
【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】
(1)滑块在木板上滑动过程由动能定理得:
-μ1mgL =
12mv 2-12
20mv 解得:v =5 m/s
在P 点由牛顿第二定律得:
F -mg =m 2
v r
解得:F =70 N
由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N
对木板由牛顿第二定律得:F f 1-F f 2=Ma
a =
12
f f F F M
-=1 m/s 2
(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -1
2
μ1gt 2 对木板有:x =
12
at 2 解得:t =1 s 或t =
7
3
s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】
分析受力找到运动状态,结合运动学公式求解即可.
3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB 。为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。 (3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。 【解析】 【详解】
(1)玩具滑车到达D 点时,由牛顿第二定律:
2D
D v F mg m R
-=
解得
22
10=404=80N 10
D D v F mg m R =++⨯;
(2)若无传送带时,由平抛知识可知:
D x v t =
解得
1s t =
如果传送带保持不动,则当小车滑到最右端时,由动能定理:
22
1122
D mv mv mgL μ-=- 解得
v =6m/s
因为6m/s 2m/s v ==,则小车从右端轮子最高点做平抛运动,则落水点距离传送
带右端的水平距离:
'6m x vt ==
(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足
'22
1122
D mv mv mgL μ-= 解得
'v =
若传送带的速度v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为
,落水点距离传送带右端的水平距离为x vt ==;
③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;
④若传送带的速度≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。
4.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。取重力加速度g =10m/s 2。求: