西南科技大学本科期末考试试卷高等数学B1第九套题
高等数学期末试题(含答案)
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
《高等数学》期末试卷及答案
《高等数学》试卷(同济六版上)一、 选择题(本题共5小题,每小题3分,共15分)1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ). A 、1ln(0)x x +→ B 、ln (1)x x → C 、cos (0)x x → D 、22(2)4x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).A 、必要但非充分条件B 、充分但非必要条件C 、充分必要条件D 、既非充分又非必要条件5、下列无穷积分收敛的是( ).A 、⎰+∞sin xdx B 、dx e x ⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01二、填空题(本题共5小题,每小题3分,共15分)6、当k= 时,2,0(),x e x f x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.7、设x x y ln +=,则_______________dxdy=. 8、曲线x e y x-=在点(0,1)处的切线方程是 .9、若⎰+=C x dx x f 2sin )(,C 为常数,则()____________f x =.得分 评卷人得分 评卷人10、定积分dx x xx ⎰-+554231sin =____________.三、计算题(本题共6小题,每小题6分,共36分)11、求极限 xx x 2sin 24lim-+→.12、求极限 2cos 120lim xt x e dtx -→⎰.13、设)1ln(25x x e y +++=,求dy .14、设函数)(x f y =由参数方程⎩⎨⎧=+=t y t x arctan )1ln(2所确定,求dy dx 和22dx y d .得分 评卷人15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭⎰.16、设,0()1,01x e x f x x x ⎧<⎪=⎨≥⎪+⎩,求20(1)f x dx -⎰.四、证明题(本题共2小题,每小题8分,共16分)17、证明:dx x x n m )1(1-⎰=dx x x m n )1(1-⎰ (N n m ∈,).18、利用拉格朗日中值定理证明不等式:当0a b <<时,ln b a b b ab a a--<<.得分 评卷人得分评卷人五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分)19、要造一圆柱形油罐,体积为V,问底半径r和高h各等于多少时,才能使表面积最小?20、设曲线2xy=与2yx=所围成的平面图形为A,求(1)平面图形A的面积;(2)平面图形A绕y轴旋转所产生的旋转体的体积.《高等数学》试卷(同济六版上)答案一.选择题(每小题3分,本题共15分) 1-5 DBCAB 二.填空题(每小题3分,本题共15分)6、17、1xx+ 8、1y = 9、2cos 2x 10、0 三、计算题(本题共6小题,每小题6分,共36分)11、解:x x x 2sin 24lim-+→0limsin 2(42)x xx x →=++ 3分0121lim 28sin 2(42)x x x x →==++ 6分12、解:2cos 12limxdtext x ⎰-→2cos0sin lim 2xx xe x-→-= 3分12e=-6分 13、解:)111(1122xxx y ++++=' 4分211x +=6分14、解:t t t t dx dy 21121122=++= 3分222232112()241d y t d dy dxt dtt dt dx dxt t -+===-+ 6分15、解:212122sin(3)sin(3)(3)23dx d x x x +=-++⎰⎰ 3分12cos(3)2C x=++ 6分 16、解:⎰⎰⎰⎰--+==-0111120d )(d )(d )(d )1(x x f x x f x x f x x f 0110d 1xxe dx x -=++⎰⎰ 3分1010|ln(1)x e x -=++11ln 2e -=-+ 6分四、证明题(本题共2小题,每小题8分,共16分) 17、证明:11(1)(1)m n m n x x dx t t dt -=--⎰⎰ 4分11(1)(1)m nm nt t dt x x dx=-=-⎰⎰ 8分18、、证明:设f (x )=ln x , [,]x a b ∈,0a b <<显然f (x )在区间[,]a b 上满足拉格朗日中值定理的条件, 根据定理, 有()()'()(),.f b f a f b a a b ξξ-=-<< 4分由于1()f x x '=, 因此上式即为 l n l n b ab a ξ--=.又由.a b ξ<< b a b a b ab aξ---∴<< 当0a b <<时,ln b a b b a b a a--<< 8分五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分) 19、解:2V r h π=∴表面积2222222222V V S r rh r r r r rππππππ=+=+=+ 4分 令22'40VS r r π=-= 得 32Vr π=322V h π= 答:底半径32Vr π=和高322Vh π=,才能使表面积最小。
西南科技大学高数B1第八套题
《高等数学B1》(第8套)
课程代码
1
6
1
9
9
0
0
2
1
命题单位
理学院:公共数学教研室
一
二
三、1
2
3
4
5
6
7
四
五பைடு நூலகம்
总分
一、填空题(每小题3分,共15分)
1、微分方程 的通解是__________.
2、计算反常积分 __________.
3、 __________.
4、设 ,则 __________.
五、应用题(共7分)
求曲线 上相应于 的一段弧的长度.
A、 和 B、 和 C、 D、
三、解答题(每小题8分,共56分)
1、求极限 .
2、求曲线 在 处的切线方程和法线方程.
3、在抛物线 上求与直线 距离最近的点.
4、计算不定积分 .
5、设函数 满足 ,求 .
6、求微分方程 的通解.
7、设函数 ,确定 的值,使 在 处连续.
四、证明题(共7分)
证明不等式 .
5、设有平面光滑曲线L: ,则弧微分 __________.
二、选择题(每小题3分,共15分)
1、 ( ).
A、 B、
C、 D、
2、极限 等于( ).
A、 B、
C、 D、
3、设 ,则有( ).
A、 B、 C、 D、
4、 在 处( ).
A、可导B、连续但不可导C、极限不存在D、不连续
5、函数 的单调增加区间是( ).
西南科技大学本科期末考试试卷高等数学B1第九套题答案
西南科技大学本科期末考试试卷《 高等数学B1》(第9套)参考答案及评分细则一、填空题(每空3分,共15分)1、答案:212()x y C C x e -=+分析:易;考查二阶常系数齐次线性微分方程的解法2、答案:1分析:难;考查洛比达法则、反常积分的计算方法3、答案:x e分析:易;考查原函数与不定积分的概念4、答案:dx x x dy 112-=分析:易;考查复合函数微分法及微分表达式5、答案:2分析:中;考查曲率的计算二、选择题(每题3分,共15分)1、答案:B分析:中;考查变定积分求导,无穷小的阶,洛必达法则2、答案:B分析:难;考查利用定积分的定义求数列极限3、答案:C分析:中;考查极限的运算、等价无穷小的概念及等价无穷小的替换4、答案:D分析:易;考查连续,可导,极限之间的关系。
5、答案:B分析:易;考查单调性及凹凸性的判定三、解答题(每小题8分,共56分)1、解:14421=lim(1+)(-)=326n n e ζζ→∞分分原式 分析:中;考查积分中值定理、重要极限2、解:等式两边同时对x 求导得:6620y dy dy e y x x dx dx+++= 6分 则()626y dy e x x y dx+=-- 则()266y dy x y dx e x --=+ 2分 分析:易;考查隐函数确定的导数3、解:122120()()a a S S ax x dx x ax dx +=-+-⎰⎰ 2分 3111323a a =-+ 2分2121()022S S a a '+=-=⇒=,即2a =使得12S S +最小。
4分最小值为26- 分析:难;考查最值的综合运用,定积分几何应用4、解:533'422'2223'753 tan sec tan sec (sec )(sec 1)sec (sec )121sec sec sec .753x xdxx xd x x xd x x x x C ==-=-++⎰⎰⎰分析:中;考查分部积分、直接积分5、解:0001|x dx ==-⎰⎰⎰ 2分01)1)x dx x dx =-+-⎰⎰ 3分35531222220122224[][](2355315x x x x =-+-=+ 3分 分析:中.考查定积分化简技巧、换元积分法、基本积分公式分析:中;考查定积分化简技巧、换元积分法、基本积分公式6、解:特征方程为2320r r -+=(2分),特征根为121,2r r ==(1分).设原方程的特解为()x y x ax b e *=+(2分),带入原方程可定出1(2)2x y x x e *=-+(2分).原方程的通解为2121(2)2x x x y C e C e x x e =+-+(1分). 分析:中;考查二阶常系数线性微分方程的求解方法7、解:11lim ()lim sin sin x x f x ax a --→→==,3分 1lim ()1(1)x f x f +→=-=,3分。
西南科技大学09-10-1概率论与数理统计试题B卷及答案
西南科技大学2009——2010学年第 1 学期《概率论与数理统计B 》期末考试试卷(B 卷)学院:_______________班级:_____________姓名:_______________学号:____________一、填空题(每小题3分,共15分)1、袋中有红、黄、蓝球各一个,从中任取三次,每次取一个,取后放回,则红球一次也不出现的概率为___________。
2、设()0.5,()0.4,P A P AB ==则(|)P B A = ___________.3、设随机变量(2,)XB p ,若5{1}9P X ≥=则{1}P X == ______.4、设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤≤-≤≤-=,,0;11,11,41),(其他y x y x f则P{0≤X ≤1,0≤Y ≤1}=___________. 5、设随机变量X ,Y 的分布律分别为X 1 2 3 Y -1 0 1 P13 6112 P 12 14 14且X ,Y 相互独立,则E (XY )=___________. 二、选择题(每小题3分,共15分)1、设事件A B 、相互独立,且()0,()0,P A P B >>则下列等式成立的是( ) A .()0P AB =B .()()()P A B P A P B -=C .()()1P A P B +=D .(|)0P A B =2、下列函数中, 可以作为随机变量X 概率密度的是 ( )西南科技大学2009——2010学年第 1 学期《概率论与数理统计B 》期末考试试卷(B 卷)A .⎩⎨⎧<<=其他,0;10,2)(x x x f B .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f3、设随机变量X 和Y 相互独立,且~(3,4)X N ,~(2,9)Y N ,则3~Z X Y =-( ) A .(7,21)N B .(7,27)N C .(7,45)ND .(11,45)N4、设随机变量X 与Y 相互独立,且11(36,),(12,)63X B YB ,则D (X-Y+1)=( ) A .34 B .37 C .323D .3265、1234,,,X X X X 为总体X 的一个样本,且2(),()E X D X μσ==,则下列为μ的最小方差无偏估计量的是( )A .2123411114444X X X X μΛ=+++ B .312341119481616X X X X μΛ=+++C .3123411134848X X X X μΛ=+++ D .4123412135555X X X X μΛ=+++三、(8分) 设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%. 求:(1)从该厂生产的产品中任取1件,它是次品的概率;(2)若已知该件产品为次品,求它是由甲车间生产的概率.西南科技大学2009——2010学年第 1 学期《概率论与数理统计B 》期末考试试卷(B 卷)四、(12分)设离散型随机变量X 的分布律如下,令2Y X =,求:(1 (2)D(X); D(Y); Cov( X,Y)五、(10分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=.1,0,1,1)(2x x x x f X求:(1)求X 的分布函数)(x F X ;(2)求⎭⎬⎫⎩⎨⎧≤<321X P ;(3)令Y =2X ,求Y 的概率密度)(y f Y .六、(10分)设二维随机变量(X ,Y )的联合分布律为X 和Y 的边缘分布律; (3)Z=X+Y 的分布律.七.(12分)设二维随机变量(X ,Y )的概率密度为西南科技大学2009——2010学年第 1 学期《概率论与数理统计B 》期末考试试卷(B 卷)试求:(1)求常数c ; (2)求{}1,1P X Y >>(3)求(X ,Y )分别关于X ,Y 的边缘密度);(),(y f x f Y X (4)判定X 与Y 的独立性,并说明理由; 八、(10分)设总体X 的概率密度函数为(1)2,2;(;)0,,x x f x θθθθ-+⎧>=⎨⎩其他 其中1θ>为未知参数,12,,...,n X X X 是来自总体X 的样本 求:(1)θ的矩估计量; (2)θ的极大似然估计量.九、(8分) 已知某厂生产的一种元件,其寿命服从均值0μ=120,方差920=σ的正态分布.现采用一种新工艺生产该种元件,并随机取16个元件,测得样本均值x =123,从生产情况看,寿命波动无变化. 在显著水平05.0=α下,试判断采用新工艺生产的元件平均寿命较以往有无显著变化.附:0.05 1.645z = , 0.025 1.96z =, 0.05(16) 1.7459t = 0.025(16) 2.1199t =, 0.05(15) 1.7531t = 0.025(15) 2.1315t =⎩⎨⎧≤≤≤≤=.,0;20,20,),(其他y x cxy y x f参考答案及评分细则西南科技大学2009——2010学年第1学期《 概率论与数理统计B 》期末考试试卷(B 卷)一、填空题(每小题3分,共15分) 1、827; 2、15;3、49;4、14; 5、1324-; 二、选择题(每小题3分,共15分) 1、B ; 2、A ; 3、C ; 4、C ; 5、A 三、(8分)解: 设A ={该产品为次品}, 1B ={产品为甲厂生产} ,2B ={产品为乙厂生产},3B ={产品为丙厂生产}由题知,123123(|)4%;(|)2%;(|)5%;()0.45,()0.35,()0.2P A B P A B P A B P B P B P B ======(1):由全概率公式得,31()()(|)0.450.040.350.020.20.050.035i i i P A P B P A B ===⨯+⨯+⨯=∑……4分(2):由贝叶斯公式得, 111()()0.01818()()0.03535P B P A B P B A P A ===……4分 四、(12分)解:(1): Y=2X 的分布律为 Y 0 1 P12 12………3分 (2):E (X )=0 ,21()2E X =,D(X)= 12…………………………3分2Y 的分布律为 2Y 0 1 P12 12………3分 2211(),22EY E X EY ===,221()4DY EY EY =-=…………3分XY =3X 的分布律为 XY -1 0 1 P 4112413()0E XY EX ==,Cov( X,Y)= ()E XY EXEY -=0…………3分五、(10分)解:(1)0,1()11,1x F x x x<⎧⎪=⎨-≥⎪⎩……………………4分(2)⎭⎬⎫⎩⎨⎧≤<321X P =1(3)()2X X F F -=23……………………3分(3)2Y X =的概率密度224122()20,Y y f y y y ⎧⨯=≥⎪=⎨⎪⎩其他………3分六、(10分)解:(1):0.3a =……………………2分(2):X 的分布律 X 0 1 2P 0.4 0.3 0.3 ………2分Y 的分布律 Y 1 2P 0.4 0.6 ………2分(3)X+Y 的分布列为七、(12分)解: (1):由22001(,),f x y dxdy dy cxydx Ω==⎰⎰⎰⎰得c=14……………3分(2): {}{}1,11,1(,)X Y P X Y f x y dxdy >>>>=⎰⎰221119416dy xydx ==⎰⎰………3分 (3):20011(,),02()420,X f x y dy xydy x x f x ∞⎧==≤≤⎪=⎨⎪⎩⎰⎰其他 ……2分 同理,20011(,),,02()420,Y f x y dx xydx y y f y ∞⎧==≤≤⎪=⎨⎪⎩⎰⎰其他 …………2分 (4):(,)()();X Y f x y f x f y =所以X 与Y 相互独立…………2分 八、(10分)解:(1):2()221EXx d x θθθθθ∞-==-⎰………2分令()E X X=,则21X θθ=-,解得θ的矩估计量为2XX θΛ=-…3分 (2):似然函数:1111()22()nnnn ii i i L xx θθθθθθθ----====∏∏……………2分对数似然函数:1ln(())ln ln 2(1)(ln )ni i L n n x θθθθ==+-+∑令1(ln(()))ln 2ln 0ni i d L nn x d θθθ==+-=∑ 解得θ的极大似然估计量为1ln ln 2nii nxn θΛ==-∑……………3分九、(8分)解:由题知,需检验0010:120,:H H μμμμ==≠……………………1分由于方差29σ=已知,故检验的拒绝域为2z z α=≥…………………………………3分又已知0.05α=,20.025 1.96z z α==,4 1.96z ==> ………………………2分所以z 落入拒绝域中,故不接受0H ,即采用新工艺生产的元件平均寿命较以往有显著变化 ………………………2分。
09-10-2高数(AB)期末试卷和答案(最新整理)
f (0) ,于是
x
x
2 f (0) lim lim 0 f (t)dt 0 f (t)dt lim f (x) f (x)
x0
x0
x2
x0
2x
1 2
lim
x0
f (x) x
f (0)
f (x) x
f
(0)
f (0) ,由于
f (0) 0 ,所以 lim x0
1
。
2
0
6
五(17).(本题满分 6 分) 已知方程 x2 ln(1 x2 ) a 在区间 (1,1) 内存在两个互异的实 2
根,试确定常数 a 的取值范围.
解
设
f (x)
x2 2
ln(1 x2 ) a ,令
f (x)
x
1
2
x x2
x
x2 x2
1 0 ,得唯一驻点 x 0 , 1
当 1 x 0 时, f (x) 0 ,当 0 x 1时, f (x) 0 ,因此 fmax f (0) a 0 ,
,于是特解为
y
1 2
1 4
(x2
x)
1 2
(1
x)e2x
四(16).(本题满分 8 分)设函数 y f (x) 在区间[0,1] 上可导,在 (0,1) 内恒取正值,且
满足 xf (x) f (x) 3x2 ,又由曲线 y f (x) 与直线 x 1, y 0 所围成的图形 S 的面积为
x
lim
x0
4 x4
sin
sin
x 2
x
sin
sin
x 2
x
lim
x0
x
sin x3
大学高等数学试卷9(含答案与评分标准,结构规整可直接考试)
高等数学一、 单项选择题(20分)1. 下列级数中条件收敛的是( )A 、∑∞=+-11)1(n nn n B 、∑∞=-11)1(n n n C 、∑∞=-121)1(n n n D 、∑∞=11n n 2.⎰⎰≤++42222y x yx d eσ的值为( )A 、)1(24-e πB 、)1(24-e πC 、)1(4-e πD 、4e π3.若000=∂∂==y y x x xf ,000=∂∂==y y x x yf ,则在点),(00y x 处函数),(y x f 是( )A 、连续;B 、不连续;C 、可微;D 、都不定。
4.函数223333y x y x Z --+=的极小值点( ) B 、)0,0(; B 、)2,2(; C 、)2,0(; D 、)0,2(。
5.曲线积分⎰+cds y x )(22,其中c 是圆心在原点,半径为a 的圆周,则积分面积是( )A 、22a π;B 、3a π;C 、32a π;D 、24a π。
二、 填空题(20分)1.二元函数),(y x f z =在点),(y x 的全微分存在的充分条件是 。
2.)23(9124223+=+'-''x ey y y x 的特解*y 可设作*y = 。
3.设)sin ,,(y x ye x f z=μ,则du = 。
4.若)(x f 在],[ππ-上满足狄里赫条件,则∑∞=++10)sin cos (2n n n nx b nx a a=⎪⎩⎪⎨⎧±=πx x f x x ___,__________)(___,_____________,__________的间断点为为连续点 5.在xoy 平面上,则由曲线2x y =与24x y -=所围成区域的面积为 。
三、(12分)已知)(x f y =所表示的曲线与直线x y =相切于原点,且满足),(sin 2)(x f x x f ''-=-求)(x f 。
高等数学b1期末考试试题和答案
高等数学b1期末考试试题和答案高等数学B1期末考试试题一、单项选择题(每题3分,共30分)1. 函数y=x^2+2x+1的导数是()。
A. 2x+2B. 2x+1C. 2xD. 2x-12. 极限lim(x→0) (x^2-1)/(x-1)的值是()。
A. -1B. 1C. 0D. 23. 函数y=e^x的不定积分是()。
A. e^x + CB. e^x - CC. xe^x + CD. xe^x - C4. 曲线y=x^3-3x^2+2x+1在x=1处的切线斜率是()。
A. 0B. 1C. -1D. 25. 函数y=ln(x)的二阶导数是()。
A. 1/x^2B. 1/xC. -1/xD. -1/x^26. 曲线y=x^2+2x+1与x轴的交点个数是()。
A. 0B. 1C. 2D. 37. 函数y=x^3-3x^2+2x+1的极值点是()。
A. x=1B. x=2C. x=-1D. x=08. 函数y=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 89. 函数y=x^2+2x+1的值域是()。
A. (-∞, +∞)B. [0, +∞)C. (-1, +∞)D. [1, +∞)10. 曲线y=x^3-3x^2+2x+1在x=2处的切线方程是()。
A. y=x-1B. y=2x-1C. y=3x-2D. y=4x-3二、填空题(每题4分,共20分)11. 函数y=x^3的导数是_________。
12. 极限lim(x→∞) (x^2-1)/(x^2+1)的值是_________。
13. 函数y=e^x的二阶导数是_________。
14. 曲线y=x^2-4x+4在x=2处的切线斜率是_________。
15. 函数y=ln(x)的值域是_________。
三、计算题(每题10分,共40分)16. 求函数y=x^2-4x+4的极值点。
17. 求函数y=x^3-3x^2+2x+1的不定积分。
西南科技大学高等数学期中考试(含答案)经管
西南科技大学2012-2013学年第1学期半期考试试卷《高等数学B1》(经管类)参考答案及评分细则一、填空题(每题4分,共16分)1.设2lim()3x x x x a →∞+=-, 则a =____3ln -2__________。
2.设),2013()2)(1()(---=x x x x f Λ求)2013(f '=_____2012!______。
3.[]0()(0)sin 2lim 4,(0)tan x f x f xf x x →-'=设 则等于_____2______。
4.设x y xe =,则弹性函数EyEx = 1+x 。
二、选择题 (每题4分,共16分)1.下列说法正确的是( C )A .无界量是无穷大量;B .若()f x 在点0x 处连续,则在此点可导;C .若数列{}n a 无界,则数列{}n a 发散;D .开区间),(b a 上的连续函数有最大值。
2. 设2()lim 1nxn n xx x e f x e →∞+=+,则的是函数)(0x f x =( B )A .连续点; B. 可去间断点; C. 跳跃间断点; D. 无穷间断点。
3.1()()lim 21x f x f x x →=-设 为可导函数且满足,()y f x =则曲线在点(1(1))f ,处的切线斜率为( B )A .1 ; B. 2; C. 3; D. 4。
4.设)(x f 可导且2)(0-='x f ,则0→∆x 时,()f x 在0x 处的微分dy 与x ∆比较是( C)A .高阶无穷小; B.低阶无穷小; C. 同阶无穷小; D. 等价无穷小。
三、解答题 (每题8分,共56分)1.计算极限30lim x x →。
解:30lim x x →=0x →2分) =30tan (1cos )lim 2x x x x →-=2302lim 2x x x x →(4分)=14(2分)2.计算极限011lim()1x x x e →--。
西南科技大学本科期末考试试卷高等数学B1第六套题答案
西南科技大学本科期末考试试卷《 高等数学B1》(第6套)参考答案及评分细则一、填空题(每空3分,共15分)1、答案: ⎪⎩⎪⎨⎧-=--='=11212x y x x y 分析:中;考查知识点微分方程的初值问题及可分离变量的微分方程的解法2、答案:⎰⎰+∞+∞→+=+1122)1(lim )1(A A x x dx x x dx ⎰⎪⎭⎫ ⎝⎛--+=+∞→A A dx x x x 12111lim 1)11)1(ln(lim A x nx x A --+=+∞→)12ln 11(ln lim +--+=+∞→A A A A 2ln 1-= 分析:难;考查有理函数积分、反常积分的计算方法3、答案:45x分析:易;考查原函数与不定积分的概念。
4、答案:dx dy t ππ12-==分析:易;考查参数方程求导公式及在某点处的微分表达式5、答案;322(1)y y '''+分析:易;二、选择题(每题3分,共15分)1、答案: C分析:易.考查不定积分求微分,参函数求导2、答案:D分析:中;考察利用定积分的定义求数列极限3、答案:C分析:易;考查左右极限及函数的连续性4、答案:A分析:易;考查连续,可导,极限之间的关系5、答案:C分析:易;考查知识点拐点的判定三、解答题(每小题8分,共56分)1、解:原式300arcsin =lim =x x x x x x →→→-分201=6x → 4分 分析:易;考查罗比达法则、等价无穷小2、解:由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 3分’ 所以 dtdx dy dt d dx y d 1)(22==tt t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 3分 当x=9时,由221t x +=及t>1得t=2, 故 .)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 2分 分析:中;考查积分上限函数,参数方程确定函数求导,高阶导数3、解:2()20x y xy yy ''-++=02y y x '=⇒=代入原方程得到两个驻点(1,2)和(-1,-2) 3分 又22(2)(2)(2)(12)2(2)x y y x y x y y y y x y x y ''------'''=⇒=-- 2分在点(1,2)203y ''=-< 为最大值点 在点(-1,-2)203y ''=> 为最小值点 3分分析:中;考查最值的综合运用 4、解: 4'4'21331 ln 3ln 1.2343144x dx dx dx x x C x x x x ⎡⎤=+=-+++⎢⎥---+⎣⎦⎰⎰⎰ 分析:易;考查分部积分法这一知识点5、解:由对称性有21212sin 20x e xdx --=⎰ 8分分析:易;考查定积分性质6、解:22cos cos dy dy y x xdx dx y=⇒=⎰⎰, 4分 1sin x C y⇒-=+即1sin y x C =-+ 4分 分析:易;考查可分离变量方程的解法7、解:在0x =处,(0)0,f =00lim ()lim ()0x x f x f x -+→→==, 2分 所以()f x 在0x =处连续 3分 '00()(0)(0)lim lim 1,0x x f x f x f x x---→→-===- '00()(0)1(0)lim lim sin 0,0x x f x f f x x x+++→→-===- 所以()f x 在0x =处不可导 3分分析:难;考查连续性和可导性的判别四、证明题(共7分)证明:)]0()([2)()(0f x f x dt t f x x F x -='='⎰,因为a 为驻点,则0)]0()([2)(=-='f a f a a F ,故)0()(f a f =。
《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A)及参考答案
《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A )一、选择题(每题4分,共40分)1.当0x →时,2sin x x −是x 的A .高阶无穷小B .同阶但非等价无穷小C .低阶无穷小D .等价无穷小2.设()g x 与()f x 互为反函数,则12f x的反函数为A .(2)g xB .(2)f xC .2()f xD .2()g x3.011lim sin sin x x x x x →− 的结果是A .1−B .1C .0D .不存在4.已知322,1()3,1x x f x x x ≤ = > ,则()f x 在1x =处的 A .左、右导数都存在 B .左导数存在,右导数不存在C .左导数不存在,右导数存在D .左、右导数都不存在5.曲线2y =+(1,2)M 处的切线 A .不存在B .方程为1x =C .方程为2y =D .方程为12(1)3y x −=−6.设函数()f x 在0x 的某个邻域内有定义,且004()()lim 0x x f x f x A x →−=>,则 A .0()f x 一定是()f x 的一个极大值 B .0()f x 一定是()f x 的一个极小值 C .0()f x 一定不是()f x 的极值D .不能断定0()f x 是否为()fx 的极值7.设()f x 是定义在[0,4]上的连续函数,且221()d x f t t x −=∫,则(2)f =A .8B .8−C .48D .48−8.设2,01()2,12x x f x x x ≤≤= −<≤ ,0()()d x F x f t t =∫且[0,2]x ∈,则A .32,013()12,1232x x F x x x x ≤≤ = +−<≤B .32,013()72,1262x x F x x x x ≤≤ = −+−<≤C .332,013()2,1232x x F x x x x x ≤≤ = +−<≤D .32,013()2,122x x F x x x x ≤≤ = −<≤9.曲线(1)(2)y x x x =−−与x 轴所围成的图形面积可表示为 A .20(1)(2)d x x x x −−−∫B .121(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫C .2(1)(2)d x x x x −−∫D .211(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫10.设1()x ϕ和2()x ϕ是一阶线性非齐次微分方程()()y P x y Q x ′+=的两个线性无关的解,则它的通解是A .12[()()]C x x ϕϕ+B .12[()()]C x x ϕϕ− C .122[()()]()C x x x ϕϕϕ−+D .122[()()]()x x x ϕϕϕ−+二、填空题(每题4分,共24分)1.设()f x 连续,且2()()d xax F x f t t x a =−∫,则lim ()x a F x →=___________.2.设()f x 为奇函数,且(1)2f ′=,则31d()d x f x x =−=___________.3.221d (1)(4)x x x +∞=++∫___________.4.设123y x =+,则()()n y x =___________.5.=___________.6.曲线1(32)e xy x =+的斜渐近线为___________.三、解答题(每题6分,共36分)1.求微分方程22d d yxy x y x=+满足初始条件(e)2e y =的特解.2.求函数πarctan 2(1)e x y x +=−的单调区间与极值.3.计算下列积分.(1)求不定积分cos d 1cos xx x +∫.(2)求定积分1220arctan d (1)xx x +∫.4.求摆线(sin )(0)(1cos )x a t t a y a t =−> =−的一拱绕x 轴旋转一周所得旋转体的体积.5.证明:当01x <<ln(1)arcsin x x+<.6.设()f x 在区间[0,1]上可导,1220(1)2()d f x f x x =∫,证明:存在(0,1)ξ∈,使得2()()0f f ξξξ′+=.《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A )解答参考一、选择题(每题4分,共40分)1.当0x →时,2sin x x −是x 的 A .高阶无穷小 B .同阶但非等价无穷小 C .低阶无穷小D .等价无穷小答案 B解析 由洛必达法则知200sin 2cos limlim 11x x x x x xx →→−−==−, 故2sin x x −是x 的同阶但非等价无穷小,应选B 项.2.设()g x 与()f x 互为反函数,则12f x的反函数为A .(2)g xB .(2)f xC .2()f xD .2()g x答案 D解析 由()g x 与()f x 互为反函数可知,[()]g f x x =,1122g fx x = ,所以可得122g f x x=,故12f x的反函数为2()g x .故选D 项.3.011lim sin sin x x x x x →−的结果是A .1−B .1C .0D .不存在答案 A解析 0001111lim sin sin lim sin lim sin 011x x x x x x x x x x x →→→−=−=−=−,应选A 项.4.已知322,1()3,1x x f x x x ≤ = > ,则()f x 在1x =处的A .左、右导数都存在B .左导数存在,右导数不存在C .左导数不存在,右导数存在D .左、右导数都不存在答案 B解析 由条件可得2(1)3f =,所以 31122()(1)33(1)lim lim 211x x x f x f f x x −−−→→−−′===−−,2112()(1)3(1)lim lim 11x x x f x f f x x +−+→→−−′===∞−− 故()f x 在1x =处左导数存在,右导数不存在,应选B 项.5.曲线2y =+(1,2)M 处的切线 A .不存在B .方程为1x =C .方程为2y =D .方程为12(1)3y x −=− 答案 B解析 由条件可得y ′=1lim x y →′→∞,所以在点(1,2)M 处的切线为1x =,故选B 项.6.设函数()f x 在0x 的某个邻域内有定义,且004()()lim 0x x f x f x A x →−=>,则 A .0()f x 一定是()f x 的一个极大值 B .0()f x 一定是()f x 的一个极小值 C .0()f x 一定不是()f x 的极值D .不能断定0()f x 是否为()f x 的极值答案 B解析 由条件易知,在0x 的某个邻域内,0()()0f x f x −>,所以0()f x 一定是()f x 的一个极小值,故选B 项.7.设()f x 是定义在[0,4]上的连续函数,且221()d x f t t x −=∫,则(2)f =A .8B .8−C .48D .48−答案 A 解析等式221()d x f t t x −=−∫两边同时对x 求导可得(2)2f x x −=,代入4x =可得(2)8f =,应选A 项.8.设2,01()2,12x x f x x x ≤≤= −<≤ ,0()()d x F x f t t =∫且[0,2]x ∈,则A .32,013()12,1232x x F x x x x ≤≤ = +−<≤B .32,013()72,1262x x F x x x x ≤≤ = −+−<≤ C .332,013()2,1232x x F x x x x x ≤≤ = +−<≤D .32,013()2,122x x F x x x x ≤≤ = −<≤答案 B解析 当01x ≤≤时,320()d 3x x F x t t==∫;当12x <≤时,21211()d (2)d 2232xx F x t t t t x =+−=+−−+∫∫2172262x x =−+−,故选B 项. 9.曲线(1)(2)y x x x =−−与x 轴所围成的图形面积可表示为A .2(1)(2)d x x x x −−−∫B .121(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫C .2(1)(2)d x x x x −−∫D .211(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫答案 D解析 曲线(1)(2)y x x x =−−与x 轴的三个交点为x =0,1,2.当01x <<时,0y <,当12x <<时,0y >,所以围成曲线的面积可表示成选项D 的形式.10.设1()x ϕ和2()x ϕ是一阶线性非齐次微分方程()()y P x y Q x ′+=的两个线性无关的解,则它的通解是A .12[()()]C x x ϕϕ+B .12[()()]C x x ϕϕ−C .122[()()]()C x x x ϕϕϕ−+D .122[()()]()x x x ϕϕϕ−+答案 C解析 因为1()x ϕ和2()x ϕ是一阶线性非齐次微分方程()()y P x y Q x ′+=的两个线性无关的解,所以12[()()]C x x ϕϕ−是方程()0y P x y ′+=的通解,从而()()y P x y Q x ′+=的通解为122[()()]()C x x x ϕϕϕ−+,故选C 项.二、填空题(每题4分,共24分)1.设()f x 连续,且2()()d xa x F x f t t x a=−∫,则lim ()x a F x →=___________. 答案 2()a f a解析 2222()d lim ()lim ()d lim lim ()()xx a a x a x a x a x a f t t x F x f t t a a f x a f a x a x a→→→→====−−∫∫. 2.设()f x 为奇函数,且(1)2f ′=,则31d()d x f x x =−=___________. 答案 6解析 因为()f x 为奇函数,所以()f x ′为偶函数,由323d()3()d f x x f x x′=可得 31d()3(1)3(1)6d x f x f f x =−′′=−==. 3.2201d (1)(4)x x x +∞=++∫___________.答案π12解析 这是一个反常积分,计算得2222000111111d lim d lim arctan arctan (1)(4)314362tt t t x x x x x x x x +∞→+∞→+∞ =−=− ++++ ∫∫ 11πlim arctan arctan 36212t t t →+∞ =−=. 4.设123y x =+,则()()n y x =___________. 答案 1(1)!2(23)n n n n x +−⋅⋅+解析 由1(23)y x −=+得2(1)(23)2y x −′=−×+×,32(1)(2)(23)2y x −′′=−×−×+×,归纳总结可得()1(1)!(2()23)n n n n n y x x +−⋅⋅=+. 5.=___________.答案C解析 令tan x t =,故2d d(tan )sec d x t t t ==,则23sec d cos d sin sec t t t t t C C t ==+=∫∫.6.曲线1(32)e xy x =+的斜渐近线为___________. 答案 35y x =+ 解析 因为1(32)elim lim 3xx x y x kx x →∞→∞+==,111e 1lim[(32)e 3]lim 32e 51x xx x x bx x x →∞→∞−=+−=⋅+=, 所以曲线1(32)e xy x =+的斜渐近线为35y x =+.三、解答题(每题6分,共36分)1.求微分方程22d d yxy x y x =+满足初始条件(e)2e y =的特解.解 由22d d yxy x y x=+得22d d y x y x xy+=, 令yu x=,原方程可化为 d 1d u u xu x u+=+, 解得22ln u x C =+,代入(e)2e y =可得2C =,故所求方程的特解为2222ln 2y x x x =+.2.求函数πarctan 2(1)e x y x +=−的单调区间与极值.解 由条件易得πππ2arctan arctan arctan 222221e (1)ee11x x x x x y x x x ++++′=+−⋅=⋅++, 令0y ′=,解得1x =−和0x =.当1x <−时,0y ′>;当10x −<<时,0y ′<;当0x >时,0y ′>.所以函数的单调递增区间为(,1]−∞−和(0,)+∞,单调递减区间为[1,0]−.且1x =−为极大值点,极大值为π4(1)2e y −=−;0x =为极小值点,极大值为π2(0)e y =−.3.计算下列积分.(1)求不定积分cos d 1cos xx x+∫.解222cos cos (1cos )1d d d(sin )(csc 1)d csc cot 1cos sin sin x x x x x x x x x x x C x x x −==−−=−++++∫∫∫∫. (2)求定积分1220arctan d (1)xx x +∫.解 令tan x t =,则πππππ224124444224000arctan sec cos 21d d cos d d d(sin 2)(1)sec 244xt tt t t t x t t t tt t t x t+====+ + ∫∫∫∫∫ ππ224400π1cos 2ππ1[sin 2]644264168t t t =++=+− . 4.求摆线(sin )(0)(1cos )x a t t a y a t =−> =−的一拱绕x 轴旋转一周所得旋转体的体积.解 所求体积为2π2π2π2π22233π()d πd πd π(1cos )d a a a V f x x y x y x a t t ====−∫∫∫∫32ππ33636001cos 8πd 32πsin d 32π222t t t a t a a I − ==∫∫ 323531π32π5π6422a a ××××=.注 这里用到了华里士公式ππ2201321,123sin d cos d 131π,222n nn n n n n n I x x x x n n n n n −− ×××× −=== −− ×××× −∫∫ 为大于的奇数为正偶数. 5.证明:当01x <<ln(1)arcsin x x+<. 证明 令()(1)ln(1)f x x x x =++,则(0)0f =,且()ln(1)0(01) f x x x x ′=+><<,由(0)0()0f f x = ′>可得,当01x <<时,()0f x >,化简整理得ln(1)arcsin x x+<. 6.设()f x 在区间[0,1]上可导,1220(1)2()d f x f x x =∫,证明:存在(0,1)ξ∈,使得2()()0f f ξξξ′+=. 证明 令2()()g x x f x =,由积分中值定理,存在10,2c∈,使得12220(1)2()d ()f x f x x c f c ==∫, 即()(1)g c g =.显然2()()g x x f x =在[0,1]上可导,由罗尔中值定理,存在(,1)(0,1)c ξ∈⊂,使得()0g ξ′=.而2()2()()g x xf x x f x ′′=+,故2()()0f f ξξξ′+=.。
西南科技大学45 高数C1参考答案A
西南科技大学2014-2015-1学期《高等数学C1》本科期末考试试卷(A 卷)参考答案及评分细则一、选择题(每小题3分,共18分)1、D ;2、A ;3、B ;4、D ;5、C ;6、B ; 二、填空题(每小题3分,共18分) 1、2sin x ;2、(ln 1)x x x dx +;3、12-;4、0;5、1x e +;6、-4; 三、解答题(每小题8分,共56分)1、解:22201cos22sin lim lim 2sin ==x n x x x x x →→∞-2分分;42422212+lim ()lim ()==x x x x e x x x →∞→∞⎡⎤+⎢⎥⎢⎥⎣⎦2分分 2、解:4t π=时对应点的坐标为003cos sin 4242x y ππ====,(2分)该点切线斜率为: 444cos 13sin 3t t t dydyt dt dx dx tdtπππ======--1分1分1分, 所以该点切线方程为:1()232y x -=--.(3分) 3、解:首先函数在0x =点连续;其次要在0x =可导:'(0)'(0)f f -+=(1分);00sin 010'(0)lim 1;'(0)lim 1x x x x e f f x x ---+→→---====(4分),故函数在0x =处可导(1分),'(0)1;f =(2分)4、解:222sin (2cos )ln 2cos 2cos 2cos ==x d x x dx x x C x x x x-+++++⎰⎰分分,2ln ln ln ln ln xdx x x xd x x x dx x x x C =-=-=-+⎰⎰⎰分1分1分;5、解:11111222-1-1-12+2=2arctan 1+1+1+x x dx dx dx x x x x π-+==⎰⎰⎰;41310144x x dx ==⎰; 6、解:令24'()=40x f x xe -=(2分),得驻点0x =,(2分),又在0x >时,'()0f x >,说明在0x >时函数为增函数;在0x <时,'()0f x <,说明在0x <时函数为减函数. (2分) 所以0x =是函数的极小值点, 代入的极小值为(0)0f =.(2分) 7、解: 将等式两边同时从0到1积分得:22111131()()1()14f x dx x dx f t dt f t dt =-=-⎰⎰⎰⎰分分,于是214()=3f x dx -⎰分,234()13f x x =--分;四、证明题(8分)证明:令()sin f x x x =,(3分)则这个函数满足:(1)在闭区间[]0,π上连续;(2)在开区间()0,π内可导;(3)(0)()0f f π==.(2分)由罗尔定理,在()0,π内至少存在一点ξ,使得'()0f ξ=,即cos sin =0ξξξ+.(3分)。
高数期末试题 及答案
高数期末试题及答案1. 选择题(每题2分,共40分)
1.1 选择题题干
答案:选项A
解析:解析内容
1.2 选择题题干
答案:选项B
解析:解析内容
......
2. 填空题(每题4分,共40分)
2.1 填空题题干
答案:填空答案
解析:解析内容
2.2 填空题题干
答案:填空答案
解析:解析内容
......
3. 计算题(每题10分,共80分)3.1 计算题题干
解答:
计算过程
3.2 计算题题干
解答:
计算过程
......
4. 证明题(每题20分,共80分)4.1 证明题题干
解答:
证明过程
4.2 证明题题干
解答:
证明过程
......
5. 应用题(每题15分,共60分)5.1 应用题题干
解答:
解题思路和步骤
5.2 应用题题干
解答:
解题思路和步骤
......
综上所述,这是一份高数期末试题及答案,包括选择题、填空题、计算题、证明题和应用题。
每道题目都提供了准确的答案和解析,以帮助同学们检验和巩固他们的数学知识。
请同学们认真阅读每道题目并按照正确的解题思路和步骤进行答题。
祝大家期末考试顺利!
(文章结束,共计xxx字)。
大一第二学期高数期末考试题(含答案)
大一第二学期高数期末考试之阿布丰王创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则. 6.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分) 5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:133()xf x dx xe dx ---=+⎰⎰⎰12.解:由(0)0f =,知(0)0g =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南科技大学本科期末考试试卷
(1)
+
n
⎰
B、2
2ln
x处连续,则下列结论不成立的是( ) .
4、函数()
f x在点
A 、()f x 在0x 处有定义
B 、()f x 在0x 处左极限存在
C 、()f x 在0x 处右极限存在
D 、()f x 在0x 处可导 5、函数23++=x x y 在其定义域内( ) .
A 、 单调减少
B 、 单调增加
C 、 图形下凹
D 、 图形上凹
三、解答题(每小题8分,共56分)
1、求极限 1
2312
lim
(1+)n
n x n x dx →∞⎰
.
2、设方程2650.y e xy x ++-=求
dx
dy .
3、设直线y ax =与抛物线2y x =围成图形面积为1S ,它们与1x =围成面积为2S ,并且01a <<,
确定a 的值,使得12S S +最小,并求出最小值.
4、计算不定积分53tan sec x xdx ⎰.
5、计算定积分dx x x x ⎰+-20
232.
6、求微分方程32x y y y xe '''-+=的通解.
………密……………封……………线……………以……………内……………答……………题……………无……………效……………
7、设函数sin 1()(1)11
ax
x f x a x x <⎧=⎨--≥⎩,确定a 的值,使()f x 在1x =处连续.
四、证明题(共7分)
设)()(x g x f ,
在),0[∞+内有二阶连续导数,且当0>x 时,有)()(x g x f ''>'', )0()0(,)0()0(g f g f '='=.证明当0>x 时,)()(x g x f >.
五、应用题(共7分) 计算抛物线2
12
y x =
被圆 223x y +=所截下的有限部分的弧长.。