导数题型总结(解析版)
导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
导数构造函数13种题型(解析版)

第7讲 导数构造函数13类【题型一】 利用x nf (x )构造型【典例分析】函数()f x 是定义在区间(0,)+∞上的可导函数,其导函数为'()f x ,且满足'()2()0+>xf x f x ,则不等式(2016)(2016)5(5)52016x f x f x ++<+的解集为A .{}2011x x -B .{}|2011x x <-C .{}|20110x x -<<D .{}|20162011x x -<<-【答案】D 【详解】设2()()g x x f x =,则2'()2()'()['()2()]g x xf x x f x x xf x f x =+=+,由已知当0x >时,'()0g x >,()g x 是增函数,不等式(2016)(2016)5(5)52016x f x f x ++<+等价于22(2016)(2016)5(5)x f x f ++<,所以020165x <+<,解得20162011x -<<-.点睛:本题考查导数的综合应用,解题关键是构造新函数2()()g x x f x =,从而可以利用已知的不等式关系判断其导数的正负,以确定新函数的单调性,在构造新函数时,下列构造经常用:()()g x xf x =,()()f x g x x=,()()x g x e f x =,()()xf xg x e =,构造新函数时可结合所要求的问题确定新函数的形式.【变式演练】1.已知定义域为的奇函数的导函数为()f x ',当时,()()0f x f x x'+>,若,则的大小关系正确的是A .B .C .D .【答案】C 【解析】分析:构造函数()()g x xf x =,利用已知条件确定'()g x 的正负,从而得其单调性. 详解:设()()g x xf x =,则'()()'()g x f x xf x =+,∵()'()0f x f x x +>,即'()()'()0xf x f x g x x x+=>,∵当0x <时,)'(0g x <,当0x >时,'()0g x >,()g x 递增.又()f x 是奇函数,∵()()g x xf x =是偶函数,∵(2)(2)g g -=,1(ln )(ln 2)(ln 2)2g g g =-=,∵10ln 222<<<,∵1()(ln 2)(2)2g g g <<,即a c b <<.故选C .2.已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,【答案】B 【分析】根据题意,构造函数()y xf x =,结合函数的单调性解不等式,即可求解. 【详解】根据题意,构造函数()y xf x =,()0,x ∈+∞,则()()0y f x xf x ''=+<, 所以函数()y xf x =的图象在()0,∞+上单调递减.又因为()()()2111f x x f x +>--,所以()()22(1)(1)11x f x x f x ++>--,所以2011x x <+<-,解得2x >或1x <-(舍).所以不等式()()()2111f x x f x +>--的解集是()2,+∞.故选:B.3.设函数()f x 在R 上可导,其导函数为()'f x ,且2()()0f x xf x '+>.则下列不等式在R 上恒成立的是( ) A .()0f x ≥ B .()0f x ≤ C .(x)x f ≥ D .()f x x ≤【答案】A 【分析】根据给定不等式构造函数2()()g x x f x =,利用导数探讨()g x 的性质即可判断作答. 【详解】依题意,令函数2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因2()()0f x xf x '+>,于是得0x <时()0g x '<,0x >时()0g x '>, 从而有()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,因此得:2,()()(0)0x R x f x g x g ∀∈=≥=,而(0)0f >,即f (x )不恒为0, 所以()0f x ≥恒成立.故选:A【题型二】 利用f (x )/x n构造型【典例分析】 函数()f x 在定义域0,内恒满足:①()0f x >,①()()()23f x xf x f x '<<,其中f x 为()f x 的导函数,则A .()()111422f f << B .()()1111628f f << C .()()111322f f << D .()()111824f f << 【答案】D 【详解】令()()2f xg x x =,()0,x ∈+∞,()()()32xf x f x g x x '-'=,∵()0,x ∀∈+∞,()()()23f x xf x f x '<<,∵()0f x >,0g x,∵函数()g x 在()0,x ∈+∞上单调递增,∵()()12g g <,即()()412f f <,()()1124f f <, 令()()3f x h x x =,()0,x ∈+∞,()()()43xf x f x h x x '-'=,∵()0,x ∀∈+∞,()()()23f x xf x f x '<<,()0h x '<, ∵函数()h x 在()0,x ∈+∞上单调递减,∵()()12h h >,即()()218f f >,()()1182f f <,故选D.【变式演练】1.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数,所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===();()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A2.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( ) A .(],1-∞B .(],e -∞C .[)1,+∞D .[),e +∞【答案】C 【分析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>.令()()xg x e f x =⋅,则()()()0x g x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1x f x e -≥,可变形为()x e f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞.故选:C.【题型三】 利用e nx f (x )构造型【典例分析】已知函数()f x 在R 上 可导,其导函数为()f x ',若()f x 满足:当1x ≠时,()()()1x f x f x ⎡⎤-+⎣'⎦>0,()()222x f x e f x -=-,则下列判断一定正确的是A .()()10f f <B .()()440e f f <C .()()20ef f >D .()()330e f f >【答案】D 【分析】构造函数()()xg x f x e =,结合导函数,判定()g x 的单调性,()()g 2x g x 由,-=得()g x 的对称轴,对选项判断即可. 【详解】构造函数()()x g x f x e =,计算导函数得到()'g x =()()xe f x f x +'⎡⎤⎣⎦,由()1x -()()f x f x +'⎡⎤⎣⎦>0,得当x 1>,()()f x f x '+>0,当x 1<时,()()f x f x '+<0.所以()g x 在()1,∞+单调递增,在(),1∞-单调递减,而()()()()()2x 2x x 22xf xg 2x f 2x e e f x e g x e----=-=⋅==,所以()g x 关于x 1=对称,故()()()()()3g 3e f 3g 1g 00f ==->=,得到()()3e f 3f 0>,故选:D.【变式演练】1.已知()f x 是R 上可导的图象不间断的偶函数,导函数为()f x ',且当0x >时,满足()()20'+>f x xf x ,则不等式()()121xef x f x -->-的解集为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .()0,∞+【答案】B【分析】构造函数2()()x g x e f x =,根据()()20'+>f x xf x ,结合题意可知函数()g x 是偶函数,且在()0,∞+上是增函数,由此根据结论,构造出x 的不等式即可. 【详解】由题意:不等式()()121xef x f x -->-可化为:21(1)()x f x f x e -->,两边同乘以2(1)x e -得:22(1)(1)()x x e f x e f x -->,令2()()x h x e f x =,易知该函数为偶函数, 因为[]2()()2()xh x e f x xf x ''=+, ()()20'+>f x xf x ,所以()0,(0)h x x '>>所以()h x 在()0,∞+上是单调增函数,又因为()h x 为偶函数,故22(1)x x ->,解得:12x <.故选:B . 2.设函数()f x 的定义域为R ,()'f x 是其导函数,若()()e ()x f x f x f x '-'+>-,()01f =,则不等式()f x >21x e +的解集是( ) A .(0,)+∞ B .(1,)+∞C .(,0)-∞D .(0,1)【答案】A 【分析】构造函数()()1()xg x e f x =+,通过求导判断函数()g x 的单调性,利用函数()g x 的单调性解不等式即可.【详解】令()()1()x g x e f x =+,则()()()1()x x g x e f x e f x ''=++,因为()()e ()x f x f x f x '-'+>-,所以()()1e ()0x f x f x -'++>,化简可得()e ()e 1()0x x f x f x '++>,即()0g x '>,所以函数()g x 在R 上单调递增,因为()f x >21xe +,化简得()1()2xe f x +>, 因为()()0202g f ==,()()1()xg x e f x =+,所以()(0)g x g >,解得0x >,所以不等式2()1xf x e >+的解集是(0,)+∞.故选:A 3.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( ) A .(],1-∞ B .(],e -∞ C .[)1,+∞ D .[),e +∞【答案】C 【分析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>.令()()xg x e f x =⋅,则()()()0x g x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1x f x e -≥,可变形为()x e f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞.故选:C.【题型四】 用f (x )/e nx 构造型【典例分析】已知函数()f x 是定义在R 上的可导函数,且对于x R ∀∈,均有()()'f x f x >,则有 A .()()()()2017201720170,20170e f f f e f -B .()()()()2017201720170,20170ef f f e f -<< C .()()()()2017201720170,20170ef f f e f ->>D .()()()()2017201720170,20170ef f f e f -><【答案】D 【分析】通过构造函数()()x f x g x e =,研究()()xf xg x e =函数的单调性进而判断出大小关系.【详解】因为()()'f x f x >。
导数题型总结解析版

PART FIVE
确定导数的定义和 性质,理解导数的 基本概念和运算规 则
掌握常见导数题型 的解题技巧,如求 切线斜率、极值和 拐点等
熟悉导数在解决实 际问题中的应用, 如最优化问题、速 度和加速度等
理解导数的几何意 义,能够利用导数 解决与几何图形相 关的问题
忽略函数的定义域 混淆导数的定义 计算导数时出错 未能正确应用导数的性质
导数在不等式求解中的应用:利用导数可以求解一些不等式问题,例如求解一元二次不等式 等。
导数在物理学中的应用:研究 速度、加速度、功率等物理量 随时间的变化规律。
导数在经济学中的应用:研究 边际成本、边际收益等经济问 题。
导数在工程学中的应用:优化 设计、控制工程、信号处理等
领域中都有广泛应用。
导数在生物学中的应用:研究 种群数量变化、传染病传播等
链式法则:求复合函数的导数 时,将内函数看作一个整体, 然后求外函数的导数
商式法则:求两个函数的商的 导数时,先求出分母的导数,
然后再求出分子的导数
幂函数法则:求幂函数的导数 时,利用幂函数的性质进行求
导
隐函数的概念: 如果一个方程 可以表示为一 个函数,那么 这个函数就是
隐函数。
隐函数的导数 计算方法:首 先对方程两边 同时求导,然 后解出隐函数
导数的运算性质:导数 具有一些基本的运算性 质,如加法、减法、乘 法和除法的导数规则。
导数反映函数在 某一点处的切线 斜率
导数具有可加性、 可乘性和可微性
导数具有单调性、 极值性等性质
导数的运算规则 包括求导法则和 链式法则等
导数用于研究函 数的单调性
导数用于求函数 的极值和最值
导数用于研究函 数的凹凸性
导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
2024高考数学常考题型 导数中构造函数比大小问题题型总结(解析版)

第4讲导数中构造函数比大小问题题型总结【典型例题】题型一:构造()xxx f ln =比较大小此函数定义域为()+∞,0,求导()2ln 1x xx f -=',当()e x ,0∈时,()0>'x f ,故()x f 为增函数,当()+∞∈,e x 时,()0<'x f ,故()x f 为减函数,当e x =时,()x f 取得极大值为()ee f 1=,且()()222ln 42ln 244ln 4f f ====,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若1ln 2ln 3,,e 23a b c ===,则,,a b c 的大小关系为()A .a c b >>B .b c a>>C .c b a>>D .a b c>>【答案】A 【解析】【分析】通过对三个数的变形及观察,可以构造出函数()ln xf x x=,通过求导分析其单调性即可得到答案【详解】解:1ln e ln 2ln 4ln 3,,e e 243a b c =====,设()()2ln 1ln ,x x f x f x x x -'==,则e x >时,()0f x '<,故()f x 在()e,∞+上单调递减,则()()()3e 4f f f >>,即ln e ln 3ln 4e34>>,所以a c b >>.故选:A.【例2】(2023·全国·高三专题练习)设24ln 4a e -=,ln 22b =,1c e =,则()A .a c b <<B .a b c<<C .b a c<<D .b c a<<【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数()ln xf x x=,然后结合导数与单调性关系分析出e x =时,函数取得最大值()1e ef =,可得c 最大,然后结合函数单调性即可比较大小.【详解】设()ln x f x x =,则()21ln xf x x -'=,当e x >时,()0f x '<,函数单调递减,当0e x <<时,()0f x '>,函数单调递增,故当e x =时,函数取得最大值()1e ef =,因为()2222e ln 22ln22e e e 22a f -⎛⎫=== ⎪⎝⎭,()()4ln2l e n 4e 1,24b f c f =====,2e 42e << ,当e x >时,()0f x '<,函数单调递减,可得()()2e 4e 2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是()①ln 32<;②ln π<;③15<;④3e ln 2>.A .1B .2C .3D .4【答案】B 【解析】【分析】本题首先可以构造函数()ln x f x x =,然后通过导数计算出函数()ln xf x x=的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数()ln xf x x=的单调性即可比较出大小.【详解】解:构造函数()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,e x >时,()0f x '<,所以函数()ln xf x x=在()0,e 上递增,在()e,+∞上递减,所以当e x =时()f x 取得最大值1e,ln 322ln 2ln 22<⇔⇔,2e <<可得()2ff <,故①正确;lnπ<⇔e <<,可得f f <,故②错误;ln 2ln 4152ln1524<⇔<⇔<<,因为函数()ln xf x x=在()e,+∞上递减,所以()4f f<,故③正确;因为e >,所以(()e f f <,ln ee <1e <,则3e <即3e ln 2<④错误,综上所述,有2个正确.故选:B .【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a ,b ,c 均为区间()0,e 内的实数,且ln 55ln a a =,ln 66ln b b =,ln 77ln c c =,则a ,b ,c 的大小关系为()A .a c b >>B .a b c>>C .c a b>>D .c b a>>【答案】B 【解析】【分析】构造函数()ln xf x x=,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,函数()F x 在()0,e 上单调递增,当e x >时,()0f x '<,函数()f x 在()e,+∞上单调递减,因为765e >>>,所以()()()765f f f <<,因为a ,b ,c 均为区间()0,e 内的实数,且ln 5ln 5a a =,ln 6ln 6b b =,ln 7ln 7c c=,所以()()()f a f b f c >>,所以a b c >>,故选:B.【例5】(2022·江西·高三阶段练习(理))设ln 28a =,21e b =,ln 612c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【答案】B 【解析】【分析】根据a 、b 、c 算式特征构建函数()2ln xf x x =,通过求导确定函数单调性即可比较a 、b 、c 的大小关系.【详解】令()2ln x f x x =,则()42ln 0x x xx x f x '-==⇒=因此()2ln xf x x =在)∞+上单调递减,又因为ln 2ln 4(4)816a f ===,22ln e1=(e)e e b f ==,ln 612c f ===,因为4e >>>a b c <<.故选:B .【题型专练】1.(2022·四川省资阳中学高二期末(理))若ln212ln3,,29e a b c ===,则()A .b a c>>B .b c a>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】令()ln xf x x=,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a 、c ,即可得解;【详解】解:令()ln x f x x =,则()21ln xf x x-'=,所以当0e x <<时()0f x '>,当e x >时()0f x '<,所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max ln e 1e e e f x f ===,所以1e ln22>又94ln22ln39ln 24ln 3ln 2ln 3ln 512ln 91029181818----===>所以ln22ln329>,即b a c >>.故选:A2.(2022·浙江台州·高二期末)设24ln 4e a -=,ln 22b =,c =,则()A .a b c <<B .b a c <<C .a c b<<D .b c a<<【答案】B 【解析】【分析】由题设22e ln2e 2a =,ln 44b =,ln 33c =,构造ln ()xf x x =并利用导数研究单调性,进而比较它们的大小.【详解】由题设,222e ln4ln 42e e 2a -==,ln 2ln 424b ==,ln 33c ==,令ln ()xf x x=且0x >,可得21ln ()x f x x -'=,所以()0f x '>有0e x <<,则(0,e)上()f x 递增;()0f x '<有e x >,则(e,)+∞上()f x 递减;又2e 43e 2>>>,故c a b >>.故选:B3.(2022·四川广安·模拟预测(理))在给出的(1ln 32)43ln 34<e (3)ee ππ>.三个不等式中,正确的个数为()A .0个B .1个C .2个D .3个【答案】C 【解析】【分析】根据题目特点,构造函数()ln x f x x =,则可根据函数()ln xf x x=的单调性解决问题.【详解】首先,我们来考察一下函数()ln xf x x=,则()21ln xf x x -'=,令()0,f x '>解得0e x <<,令()0,f x '<解得e x >,故()ln xf x x=在区间()0,e 上单调递增,在区间()e,+∞单调递减,所以,(1)ff <ln 3>,则正确;(2)()43e 3f f ⎛⎫< ⎪⎝⎭,即4343lne ln33e <,即43e ln 34⋅>,则错误;(3)()()πf e f >,即e e e e e e ππππππln ln ln ln ln ln >⇒>⇒>,所以,e e ππ>,则正确故选:C.4.(2022·四川资阳·高二期末(文))若ln 33a =,1eb =,3ln 28c =,则()A .b a c >>B .b c a >>C .c b a >>D .c a b>>【答案】A 【解析】【分析】设函数ln (),(0)xf x x x=>,求出其导数,判断函数的单调性,由此可判断出答案.【详解】设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当0e x <<时,()0f x '>,()f x 递增,当e x >时,()0f x '<,()f x 递减,当e x =时,函数取得最小值,由于e 38<<,故lne ln 3ln 8e 38>>,即b a c >>,故选:A5.(2022·山东日照·高二期末)π是圆周率,e 是自然对数的底数,在e 3,3e ,33,e e ,πe ,3π,π3,e π八个数中,最小的数是___________,最大的数是___________.【答案】e e π3【解析】【分析】分别利用指数函数的单调性,判断出底数同为3,e 以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数()ln xf x x=的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e .函数3x y =是增函数,且e 3π<<,∴e 3π333<<;函数e x y =是增函数,且e 3π<<,e 3πe e e <<;函数πx y =是增函数,且e 3π<<,e 3ππ<;函数e y x =在()0,∞+是增函数,且e 3π<<,e e e e 3π<<,则八个数中最小的数是e e 函数πy x =在()0,∞+是增函数,且e 3<,ππe 3<,八个数中最大的数为3π或π3,构造函数()ln xf x x=,求导得()21ln xf x x -'=,当()e,x ∈+∞时()0f x '<,函数()f x 在()e,+∞是减函数,()()3πf f >,即ln 3ln π3π>,即πln 33ln π>,即π3ln 3ln π>,π33π∴>,则八个数中最大的数是π3.故答案为:e e ;π3.6.(2022·安徽省宣城中学高二期末)设24ln41,,e ea b c -===,,a b c 的大小关系为()A .a b c <<B .b a c<<C .a c b<<D .c a b<<【答案】D 【解析】【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案.【详解】设ln ()(0)xf x x x=>,则221ln 1ln ()x xx x f x x x ⋅--'==,当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数,当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2(2)2c f ===,又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为()A .b c a <<B .c b a<<C .a b c<<D .b a c<<【答案】C 【解析】【分析】判断出01,01,1a b c <<<<>,构造函数ln (),(0)xf x x x=>,判断01x <<时的单调性,利用其单调性即可比较出a,b 的大小,即可得答案.【详解】由ln ln ln 0e a a b cb c==-<,得01,01,1a b c <<<<>,设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当01x <<时,()0f x '>,()f x 单调递增,因为01a <<,所以e 1>>a a ,所以ln ln e a aa a>,故()()ln ln ln e =>∴>a a b a f b f a b a ,则b a >,即有01a b c <<<<,故a b c <<.故选:C.题型二:利用常见不等式关系比较大小1、常见的指数放缩:)1();0(1=≥=+≥x ex e x x e xx证明:设()1--=x e x f x,所以()1-='xe xf ,所以当()0,∞-∈x 时,()0<'x f ,所以()x f 为减函数,当当()+∞∈,0x 时,()0>'x f ,所以()x f 为增函数,所以当0=x 时,()x f 取得最小值为()00=f ,所以()0≥x f ,即1+≥x e x2.常见的对数放缩:)(ln );1(1ln 11e x exx x x x x =≤=-≤≤-3.常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫⎝⎛∈π【例1】(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x=+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知910a =,19eb -=,101ln 11c =+,则a ,b ,c 的大小关系为()A .a b c <<B .b a c<<C .c b a <<D .c a b<<【答案】B【解析】【分析】首先设()e 1x f x x =--,利用导数得到()e 10xx x >+≠,从而得到11b a>,设()ln 1g x x x =-+,利用导数得到()ln 11x x x <-≠,从而得到111ln 1010<和c a >,即可得到答案.【详解】解:设()e 1x f x x =--,()e 1xf x '=-,令()0f x ¢=,解得0x =.(),0x ∈-∞,()0f x ¢<,()f x 单调递减,()0,x ∞∈+,()0f x ¢>,()f x 单调递增.所以()()00f x f ≥=,即e 10x x --≥,当且仅当0x =时取等号.所以()e 10xx x >+≠.又1911101e 199b a=>+==,0,0a b >>,故11b a >,所以b a <;设()ln 1g x x x =-+,()111xg x x x-'=-=,令()0g x ¢=,解得1x =.()0,1∈x ,()0g x ¢>,()g x 单调递增,()1,x ∈+∞,()0g x ¢<,()g x 单调递减.所以()()10g x g ≤=,即ln 10x x -+≤,当且仅当1x =时取等号.所以()ln 11x x x <-≠,故11111ln 1101010<-=,又1011011lnln ln ln1011101110c a -=+>+==,所以c a >,故b a c <<.故选:B.【例3】(2022·四川凉山·高二期末(文))已知0.01e a =, 1.01b =,1001ln 101c =-,则().A .c a b >>B .a c b>>C .a b c>>D .b a c>>【答案】C 【解析】【分析】构造函数()e 1x f x x =--,由导数确定单调性,进而即得.【详解】设()e 1x f x x =--,则e ()10x f x '=->,在0x >时恒成立,所以()f x 在(0,)+∞上是增函数,所以e 1(0)0x x f -->=,即e 1x x >+,0x >,∴0.01e 1.01>,又ln1.010>,∴ln1.01e 1ln1.01>+,即1001.011ln 101>-,所以a b c >>.故选:C .【例4】(2022·四川绵阳·高二期末(理))若8ln 7a =,18=b ,7ln 6c =,则()A .a c b <<B .c a b<<C .c b a <<D .b a c<<【答案】D 【解析】【分析】构造函数()1ln 1f x x x=+-,其中1x >,利用导数分析函数()f x 的单调性,可比较得出a 、b 的大小关系,利用对数函数的单调性可得出c 、a 的大小关系,即可得出结论.【详解】构造函数()1ln 1f x x x=+-,其中1x >,则()221110x f x x x x -'=-=>,所以,函数()f x 在()1,+∞上为增函数,故()()10f x f >=,则88781ln 1ln 077878f ⎛⎫=+-=-> ⎪⎝⎭,即a b >,78lnln 67> ,因此,b a c <<.故选:D.【例5】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解.【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A 【题型专练】1.(2022·福建·莆田一中高二期末)设ln1.01a =, 1.0130e b =,1101c =,则()A .a b c <<B .a c b <<C .c b a <<D .c a b<<【答案】D 【解析】【分析】构造函数()ln 1f x x x =-+(0x >),证明ln 1≤-x x ,令 1.01x =,排除选项A,B,再比较,a b 大小,即得解.【详解】解:构造函数()ln 1f x x x =-+(0x >),()10f =,()111xf x x x-'=-=,所以()f x 在()0,1上()0f x '>,()f x 单调递增,()f x 在()1,+∞上()0f x '<,()f x 单调递减,所以max ()(1)0,ln 10,ln 1f x f x x x x ==∴-+≤∴≤-,令 1.01x =,则 ln a x =,30e x b =,11c x=-,考虑到ln 1≤-x x ,可得11ln 1x x ≤-,1ln 1x x -≥-等号当且仅当 1x =时取到,故 1.01x =时a c >,排除选项A ,B.下面比较,a b 大小,由ln 1≤-x x 得 1.01ln1.01 1.0130e<<,故b a >,所以c a b <<.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知1cos 5a =,4950b =,15sin 5=c ,则()A .b a c >>B .c b a >>C .b c a >>D .c a b>>【答案】D 【解析】【分析】构造函数21()cos 12f x x x =+-,利用导数求解函数()f x 的单调性,利用单调性进行求解.【详解】解:设21()cos 1,(01)2f x x x x =+-<<,则()sin f x x x '=-,设()sin ,(01)g x x x x =-<<,则()1cos 0g x x '=->,故()g x 在区间(0,1)上单调递增,即()(0)0g x g >=,即()0f x '>,故()f x 在区间(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,可得149cos 550>,故a b >,利用三角函数线可得0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >,所以11tan 55>,即1sin1515cos 5>,所以115sincos 55>,故c a >综上,c a b >>故选:D.3(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x =+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知1ln 22a a -=,1ln 33b b -=,e ln e cc -=,其中12a ≠,13b ≠,e c ≠,则a ,b ,c 的大小关系为().A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A 【解析】【分析】构造函数()()ln 0f x x x x =->,并求()f x ',利用函数()f x 的图象去比较a b c 、、三者之间的大小顺序即可解决.【详解】将题目中等式整理,得11ln ln 22a a -=-,11ln ln 33b b -=-,ln e ln e c c -=-,构造函数()()ln 0f x x x x =->,()111x f x x x-'=-=,令()0f x '=,得1x =,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,函数()f x 的大致图象如图所示.因为()12f a f ⎛⎫= ⎪⎝⎭,()13f b f ⎛⎫= ⎪⎝⎭,()()e f c f =,且12a ≠,13b ≠,e c ≠,则由图可知1b a >>,01c <<,所以c a b <<.故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设 1.01e a =,3eb =,ln 3c =,其中e 为自然对数的底数,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b>>D .a b c>>【答案】D 【解析】【分析】可判断 1.012e a =>,e32b =<,ln 32c =<,再令()ln exf x x =-,[e x ∈,)∞+,求导判断函数的单调性,从而比较大小.【详解】解: 1.012e a =>,e 32b =<,ln 32c =<,令()ln exf x x =-,[e x ∈,)∞+,11()0e e e x f x x x-'=-=<,故()f x 在[e ,)∞+上是减函数,故()()e 3f f <,即3ln 30e-<,故 1.013l e e n 3<<,即c b a <<,故选:D .【例3】(2022·全国·高三专题练习)已知ln 32a =,1e 1b =-,ln 43c =,则a ,b ,c 的大小关系是()A .b a c >>B .b c a >>C .c a b >>D .c b a>>【答案】A 【解析】【分析】根据给定条件构造函数ln ()e)1xf x x x =≥-,再探讨其单调性并借助单调性判断作答.【详解】令函数ln ()(e)1x f x x x =≥-,求导得()211ln ()1x x f x x --'=-,令()11ln g x x x =--,则()210,(e)xg x x x -'=<≥,故()11ln g x x x =--,(e)x ≥单调递减,又()111ln101g =--=,故()0,(e)g x x <≥,即()0,(e)f x x '<≥,而e 34<<,则(e)(3)(4)f f f >>,即1ln 3ln 4e 123>>-,所以b a c >>,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设110a =,ln1.1b =,910ec -=,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<【答案】D 【解析】【分析】利用指数函数的性质可比较,a c 的大小,再构造函数()ln(1)f x x x =-+,利用导数判断函数的单调性,再利用其单调性可比较出,a b ,从而可比较出三个数的大小【详解】因为e x y =在R 上为增函数,且9110-<-,所以9110e e --<,因为11e 10-<,所以9101e 10-<,即a c <,令()ln(1)f x x x =-+(0x >),得1()1011xf x x x'=-=>++,所以()f x 在(0,)+∞上递增,所以()(0)0f x f >=,所以ln(1)x x >+,令0.1x =,则0.1ln1.1>,即1ln1.110>,即a b >,所以b a c <<,故选:D【例5】(2022·四川南充·高二期末(理))设0.010.01e a =,199b =,ln 0.99c =-,则()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)-上单调递减,1)x ∀∈,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈时,e 1xx x x<-,取0.01x =,则有0.010.0110.01e10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈,()(0)0h x h <=,有()0g x '>,则()g x 在1)上单调递增,1)x ∀∈,()(0)0g x g >=,因此当1)x ∈时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c a b <<.故选:A 【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是()A .a b c >>B .c a b>>C .a c b>>D .b a c>>【答案】B 【解析】【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>.【详解】2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π306f ⎛⎫'=-< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且ππ30124f ⎛⎫'=-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>.故选:B【例7】(2022·河南洛阳·三模(理))已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .a c b >>D .a b c>>【答案】D 【解析】【分析】构造函数()()18ln f x x x =-,8x ≥,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造()()18ln f x x x =-,8x ≥,()18ln 1f x x x+'=--,()18ln 1f x x x+'=--在[)8,+∞时为减函数,且()295558ln 81ln 8ln e 204444f =-+-=-<-=-<',所以()18ln 10f x x x=-+-<'在[)8,+∞恒成立,故()()18ln f x x x =-在[)8,+∞上单调递减,所以()()()8910f f f >>,即10ln89ln 98ln10>>,所以10988910>>,即a b c >>.故选:D 【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若0.2e a =,b =ln 3.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a>>【答案】B 【解析】构造函数()()e 10xf x x x =-->,利用导数可得0.2e 1.2b a >>=,进而可得 1.2e 3.2>,可得a c >,再利用函数()()21ln 1x g x x x -=-+,可得ln 3.2 1.1>,即得.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,∴()f x 在()0,∞+上单调递增,∴0.20.21 1.2e a b >+=>=,0.2 1.21.e ln 2e a >==,ln 3.2c =,∵()()()6551.262.7387.4,3.2335.5e e >≈≈=,∴ 1.2e 3.2>,故a c >,设()()21ln 1x g x x x -=-+,则()()()()()22221211011x xx g x x x x x +--=-=≥++',所以函数在()0,∞+上单调递增,由()10g =,所以1x >时,()0g x >,即()21ln 1x x x ->+,∴()()22121.6155ln 3.2ln 2ln1.611 1.1211.613950--=+>+=>=++,又1 1.2 1.21,1 1.1b <<<<,∴ 1.1c b >>,故a c b >>.故选:B.【点睛】本题解题关键是构造了两个不等式()e 10xx x >+>与()21ln (1)1x x x x ->>+进行放缩,需要学生对一些重要不等式的积累.【题型专练】1(2022·山东烟台·高二期末)设a =0.9,b =9ln e10c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .c b a >>D .c a b>>【答案】B【分析】构造函数()ln 1f x x x =--,()g x x =-.【详解】令()ln 1f x x x =--,因为11()1x f x x x'-=-=所以,当01x <<时,()0f x '<,()f x 单调递减,所以(0.9)0.9ln 0.91(1)0f f =-->=,即90.9ln 0.91ln(e)10>+=,a c >;令()g x x =()1g x '=-所以,当114x <<时,()0g x '>,()g x 单调递增,所以(0.9)(1)g g <,即0.90<,0.9a b <.综上,c a b <<.故选:B2.(2022·山东青岛·高二期末)已知ln 3a π=,2b =,1sin 0.042c ⎫=-⎪⎪⎭,则a ,b ,c 的大小关系是()A .c b a >>B .a b c>>C .b a c>>D .a c b>>【答案】C 【解析】【分析】构造函数得出,a b 大小,又0c <即得出结论.【详解】构造函数()()()2ln 212ln 1f x x x x x =--=-+,则a b f -=,()1210f x x ⎛⎫'=-< ⎪⎝⎭在()1,+∞上恒成立,则()y f x =在()1,+∞上单调递减,故()10a b f f -=<=,则0b a >>,()π103x x =+>,则()π30121100433.x .-+-=>=,由对于函数()πsin 02g x x x x ⎛⎫=<< ⎪⎝⎭-,()πcos 1002g x x ,x ⎛⎫'=<<< ⎪⎝⎭-恒成立,所以,()()sin 00g x x x g =<=-即sin x x <在π0,2⎛⎫ ⎪⎝⎭上恒成立.所以,1sin0.04sin sin 02x x x ⎫<=<-<⎪⎭(注:004009020305.x .,...<<<<)所以,b a c >>故选:C3.(2022·湖北襄阳·高二期末)设253e 4a =,342e 5b =,35c =,则()A .b c a <<B .a b c <<C .c b a<<D .c a b<<【答案】C 【解析】【分析】根据式子结构,构造函数()()e ,01xf x x x=<<,利用导数判断单调性,得到2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即可判断出a b >.记()()e 2,01xg x x x =-<<,推理判断出b c >.【详解】24452533e23e 542e e 534a b ==.记()()e ,01x f x x x =<<,则()()2e 10x xf x x -'=<,所以()e xf x x =在()0,1上单调递减.所以2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以a b >.433422e e 5325354b c ⎛⎫-= ⎪⨯⎝--⎭=.记()()e 2,01x g x x x =-<<,则()e 2xg x '=-.所以在()0,ln 2x ∈上,()0g x '<,则()g x 单调递减;在()ln 2,1x ∈上,()0g x '>,则()g x 单调递增;所以()()()ln 2min ln 2e 2ln 221ln 20g x g ==-⨯=->,所以()min 304g g x ⎛⎫>> ⎪⎝⎭,即3422e 0534b c ⨯⎛⎫-> ⎪⎝⎭=-.所以b c >.综上所述:c b a <<.故选:C4.(2022·福建宁德·高二期末)已知a ,R b ∈,且221a b >>,则()A .ln ln a b a b -<-e eB .ln ln b a a b <C .e a b ba->D .sin sin 1a ba b-<-【答案】D 【解析】【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误.【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e xy x'=-,故12|20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除;B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=,所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减;故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除;C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增,所以e e a b a b >,即e a b ba-<,排除;D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增,所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设 1.01e a =,3eb =,ln3c =,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b >>D .a b c>>【答案】D 【解析】【分析】分析可得2a >,(1,2)b ∈,(1,2)c ∈,令()ln ,[e,)e xf x x x =-∈+∞,利用导数可得()f x 的单调性,根据函数单调性,可比较ln 3和3e的大小,即可得答案.【详解】由题意得 1.011e e 2a =>>,3(2e 1,)b =∈,ln 3(1,2)c =∈,令()ln ,[e,)exf x x x =-∈+∞,则11e ()0e ex f x x x -'=-=≤,所以()f x 在[e,)+∞为减函数,所以(3)(e)f f <,即3eln 3ln e 0e e-<-=,所以3ln 3e<,则 1.013e ln 3e >>,即a b c >>.故选:D6.(2022·重庆南开中学高二期末)已知6ln1.25a =,0.20.2e b =,13c =,则()A .a b c <<B .c b a <<C .c a b <<D .a c b<<【答案】A 【解析】【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>,所以函数()g x 在(),0∞-上递减,在()0,∞+上递增,所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >,所以c b >,综上所述a b c <<.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知212ln 204a a -=>,22122ln 0eb b --=>,221ln 303c c -=>,则()A .c b <B .b a<C .c a<D .b c<【答案】AC 【解析】【分析】根据题意可将式子变形为2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,构造函数()ln f x x x =-,利用导数求解函数()f x 的单调性,即可求解.【详解】解:由题意知,211,1,23a b c >>>,对三个式子变形可得2211ln ln 44a a -=-,222211ln ln e eb b -=-,2211ln ln 33c c -=-,设函数()ln f x x x =-,则()111x f x x x-'=-=.由()0f x ¢>,得1x >;由()0f x <,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为211101e 43<<<<,所以222b a c >>,所以c a b <<.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知01x y z ∈、、(,),且满足2e 2e x x =,3e 3e y y =,4e 4e z z =,则()A .x y z <<B .x z y<<C .z y x<<D .z x y<<【答案】C 【解析】【分析】先对已知条件取对数后得到ln ln22x x -=-,ln ln33y y -=-,ln ln44z z -=-.根据式子结构,构造函数()ln m x x x =-,利用导数判断单调性,比较大小.【详解】由2e 2e x x =得2ln ln2,x x +=+即ln ln22x x -=-.同理得:ln ln33y y -=-,ln ln44z z -=-.令()ln ,m x x x =-则()111xm x x x-=-='.故()m x 在()0,1上单调递增,1∞+(,)上单调递减.所以z y x <<.故选:C.。
导数研究函数单调性5种题型总结(解析版)--2024高考数学常考题型精华版

第5讲导数研究函数单调性5种题型总结【考点分析】考点一:含参数单调性讨论①先求函数定义域;②求导,化简,通分,分解因式;③x 系数有未知数a ,先考虑x 系数0=a 的情况;再考虑0,0<>a a 情况,求出()0='x f 的根,判断根与定义域,及根的大小关系,穿针引线,判断导函数正负,进而判断单调性;④若不能分解因式,若分子为二次函数则考虑讨论判别式∆,若不是二次函数可以考虑二次求导【题型目录】题型一:导函数为一次函数型题型二:导函数为准一次函数型题型三:导函数为二次可分解因式型题型四:导函数为二次不可因式分解型题型五:导函数为准二次函数型【典型例题】题型一:导函数为一次函数型【例1】(2023河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论函数()f x 的单调性;【例2】(2022·辽宁营口·高二期末)已知函数()ln 1f x a x x =+-(其中a 为参数).(1)求函数()f x 的单调区间;【例3】(2022·江西·二模(文))己知函数()()R a x ax x f ∈++=1ln ,讨论()f x 的单调性。
【解析】1(),0ax f x x x'+=>,①当0a ≥时,1()0ax f x x+'=>恒成立,()f x 在(0,)+∞上单调递增②当0a <时,令()0f x '>得10x a<<-,∴()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减综上所述:当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;当0a ≥时,()f x 在(0,)+∞上单调递增;【例4】(2022·广东·模拟预测)已知函数()()()R m mx x x f ∈--=1ln ,讨论函数()f x 的单调性。
导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。
答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。
答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。
解:首先求导数f'(x) = 3x^2 - 12x + 9。
然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。
2. 已知函数y = ln(x),求y'。
解:根据对数函数的导数公式,y' = 1/x。
四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。
五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。
解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。
然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。
因此,该物体在t = 3时的瞬时速度为0。
六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。
高中数学导数题型全解析

高中数学导数题型全解析在高中数学中,导数是一个极其重要的概念和工具,它不仅在函数的研究中发挥着关键作用,还与物理、经济等领域有着紧密的联系。
导数题型种类繁多,掌握这些题型对于提高数学成绩和解决实际问题的能力都具有重要意义。
下面我们就来对高中数学中常见的导数题型进行全面解析。
一、导数的定义与计算导数的定义是理解和计算导数的基础。
函数\(y = f(x)\)在\(x = x_0\)处的导数定义为:\(f'(x_0) =\lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =\lim\limits_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)。
在计算导数时,我们需要掌握基本函数的求导公式,如\(C' =0\)(\(C\)为常数)、\((x^n)'= nx^{n 1}\)、\((\sin x)'=\cos x\)、\((\cos x)'=\sin x\)、\((e^x)'= e^x\)、\((\ln x)'=\frac{1}{x}\)等。
同时,还需要掌握导数的四则运算法则:\((u ± v)'= u' ± v'\)、\((uv)'= u'v + uv'\)、\((\frac{u}{v})'=\frac{u'v uv'}{v^2}\)(\(v ≠ 0\))。
例如,求函数\(f(x) = x^3 + 2x^2 3x + 1\)的导数,根据求导公式和法则可得:\(f'(x) = 3x^2 + 4x 3\)。
二、利用导数求函数的单调性函数的单调性是导数的一个重要应用。
若\(f'(x) > 0\),则函数\(f(x)\)在相应区间上单调递增;若\(f'(x) < 0\),则函数\(f(x)\)在相应区间上单调递减。
导数构造函数解决问题类型总结(解析版)

导数构造函数解决问题类型总结一、重点题型目录【题型一】构造函数x n f (x )型【题型二】构造函数e nx f (x )型【题型三】构造函数f (x )x n 型【题型四】构造函数f (x )e nx型【题型五】构造函数sin x 与函数f (x )型【题型六】构造函数cos x 与函数f (x )型【题型七】构造e n 与af (x )+bf (x )型【题型八】构造kx +b 与f (x )型【题型九】构造ln kx +b 型【题型十】构造综合型二、题型讲解总结【题型】一、构造函数x n f (x )型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在0,+∞ 上的函数f x 满足2xf x +x 2f x <0,f 2 =34,则关于x 的不等式f x >3x 2的解集为( )A.0,4B.2,+∞C.4,+∞D.0,2 【答案】D【分析】构造函数h x =x 2f x ,得到函数h x 的单调性,根据单调性解不等式即可.【详解】令h x =x 2f x ,则h x =2xf x +x 2f x <0,所以h x 在0,+∞ 单调递减,不等式f x >3x 2可以转化为x 2f x >4×34=22f 2 ,即h x >h 2 ,所以0<x <2.故选:D .例2.(2022·河北·高三阶段练习)已知奇函数f x 的定义域为R ,导函数为f x ,若对任意x ∈0,+∞ ,都有3f x +xf x >0恒成立,f 2 =2,则不等式x -1 3f x -1 <16的解集是__________.【答案】-1,3【分析】构造新函数g x =x 3f x ,根据f (x )的性质推出g (x )的性质,最后利用g (x )单调性解不等式.【详解】设g x =x 3f x ,x ∈R ,f x 为奇函数,∴g -x =-x 3f (-x )=x 3f (x )=g x ,即g x 是偶函数,有g (x )=g (-x )=g x ,∵∀x ∈0,+∞ ,3f x +xf x >0恒成立,故x ∈0,+∞ 时,g x =3x 2f x +x 3f x =x 23f x +xf x ≥0,∴函数g x 在0,+∞ 上为增函数,∵f 2 =2,∴g 2 =g -2 =16,x -1 3f x -1 <16等价于g x -1 <16=g (2),g (x -1)=g x -1 <g (2),且函数g x 在0,+∞ 上为增函数,∴x -1 <2,解得-1<x <3.故答案为:-1,3【题型】二、构造函数e nx f (x )型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R ,其函数图象连续不断,当x >0时,x +2 f x +xf x >0,则( )A.f 1 4e >f 2 B.f 2 <0 C.f -3 ⋅f 1 >0 D.f -1 e>4f -2 【答案】D【解析】令g x =x 2e x f x ,根据导数可知其在0,+∞ 上单调递增,由g 2 >g 1 >g 0 =0可知AB 错误,同时得到f 1 e<4f 2 ,f 1 >0,f 3 >0,结合奇偶性知C 错误,D 正确.【详解】对于AB ,令g x =x 2e x f x ,则g 0 =0,g x =x x +2 e x f x +x 2e x f x ,当x ≥0时,g x =xe x x +2 ⋅f x +xf x ≥0,∴g x 在0,+∞ 上单调递增,∴g 0 <g 1 <g 2 ,即0<ef 1 <4e 2f 2 ,∴f 2 >0,f 1 4e <f 2 ,AB 错误;对于C ,由A 的推理过程知:当x >0时,g x =x 2e x f x >0,则当x >0时,f x >0,∴f 1 >0,f 3 >0,又f x 为奇函数,∴f -3 =-f 3 <0,∴f -3 ⋅f 1 <0,C 错误.对于D ,由A 的推理过程知:f 1 e <4f 2 ,又f -1 =-f 1 ,f -2 =-f 2 ,∴-f -1 e <-4f -2 ,则f -1 e>4f -2 ,D 正确.故选:D .例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为f x ,且对于任意的x ∈R ,均有f x +f x >0,则( )A.e -2021f (-2021)>f (0),e 2021f (2021)<f (0)B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0)D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数F x =e x⋅f x ,F x =f x +f x⋅e x>0,所以F x 在R上递增,所以F-2021<F0 ,F0 <F2021,即e-2021⋅f-2021<f0 ,f0 <e2021⋅f2021.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数y=f x ,若f x >0且f x +xf x >0,则有( )A.f x 可能是奇函数,也可能是偶函数B.f-1>f1C.π4<x<π2时,f(sin x)<e cos2x2f(cos x)D.f(0)<e f(1)【答案】D【解析】根据奇函数的定义结合f x >0即可判断A;令g x =e x22f x ,利用导数结合已知判断函数g x 的单调性,再根据函数g x 的单调性逐一判断BCD即可得解.【详解】解:若f x 是奇函数,则f-x=-f x ,又因为f x >0,与f-x=-f x 矛盾,所有函数y=f x 不可能时奇函数,故A错误;令g x =e x22f x ,则g x =xe x22f x +e x22f x =e x22xf x +f x,因为e x22>0,f x +xf x >0,所以g x >0,所以函数g x 为增函数,所以g-1<g1 ,即e 12f-1<e12f1 ,所以f-1<f1 ,故B错误;因为π4<x<π2,所以0<cos x<22,22<sin x<1,所以sin x>cos x,故g sin x>g cos x,即e sin2x2f sin x>e cos2x2f cos x,所以f sin x>e cos2x-sin2x2f cos x=e cos2x2f cos x,故C错误;有g0 <g1 ,即f0 <e f1 ,故D正确.故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)f x 是定义在R上的函数,满足2f x +f x =xe x,f-1=-12e,则下列说法错误的是( )A.f x 在R上有极大值B.f x 在R上有极小值C.f x 在R上既有极大值又有极小值D.f x 在R上没有极值【答案】ABC【分析】先由题意得f -1=0,再构造g x =e2x f x ,得到g x =xe3x,进而再构造h x =e2x f x =xe3x-2g x ,判断出h x >0,即f x >0,由此得到选项.【详解】根据题意,2f x +f x =xe x,故2f-1+f -1=-e-1,又f-1=-12e,得2-12e+f -1 =-1e,故f -1 =0,令g x =e2x f x ,则g x =2e2x f x +e2x f x =e2x2f x +f x=e2x⋅xe x=xe3x,又2e2x f x +e2x f x =xe3x,记h x =e2x f x =xe3x-2e2x f x =xe3x-2g x ,所以h x =e3x+3xe3x-2g x =e3x+3xe3x-2xe3x=e3x x+1,当x<-1时,h x <0,h x 单调递减;当x>-1时,h x >0,h x 单调递增,所以h x >h-1=e-2f -1=0,即e2x f x >0,即f x >0,所以f x 在R上单调递增,故f x 在R上没有极值.故选项ABC说法错误,选项D说法正确.故选:ABC【题型】三、构造函数f(x)x n型例7.(2022·山东·潍坊一中高三期中)设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x> 0时,xf (x)-f(x)>0,则使得f(x)>0成立的x取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)【答案】D【分析】根据题意构造函数g(x)=f(x)x,由求导公式和法则求出g (x),结合条件判断出g (x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.【详解】由题意设g(x)=f(x)x,则g (x)=xf (x)-f(x)x2∵当x>0时,有xf (x)-f(x)>0,∴当x>0时,g (x)>0,∴函数g(x)=f(x)x在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(-x)=g(x),∴函数g(x)为定义域上的偶函数,g(x)在(-∞,0)上递减,由f(-1)=0得,g(-1)=0,∵不等式f(x)>0⇔x∙g(x)>0,∴x>0g(x)>g(1)或x<0g(x)<g(-1),即有x>1或-1<x<0,∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a=ln24,b=1e2,c=lnπ2π则a,b,c的大小关系为( )A.a<c<bB.b<a<cC.a<b<cD.c<a<b 【答案】C【分析】构造函数,根据函数的单调性比较大小.【详解】令f x =ln xx2,则fx =x-2x ln xx4,令f x <0,解得x>e,因此f x =ln xx2在e,+∞上单调递减,又因为a=ln24=ln416=f4 ,b=1e2=ln ee2=f e ,c=lnπ2π=lnππ=fπ,因为4>e>π>e,所以a<b<c.故选:C.【题型】四、构造函数f(x)e nx型例9.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x <0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D 【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g (x )=f (x )e x ⇒g (x )=f (x )-f (x )ex ,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e 2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D例10.(2022·江苏·涟水县第一中学高三阶段练习)f x 是定义在R 上的函数,f x 是f x 的导函数,已知f x >f x ,且f (1)=e ,则不等式f 2x -5 -e 2x -5>0的解集为( )A.-∞,-3B.-∞,-2C.2,+∞D.3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解.【详解】由f x >f x ,得f x -f x >0,设g x =f x e x ,则g x =f x -f x e x>0,所以函数g x 在-∞,+∞ 上单调递增,因为f 1 =e ,所以g 1 =f 1 e 1=1,所以不等式f 2x -5 -e 2x -5>0等价于f 2x -5 e 2x -5>1即g 2x -5 >g 1 ,所以2x -5>1,解得x >3,所以不等式f 2x -5 -e 2x -5>0的解集为3,+∞ .故选:D .例11.(2023·江西·赣州市赣县第三中学高三期中(理))设f x 是函数f x 的导函数,且f x >3f x x ∈R ,f 13=e (e 为自然对数的底数),则不等式f ln x <x 3的解集为( )A.0,e 3 B.1e ,e 3 C.0,3e D.e 3,3e【答案】C【分析】构造函数g x =f x e 3x ,由已知可得函数g x 在R 上为增函数,不等式f ln x <x 3即为g ln x <g 13,根据函数的单调性即可得解.【详解】解:令g x =f xe3x,则gx =f x -3f xe3x,因为f x >3f x x∈R,所以g x =f x -3f xe3x>0,所以函数g x 在R上为增函数,不等式f ln x<x3即不等式f ln xx3<1 x>0,又g ln x=f ln xe3ln x=f ln xx3,g13 =f13e=1,所以不等式f ln x<x3即为g ln x<g 13 ,即ln x<13,解得0<x<3e,所以不等式f ln x<x3的解集为0,3e.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R的函数f x 的导函数为f x ,且f x -f x = 2xe x,f0 =0,则以下错误的有( )A.f x 有唯一的极值点B.f x 在-3,0上单调递增C.当关于x的方程f x =m有三个实数根时,实数m的取值范围为0,4e-1D.f x 的最小值为0【答案】ABC【分析】构造g(x)=f(x)e x,结合已知求g(x)的解析式,进而可得f(x)=x2e x,再利用导数研究f(x)的极值点、单调性,并判断其值域范围,即可判断各选项的正误.【详解】令g(x)=f(x)e x,则g(x)=f (x)-f(x)e x=2x,故g(x)=x2+C,(C为常数),所以f(x)=e x(x2+C),而f0 =e00+C=0,故C=0,所以f(x)=x2e x,则f (x)=(x2+2x)e x,令f (x)=0,可得x=-2或x=0,在(-∞,-2)、(0,+∞)上f (x)>0,f(x)递增;在(-2,0)上f (x)<0,f(x)递减;所以f(x)有2个极值点,在-3,0上不单调,A、B错误;由x趋于负无穷时f(x)趋向于0,f(-2)=4e2,f(0)=0,x趋于正无穷时f(x)趋向于正无穷,所以f x =m有三个实数根时m的范围为0,4e-2,f x 的最小值为0,C错误,D正确;故选:ABC【题型】五、构造函数sin x 与函数f (x )型例13.(2022·云南师大附中高三阶段练习)已知a =sin111,b =331,c =ln1.1,则( )A.a <b <cB.a <c <bC.c <a <bD.b <a <c 【答案】B【分析】根据结构构造函数f (x )=x -sin x ,x ∈0,π2 ,利用导数判断单调性,即可得到a <b ;根据结构构造函数g (x )=ln x +1-x ,利用导数判断单调性,即可得到a <c ;根据结构构造函数h (x )=ln(x +1)-3x 3+x ,利用导数判断单调性,即可得到c <b .【详解】构造函数f (x )=x -sin x ,x ∈0,π2 ,则f (x )=1-cos x ≥0,故函数y =f (x )在0,π2 上单调递增,故f 111 >f (0)=0,即111>sin 111,又331>111,故a <b .构造函数g (x )=ln x +1-x ,则g (x )=1x-1,易知函数y =g (x )在x =1处取得最大值g (1)=0,故g 1011 <0,即ln 1011+1-1011<0,即111<-ln 1011=ln 1110=ln1.1,由前面知sin 111<111,故a <c .构造函数h (x )=ln (x +1)-3x 3+x ,则h (x )=1x +1-9(3+x )2=(3+x )2-9(x +1)(x +1)(3+x )2=x (x -3)(x +1)(3+x )2,故知函数y =h (x )在(0,3)上单调递减,故h (0.1)<h (0)=0,即ln1.1<0.33.1=331,故c <b .综上,a <c <b .故选:B .例14.(2022·全国·高三阶段练习)已知函数f (x )及其导函数f (x )的定义域均为R ,且f (x )为偶函数,f π6 =-2,3f (x )cos x +f (x )sin x >0,则不等式f x +π2 cos 3x -14>0的解集为( )A.-π3,+∞ B.-2π3,+∞ C.-2π3,π3 D.π3,+∞ 【答案】B 【分析】令g x =f x sin 3x -14,结合题设条件可得g x 为R 上的增函数,而原不等式即为g x +π2>0,从而可求原不等式的解集.【详解】f x +π2 cos 3x -14>0可化为f x +π2 sin 3x +π2 -14>0,令g x =f x sin 3x -14,则g x =f x sin 3x +3f x sin 2x cos x =sin 2x f (x )sin x +3f x cos x ,因为3f (x )cos x +f (x )sin x >0,故g x ≥0(不恒为零),故g x 为R 上的增函数,故f x +π2 cos 3x -14>0即为g x +π2>0,而g -π6 =f -π6 sin 3-π6 -14=f π6 sin 3-π6 -14=0,故g x +π2 >0的解为x +π2>-π6,故x >-2π3即f x +π2 cos 3x -14>0的解为-2π3,+∞ .故选:B .【题型】六、构造函数cos x 与函数f (x )型例15.已知函数f x 的定义域为-π2,π2,其导函数是f (x ).有f (x )cos x +f (x )sin x <0,则关于x 的不等式3f (x )<2f π6cos x 的解集为()A.π3,π2 B.π6,π2 C.-π6,-π3 D.-π2,-π6【答案】B【分析】令F x =f x cos x ,根据题设条件,求得F 'x <0,得到函数F x =f x cos x 在-π2,π2内的单调递减函数,再把不等式化为f x cos x <f π6 cos π6,结合单调性和定义域,即可求解.【详解】由题意,函数f x 满足f 'x cos x +f x sin x <0,令F x =f x cos x ,则F 'x =f 'x cos x +f x sin x cos 2x<0函数F x =f x cos x 是定义域-π2,π2内的单调递减函数,由于cos x >0,关于x 的不等式3f (x )<2f π6 cos x 可化为f x cos x <f π6 cos π6,即F x <F π6 ,所以-π2<x <π2且x >π6,解得π2>x >π6,不等式3f (x )<2f π6 cos x 的解集为π6,π2 .故选:B 例16.(2021·重庆·高二期末)已知f x 的定义域为(0,+∞)且满足f x >0,f x 为f x 的导函数,f x -f x =e x (x +cos x ),则下列结论正确的是( )A.f x 有极大值无极小值B.f x 无极值C.f x 既有极大值也有极小值D.f x 有极小值无极大值【答案】B【解析】令F x =f xe x,根据题意得到Fx =x+cos x,设g x =x+cos x,x>0,利用导数求得g x 在区间(0,+∞)单调递增,得到F x >0,由f x =e x⋅F x ,得到f x >0,即函数f x 为单调递增函数,得到函数无极值.【详解】令F x =f xe x,x>0,可得F x =f x -f xe x,因为f x -f x =e x(x+cos x),可得F x =x+cos x,设g x =x+cos x,x>0,可得g x =1-sin x≥0,所以g x 在区间(0,+∞)单调递增,又由g0 =1,所以g x >g0 =1,所以F x >0,所以F x 单调递增,因为f x >0且e x>0 ,可得F x >0,因为F x =f xe x,可得f x =ex⋅F x ,x>0,则f x =e x F x +F x>0,所以函数f x 为单调递增函数,所以函数f x 无极值.故选:B.【题型】七、构造e n与af(x)+bf(x)型例17.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x < 0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef2 <f1 ,f2 <ef1D.ef2 <f1 ,f2 >ef1【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g(x)=f(x)e x⇒g (x)=f (x)-f(x)e x,因为f x <fx ,所以g (x)>0,因此函数g(x)是增函数,于是有g(2)>g(1)⇒f(2)e2>f(1)e⇒f(2)>ef(1),构造函数h(x)=f(x)⋅e x⇒h (x)=e x[f(x)+f (x)],因为f x <f x <0,所以h (x)<0,因此h(x)是单调递减函数,于是有h(2)<h(1)⇒e2f(2)<ef(1)⇒ef(2)<f(1),故选:D例18.(2022·河南·高三阶段练习(文))已知函数f x =ax-e x-k,其中e为自然对数的底数,若k∈-1,e2时,函数f x 有2个零点,则实数a的可能取值为( )A.eB.2eC.e 2D.3e【答案】D【分析】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,结合导数分析函数g (x )的单调性与极值情况即可解决问题.【详解】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,g (x )=a -e x .(1)若a ≤0,g (x )<0在R 上恒成立,所以g (x )在R 上单调递减,g (x )的图象与直线y =k ,k ∈-1,e 2 至多只有一个交点,不合题意;(2)若a >0,当x <ln a 时,g (x )>0,当x >ln a 时,g (x )<0,所以g (x )的单调递增区间是(-∞,ln a ),单调递减区间是(ln a ,+∞),所以当x =ln a 时,g (x )取得极大值,也是最大值,为a ln a -a .当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→-∞,所以要使g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,只需a ln a -a >e 2.a ln a -a =a (ln a -1),当0<a ≤e 时,a ln a -a ≤0,当a >e 时,a ln a -a >0,所以a ln a -a >e 2,a >e ,设h (a )=a ln a -a ,a >e ,则h (a )=ln a >0,所以h (a )在(e ,+∞)上单调递增,而h e 2 =e 2,所以a ln a -a >e 2的解为a >e 2,而3e >e 2,故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数y =f (x )的导函数为y =f (x ),当x >0时,f (x )+f (x )x <0,且f (2)=-3,则不等式f (2x -1)<-62x -1的解集为( )A.-∞,12 ∪32,+∞ B.32,+∞C.12,32D.-12,12 ∪12,32【答案】A【分析】根据题干中的不等式,构造函数F x =xf x ,结合y =f (x )在在R 上为偶函数,得到F x =xf x 在R 上单调递减,其中F 2 =2f 2 =-6,分x >12与x <12,对f (2x -1)<-62x -1变形,利用函数单调性解不等式,求出解集.【详解】当x >0时,f(x )+f (x )x =xf (x )+f (x )x<0,所以当x >0时,xf (x )+f (x )<0,令F x =xf x ,则当x >0时,F x =xf (x )+f (x )<0,故F x =xf x 在x >0时,单调递减,又因为y=f(x)在在R上为偶函数,所以F x =xf x 在R上为奇函数,故F x =xf x 在R上单调递减,因为f(2)=-3,所以F2 =2f2 =-6,当x>12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)<-6,即F2x-1<F2 ,因为F x =xf x 在R上单调递减,所以2x-1>2,解得:x>3 2,与x>12取交集,结果为x>32;当x<12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)>-6,即F2x-1>F2 ,因为F x =xf x 在R上单调递减,所以2x-1<2,解得:x<3 2,与x<12取交集,结果为x<12;综上:不等式f(2x-1)<-62x-1的解集为-∞,12∪32,+∞.故选:A例20.(2022·全国·高三阶段练习(理))已知函数f x =x3-x+2+e x-e-x,其中e是自然对数的底数,若f a-2+f a2>4,则实数a的取值范围是( )A.-2,1B.-∞,-2C.1,+∞D.-∞,-2∪1,+∞【答案】D【分析】构造函数g(x)=f x -2,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将f (a-2)+f(a2)>4变为g(a-2)>g(-a2),利用g(x)的单调性进行求解.【详解】构造函数g(x)=f x -2=x3-x+e x-e-x,因为g(x)的定义域为(-∞,+∞),且g-x= -x3--x+e-x-e x=-x3+x-e x+e-x=-(x3-x+e x-e-x)=-g(x),即g(x)是奇函数,又g x =3x2-1+e x+e-x≥3x2-1+2e x⋅e-x=3x2+1>0,所以g(x)在 (-∞,+∞)上单调递增;因为f(a-2)+f(a2)>4,所以f(a-2)-2>-[f(a2)-2],即g(a-2)>-g(a2),即g(a-2)>g(-a2),所以a-2>-a2,即a2+a-2>0,解得a>1或a<-2,即a∈(-∞,-2)∪(1,+∞).故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数g(x)=f x -2,将问题转化为利用函数的奇偶性和单调性求g(a-2)>-g(a2)的解集.【题型】八、构造kx+b与f(x)型例21.(2022·河南·高三阶段练习(文))已知定义在0,+∞上的函数f x 的导函数为f x ,若f x < 2,且f4 =5,则不等式f2x>2x+1-3的解集是( )A.0,2B.0,4C.-∞,2D.-∞,4【答案】C【分析】根据所求不等式f2x>2x+1-3的形式,构造函数g x =f x -2x+3,利用题目中的条件判断出g x 在0,+∞上单调递减,进而将所求转化为g2x>g4 ,再利用单调性求出解集.【详解】设g x =f x -2x+3,则g x =f x -2.因为f x <2,所以f x -2<0,即g x <0,所以g x 在0,+∞上单调递减.不等式f2x>2x+1-3等价于不等式f2x-2×2x+3>0,即g2x>0.因为f4 =5,所以g4 =f4 -2×4+3=0,所以g2x>g4 .因为g x 在0,+∞上单调递减,所以2x<4,解得x<2.故选:C.例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R,其函数图象连续不断,当x>0时,x+2f x +xf x >0,则( )A.f14e>f2 B.f2 <0 C.f-3⋅f1 >0 D.f-1e>4f-2【答案】D【解析】令g x =x2e x f x ,根据导数可知其在0,+∞上单调递增,由g2 >g1 >g0 =0可知AB错误,同时得到f1e<4f2 ,f1 >0,f3 >0,结合奇偶性知C错误,D正确.【详解】对于AB,令g x =x2e x f x ,则g0 =0,g x =x x+2e xf x +x2e x f x ,当x≥0时,g x =xe x x+2⋅f x +xf x≥0,∴g x 在0,+∞上单调递增,∴g0 <g1 <g2 ,即0<ef1 <4e2f2 ,∴f2 >0,f14e<f2 ,AB错误;对于C,由A的推理过程知:当x>0时,g x =x2e x f x >0,则当x>0时,f x >0,∴f1 >0,f3 >0,又f x 为奇函数,∴f-3=-f3 <0,∴f-3⋅f1 <0,C错误.对于D,由A的推理过程知:f1e<4f2 ,又f-1=-f1 ,f-2=-f2 ,∴-f-1e<-4f-2,则f-1e>4f-2,D正确.故选:D.【题型】九、构造ln kx+b型例23.(2023·全国·高三专题练习)定义在(0,+∞)上的函数f(x)满足xf x +1>0,f2 =ln 12,则不等式f(e x)+x>0的解集为( )A.(0,2ln2)B.(0,ln2)C.(ln2,1)D.(ln2,+∞)【答案】D【分析】构造新函数g(x)=f(x)+ln x,(x>0),利用导数说明其单调性,将f(e x)+x>0变形为g(e x) >g(2),利用函数的单调性即可求解.【详解】令g(x)=f(x)+ln x,(x>0) ,则g (x)=f (x)+1x=xf x +1x,由于xf x +1>0,故g (x)>0,故g(x)在(0,+∞)单调递增,而g(2)=f(2)+ln2=ln 12+ln2=0 ,由f(e x)+x>0,得g(e x)>g(2) ,∴e x>2 ,即x>ln2 ,∴不等式f(e x)+x>0的解集为(ln2,+∞),故选:D.例24.(2022·河南·高三阶段练习(理))设a=cos 12,b=78,c=ln158,则a,b,c之间的大小关系为( )A.c<b<aB.c<a<bC.b<c<aD.a<c<b 【答案】A【分析】构造函数g x =ln x+1-x,f x =cos x-1-x2 2,借助函数的单调性分别得出c<b与a>b,从而得出答案.【详解】构造函数g x =ln x+1-x,x>-1,则g x =1x+1-1=-xx+1,当-1<x<0时,g x >0,g x 单调递增,当x>0时,g x <0,g x 单调递减,∴g x ≤g 0 =0,∴ln x +1 ≤x (当x =0时等号成立),∴ln 158=ln 78+1 <78,则c <b ,构造函数f x =cos x -1-12x 2 ,0<x <1,则f x =x -sin x ,令φx =x -sin x ,0<x <1,∴φ x =1-cos x >0,φx 单调递增,∴φx >φ0 =0,∴f x >0,f x 单调递增,从而f x >f 0 =0,∴f 12 >0,即cos 12>1-12⋅122=78,则a >b .∴c <b <a .故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在△ABC 中,若A >π4,则sin A >22,命题q :∀x >-1,x ≥ln (x +1).下列复合命题正确的是( )A.p ∧q B.(¬p )∧(¬q )C.(¬p )∧qD.p ∧(¬q )【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出q :∀x >-1,x ≥ln (x +1)成立,从而判断出四个选项中的真命题.【详解】在△ABC 中,若A =5π6,此时满足A >π4,但sin A =12<22,故命题p 错误;令f x =x -ln x +1 ,x >-1,则f x =1-1x +1=xx +1,当x >0时,f x >0,当-1<x <0时,f x <0,所以f x 在x >0上单调递增,在-1<x <0上单调递减,所以f x 在x =0处取得极小值,也是最小值,f 0 =0-ln 0+1 =0,所以q :∀x >-1,x ≥ln (x +1)成立,为真命题;故p ∧q 为假命题,(¬p )∧(¬q )为假命题,(¬p )∧q 为真命题,p ∧(¬q )为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )①log 32>23;②e lnπ<π;③sin 12>2348;④3e ln2<4 2.A.1 B.2C.3D.4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得①错误;构造函数f x =ln xx,利用导数研究其单调性和最值,进而判定②④正确;构造函数h(x)=sin x-x+16x3,x∈0,π2,利用二次求导确定其单调性,利用h 12 >h(0)得到③正确.【详解】对于①:若log32>23,则2>323,即8>9,显然不成立,故①错误;对于②:将e lnπ<π变为lnππ<ln ee,构造f x =ln xx,则f x =1-ln xx2,则当0<x<e时,f x >0,x>e时,f x <0,所以f x =ln xx在(0,e)上单调递增,在(e,+∞)上单调递减,则x=e时,f x 取得最大值1 e,由fπ <f e 得lnππ<ln ee,即e lnπ<π成立,故②正确;对于③:令h(x)=sin x-x+16x3,x∈0,π2,则g x =h x =cos x-1+12x2,t x =g x =-sin x+1,因为t x =g x =-sin x+1>0在0,π2成立,所以g x =h x =cos x-1+12x2在0,π2上单调递增,又g(0)=cos0-1+0=0,所以g x =h x >0在0,π2上成立,即h(x)=sin x-x+16x3在在0,π2上单调递增,所以h 12 >h(0),即sin12-2348>0,即sin12>2348,故③正确;对于④:将3e ln2<42变为ln2222<ln e e,由②得f22<f e ,即ln2222<ln e e,即3e ln2<42成立,故④正确;综上所述,真命题的个数为3.故选:C.【点睛】方法点睛:利用函数的单调性解决不等式问题时,往往要利用题干中的不等式的结构特点合理构造函数,如本题中证明e lnπ<π、3e ln2<42构造函数f x =ln xx,证明sin12>2348构造h(x)=sin x -x +16x 3,x ∈0,π2,将问题转化为利用导数研究函数的单调性问题.例27.(2022·江苏·南京师大附中高三期中)已知函数f x =ln x -ax 2,则下列结论正确的有( )A.当a <12e 时,y =f x 有2个零点B.当a >12e 时,f x ≤0恒成立C.当a =12时,x =1是y =f x 的极值点D.若x 1,x 2是关于x 的方程f x =0的2个不等实数根,则x 1x 2>e 【答案】BCD【分析】对于A 和B ,由f x =0可得a =ln x x 2,令g x =ln xx 2,利用导数得到g x 的单调性和最值情况即可判断;对于C ,将a =12代入f x ,利用导数得到f x 的单调性即可判断;对于D ,问题转化为2at =ln t 有两个零点,证明t 1t 2>e 2,进而只需要证明ln t 1+ln t 2>2,也即是ln t 1t 2>2t1t 2-1 t 1t 2+1,从而令m =t 1t 2>1,构造函数s m =ln m -2m -1 m +1m >1 求出最值即可【详解】对于A ,令f x =ln x -ax 2=0即a =ln xx 2,令g x =ln x x 2,x >0,则g x =1x⋅x 2-ln x ⋅2x x 2 2=1-2ln x x 3,令g x =0,解得x =e ,故当x ∈0,e ,g x >0,g x 单调递增;当x ∈e ,+∞ ,g x <0,g x 单调递减;所以g x 的最大值为g e =12e,又因为当x <1时,g x =ln x x 2<0;当x >1时,g x =ln xx 2>0,故g x 如图所示,当0<a <12e时,函数y =a 与g x 有两个交点,此时y =f x 有2个零点,故A 错误;对于B ,由A 选项可得g x =ln x x2≤12e ,当a >12e 时,由a >ln xx 2,可整理得ln x -ax 2<0,即f x <0,故B 正确;对于C ,将a =12代入f x 得f x =ln x -12x 2,x >0,所以f x =1x -x =1-x 2x,令f x =0,解得x =1,故当x ∈0,1 ,f x >0,f x 单调递增;当x ∈1,+∞ ,f x <0,f x 单调递减;所以x=1是y=f x 的极大值点,故C正确;对于D,由f x =ln x-ax2=0即ax=ln x x,因为x1,x2是关于x的方程f x =0的2个不等实数根,所以ax1=ln x1x1ax2=ln x2x2,即2ax21=ln x212ax22=ln x22,所以等价于:2at=ln t有两个零点,证明t1t2>e2,不妨令t1>t2>0,由2at1=ln t12at2=ln t2⇒2a=ln t1-ln t2t1-t2,要证t1t2>e2,只需要证明ln t1+ln t2>2,即只需证明:ln t1+ln t2=2a t1+t2=t1+t2ln t1-ln t2t1-t2>2,只需证明:ln t1-ln t2>2t1-t2t1+t2,即lnt1t2>2t1t2-1t1t2+1,令m=t1t2>1,只需证明:ln m>2m-1m+1m>1,令s m=ln m-2m-1m+1m>1,则s m=m-12m m+12>0,即s m在1,+∞上为增函数,又s1 =0,所以s m>s1 =0.综上所述,原不等式成立,即x1x2>e成立,故D正确,故选:BCD【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数f x 的定义域是0,+∞,f x 是f x 的导数,若f x =xf x -x,f 1 =1,则下列结论正确的是( )A.f x 在0,1e上单调递减 B.f x 的最大值为eC.f x 的最小值为-1eD.存在正数x0,使得f x0<ln x0【答案】AC【分析】构造g x =f xx,得到g x =1x,从而得到g x =ln x+c,结合f 1 =1,得到f x =x ln x,求导得到f x =ln x+1,从而得到函数的单调性和极值,最值情况,判断出ABC选项;解不等式x-1ln x<0得到解集为∅,故D错误.【详解】由f x =xf x -x得f x =f xx+1,设g x =f xx,则g x =xf x -f xx2=xf xx+1-f xx2=1x.设c为常数,则ln x+c=1 x,∴g x =ln x+c,∴f x =xg x =x ln x+cx.∵f 1 =1,∴f1 =0,∴c=0,所以f x =x ln x,∴f x =ln x+1.当0<x<1e时,f x <0,f x 单调递减,当x>1e时,f x >0,f x 单调递增.∵f 1e =0,∴f x 在x=1e时取得极小值,也是最小值-1e,f x 无最大值.∴A正确,B错误,C正确,由f x <ln x得x ln x<ln x,∴x-1ln x<0.当0<x<1时,x-1<0,ln x<0,x-1ln x>0.当x=1时,x-1ln x=0.当x>1时,x-1>0,ln x>0,x-1ln x>0.因此不等式x-1ln x<0即f x <ln x的解集是∅.所以D错误.故选:AC【点睛】当条件中出现类似f x =xf x -x的条件时,通常要构造函数来解决问题,本题中的难点是利用f x =f xx+1来构造g x =f xx,从而结合f 1 =1求出f x =x ln x.例29.(2023·全国·高三专题练习)已知函数f x =x e x+1,g x =x+1ln x,若f x1=g x2>0,则x2x1可取( )A.1B.2C.eD.e2【答案】CD【分析】由g x =x+1ln x=ln x e ln x+1,利用同构结合f x 在(0,+∞)上单调递增,即可得到x1=ln x2,则x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),求出h (x)即可判断h(x)在(0,+∞)上的单调性,即可得出x2x1≥e,由此即可选出答案.【详解】因为f x1=g x2>0,所以x1>0,x2>1,因为f x =e x+1+xe x=(x+1)e x+1>0恒成立,所以f x 在(0,+∞)上单调递增,又g x =x+1ln x=ln x e ln x+1,因为f x1=g x2,即x1e x1+1=ln x2e ln x2+1,所以x1=ln x2⇒x2=e x1,所以x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),所以h (x)=e x(x-1)x2当0<x<1时,h (x)<0,h(x)单调递减,当x>1时,h (x)>0,h(x)单调递增,所以h(x)≥h(1)=e,即x2x1≥e故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将g x =x+1ln x=ln x e ln x+1变形为f x =x e x+1的结构,是解本题的关键.。
5.2导数的运算 (解析版)

5.2导数的运算知识点一.导数公式表(其中三角函数的自变量单位是弧度)知识点二.导数的运算法则(1)[f (x )±g (x )]′=f′(x )±g′(x );(2)[f (x )·g (x )]′=f′(x )g (x )+f (x )g′(x);知识点三.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.规律:从内到外层层求导,乘法链接【常用结论】(1)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是周期函数.(2)函数y =f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.函数导函数函数导函数y =c(c 是常数)y′=0y =sin x y′=cos_x y =x α(α为实数)y′=αx α-1y =cos x y′=-sin_xy =a x (a>0,a≠1)y′=a x lna 特别地(e x )′=e xy =log a x(a>0,a≠1)y′=1xln a 特别地(ln x)′=1x【方法总结】(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原则,避免不必要的运算失误.(3)要特别注意“1x与Inx”,“a x’与log a x”,“sinx与cosx”的导数区别.【例题1】(2022·湖南·株洲市渌口区第三中学高二期中)求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=ln x;(5)y=cos x.【答案】(1)y′=12x11(2)y′=−4x5(3)y′=3x ln3(4)y′=1x(5)y′=−sin x【分析】根据函数求导公式即可得出答案.【详解】(1)y′=x12′=12x11(2)y′=1x4=x−4′=−4x−5=−4x5(3)y′=3x=3x ln3(4)y′=ln x′=1x(5)y′=cos x′=−sin x【变式1-1】1.(2022·广西桂林·高二期末(理))求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=5x3;(4)y=3x;(5)y=log5x.【答案】(1)y'=12x11(2)y'=−4x5(3)y'=35x−25(4)y'=3x ln3(5)y '=1x ln5【分析】根据求导基本公式,计算即可得答案.(1)y '=(x 12)'=12x 11(2)y '=(1x 4)'=(x −4)'=−4x −5=−4x 5;(3)y '=(5x 3)'==35x −25;(4)y '=(3x )'=3x ln3;(5)y '=(log 5x )'=1x l n 5【变式1-1】2.求下列函数的导函数.(1)()3224f x x x =-+(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈(4)2()3ln f x x x x=-+-(5)sin y x =(6)11x y x +=-【答案】(1)2()68f x x x=-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【解析】(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.【变式1-1】3.(2021·宁夏·海原县第一中学高二期中(文))求下列函数的导数.(1)y =x 3−2x +3;(2)y =ln xx.【答案】(1)y ′=3x 2−2(2)y ′=1−ln xx 2【分析】根据基本初等函数和积的导数的求导公式求导即可.【详解】(1)y =x 3−2x +3,则y ′=3x 2−2.(2)y =ln xx,y ′=1x⋅x −ln x x 2=1−ln xx 2.【变式1-1】4.求下列函数在指定点的导数:(1)4ln(31)y x=++,1x =;(2)2cos 1sin x x y x=+,π2x =.【答案】(1)12x y ='=(2)21ln 2x y π==+'【解析】(1)321231y xx -'=-++,12x y ='=(2)21sin x y x++'=,21ln2x y π==+'【变式1-1】5.给出下列命题:①y =ln2,则y ′=12②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ·ln2④y =log 2x ,则y ′=1x ln2其中正确命题的个数为()A .1B .2C .3D .4【答案】C 【解析】由求导公式知②③④正确.题型2复合函数求导【例题2】(2022·辽宁葫芦岛·高三阶段练习)函数f x =3x1.6−2x −1的导函数为()A .f ′x =4.8×3x 0.6−2B .f ′x =1.6×3x 0.6−2C .f ′x =4.8×3x 0.6−3D .f ′x =1.6×3x0.6−3【答案】A【分析】由复合函数求导法则进行求解.【详解】f ′x =1.6×3×3x 1.6−1−2=4.8×3x0.6−2.故选:A【变式2-1】1.(全国·高考真题(理))设y =x ln 1+x 2,求y ′.【答案】y ′=ln(1+x 2)+2x 21+x 2【分析】根据导数的运算法则和复合函数的求导原则直接计算能够求出y ′.【详解】函数y =ln 1+x 2可以看作函数y =ln u 和u =1+x 2的复合函数,根据复合函数求导法则有y x′=y u′⋅u x′=ln u′⋅1+x 2′=1u⋅2x =2x1+x 2,ln 1+x 2′=2x1+x 2,函数y =x ln 1+x 2,则有y ′=x ′⋅ln 1+x 2+x ⋅ln 1+x 2′=ln 1+x 2+2x 21+x 2.【变式2-1】2.(2022·江西·萍乡市第二中学高二开学考试(理))求下列函数的导数.(1)y =e x cos x +x −t 2(t 为常数);(2)y =ln(2x +5)3+ln xx.【答案】(1)y ′=e x (cos x −sin x )+2)y ′=62x +5+1−ln xx 2【分析】(1;(2)利用复合函数的求导法则以及导数的运算法则可求得原函数的导数【详解】(1)由y =e x cos x +x −t 2可得y ′=e x cos x −e x sin x =e x cos x −sin x +(2)由y =ln(2x +5)3ln xx=3ln(2x +5)+ln xx 可得y ′=3×22x +5+1x ⋅x −ln x x 2=62x +5+1−ln x x 2【变式2-1】3.(福建·高考真题(理))求函数y =e −2x sin 5x +【答案】y ′=−2e −2x sin(5x +π4)+5e −2x cos(5x +π4)【分析】根据导数的运算法则计算.【详解】y ′=(e −2x )′sin(5x +π4)+e −2x [sin(5x +π4)]′=−2e −2x sin(5x +π4)+5e −2x cos(5x +π4)【变式2-1】4.(2020·天津市西青区杨柳青第一中学高二阶段练习)求下列函数的导数(1)y =2x 4−x 2−x +3;(2)y =x 3−1sin x ;(3)y =cos 2x +3−log 2x ;(4)y =x ⋅e 3x +ln x 2+x .【答案】(1)y ′3−1(2)y ′(3)y ′=−2sin 2x +3−1xln2(4)y ′=3x +1e 3x+2x +1x 2+x【分析】(1)(2)利用导数运算法则可求得原函数的导数;(3)(4)利用复合函数的求导法则以及导数的运算法则可求得原函数的导数.(1)解:y ′=8x 3−2x −1.(2)解:y ′(3)解:y ′=cos 2x +3′−1x ln2=−2sin 2x +3−1x ln2.(4)解:y ′=x ′e 3x +x ⋅e 3x′+ln x 2+x′=3x +1e 3x +2x +1x 2+x .题型3求导数的值【例题3-1】(2022·江苏·连云港市赣马高级中学)已知f ′x 是函数f x =x cos x 的导函数,则f '=()A.−π2B.π2C.−1D.1【答案】A【分析】根据函数求导法则,求出导函数,代入可得答案.【详解】由题意f′x=cos x−x⋅sin x,∴f'=0+π2⋅−1=−π2.故选:A.【变式3-1】1.(2022·上海市行知中学高二期末)已知f(x)=6x sin x,则f′=________.【答案】6【分析】利用求导公式求导,从而可得出答案.【详解】解:f′(x)=6sin x+6x cos x,则f′=6.故答案为:6.【变式3-1】2.(2021·宁夏·海原县第一中学)设函数f(x)=x2,f′(x0)=2,则x0=()A.0B.1C.2D.3【答案】B【分析】根据幂函数的求导公式求导即可.【详解】∵f′x=2x,∴f′x0=2x0=2,解得x0=1.故选:B.【变式3-1】3.(2022·江苏连云港·高二期末)已知f(x)=ln x x,若f′(x0)=1−ln24,则x0=()A.12B.2C.1e D.e【答案】B【分析】由f(x),求出f′(x),代入f′(x0)求值.【详解】由f(x)=ln x x,有f′(x)==1−ln x x2.=1−ln24,解得x0=2.∴f′(x0)=1−ln x0x02故选:B.【变式3-1】4.(2022·上海·格致中学高三期中)设f x=2x,则方程f′x=ln4的解集为______.【答案】{x|x=1}或{1}【分析】解方程2x ln2=ln4即得解.【详解】解:由题得2x ln2=ln4,∴2x ln2=2ln2,∴2x=2,∴x=1.所以方程的解集为{x|x=1}.故答案为:{x|x=1}【变式3-1】5.(2022·江西省丰城中学高三开学考试(文))设函数f(x)=e x x+a.若f'(1)=e4,则a=________.【答案】1【分析】求导,得到f′x=f′1=e4列方程,解方程即可得到a.【详解】f′x=f1=e4,解得a=1.故答案为:1.【例题3-2】(2022·江西·萍乡市第二中学高二开学考试(理))若函数f x的导函数为f′x,且满足f x=2f′1ln x+2x,则f e=()A.0B.−1C.−2D.−4+2e【答案】D【分析】对f x求导,得到f′x=+2,令x=1,得到f′1=−2,即可得到f x=−4ln x+ 2x,然后求f e即可.【详解】由f x=2f′1ln x+2x,得f′x=+2,令x=1,则f′1=+2,解得f′1=−2,所以f x=−4ln x+2x,f e=−4+2e.故选:D.【变式3-2】1.(2022·陕西·蒲城县蒲城中学高三阶段练习(理))已知函数f x=sin2x+ f′0cos x−1,则f0=()A.−1B.0C.1D.2【答案】C【分析】求得f'(x),通过赋值求得f'(0),再求f(0)即可.【详解】因为f x=sin2x+f′0cos x−1,故可得f'(x)=2cos2x−f'(0)sin x,令x=0,则f'(0)=2,故f x=sin2x+2cos x−1,则f0=1.故选:C.【变式3-2】2.(2022·江西·金溪一中高三阶段练习(理))记函数f x的导函数为f′x,且溥足f(x)=3xf′(2)−2ln x,则f1=______.【答案】32##1.5【分析】首先对函数求导,将x=2代入导函数中,求解f′2的导函数值,进而求得f x= 3x−2ln x,最后代入x=1求解f1即可.2【详解】由题意得,f′(x)=3f′(2)−2x,∴f′(2)=3f′(2)−1,解得f′(2)=12,∴f(x)=32x−2ln x,∴f(1)=32.故答案为:32【变式3-2】3.(2022·重庆八中高三阶段练习)已知函数f x的导数为f′x,且满足f x= e x−2f′0sin x+1,则f=__________.【答案】eπ2+13【分析】求导,令x=0可求得f′(0),然后可得.【详解】因为f′x=e x−2f′0cos x所以f′0=e0−2f′0cos0,解得f′0=13所以f=eπ2−23sinπ2+1=eπ2+13.故答案为:eπ2+13【变式3-2】4.(2023·江西·贵溪市实验中学高三阶段练习(理))已知函数f x=sin2x−f'⋅cos x,则f'=__________.【分析】对原函数求导得f'(x)=2cos2x+f'⋅sin x,令x=π6,得到方程,解出即可.【详解】f'(x)=2cos2x+f'⋅sin x,令x=π6,则f'2cosπ3+f'⋅sinπ6,即f'=1+12f'=2.【变式3-2】5.(2021·福建省泉州市剑影实验学校高三期中)若f x=3x2+2x⋅f′1,则f′0=__________.【答案】−12【详解】计算可得f x=3x2+2x⋅f′1,可得f′1=−6,即可得f′x=6x−12,将x=0代入计算可得答案.【解答】解:根据题意,f x=3x2+2x⋅f′1,则f′x=6x+2f′1,可得f′1=6+2f′1,解得f′1=−6,则f′x=6x−12,则f′0=−12,故答案为:−12.【例题4-1】(2022·河南·上蔡县衡水实验中学)函数x x12,0的切线方程为()A.y=2x−4B.y=2x+1C.y=2x−3D.y=2x−1【答案】A【分析】求出函数f x=x ln x−1的图像在点2,0处的切线斜率,即可写出切线方程.【详解】对函数f x=x ln x−1求导,得f′x=ln x−1+x x−1,所以f′2=ln1+21=2,即函数f x=x ln x−1的图像在点2,0处的切线斜率为2,所以函数f x=x ln x−1的图像在点2,0处的切线方程为y=2x−2,即y=2x−4.故选:A【变式4-1】1.(2022·四川泸州·高二期末(理))曲线y=sin(2x)x在x=π处的切线的斜率为()A.−2πB.2πC.−4π2D.1π【答案】B【分析】根据导数的计算公式以及导数的几何意义进行求解.【详解】因为y=sin(2x)x,所以y′=2x cos(2x)−sin(2x)x2,y′|x=π=2πcos(2π)−sin(2π)π2=2π,所以曲线y=sin(2x)x在x=π处的切线的斜率为2π.故A,C,D错误.故选:B.【变式4-1】2.(2022·湖南·长沙外国语学校高三阶段练习)已知曲线y=ax b在点−1,a 处的切线方程为8x−y+6=0,则()A.a=2,b=4B.a=−2,b=4C.a=−2,b=1D.a=8,b=−1【答案】B【分析】将点−1,a代入切线方程,求出a=−2,再求导,利用导数的几何意义得到b=4.【详解】将−1,a代入8x−y+6=0,得a=−2,易知直线8x−y+6=0的斜率为8.因为y′=abx b−1,所以−2b⋅−1b−1=8,所以b=4.故选:B.【变式4-1】3.(2022·四川省绵阳八一中学模拟预测(文))已知曲线y=2x+a e x在点0,a 处的切线方程为y=x+b,则a+b=()A.2B.e C.3D.2e【答案】A【分析】根据导数的几何意义,求出导函数y′=−2x+2−ae x,令x=0结合切线的斜率求出a,再将点坐标代入切线方程求出b即可得到结果.【详解】根据导数的运算公式y′==−2x+2−ae x,当x=0时,y′=2−a,∴2−a=1,即a=1.∵0,1满足方程y=x+b,即b=1,∴a+b=2.故选:A.【变式4-1】4.(2022·广东·高三阶段练习)函数f x=x ln x+2的图象在点−1,0处的切线与直线a−2x+y−2=0垂直,则实数a的值为()A.−2B.−1C.1D.2【答案】C【分析】根据给定条件,求出函数f(x)的导数,再利用导数的几何意义结合垂直条件求解作答.【详解】函数f x=x ln x+2,求导得:f′x=ln x+2+x x+2,则f′−1=−1,即函数f x=x ln x+2的图象在点−1,0处的切线斜率为−1,因为切线与直线a−2x+y−2=0垂直,有2−a×−1=−1.所以a=1.故选:C【变式4-1】5.(2022·江苏·连云港市赣马高级中学高二期末)函数f(x)=4x−x22的图象在其零点处的切线方程为()A.3x−y−6=0B.3x+y−6=0C.x−y−2=0D.x+y−2=0【答案】B【分析】求出函数的零点,求出函数在该点处的导数值,根据导数的几何意义即可求得答案.【详解】令f(x)=4x−x22=0,则x3=8,∴x=2,即f(x)=4x−x22的零点为x=2,又f′(x)=−4x2−x,∴f′(2)=−3,而f(2)=0,故函数f(x)=4x−x22的图象在其零点处的切线方程为y−0=−3(x−2),即3x+y−6=0,故选:B.【变式4-1】6.(2022·陕西渭南·一模(理))已知曲线y=12x2−ln2x在某点处的切线的斜率为−32,则该切线的方程为______.【答案】12x+8y−7=0【分析】对函数求导后,利用导数的几何意义列方程求出切点坐标,从而可求出切线方程.【详解】设切点坐标为(x0,y0)(x0>0),由y=12x2−ln2x,得y′=x−1x(x>0),因为曲线y=12x2−ln2x在(x0,y0)处的切线的斜率为−32,所以x 0−1x 0=−32,解得x 0=−2(舍去),或x 0=12,所以y 0=12×−ln 2=18,所以切线方程为y −18=−12x +8y −7=0,故答案为:12x +8y −7【变式4-1】7.(2022·江苏扬州·高三期中)已知直线y =kx 是曲线y =log 2x 的切线,则实数k =________.【答案】1eln2【分析】设切点坐标x 0,log 2x 0,对函数求导,代入切点横坐标得切线的斜率,又因为直线过原点,由切点和坐标原点可以表示斜率,解方程得k 的值.【详解】设切点坐标x 0,log 2x 0,y ′=1x ln2,则切线斜率k =1x 0ln2,因为直线y =kx 过原点,则切线斜率k =log 2x 0x 0,所以log 2x 0x 0=1x0ln2,解得x 0=e ,k =1eln2.故答案为:1eln2.【变式4-1】8.(2022·全国·高二课时练习)曲线y =e sin x 在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程.【答案】x −y −1=0或x −y +3=0.【分析】求导,利用导函数的几何意义求出切线斜率,从而求出切线方程,再设出直线l 的方程x −y +m =0(m ≠1),利用点到直线距离公式列出方程,求出m 的值,得到直线l 的方程.【详解】∵y =e sin x ,∴y ′=e sin x cos x ,∴曲线y =e sin x 在点(0,1)处的切线的斜率为e sin0⋅cos0=1,其方程为y −1=x ,即x −y +1=0.又∵直线l 与x −y +1=0平行,∴直线l 的方程可设为x −y +m =0(m ≠1).=2得:m =−1或m =3.∴直线l 的方程为x −y −1=0或x −y +3=0.【例题4-2】(2022·全国·模拟预测)已知函数()=−2+ln,过点(0,−2)作曲线=()的切线l,则l的方程为___________.【答案】x−e y−2e=0【分析】根据导数的几何意义设切点坐标(t,−2+ln t)(t>0),利用导数求切线斜率,从而可得切线方程表达式,利用切线过点P(0,−2),解出t,即可求得切线方程.【详解】解:由题意可设切点坐标为(t,−2+ln t)(t>0),因为f(x)=−2+ln x,所以f′(x)=1x,所以切线l的斜率k=1t,−t,又点P(0,−2)在切线上,所以−2+2−ln t=−t则l的方程为y+2−ln t=解得t=e,所以切线方程为:y+1=故答案为:x−e y−2e=0.【变式4-2】1.(2022·辽宁·抚顺一中高二阶段练习)求与曲线y=f(x)=3x2在点P(8,4)处的切线垂直,且过点(4,8)的直线方程.【答案】3x+y-20=0【分析】先求导数得切线斜率,由垂直关系可得直线斜率,由点斜式可得解.【详解】因为y=3x2,所以y′=(3x2)′=(x23)′=23x−13,所以f′(8)=23×8−13=13,即曲线在点P(8,4)处的切线的斜率为13.所以所求直线的斜率为-3,从而所求直线方程为y-8=-3(x-4),即3x+y-20=0.【变式4-2】2.(2022·山西临汾·高三期中)已知函数f(x)=x3+f′(1)x2−2x,其中f′x 是f x的导函数.(1)求f′1;(2)求曲线y=f x过原点的切线方程.【答案】(1)f'1=−1(2)y=−2x或y=−94x【分析】(1)求出函数的导函数,再令x=1,计算可得;(2)由(1)可得函数解析式,从而求出函数的导函数,设切点t,t3−t2−2t,利用导数的几何意义求出切线方程,根据切线过原点,求出t的值,再代入求出切线方程.【详解】(1)解:因为f(x)=x3+f′(1)x2−2x,所以f′x=3x2+2f′1x−2,令x=1,得f′1=2f′1+1,∴f'1=−1.(2)解:由(1)可得f(x)=x3−x2−2x,所以f′(x)=3x2−2x−2,设切点t,t3−t2−2t,则f′t=3t2−2t−2,所以切线方程为y−t3−t2−2t=3t2−2t−2(x−t),由题−t 3−t 2−2t =3t 2−2t −2(−t ),整理得t 2(2t −1)=0,解得t =0或t =12.当t =0时,切线方程为y =−2x ;当t =12时,切线方程为y =−94x .综上,曲线y =f x 过原点的切线方程为y =−2x 或y =−94x .【变式4-2】3.(2022·江苏南通·高三阶段练习)已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.【答案】(1)x-y-4=0;(2)x-y-4=0或y+2=0.【分析】(1)求导f′(x)=3x2-8x+5,进而得到f′(2),f(2),写出切线方程;(2)设切点坐标为(x0,x03-4x02+5x0-4),根据过点A(2,-2,)写出切线方程,再将切点坐标代入求解.【详解】(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x03-4x02+5x0-4),∵f′(x0)=3x02-8x0+5,∴切线方程为y-(-2)=(3x02-8x0+5)(x-2),又切线过点(x0,x03-4x02+5x0-4),∴x03-4x02+5x0-2=(3x02-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.【变式4-2】4.(2022·浙江大学附属中学高三期中)若过a ,b 可做y =x +1x (x >0)的两条切线,则()A.a <b <a +1a B.a >b C.b <0D.b >a +1a 【答案】A【分析】设切点为x 0,x 0+,x 0>0,利用导数的几何意义可得切线方程为:y −x 0+=1x −x 0,把点(a ,b )代入可得:(b −a )x 02−2x 0+a =0,则此方程有大于0的两个实数根,列出不等式组,求解即可得出结论.【详解】设切点为x 0,x 0+,x 0>0,y ′=1−1x 2,切线的斜率k =1−1x 02,则切线方程为:y −x 0+=1−x −x 0,把点(a ,b )代入可得b −x 0+=1a −x 0,化为:(b −a )x 02−2x 0+a =00的两个实数根.则b −a ≠0Δ=4−4b −a a >02b −a >0a b −a >0,即b >aa >0b −a a <1,则a <b <a +1a ,故选:A.【变式4-2】5.(2022·湖南·武冈市教育科学研究所高三期中)已知f (x )=2x 3+(a −2)x 2−3x 是奇函数,则过点P (−1,2)向曲线y =f (x )可作的切线条数是()A.1B.2C.3D.不确定【答案】C【分析】根据给定条件,求出a,再求出函数f (x )的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数f (x )是奇函数,则由f (−x )+f (x )=0得2(a −2)x 2=0恒成立,则a =2,即有f (x )=2x 3−3x ,f ′(x )=6x 2−3,设过点P (−1,2)向曲线y =f (x )所作切线与曲线y =f (x )相切的切点为Q (x 0,2x 03−3x 0),而点P (−1,2)不在曲线y =f (x )上,则6x 02−3=2x 03−3x 0−2x 0+1,整理得4x 03+6x 02−1=0,即(2x 0+1)(2x 02+2x 0−1)=0,解得x 0=−12或x 0=−1±32,即符合条件的切点有3个,所以过点P (−1,2)向曲线y =f (x )可作的切线条数是3.故选:C【变式4-2】6.(2020·全国·高二课时练习)已知函数f (x )=13x 3−x 2+3ax (a ∈R ).(1)若f (x )在x =−1时有极值,求a 的值;(2)在直线x =1上是否存在点P,使得过点P 至少有两条直线与曲线y =f (x )相切?若存在,求出P 点坐标;若不存在,请说明理由.【答案】(1)−1;(2)不存在;答案见解析.【解析】(1)对函数进行求导,根据极值的定义进行求解即可;(2)设点P 坐标,切点坐标,利用导数的意义求出切线方程,通过构造函数,利用导数进行求解即可.【详解】解析(1)由f (x )=13x 3−x 2+3ax ,得f ′(x )=x 2−2x +3a ,由f (x )在x =−1时有极值,可得f ′(−1)=1+2+3a =0,解得a =−1.f ′(x )=x 2−2x −3=(x −3)(x +1),当x <−1时,f ′(x )>0,函数f (x )单调递增,当−1<x <3时,f ′(x )<0,函数f (x )单调递减,因此当a =−1时,f (x )有极值.所以a 的值为−1.(2)不妨设在直线x =1上存在一点P (1,b ),使得过点P 至少有两条直线与曲线y =f (x )相切.设过点P 且与y =f (x )相切的直线为l,切点坐标为x 0,y 0,则切线l 的方程为y −13x 03+x 02−3ax 0=x 02−2x 0+3a x −x 0,又直线l 过点P (1,b ),所以b −13x 03+x 02−3ax 0=x 02−2x 0+3a 1−x 0,即23x 03−2x 02+2x 0−3a +b =0,设g (x )=23x 3−2x 2+2x −3a +b ,则g ′(x )=2x 2−4x +2=2(x −1)2≥0,所以g (x )在区间(−∞,+∞)上单调递增,所以g (x )=0至多有一个解,即过点P 且与y =f (x )相切的直线至多有一条,故在直线x =1上不存在点P,使得过P 至少有两条直线与曲线y =f (x )相切.题型5公切线问题【例题5】(2022·四川绵阳·一模(理))已知直线l :x +my +n =0既是曲线y =ln x 的切线,又是曲线y =e x −2的切线,则m +n =()A.0B.−2C.0或eD.−2或−e【答案】D【分析】本题主要求切线方程,设两个曲线方程的切点,由两条切线均为x +my +n =0,通过等量关系可得到m ,n 的取值.【详解】f (x )=ln x ,g (x )=e x −2,∴f '(x )=1x ,g '(x )=e x −2,设切点分别为M (x 1,y 1),N (x 2,y 2),则曲线f (x )=ln x 的切线方程为:y −ln x 1=1x 1(x −x 1),化简得,∴y =ln x 1+1x 1(x −x 1)=1x 1⋅x +ln x 1−1,曲线g (x )=e x −2的切线方程为:y −e x 2−2=e x 2−2(x −x 2),化简得,y =e x 2−2⋅x +(1−x 2)ex 2−2,∴e x 2−2=1x 1(1−x 2)e x 2−2=ln x 1−1,故(1x 1−1)(ln x 1−1)=0,解得x 1=e 或x 1=1.当x 1=e,切线方程为x −e y =0,故m =−e,n =0,故m +n =−e .当x 1=1,切线方程为y =x −1,故m =n =−1,则m +n =−2.故m +n 的取值为−e 或−2.故选:D【变式5-1】1.(2022·吉林·辽源市第五中学校高三期中)已知曲线y =x 2−ln x 在点1,1处的切线与曲线y =ax 2+a +2x +1也相切.则a =______.【答案】1【分析】由导数的几何意义求解,【详解】令f (x )=x 2−ln x ,g (x )=ax 2+a +2x +1,则f ′(x )=2x −1x ,f ′(1)=1,f (1)=1,则f (x )点1,1处的切线方程为y =x 令ax 2+a +2x +1=x ,ax 2+a +1x +1=0,由题意得Δ=(a +1)2−4a =0,解得a =1,故答案为:1【变式5-1】2.(2022·山东省青岛第一中学高三期中)若曲线C 1:f x =x 2+a 和曲线C 2:g x =4ln x −2x 存在有公共切点的公切线,则该公切线的方程为__________.【答案】y =2x −4【分析】先分别求出f (x )和g (x )的导数,然后设公共切点的坐标为(x 0,y 0),根据题意有f ′(x 0)=g ′(x 0),f (x 0)=g (x 0),代入相应表达式列出方程组,解出x 0与a 的值,计算出切线斜率和公切线的切点坐标,即可得到切线的方程.【详解】f x =x 2+a ,g x =4ln x −2x ,则有f ′(x )=2x ,g ′(x )=4x −2.设公共切点的坐标为(x 0,y 0),则f ′(x 0)=2x 0,g ′(x 0)=4x 0−2,f (x 0)=x 02+a ,g (x 0)=4ln x 0−2x 0.根据题意,有2x 0=4x 0−2x 02+a =4ln x 0−2x 0x 0>0,解得x 0=1a =−3.∴公切线的切点坐标为(1,−2),切线斜率为2.∴公切线的方程为y +2=2(x −1),即y =2x −4.故答案为:y =2x −4【变式5-1】3.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于()A .-1B .-3C .-4D .-2【答案】D 【解析】∵f ′(x )=1x ,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.【变式5-1】4.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为()A.14 B.12C .1D .4【答案】A 【解析】由题意可知121(),2f x x -'=g ′(x )=a x ,由f ′(14)=g ′(14),得12×121(4-=a 14,可得a =14,经检验,a =14满足题意.【变式5-1】5.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.【解析】易知点O (0,0)在曲线y =x 3-3x 2+2x 上.(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l的方程为y =2x .=2x ,=x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y ===3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .=-14x ,=x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.【变式5-1】6.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值.并判断两条切线是否为同一条直线.【解析】根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),又f (1)=-1,得y +1=3(x -1),即切线方程为3x -y -4=0曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1),又g (1)=-6,得y +6=3(x -1),即切线方程为3x -y -9=0,所以两条切线不是同一条直线.题型6导数的运算技巧【例题6】若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于()A .-1B .-2C .2D .0【解析】f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2.【变式6-1】1.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…f n +1(x )=f n ′(x ),n ∈N +,则f 2015(x )的值是()A .sin xB .-sin xC .cos xD .-cos x【答案】D 【解析】依题意:f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,按以上规律可知:f 2015(x )=f 3(x )=-cos x ,故选D.【变式6-1】2.已知函数f(x)=x(x-1)(x-2)·…·(x-2015),则f′(0)=________.【答案】-(1×2×3×…×2015)【解析】依题意,设g(x)=(x-1)(x-2)·…·(x-2015),则f(x)=x·g(x),f′(x)=[x·g(x)]′=g(x)+x·g′(x),故f′(0)=g(0)=-(1×2×3×…×2015).。
导数专题:导数与曲线切线问题(6大题型)(解析版)

第1页共14页
导数与曲线切线问题
一、求曲线“在”与“过”某点的切线
1、求曲线“在”某点处的切线方程步骤
第一步(求斜率):求出曲线在点()()00,x f x 处切线的斜率0()
f x '第二步(写方程):用点斜式000()()()
y f x f x x x '-=-第三步(变形式):将点斜式变成一般式。
2、求曲线“过”某点处的切线方程步骤(此类问题的点不一定是切点)
第一步:设切点为()()00,Q x f x ;
第二步:求出函数()y f x =在点0x 处的导数0()f x ';
第三步:利用Q 在曲线上和0()PQ f x k '=,解出0x 及0()f x ';
第四步:根据直线的点斜式方程,得切线方程为000()()()y f x f x x x '-=-.
二、切线条数问题
求曲线的切线条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线问条数问题转化为关于t 的方程的实根个数问题。
三、公切线问题
研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使用这两个方程表示同一条直线,但要注意以下两个方面:
(1)两个曲线有公切线,且切点是同一点;
(2)两个曲线有公切线,但是切点不是同一点。
四、已知切线求参数问题
此类问题常见的考查形式有两种,一是判断符合条件的切线是否存在,二是根据切线满足条件求参数的值或范围。
常用的求解思路是把切线满足条件转化为关于斜率或切点的方程或函数,再根据方程的
根的情况或函数性质去求解。
导数大题20种题型讲解

导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。
解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。
2.常数函数求导:题目描述:求函数f(x)=c的导数。
解答步骤:常数函数的导数始终为零,即f'(x)=0。
3.指数函数求导:题目描述:求函数f(x)=e^x的导数。
解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。
4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。
解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。
5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。
解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。
6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。
解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。
7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。
解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。
对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。
8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。
解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。
对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。
9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。
解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。
10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。
解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。
导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
导数常见题型及知识点分析(名师总结)

导数常见题型及知识点分析(名师总结)第⼀部分:导数的运算法则及基本公式应⽤重难点归纳1深刻理解导数的概念,了解⽤定义求简单的导数y表⽰函数的平均改变量,它是Δx 的函数,⽽f ′(x 0)表⽰⼀个数值,即f ′(x )=xyx ??→?lim0,知道导数的等价形式()()(lim)()(lim 0000000x f x x x f x f x x f x x f x x x '=--=?-?+→?→? 2求导其本质是求极限,在求极限的过程中,⼒求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键3对于函数求导,⼀般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应⽤,⽽且要特别注意求导法则对求导的制约作⽤,在实施化简时,⾸先必须注意变换的等价性,避免不必要的运算失误4 复合函数求导法则,像链条⼀样,必须⼀环⼀环套下去,⽽不能丢掉其中的⼀环必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合⽽成的,分清其间的复合关系典型题例⽰范讲解例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω命题意图本题3个⼩题分别考查了导数的四则运算法则,复合函数求导的⽅法,以及抽象函数求导的思想⽅法这是导数中⽐较典型的求导类型知识依托解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数错解分析本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错技巧与⽅法先分析函数式结构,找准复合函数的式⼦特征,按照求导法则进⾏求导22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解y =µ3,µ=ax -b sin 2ωx ,µ=av -byv =x ,y =sin γγ=ωxy ′=(µ3)′=3µ2·µ′=3µ2(av -by )′=3µ2(av ′-by ′)=3µ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法⼀设y =f (µ),µ=v ,v =x 2+1,则y ′x =y ′µµ′v ·v ′x =f ′(µ)·21v -21·2x=f ′(12+x )·21112+x ·2x =),1(122+'+x f x x 解法⼆y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x =12+x x f ′(12+x )例2利⽤导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C nn ,(n ∈N *)命题意图培养考⽣的思维的灵活性以及在建⽴知识体系中知识点灵活融合的能⼒知识依托通过对数列的通项进⾏联想,合理运⽤逆向思维由求导公式(x n )′=nx n -1,可联想到它们是另外⼀个和式的导数关键要抓住数列通项的形式结构错解分析本题难点是考⽣易犯思维定势的错误,受此影响⽽不善于联想技巧与⽅法第(1)题要分x =1和x ≠1讨论,等式两边都求导解(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时,∵x +x 2+x 3+…+x n =xx x n --+11,两边都是关于x 的函数,求导得(x +x 2+x 3+…+x n)′=(xx x n --+11)′即S n =1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1,令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n ,即S n =C 1n +2C 2n +…+n C n n =n ·2n -1学⽣巩固练习1 y =e sin x cos(sin x ),则y ′(0)等于( ) A 0 B 1 C -1D 22经过原点且与曲线y =59++x x 相切的⽅程是( ) A x +y =0或25x +y =0 B x -y =0或25x+y =0C x +y =0或25x -y =0D x -y =0或25x-y =03若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的⽅程 6求函数的导数 (1)y =(x 2-2x +3)e 2x ;(2)y 7有⼀个长度为5 m 的梯⼦贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚14 m 时,梯⼦上端下滑的速度8求和S n =12+22x +32x 2+…+n 2x n -1 ,(x ≠0,n ∈N *) 参考答案1解析y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1答案B2解析设切点为(x 0,y 0),则切线的斜率为k =00x y ,另⼀⽅⾯,y ′=(59++x x )′=2)5(4+-x , 故y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0 得x 0(1)=-3, x 0 (2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53),从⽽得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- , 由于切线过原点,故得切线l A :y =-x 或l B :y =25x答案A3解析根据导数的定义f ′(x 0)=kx f k x f k ---+→)()]([(lim 000(这时k x -=?)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---?-=--∴→→→x f k x f k x f kx f k x f k x f k x f k k k答案-14解析设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n !答案n ! 5解设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1y ′=2x ,则与C 1相切于点P 的切线⽅程为 y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①对于C 2y ′=-2(x -2),与C 2相切于点Q 的切线⽅程为 y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0∴直线l ⽅程为y =0或y =4x -4 6解(1)注意到y >0,两端取对数,得 ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2x x xe x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1?+-=?+-?+-+-=?+-+-='∴+-+-=++--=++-'+-='?∴(2)两端取对数,得ln|y |=31(ln|x |-ln|1-x |),两边解x 求导,得 31)1(31)1(131)1(131)111(311xx x x y x x y x x x x y y --=?-?='∴-=---='?7解设经时间t 秒梯⼦上端下滑s ⽶,则s =5-2925t -,当下端移开14 m 时,t 0=157341=?,⼜s ′=-21(25-9t 2)21-·(-9·2t )=9t29251t-, 所以s ′(t 0)=9×2)157(9251157?-?=0875(m/s)8解(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1),当x ≠1时,1+2x +3x 2+…+nx n -1 =21)1()1(1x nx x n n n -++-+,两边同乘以x ,得x +2x 2+3x 2+…+nx n=221)1()1(x nx x n x n n -++-++两边对x 求导,得S n =12+22x 2+32x 2+…+n 2xn -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++第⼆部分:⽤导数求切线⽅程的四种类型求曲线的切线⽅程是导数的重要应⽤之⼀,⽤导数求切线⽅程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的⼀点,则以P 的切点的切线⽅程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平⾏于y 轴(即导数不存在)时,由切线定义知,切线⽅程为0x x =.下⾯例析四种常见的类型及解法.类型⼀:已知切点,求曲线的切线⽅程此类题较为简单,只须求出曲线的导数()f x ',并代⼊点斜式⽅程即可.例1 曲线3231y x x =-+在点(11)-,处的切线⽅程为()A.34y x =- B.32y x =-+C.43y x =-+ D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线⽅程为(1)3(1)y x --=--,即32y x =-+,因⽽选B.例2已知曲线C y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的⽅程及切点坐标解由l 过原点,知k =00x y(x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0,∴00x y =x 02-3x 0+2y ′=3x 2-6x +2,k =3x 02-6x 0+2⼜k =00x y,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23由x ≠0,知x 0=23∴y 0=(23)3-3(23)2+2·23=-83∴k =00x y =-41∴l ⽅程y =-41x 切点(23,-83)类型⼆:已知斜率,求曲线的切线⽅程此类题可利⽤斜率求出切点,再⽤点斜式⽅程加以解决.例3 与直线240x y -+=的平⾏的抛物线2y x =的切线⽅程是()A.230x y -+= B.230x y --=C.210x y -+= D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线⽅程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利⽤?法加以解决,即设切线⽅程为2y x b =+,代⼊2y x =,得220x x b --=,⼜因为0?=,得1b =-,故选D.类型三:已知过曲线上⼀点,求切线⽅程过曲线上⼀点的切线,该点未必是切点,故应先设切点,再求切点,即⽤待定切点法.例4 求过曲线32y x x =-上的点(11)-,的切线⽅程.解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线⽅程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.⼜知切线过点(11)-,,把它代⼊上述⽅程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线⽅程为(12)(32)(1)y x --=--,或13112842y x--+=-+,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728??-,为切点的直线.这说明过曲线上⼀点的切线,该点未必是切点,解决此类问题可⽤待定切点法.类型四:已知过曲线外⼀点,求切线⽅程此类题可先设切点,再求切点,即⽤待定切点法来求解.例5 求过点(20),且与曲线1y x=相切的直线⽅程.解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线⽅程为00201()y y x x x -=--,即020011()y x x x x -=--.⼜已知切线过点(20),,把它代⼊上述⽅程,得020011(2)x x x -=--.解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的⼀点,但在解答过程中却⽆需判断它的确切位置,充分反映出待定切点法的⾼效性.例6 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线⽅程.解:曲线⽅程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,,则点M 的坐标满⾜30003y x x =-.因200()3(1)f x x '=-,故切线的⽅程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线⽅程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型⼀或类型三;若点A 不在曲线上,应先设出切点并求出切点.第三部分:导数的应⽤最⼤值与最⼩值⼀、教学内容导数的应⽤最⼤值与最⼩值⼀般地,在闭区间],[b a 上连续的函数)(x f 在],[b a 上必有最⼤值与最⼩值;在开区间),(b a 内连续的函数)(x f 不⼀定有最⼤值与最⼩值,例如xx f 1)(=在),0(∞+内的图象连续,但⽆最⼤值和最⼩值。
导数的极值与最值题型总结(解析版)--2024高考数学常考题型精华版

第6讲导数的极值与最值题型总结【考点分析】考点一:函数的驻点若()00='x f ,我们把0x 叫做函数的驻点.考点二:函数的极值点与极值①极大值点与极大值:函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值,其中0x 叫做函数的极大值点②极小值点与极小值:函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值,其中0x 叫做函数的极小值点考点三:求可导函数()f x 极值的步骤①先确定函数()f x 的定义域;②求导数()f x ';③求方程()0f x '=的根;④检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注意:可导函数()x f 在0x x =满足0()0f x '=是()x f 在0x 取得极值的必要不充分条件,如3()f x x =,(0)0f '=,但00x =不是极值点.考点四:函数的最值一个连续函数在闭区间[]b a ,上一定有最值,最值要么在极值点处取得,要么在断点处取得。
求函数最值的步骤为:①求()y f x =在[]b a ,内的极值(极大值或极小值);②将()y f x =的各极值与()a f 和()b f 比较,其中最大的一个为最大值,最小的一个为最小值.【题型目录】题型一:求函数的极值与极值点题型二:根据极值、极值点求参数的值题型三:根据极值、极值点求参数的范围题型四:利用导数求函数的最值(不含参)题型五:根据最值求参数题型六:根据最值求参数范围【典例例题】题型一:求函数的极值与极值点【方法总结】利用导数求函数极值的步骤如下:(1)求函数()f x 的定义域;(2)求导;(3)解方程()00f x '=,当()00f x '=;(4)列表,分析函数的单调性,求极值:①如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值;【例1】(2022石泉县石泉中学)函数()2x x f x e=的极小值为()A .0B .1eC .2D .24e 【答案】A【解析】由()2x xf x e=,得()()()2222x xxx x x xe x e f x e e ---'==,当02x <<时,()0f x '>,()f x 单调递增;当0x <或2x >时,()0f x '<,()f x 单调递减;所以当0x =时,函数()2x x f x e=取得极小值,极小值为()000f e ==.故选:A.【例2】(2021·河南新乡市)已知函数()ln f x x ax =-的图象在1x =处的切线方程为0x y b ++=,则()f x 的极大值为()A .ln 21--B .ln 21-+C .1-D .1【答案】A【解析】因为()ln f x x ax =-,所以1()f x a x'=-,又因为函数()f x 在图象在1x =处的切线方程为0x y b ++=,所以(1)1f a b =-=--,(1)11f a ='-=-,解得2a =,1b =.由112()2x f x x x-'=-=,102x <<,()0f x '>,12x >,()0f x '<,知()f x 在12x =处取得极大值,11ln 1ln 2122f ⎛⎫=-=-- ⎪⎝⎭.故选:A.【例3】若函数2()x f x e ax a =--在R 上有小于0的极值点,则实数a 的取值范围是()A .(1,0)-B .(0,1)C .(,1)-∞-D .(1,)+∞【答案】B【解析】由()2()x xf x e ax a f x e a'=--⇒=-因为2()x f x e ax a =--在R 上有小于0的极值点,所以()0xf x e a ='-=有小于0的根,由x y e =的图像如图:可知()0xf x e a ='-=有小于0的根需要01a <<,所以选择B【例4】(2022·江西师大附中三模(理))已知函数()sin ,()e xxf x xg x =-为()f x 的导函数.(1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;【答案】(1)存在;极小值【分析】(1)转化为判断导函数是否存在变号零点,对()g x '求导后,判断()g x '的单调性,结合零点存在性定理可得结果;【解析】(1)由()sin ex x f x x =-,可得2e e 1()cos cos (e )e x x x x x xg x x x --=-=-,则2e (1)e 2π()sin sin ,0,(e )e 2x x x x x x g x x x x ----⎛⎫'=+=+∈ ⎪⎝⎭,令2()sin e x x h x x -=+,其中π0,2x ⎛⎫∈ ⎪⎝⎭,可得2e (2)e 3()cos cos 0(e )e x x x x x x h x x x ---'=+=+>,所以()h x 在π0,2⎛⎫⎪⎝⎭上单调递增,即()g x '在π0,2⎛⎫⎪⎝⎭上单调递增,因为π2π2π2(0)20,102eg g -⎛⎫''=-<=+> ⎪⎝⎭,所以存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()00,x x ∈时,()0,()g x g x '<单调递减;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0,()g x g x '>单调递增,所以当0x x =时,函数()g x 取得极小值.【例5】(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;【答案】(1)极大值,12π-;极小值,1-;【分析】(1)由题可得()14f x x π⎛⎫'=- ⎪⎝⎭,进而可得;【解析】(1)∵()sin cos f x x x x =--,∴()1cos sin 1cos 4f x x x x π⎛⎫=-+=+' ⎪⎝⎭,,2x ππ⎛⎫∈- ⎪⎝⎭,由()0f x '=,可得2x π=-,或0x =,∴,2x ππ⎛⎫∈-- ⎝⎭,()()0,f x f x '>单调递增,,02x π⎛⎫∈- ⎪⎝⎭,()()0,f x f x '<单调递减,0,2x π⎛⎫∈ ⎪⎝⎭,()()0,f x f x '>单调递增,∴2x π=-时,函数()f x 有极大值(122f ππ-=-,0x =时,函数()f x 有极小值(0)1f =-;【题型专练】1.已知e 为自然对数的底数,设函数()x xe x f =,则A .1是()x f 的极小值点B .﹣1是()x f 的极小值点C .1是()x f 的极大值点D .﹣1是()x f 的极大值点【答案】B 【解析】【详解】试题分析:,当时,,当时,,当时,,所以当时,函数取得极小值,是函数的极小值点,故选B.考点:导数与极值2.(2022福建省福建师大附中高二期末多选)定义在R 的函数()f x ,已知()000x x ≠是它的极大值点,则以下结论正确的是()A .0x -是()f x -的一个极大值点B .0x -是()f x -的一个极小值点C .0x 是()f x -的一个极大值点D .0x -是()f x --的一个极小值点【答案】AD【解析】()000x x ≠是()f x 的极大值点,就是存在正数m ,使得在00(,)x m x -上,()0f x '>,在00(,)x x m +上,()0f x '<.设()()g x f x =-,()()g x f x ''=--,当00x x x m -<<-+时,00x m x x -<-<,()0f x '->,()0g x '<,同理00x m x x --<<-时,()0g x '>,∴0x -是()f x -的一个极大值点,从而0x -是()f x --的一个极小值点,0x 是()f x -的一个极小值点.不能判定0x -是不是()f x -的极值点.故选:AD.3.(2022江西高三期中(文))已知函数()ln f x a x ax =+,2()2g x x x =+,其中a R ∈.(1)求函数()()()h x f x g x =+的极值;(2)若()g x 的图像在()()11,A x g x ,()()()2212,0B x g x xx <<处的切线互相垂直,求21x x -的最小值.【答案】(1)答案见解析;(2)1.【解析】(1)函数2()ln (2)h x a x x a x =+++的定义或为(0,)+∞,2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=,若0a ≥,()0h x '>恒成立,此时()h x 在(0,)+∞上单调递增,无极值;若0a <时,()0h x '=,解得2a x =-,当02ax <<-时,()0h x '<,()h x 单调递减;当2ax >-时,()0h x '>,()h x 单调递增.∴当2a x =-时,()h x 有极小值2ln 224a a ah a a ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)()22g x x '=+,则()()1222221x x ++=-,其中,120x x <<,1222022x x ∴+<<+,且()121141x x =--+,210x -<<,()212211141x x x x ∴-=++≥+,当且仅当21(1,0)2x =-∈-时取等号,∴当212x =-,132x =-时,21x x -取最小值1.题型二:根据极值、极值点求参数的值【方法总结】解含参数的极值问题要注意:①()00f x '=是0x 为函数极值点的必要不充分条件,故而要注意检验;②若函数()y f x =在区间(,)a b 内有极值,那么()y f x =在(,)a b 内绝不是单调函数,即在某区间上的单调函数没有极值.【例1】(2022全国课时练习)若函数()2()1xf x x ax e =--的极小值点是1x =,则()f x 的极大值为()A .e -B .22e -C .25e -D .2-【答案】C【解析】由题意,函数()2()1x f x x ax e =--,可得2()(2)1x f x e x a x a '⎡⎤=+---⎣⎦,所以(1)(22)0f a e '=-=,解得1a =,故()2()1x f x x x e =--,可得()())1(2xf x ex x '=+-,则()f x 在(,2)-∞-上单调递增,在()2,1-上单调递减,在(1,)+∞上单调递增,所以()f x 的极大值为2(2)5f e --=.故选:C.【例2】(2021·全国课时练习)若函数2()()f x x x a =-在2x =处取得极小值,则a=__________.【答案】2【解析】由2322()()2f x x x a x ax a x ==--+可得22()34f x x ax a '=-+,因为函数2()()f x x x a =-在2x =处取得极小值,所以2(2)1280f a a '=-+=,解得2a =或6a =,若2a =,则2()384(2)(32)f x x x x x '=-+=--,当2,3x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '>,则()f x 单调递增;当2,23x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则()f x 单调递减;当()2,x ∈+∞时,()0f x '>,则()f x 单调递增;所以函数()f x 在2x =处取得极小值,符合题意;当6a =时,2()324363(2)(6)f x x x x x '=-+=--,当(),2x ∈-∞时,()0f x '>,则()f x 单调递增;当()2,6x ∈时,()0f x '<,则()f x 单调递减;当()6,x ∈+∞时,()0f x '>,则()f x 单调递增;所以函数在2x =处取得极大值,不符合题意;综上:2a =.故答案为:2.【例3】(2022·江苏南通·模拟预测)已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =()A .-1B .2C .-3D .4【答案】B 【解析】【分析】对()f x 求导,由函数()()()e xf x x a x b =--在x a =处取极小值,所以()0f a ¢=,所以a b =,()()2e xf x x a ∴=-,对()f x 求导,求单调区间及极大值,由()f x 的极大值为4,列方程得解.【详解】解:()()()e xf x x a x b =--()2e x x ax bx ab =--+,所以()()()22e e x x f x x a b x ax bx ab '=--+--+()2e 2x x a b x ab a b ⎡⎤=+--+--⎣⎦因为函数()()()e xf x x a x b =--在x a =处取极小值,所以()()()2e 2e 0a af a a a b a ab a b a b '⎡⎤=+--+--=-=⎣⎦,所以a b =,()()2e x f x x a ∴=-,()()()()22e 222=e 2x x f x x a x a a x ax a '⎡⎤=+-+----⎡⎤⎣⎦⎣⎦,令()0f x '=,得=x a 或=2x a -,当()2x a ∈-∞-,时,()0f x '>,所以()f x 在()2a -∞-,单调递增,当()2x a a ∈-,时,()0f x '<,所以()f x 在()2a a -,单调递增,当()x a ∈∞,+时,()0f x '>,所以()f x 在()a ∞+,单调递增,所以()f x 在=2x a -处有极大值为()22e ==44a f a --,解得=2a ,所以=2b .故选:B 【题型专练】1.设函数()23ln 2f x x ax x =+-,若1x =是函数()f x 是极大值点,则函数()f x 的极小值为________【答案】ln 22-【解析】函数()2313ln '()222f x x ax x f x ax x =+-⇒=+-1x =是函数()f x 是极大值点则131'(1)20124f a a =+-=⇒=()213113ln '()04222f x x x x f x x x =+-⇒=+-=1x =或2x =当2x =时()f x 的极小值为ln 22-故答案为:ln 22-2.(2023全国高三专题练习)已知函数()ln 1xf x ae x =--,设1=x 是()f x 的极值点,则a =___,()f x 的单调增区间为___.【答案】1e()1,+∞【解析】由题意可得:()1xf x ae x'=-1x = 是()f x 的极值点()110f ae ∴=-='1a e⇒=即()1ln 1x f x ex -=--()11x f x e x-⇒-'=令()0f x '>,可得1x >()f x ∴的单调递增区间为()1,+∞3.(2023河南省实验中学高二月考)函数1sin sin 33y a x x =+在3x π=处有极值,则a 的值为()A .6-B .6C .2-D .2【答案】D【解析】cos cos3,y a x x +'=由3|0x y π=='得,cos cos 0,2,3a a ππ+==选D.点睛:函数()f x 在点3x π=处由极值,则必有()0,3f π'=但要注意()0,3f π'=3x π=不一定是()f x 的极值点.题型三:根据极值、极值点求参数的范围【例1】(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是()A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-【答案】A 【解析】【分析】求出()f x ',分0a ≥,2a <-,20a -<<,2a =-分别讨论出函数的单调区间,从而可得其极值情况,从而得出答案.【详解】()()()()()22224224222x a x a x x a a f x x a x x x+---+'=+--==,()0x >若0a ≥时,当2x >时,()0f x '>;当02x <<时,()0f x '<;则()f x 在()0,2上单调递减;在()2,+∞上单调递增.所以当2x =时,()f x 取得极小值,与条件不符合,故满足题意.当2a <-时,由()0f x '>可得02x <<或x a >-;由()0f x '<可得2x a <<-所以在()0,2上单调递增;在()2,a -上单调递减,在(),a -+∞上单调递增.所以当2x =时,()f x 取得极大值,满足条件.当20a -<<时,由()0f x '>可得0x a <<-或2x >;由()0f x '<可得2a x -<<所以在()0,a -上单调递增;在(),2a -上单调递减,在()2,+∞上单调递增.所以当2x =时,()f x 取得极小值,不满足条件.当2a =-时,()0f x '≥在()0,∞+上恒成立,即()f x 在()0,∞+上单调递增.此时()f x 无极值.综上所述:2a <-满足条件故选:A【例2】(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围()A .()2,2-B .(-C .⎡-⎣D .[]22-,【答案】D 【解析】【分析】求()()222e x x a f x x a ⎡⎤++++⋅⎣⎦'=,由分析可得()2220y x a x a =++++≥恒成立,利用0∆≤即可求得实数a 的取值范围.【详解】由()()22e xx a f x x =++⋅可得()()()()222e 2e 22e x x xx a x ax x a x f a x ⎡⎤=+⋅+++⋅=++++⋅⎣⎦',e 0x >恒成立,()222y x a x a =++++为开口向上的抛物线,若函数()()22e xx a f x x =++⋅在R 上无极值,则()2220y x a x a =++++≥恒成立,所以()()22420a a ∆=+-+≤,解得:22a -≤≤,所以实数a 的取值范围为[]22-,,故选:D.【例3】(2022·全国·高三专题练习)函数()(ln )xe f x a x x x=--在(0,1)内有极值,则实数a 的取值范围是()A .(,)e -∞B .(0,)eC .(,)e +∞D .[),e +∞【答案】C 【解析】【分析】由可导函数在开区间内有极值的充要条件即可作答.【详解】由()(ln )x e f x a x x x=--得,21111()()(1)(1)()x x e f x e a a x x x x x '=---=--,因函数()(ln )x e f x a x x x=--在(0,1)内有极值,则(0,1)x ∈时,()0xef x a x '=⇔=有解,即在(0,1)x ∈时,函数()xe g x x=与直线y=a 有公共点,而1()(10x e g x x x'=-<,即()g x 在(0,1)上单调递减,(0,1),()(1)x g x g e ∀∈>=,则a e >,显然在x e a x =零点左右两侧()'f x 异号,所以实数a 的取值范围是(,)e +∞.故选:C 【点睛】结论点睛:可导函数y =f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.【例4】(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦,若2x =是()f x 的极小值点,则实数a 的取值范围是()A .2,3⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .()1,-+∞【答案】B 【解析】【分析】根据导函数的正负,对a 分类讨论,判断极值点,即可求解.【详解】由()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦得()()()12e x f x ax x '=--,令()()()()()12e 0120x f x ax x ax x '=-->⇒-->,若0a <,则()()11202ax x x a -->⇒<<,此时在12x a <<单调递增,在12,x x a><单调递减,这与2x =是()f x 的极小值点矛盾,故舍去.若0a =,可知2x =是()f x 的极大值点,故不符合题意.若102a >>,()()11202,ax x x x a -->⇒<>,此时()f x 在12,x x a <>单调递增,在12x a<<单调递减,可知2x =是()f x 的极大值点,故不符合题意.当12a >,,()()11202,ax x x x a -->⇒><,此时()f x 在12,x x a ><单调递增,在12x a>>单调递减,可知2x =是()f x 的极小值点,符合题意.若12a =,()f x 在定义域内单调递增,无极值,不符合题意,舍去.综上可知:12a >故选:B【例5】(2022·吉林长春·模拟预测(文))已知函数()sin f x ax x =+,()0,πx ∈.(1)当1a =时,过()0,1做函数()f x 的切线,求切线方程;(2)若函数()f x 存在极值,求极值的取值范围.【答案】(1)1y x =+,(2)()0,π【解析】【分析】(1)设切点,再根据导数的几何意义求解即可;(2)求导分析导函数为0时的情况,设极值点为0x 得到0cos a x =-,代入极值再构造函数()cos sin h x x x x =-+,求导分析单调性与取值范围即可(1)由题,当1a =时,()sin f x x x =+,()1cos f x x '=+,设切点为()000,sin x x x +,则()001cos f x x '=+,故切线方程为()()0000sin 1cos y x x x x x --=+-,又切线过()0,1,故()00001sin 1cos x x x x --=-+,即000sin cos 10x x x --=,设()sin cos 1g x x x x =--,()0,πx ∈,则()sin 0g x x x '=>,故()g x 为增函数.又sin cos 102222g ππππ⎛⎫=--= ⎪⎝⎭,故000sin cos 10x x x --=有唯一解02=x π,故切点为,122ππ⎛⎫+ ⎪⎝⎭,斜率为1,故切线方程为122y x ππ⎛⎫-+=- ⎪⎝⎭,即1y x =+;(2)因为()cos f x a x '=+,()0,πx ∈为减函数,故若函数()f x 存在极值,则()0f x ¢=在区间()0,πx ∈上有唯一零点设为0x ,则0cos 0a x +=,即0cos a x =-,故极值()000000sin cos sin f x ax x x x x =+=-+,设()cos sin h x x x x =-+,()0,πx ∈,则()sin 0h x x x '=>,故()h x 为增函数,故()()()0h h x h π<<,故()0h x π<<,即()()00,f x π∈,故极值的取值范围()0,π【点睛】本题主要考查了过点的切线问题,同时也考查了利用导数研究函数的极值问题,需要根据题意设极值点,得到极值点满足的关系,再代入极值构造函数分析,属于难题【例6】(2022·天津·耀华中学二模)已知函数()ln (0)xae f x x x a x=+->.(1)若1a =,求函数()f x 的单调区间;(2)若()f x 存在两个极小值点12,x x ,求实数a 的取值范围.【答案】(1)递减区间为(0,1),递增区间为(1,)+∞,(2)1(0,)e【解析】【分析】(1)当1a =时,求得2(1)(e )()x x x f x x '--=,令()e xm x x =-,利用导数求得()0m x >,进而求得函数的单调区间;(2)求得2(1)(())x x xx a e ef x x -'=-,令()e x x u x =,结合单调性得到()e 1u x ≤,进而得到10e ex x <≤,分1e a ≥和10ea <<,两种情况分类讨论,结合单调性与极值点的概念,即可求解.(1)解:当1a =时,函数e ()ln xf x x x x =+-,可得221(1)(1)()()1x x e e f x x x x x x x -'+--=-=,令,())(0,x m x e x x -∈=+∞,可得()e 10x m x '=->,所以函数()m x 单调递增,因为()(0)1m x m >=,所以()0m x >,当(0,1)x ∈时,()0f x ¢<,()f x 单调递减;当(1,)x ∈+∞时,()0f x ¢>,()f x 单调递增,即函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)解:由函数()ln ,(0,)xae f x x x x x =+-∈+∞,可得22(()(1)())1(),0x x xe ae x x ef x x x x x a x --'==->-,令()e xx u x =,可得()1e x u x x='-,所以函数()u x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()e1u x ≤,当0x >时,可得e 1x >,所以10e ex x <≤,①当1ea ≥时,0e x xa -≥,此时当(0,1)x ∈时,()0f x ¢<,()f x 单调递减;当(1,)x ∈+∞时,()0f x ¢>,()f x 单调递增,所以函数()f x 的极小值为()1e 1f a =-,无极大值;②当10e a <<时,()()0e e e1,1a a a u a a u a =<==>,又由()u x 在(),1a 上单调递增,所以()f x ¢在(),1a 上有唯一的零点1x ,且11e x xa =,因为当e x >时,令()2ln g x x x =-,可得()2210x g x x x-'=-=<,又因为()0e e 2g =-<,所以()0g x <,即2ln x x <,所以112ln a a<,所以2212ln 11ln2ln 1(ln )1aa a u a a a ea==⋅<,e 1(1)u a =>,因为()u x 在(1,)+∞上单调递减,所以()f x ¢在21(0,ln )a 上有唯一的零点2x ,且22e x x a =,所以当1(0,)x x ∈时,()0f x ¢<,()f x 单调递减;当1(,1)x x ∈时,()0f x ¢>,()f x 单调递增;当2(1,)∈x x 时,()0f x ¢<,()f x 单调递减;当2(,)x x ∈+∞时,()0f x ¢>,()f x 单调递增,所以函数()f x 有两个极小值点,故实数a 的取值范围为1(0,)e.【题型专练】1.(2022贵州遵义·高三)若函数321()53f x x ax x =-+-无极值点则实数a 的取值范围是()A .(1,1)-B .[1,1]-C .(,1)(1,)-∞-+∞ D .(,1][1,)-∞-+∞ 【答案】B 【解析】321()53f x x ax x =-+- ,2()21f x x ax '∴=-+,由函数321()53f x x ax x =-+-无极值点知,()0f x '=至多1个实数根,2(2)40a ∴∆=--≤,解得11a -≤≤,实数a 的取值范围是[1,1]-,故选:B2.(2022湖南湘潭·高三月考(理))已知函数2()e 2x f x ax ax =-+有两个极值点,则a 的取值范围是()A .(,)e +∞B .,2e ⎛⎫+∞ ⎪⎝⎭C .()2,e +∞D .2,2e ⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】因为2()e 2x f x ax ax =-+有两个极值点,所以()0f x '=有两个不同实数根,所以220x e ax a -+=有两个不同实数根,所以()21xe a x =-有两个不同实数根,显然0a ≠,所以112x x a e -=有两个不同实数根,记()1xx g x e -=,()2x x g x e -'=,当(),2x ∈-∞时()0g x '>,当()2,x ∈+∞时()0g x '<,所以()g x 在(),2-∞上单调递增,在()2,+∞上单调递减,所以()()2max 12g x g e==,又因为(],1x ∈-∞时,()0g x ≤;当()0,2x ∈时,()210,g x e ⎛⎫∈ ⎪⎝⎭;当[)2,x ∈+∞时,()210,g x e ⎛⎤∈ ⎥⎝⎦,所以当112x x a e-=有两个不同实数根时2110,2a e ⎛⎫∈ ⎪⎝⎭,所以22a e >,所以22e a >,故选:D.3.若函数2()2ln f x x x a x =-+有两个不同的极值点,则实数a 的取值范围是()A .12a >B .102a -<<C .12a <D .102a <<【答案】D 【解析】【分析】求出函数的导数,由导函数有两个零点可得实数a 的取值范围.【详解】∵2()2ln f x x x a x =-+有两个不同的极值点,∴222()2202a x x af x x x-+'=-+==在(0,)+∞有2个不同的零点,∴2220x x a -+=在(0,)+∞有2个不同的零点,∴Δ4800a a =->⎧⎨>⎩,解得102a <<.故选:D.4.(2020·辽宁高三月考)已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【答案】10,2⎛⎫⎪⎝⎭[)5,-+∞【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---,设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭,22()0a h a a'-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞故答案为:10,2⎛⎫ ⎪⎝⎭;[)5,-+∞5.(2022·江苏南通·高二期末)若x =a 是函数2()()(1)f x x a x =--的极大值点,则a 的取值范围是()A .1a <B .1a ≤C .1a >D .1a ≥【答案】A 【解析】【分析】求导后,得导函数的零点2,3a a +,比较两数的大小,分别判断在x a =两侧的导数符号,确定函数单调性,从而确定是否在x a =处取到极大值,即可求得a 的范围.【详解】解:2()()(1)f x x a x =--,Rx ∈()()(32)f x x a x a '∴=---令()()(32)0f x x a x a '=---=,得:2,3a x a x +==当23a a +<,即1a <此时()f x 在区间(,)a -∞单调递增,2(,)3a a +上单调递减,2(,)3a ++∞上单调递增,符合x =a 是函数()f x 的极大值点,反之,当23a a +>,即1a >,此时()f x 在区间2(,3a +-∞单调递增,2(,)3a a +上单调递减,(,)a +∞上单调递增,x =a 是函数()f x 的极小值点,不符合题意;当23a a +=,即1a =,()0f x '≥恒成立,函数()f x 在R x ∈上单调递增,无极值点.综上得:1a <.故选:A.6.(2020·江苏盐城·高三期中)若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.【答案】814,16⎛⎫⎪⎝⎭【解析】因为()()21ln 02f x x b x ax x =++>,所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点,所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,所以根据韦达定理有:1212x x ax x b+=-⎧⎨⋅=⎩,故()23939b a b b ab b++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠,所以()()22112281334,16x x x x ⎛⎫--∈⎪⎝⎭.故答案为:814,16⎛⎫⎪⎝⎭.7.(2018年北京高考题)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦。
高考数学热点必会题型第5讲 导数中含参讨论问题总结(解析版)

高考数学热点必会题型第5讲 导数中含参讨论问题总结——每天30分钟7天掌握一、重点题型目录【题型】一、由函数的单调区间求参数 【题型】二、由函数在区间上的单调性求参数 【题型】三、含参分类讨论求函数单调性区间 【题型】四、根据极值点求参数【题型】五、有导数求函数的最值(含参) 【题型】六、已知函数最值求参数 【题型】七、参变分离法解决导数问题【题型】八、构造函数并利用函数的单调性判定函数值大小 【题型】九、构造函数法解决导数问题 二、题型讲解总结【题型】一、由函数的单调区间求参数第一天学习及训练例1.(2023·全国·高三专题练习)已知函数()2ln x ax f x x =++的单调递减区间为1,12⎛⎫⎪⎝⎭,则( ). A .(],3a ∈-∞- B .3a =- C .3a = D .(],3a ∈-∞【答案】B【分析】根据()f x 得到()f x ',再根据()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,得到12和1是方程()0f x '=的两个根,代入解方程即可.【详解】由()2ln x ax f xx =++得()221x ax f x x++'=,又()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,所以12和1是方程2210x ax x++=的两个根,代入得3a =-.经检验满足题意故选:B.例2.(2023·全国·高三专题练习)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫⎪⎝⎭上是减函数,则实数a 的取值范围为( ) A.1a > B .1a ≥ C .1a >D .1a ≥-【答案】B【分析】根据函数的单调性知导数小于等于0恒成立,分离参数后由正切函数单调性求解.【详解】由题意,()cos sin 0f x x a x '=-≤在ππ,42⎛⎫⎪⎝⎭上恒成立,即cos 1sin tan x a x x ≥=在ππ,42⎛⎫⎪⎝⎭上恒成立, 因为tan y x =在ππ,42⎛⎫⎪⎝⎭上单调递增,所以tan 1y x =>,所以在ππ,42x ⎛⎫∈ ⎪⎝⎭时,101tan x <<, 所以1a ≥. 故选:B例3.(2022·全国·高三专题练习)已知函数()32f x x ax bx c =+++,()g x 为()f x 的导函数.若()f x 在(0,1)上单调递减,则下列结论正确的是( )A .23a b -有最小值3B .23a b -有最大值C .()()010f f ⋅≤D .()()010g g ⋅≥【答案】D【分析】由()f x 在(0,1)上单调递减,得到()00g b =≤,()1230g a b =++≤,即可判断D ;求出()()()2011f f c a b c ⋅=+++,当0c <时,有()()010f f ⋅>,可否定C ;记23z a b =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,利用数形结合求出,判断A 、B.【详解】由题意可得()()232g x f x x ax b ='=++.因为()f x 在(0,1)上单调递减,所以()0g x ≤在(0,1)上恒成立,即()00g b =≤,()1230g a b =++≤,所以()()010g g ⋅≥, 因为()()0,11f c f a b c ==+++,()f x 在(0,1)上单调递减, 所以1c a b c >+++,即10a b ++<,所以()()()()20111f f c a b c c a b c ⋅=+++=+++,当0c <时,有()()010f f ⋅> 所以C 错误,D 正确. 记23z ab =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,作出可行域如图示:由2300a b b ++=⎧⎨=⎩解得:3,02A ⎛⎫- ⎪⎝⎭.当抛物线21133a z b -=,经过点3,02A ⎛⎫- ⎪⎝⎭时94z =最小,没有最大值.故A 、B 错误.故选:D.例4.(2023·全国·高三专题练习)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 【答案】AD【分析】由条件可得()f x 在(1,)+∞上单调递增,再结合导数和单调性的关系列不等式求a 的范围,由此确定正确选项.【详解】设1ln (1)y x x x =-->,则110y x'=->, 所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->, 所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-, ∴110ln 1x x >>-. 又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立, 所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211ex x a --≥恒成立.令111(),()ee x x xxg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=, ∴211a -≥,解得a ≥a ≤所以a 的值可以为, 故选:AD.【题型】二、由函数在区间上的单调性求参数例5.(2023·全国·高三专题练习)若函数2()ln 2f x x x x =+--在其定义域的一个子区间(21,21)k k -+内不是单调函数,则实数k 的取值范围是( ) A .33,24⎛⎫- ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .3,32⎛⎫- ⎪⎝⎭D .13,24⎡⎫⎪⎢⎣⎭【答案】D【分析】先求出函数的定义域(0,)+∞,则有210k -≥,对函数求导后,令()0f x '=求出极值点,使极值点在(21,21)k k -+内,从而可求出实数k 的取值范围.【详解】因为函数()f x 的定义域为(0,)+∞, 所以210k -≥,即12k ≥, 2121(1)(21)()21x x x x f x x x x x+-+-'=+-==, 令()0f x '=,得12x =或=1x -(舍去), 因为()f x 在定义域的一个子区间(21,21)k k -+内不是单调函数, 所以121212k k -<<+,得4143k -<<, 综上,1324k ≤<, 故选:D例6.(2023·全国·高三专题练习)若函数()324f x x ax x =-++在区间()0,2上单调递增,则实数a 的取值范围为( ) A .[)2,+∞ B .()2,+∞ C .(],2-∞ D .(),2-∞【答案】A【分析】将问题转化为()0f x '≥在()0,2上恒成立,采用分离变量法可得423a x x ≥-,由434x x-<可构造不等式求得结果. 【详解】()f x 在()0,2上单调递增,()23240f x x ax '∴=-++≥在()0,2上恒成立,即234423x a x x x-≥=-在()0,2上恒成立, 又43y x x =-在()0,2上单调递增,43624x x ∴-<-=,24a ∴≥,解得:2a ≥,即实数a 的取值范围为[)2,+∞. 故选:A.例7.(2023·全国·高三专题练习)下列说法正确的有( )A .设{}25A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是[]1,2 B .“1a >,1b >”是“1ab >”成立的充分条件C .命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x <D .“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件【答案】BD【分析】分B =∅与B ≠∅两种情况讨论,求出参数a 的范围,即可判断A ,根据不等式的性质及充分条件的定义判断B ,根据全称量词命题的否定为特称量词命题判断C ,求出函数的导数,由()0f x '≥恒成立求出a 的取值范围,再根据集合的包含关系判断D 即可; 【详解】解:对于A :当B =∅,即23a a >+,解得3a >时满足B A ⊆, 当B ≠∅,因为B A ⊆,所以352223a a a a +≤⎧⎪≥⎨⎪≤+⎩,解得12a ≤≤,综上可得[][)1,23,a ∈+∞,故A错误;对于B :由1a >,1b >则1ab >,故“1a >,1b >”是“1ab >”成立的充分条件,即B 正确; 对于C :命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x ≤,故C 错误;对于D :因为()()e 23xf x a x -=--,所以()()e 2x f x a =-'-,若()f x 在R 上单调递增,则()()e 20xf x a -'=-≥恒成立,所以20a -≤,解得2a ≤,因为(],2-∞ (],5-∞,所以“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件,故D正确; 故选:BD例8.(2023·全国·高三专题练习)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是___________【分析】原问题等价于()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上恒成立,构造函数求最值即可.【详解】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭,令()2cos 26g x x xπ⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭,当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭,所以54sin 2+136x π-≤-≤-⎛⎫- ⎪⎝⎭,即()0g x '<,所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤=得m ≥m第二天学习及训练【题型】三、含参分类讨论求函数单调性区间例9.(2023·全国·高三专题练习)已知()()ln 11axf x x x =+++,则下列说法正确的是( ) A .当0a >时,()f x 有极大值点和极小值点 B .当a<0时,()f x 无极大值点和极小值点 C .当0a >时,()f x 有最大值 D .当a<0时,()f x 的最小值小于或等于0【答案】D【分析】讨论0a >、a<0,利用导数研究()f x 在定义域上的单调性,进而判断极值点及最值情况,即可确定答案. 【详解】由题设,2211()(1)1(1)a x a f x x x x ++'=+=+++且(1,)∈-+∞x ,当0a >时()0f x '>,则()f x 在(1,)-+∞上递增,无极值点和最大值,A 、C 错误; 当a<0时,若(1,1)x a ∈---则()0f x '<,()f x 递减;(1,)x a ∈--+∞则()0f x '>,()f x 递增;所以()(1)1ln()f x f a a a ≥--=++-,即()f x 无极大值点,有极小值点,B 错误; 令()1ln()g a a a =++-且(,0)a ∈-∞,则11()1a g a a a+'=+=, 当1a <-时()0g a '>,()g a 递增;当10a -<<时()0g a '<,()g a 递减; 所以()(1)0g a g ≤-=,即()f x 的最小值小于或等于0,D 正确; 故选:D例10.(2023·全国·高三专题练习)已知函数()ln 1f x x x =--,若不等式()()21f x a x ≥-在区间(]0,1上恒成立,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥,设2()ln 1(1)g x x x a x =----,(0,1]x ∈,求出函数()g x 的导函数,分解12a ≤和12a >讨论函数()g x 的单调性,求出函数()g x 在区间(]0,1上的最小值,即可得解.【详解】解:由已知可得2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥, 设2()ln 1(1)g x x x a x =----,(0,1]x ∈, 则(1)(12)()x ax g x x--'=,当0a ≤时,显然()0g x '≤,当102a <≤时,()0g x '≤在(0,1]x ∈上也成立,所以12a ≤时,()g x 在(0,1]上单调递减,()(1)0g x g ≥=恒成立; 当12a >时,当102x a <<时,()0g x '<,当112x a<<时,()0g x '>, 所以()g x 在10,2a ⎛⎤ ⎥⎝⎦上单调递减,在1,12a ⎛⎫ ⎪⎝⎭上单调递增, 于是,存在01,12x a ⎛⎫∈ ⎪⎝⎭,使得0()(1)0g x g <=,不满足()0g x ≥,舍去此情况,综上所述,12a ≤. 故选:A.例11.(2023·全国·高三专题练习)已知()()22e 2e e 2e a a b bm m a m m +--=+-,则( )A .当()1,0m ∈-,a ,(),0b ∈-∞时,a b >B .当()1,0m ∈-,a ,(),0b ∈-∞时,a b <C .当()1,2m ∈,a ,()0,b ∈+∞时,a b >D .当()1,2m ∈,a ,()0,b ∈+∞时,a b < 【答案】AC【分析】根据等号两边式子的结构特征构造函数()f x ,利用导数分类讨论函数()f x 的单调性进行求解.【详解】设()()2e 2e x xf x m m x =+--,因为()()22e 2e e 2e a a b bm m a m m +--=+-,所以()()f a f b b =+,当a ,(),0b ∈-∞时,()()0f a f b b -=<,即()()f a f b <.易知()()()e 12e 1x xf x m '=-+,当()1,0m ∈-时,()0f x '<,所以()f x 在(),0∞-上单调递减, 所以a b >,故选项A 正确,选项B 错误.当a ,()0,b ∈+∞时,()()0f a f b b -=>,即()()f a f b >. 当()1,2m ∈时,令()0f x '=,解得ln x m =-,所以()f x 在(),ln m -∞-上单调递减,在()ln ,m -+∞上单调递增, 所以a b >,故选项C 正确,选项D 错误. 故选:AC.【题型】四、根据极值点求参数例12.(2023·全国·高三专题练习)若函数3()3f x x bx b =-+在区间(0,1)内有极小值,则b 的取值范围是( ) A .(,1)-∞ B .(0,1)C .(1,)+∞D .(1,0)-【答案】B【分析】先利用导数求出函数的极小值点,然后使极小值点在(0,1)内,从而可求出b 的取值范围【详解】由题意,得2()33f x x b '=-,当0b ≤时,()0f x '>在(0,1)上恒成立,所以()f x 在(0,1)上递增,函数无极值, 所以0b >,令()0f x '=,则x =,∴函数在()上()0f x '<,+∞)上()0f x '>,函数递增∴x =∴函数3()3f x x bx b =-+在区间(0,1)内有极小值,∴01, ∴b ∴(0,1) 故选:B .例13.(2023·全国·高三专题练习)若3π-,3π分别是函数()()()sin 0,0f x x ωϕωϕπ=+><<的零点和极值点,且在区间,155ππ⎛⎫⎪⎝⎭上,函数()y f x =存在唯一的极大值点0x ,使得()01f x =,则下列数值中,ω的可能取值是( ) A .814B .994C .1054D .1174【答案】C【分析】由函数的零点和极值点的概念结合正弦函数图象的性质对各个选项进行判断即可. 【详解】设函数()y f x =的最小正周期为T ,由题意得1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩则3(21),4,24k k ωππϕ+⎧=⎪='⎪⎨⎪+⎪⎩其中121221,(,),k k k k k Z k k k =+⎧∈⎨=-⎩'在区间,155ππ⎛⎫ ⎪⎝⎭上, 函数()y f x =存在唯一的极大值点0x ,使得()01f x =, 所以22,51515T πππ-=≤解得030,ω<≤即3(21)30,4k +≤解得19.5.k ≤ 对于D.若1174ω=,则19.k =由11139(),34k k k Z ππϕπωπ=+=+∈且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立, 当,155x ππ⎛⎫∈ ⎪⎝⎭时1173(2.7,6.6),44x πππ+∈当011739442x ππ+=或132π时,()01f x =都成立, 故不符合; 对于C. 若1054ω=,则17k =,1135,34k k ππϕπωπ=+=+且0ϕπ<<可知 3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时1053(2.5,6)44x πππ+∈,当010539442x ππ+=时,存在唯一的极大值点0x ,使得()01f x =,故符合条件; 对于B. 若949ω=,则16,k =由1133,34k k ππϕπωπ=+=+且0ϕπ<<可知,4πϕ= 可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时99(1.9,5.2)44x πππ+∈, 当0995442x ππ+=或92π时,()01f x =都成立,故不符合; 对于A. 若148ω=,则13,k =由 112734k k ππϕπωπ=+=+且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时,813(2,1,4.8)44x πππ+∈, 当08135442x ππ+=或92π时,()01f x =都成立,故不符合; 故选:C第三天学习及训练【题型】五、有导数求函数的最值(含参)例14.(2023·全国·高三专题练习)设直线x t =与函数()22f x x =,()ln g x x =的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ) A .1 B .12CD【答案】B【分析】由题意,函数()()22ln y f x g x x x =-=-的最小值即|MN |达到最小值时,再求导分析()()22ln y f x g x x x =-=-的极小值点即可【详解】设函数()()22ln y f x g x x x =-=-,求导数得()()212114x x y x x x+-'=-=因为0x >,故当102x <<时,0'<y ,函数在10,2⎛⎫⎪⎝⎭上为单调减函数, 当12x >时,0'>y ,函数在1,2⎛⎫+∞ ⎪⎝⎭上为单调增函数 所以x 12=为()()22ln y f x g x x x =-=-的极小值点.故当|MN |达到最小时t 的值为12. 故选:B .例15.(2023·全国·高三专题练习)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △,ECA △,FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:3cm )的最大值为______.【答案】3【分析】连接OD ,交BC 于点G ,设OG x =,则BC =,5DG x =-, 进而算出三棱锥的高和体积,构造函数,令45()2510f x x x =-,5(0,)2x ∈,求导,根据导函数的正负判断单调性进而求出最大值.【详解】由题意,连接OD ,交BC 于点G ,由题意得OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比,设OG x =,则BC =,5DG x =-,三棱锥的高h 221)2ABCS==,则213ABC V Sh =⨯=45()2510f x x x =-,5(0,)2x ∈,34()10050f x x x '=-,令()0f x '≥,即4320x x -≤,解得2x ≤,则()(2)80f x f ≤=,∴3V ,∴体积最大值为3.故答案为:3【点睛】思路点睛:本题将三棱锥体积的计算转化为利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求单调性的方法,属于中档题.例16.(2023·河北·高三阶段练习)R,2e 12x x x a ∀∈-≥+,则a 的最大值为_____________.【答案】1【分析】R,2e 12x x x a ∀∈-≥+,即R,2e 12x x x a ∀∈--≥,令()2e 12xf x x =--,分1ln2x >和1ln2x ≤两种情况讨论,利用导数求出函数的最小值,即可得出答案. 【详解】解:R,2e 12xx x a ∀∈-≥+,即R,2e 12xx x a ∀∈--≥,令()2e 12xf x x =--,当2e 10x ->,即1ln 2x >时,()2e 12xf x x =--,则()2e 2xf x '=-,当1ln02x <<时,()0f x '<,当0x >时,0f x ,所以函数()f x 在1ln ,02⎛⎫⎪⎝⎭上递减,在()0,∞+上递增,所以当1ln 2x >时,()()min 01f x f ==,当2e 10x -≤,即1ln2x ≤时,()12e 2xf x x =--, 因为函数2e ,2x y y x ==为增函数,所以函数()12e 2xf x x =--在1,ln 2⎛⎫-∞ ⎪⎝⎭上递减,所以当1ln2x ≤时,()min 1ln ln 412f x f ⎛⎫==> ⎪⎝⎭, 综上所述,()()min 01f x f ==, 所以1a ≤, 即a 的最大值为1. 故答案为:1.【题型】六、已知函数最值求参数例17.(2023·广西·模拟预测(文))已知函数()ln f x x ax =+存在最大值0,则a 的值为( ) A .2- B .1e-C .1D .e【答案】B【分析】讨论a 与0的大小关系确定()f x 的单调性,求出()f x 的最大值. 【详解】因为()1f x a x'=+,0x >, 所以当0a ≥时,0fx恒成立,故函数()f x 单调递增,不存在最大值;当a<0时,令()0f x '=,得出1x a=-,所以当10,x a ⎛⎫∈- ⎪⎝⎭时,0fx ,函数单调递增,当1,x a ∈-+∞⎛⎫⎪⎝⎭时,()0f x '<,函数单调递减,所以() max11ln 10f x f a a ⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,解得:=a 1e -. 故选:B.例18.(2023·全国·高三专题练习)若函数()22exx x af x +-=在区间(,1)a a +上存在最小值,则实数a 的取值范围为( ) A .(),1-∞- B .()2,1--C .⎛-∞ ⎝⎭D .1⎫-⎪⎪⎝⎭【答案】D【分析】求得()22exx a f x -++'=,根据()f x 在区间(,1)a a +上存在最小值,得到()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,根据()0g a <且()10g a +>,列出不等式组,即可求解.【详解】由函数()22exx x a f x +-=,可得()22e x x af x -++'=, 且()f x 在区间(,1)a a +上存在最小值, 即()f x '在区间(,1)a a +上存在0(,1)x a a ∈+, 使得()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,即满足()0g a <,且()10g a +>,可得()()2220110g a a a g a a a ⎧=-++<⎪⎨+=--+>⎪⎩1a <<-,即实数a 的取值范围是1⎫-⎪⎪⎝⎭. 故选:D.例19.(2023·全国·高三专题练习)已知函数21()e xx x f x +-=,则下列结论正确的是( )A .函数()f x 只有一个零点B .函数()f x 只有极大值而无极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若当[,)x t ∈+∞时,max 25()e f x =,则t 的最大值为2 【答案】CD【分析】解方程()0f x =判断A ;利用导数探讨()f x 的极值判断B ;分析函数()f x 的性质,借助图象判断C ;由25(2)e f =结合取最大值的x 值区间判断D 作答.【详解】对于A ,由()0f x =得:210x x +-=,解得x =A 不正确;对于B ,对()f x 求导得:22(1)(2)()e ex xx x x x f x '--+-=-=-,当1x <-或2x >时,()0f x '<,当12x -<<时,()0f x '>,即函数()f x 在(,1)-∞-,(2,)+∞上单调递减,在(1,2)-上单调递增,因此,函数()f x 在=1x -处取得极小值(1)e f -=-,在2x =处取得极大值25(2)e f =,B 不正确;对于C ,由选项B 知,作出曲线()y f x =及直线y k =,如图,观察图象得当e 0k -<<时,直线y k =与曲线()y f x =有2个交点,所以当e 0k -<<时,方程()f x k =有且只有两个实根,C 正确; 对于D ,因25(2)e f =,而函数()f x 在(2,)+∞上单调递减,因此当[,)x t ∈+∞时,max25()e f x =, 当且仅当2[,)t ∈+∞,即2t ≤,所以t 的最大值为2,D 正确.故选:CD【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f (x )=0的解;(2)图象法:作出函数f (x )的图象,观察与x 轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.第四天学习及训练【题型】七、参变分离法解决导数问题例20.(2023·江苏·苏州中学高三阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1【答案】C【分析】参变分离将恒成立问题转化为求函数最值问题,然后利用导数求最值可得. 【详解】(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立 等价于ln 34ln x k x x x<++对于任意(1,)x ∈+∞恒成立 令ln 3()ln x f x x x x =++,则2221ln 13ln 2()x x x f x x x x x ---'=+-= 令()ln 2g x x x =--,则11()10x g x x x-'=-=> 所以()g x 在(1,)+∞上单调递增,又(3)1ln30,(4)2ln 40g g =-<=-> 所以()g x 在()3,4有且仅有一个根0x ,满足00ln 20x x --=,即00ln 2x x =- 当0(1,)x x ∈时,()0g x <,即()0f x '<,函数()f x 单调递减, 0(,)x x ∈+∞时,()0g x >,即()0f x '>,函数()f x 单调递增,所以0min 000000231()()21x f x f x x x x x x -==+-+=+-由对勾函数可知001113114134x x +-<+-<+-,即0713()34f x << 因为04()k f x <,即0()4f x k <,0()71312416f x <<,Z k ∈ 所以0k ≤. 故选:C例21.(2023·全国·高三专题练习)已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( ) A .1(2,1)x ∈-- B .2e (1,e )a ∈ C .120x x +< D .232e x x +<【答案】B【分析】A 选项:根据“三个等价”,将方程根的问题转化成构造出的函数零点的问题,利用零点存在性定理确定出1x 的取值情况;B ,C ,D 选项:对方程变形,参变分离构造函数,从函数的角度以及利用极值点偏移可以得出相应结论,详细过程见解析.【详解】对于A ,令2()x f x a x =-,因为1a >,所以()f x 在(,0)-∞上单调递增,与x 轴有唯一交点,由零点存在性定理,得1(1)10f a --=-<,0(0)00f a =->,则1(1,0)x ∈-,故A 错误. 对于B ,C ,D ,当0x >时,两边同时取对数,并分离参数得到ln ln 2a xx=, 令ln ()x g x x =,()21ln xg x x -'∴=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减; 如图所示,∴当0x >时,ln 2a y =与ln ()xg x x =的图象有两个交点,ln 1(0,)2ea ∈,解得2e (1,e )a ∈,故B 正确; ∴2(1,e)x ∈,由A 选项知1(1,0)x ∈-,120x x ∴+>,故C 错误;由极值点偏移知识,此时函数()g x 的极值点左移,则有23e 2x x +>,故D 错误. 故选:B.例22.(2023·上海·高三专题练习)在空间直角坐标系O xyz -中,三元二次方程所对应的曲面统称为二次曲面.比如方程2221x y z ++=表示球面,就是一种常见的二次曲面.二次曲面在工业、农业、建筑等众多领域应用广泛.已知点(,,)P x y z 是二次曲面22420x xy y z -+-=上的任意一点,且0x >,0y >,0z >,则当zxy取得最小值时,不等式ln e 3022xa yx za +-≥恒成立,则实数a 的取值范围是________.【答案】[e,)-+∞ 【分析】先通过zxy取得最小值这个条件找出当,,x y z 的关系,带入后一个不等式,利用对数恒等式变型,此后分离参数求最值即可.【详解】根据题意22420x xy y z -+-=,带入z xy 可得:2224212222z z x xy y x y xy xy xy y x -+===+-,而0x >,0y >,利用基本不等式222x y y x +≥=,当22x y y x =,即2y x =取得等号,此时22224246z x x x x x =-⋅+=,即23z x =,综上可知,当z xy 取得最小值时,223y x z x =⎧⎨=⎩,带入第二个式子可得,2e ln 02x a x ax x +-≥,即e ln 0x ax a x x +-≥,于是ln e ln (ln )0xx x ax a x e a x x x-+-=+-≥,设()ln u u x x x ==-,11()1x u x x x -'=-=,故当1x >时,()u x 递增,01x <<时,()u x 递减,min ()(1)1u x u ==;于是原不等式转化为1u ≥时,0u e au +≥恒成立,即u e a u -≤在1u ≥时恒成立,设()u e h u u=(1)u ≥,于是2(1)()0u e u h u u -'=≥,故()h u 在1u ≥时单调递增,min ()(1)h u h e ==,故a e -≤,a e ≥-即可.故答案为:[e,)-+∞ 【点睛】本题e ln 0xax a x x+-≥恒成立的处理用到了对数恒等式,若直接分离参数求最值,会造成很大的计算量.【题型】八、构造函数并利用函数的单调性判定函数值大小例23.(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∴R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∴(﹣1,0)B .(0,1)∴(1,+∞)C .(﹣∞,﹣1)∴(0,1)D .(﹣1,0)∴(1,+∞)【答案】D【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∴当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∴函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∴不等式f (x )>0∴x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∴(1,+∞),故选:D .例24.(2023·全国·模拟预测)以下数量关系比较的命题中,正确的是( )A .2e e 2>B .2ln 23>C .ln π1πe <D .ln 2ln π2π> 【答案】ABC【分析】令()()eln 0f x x x x =->,利用导数研究函数的单调性,进而可判断A ;根据指数函数与对数函数的单调性可判断B ;令()()ln 0x g x x x =>,利用导数研究函数的单调性,进而可判断CD ;【详解】对于A :设()()eln 0f x x x x =->,则()()e e 10x f x x x x -'=-=>, 当0e x <<时,0f x ,函数单调递增;当e x >时,()0f x '<,函数单调递减; 所以()()e elne e 0f x f <=-=,所以()()2eln 22e 0f f =-<=,即2>eln 2,所以 2e e 2>,故A 正确;对于B :因为28e >,所以2ln8ln e >,所以3ln 22>,即2ln 23>,故B 正确;对于CD :设()()ln 0x g x x x =>,()21ln x g x x-'=, 当0e x <<时,()0g x '>,函数单调递增;当e x >时,()0g x '<,函数单调递减; 所以()()e πg g >,即ln π1πe<,故C 正确; 又()()()e π4g g g >>,所以ln πln 4ln 2π42>=,故D 错误; 故选:ABC 第五天学习及训练【题型】九、构造函数法解决导数问题例25.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞,【答案】D 【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例26.(2023·全国·高三专题练习)已知e ,3,e a b c πππ===,则它们的大小关系是( )A .a b c >>B .c b a >>C .b c a >>D .c a b >> 【答案】C【分析】由y x π=在区间(0,)+∞上为单调递增函数,可得到b c >,设()eln f x x x =-,利用导数求得函数()f x 单调递增,可得eln 0ππ->,进而得到c a >,即可求解.【详解】由函数y x π=在区间(0,)+∞上为单调递增函数,因为3e >,所以3e ππ>,即b c >,设()eln f x x x =-,可得()e 1f x x '=-, 令()e 10f x x '=-=,解得x e =, 当e x >时,0f x ,()f x 单调递增,可得()()e 0f f π>=,即eln 0ππ->,即eln ππ>,两边取e 的指数,可得e e ππ>,即c a >,所以b c a >>.故选:C.例27.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝ 【答案】C【分析】构造函数()()3e xf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解. 【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=,因为()()()3R f x f x x '>∈,所以()()()330e xf x f xg x '-'=>, 所以函数()g x 在R 上为增函数,不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭, 所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭, 即1ln 3x <,解得0x << 所以不等式()3ln f x x <的解集为(. 故选:C.例28.(2023·全国·高三专题练习)已知函数()()()()e 1,1ln x f x x g x x x =+=+,若()()120f x g x =>,则21x x 可取( ) A .1B .2C .eD .2e【答案】CD 【分析】由()()()ln 1ln ln e 1x g x x x x =+=+,利用同构结合()f x 在(0,)+∞上单调递增,即可得到12ln x x =,则()12111e ,0x x x x x =>,记e (),(0)x h x x x=>,求出()h x '即可判断()h x 在(0,)+∞上的单调性,即可得出21e x x ≥,由此即可选出答案. 【详解】因为()()120f xg x =>,所以120,1x x >>,因为()e ()0e e 111x x x x x x f =+'+++>=恒成立,所以()f x 在(0,)+∞上单调递增,又()()()ln 1ln ln e 1x g x x x x =+=+,因为()()12f x g x =,即()()12ln 12e 1ln e 1x x x x +=+,所以1122ln e x x x x =⇒=, 所以()12111e ,0x x x x x =>, 记e (),(0)xh x x x=>, 所以2(1)()x e x h x x '-= 当01x <<时,()0h x '<,()h x 单调递减,当1x >时,()0h x '>,()h x 单调递增,所以()(1)e h x h ≥=,即21e x x ≥ 故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将()()()ln 1ln ln e 1x g x x x x =+=+变形为()()e 1x f x x =+的结构,是解本题的关键.。
导数中的五大同构体系总结(解析版)

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ导数中的五大同构体系总结题型一:导数中的结构一致性同构题型二:恒成立同构问题题型三:函数零点的同构问题题型四:同构出多变量之间的关系题型五:朗博同构与隐零点代换导数中的结构一致性同构【精选例题】1若对任意的x 1,x 2∈-2,0 ,x 1<x 2,x 2e x 1-x 1ex 2x 1-x 2<a 恒成立,则a 的最小值为()A.-3e 2B.-2e 2C.-1e 2D.-1e【详解】因为x 1<x 2,所以x 1-x 2<0,则x 2e x 1-x 1e x 2x 1-x 2<a 可化为x 2e x 1-x 1e x 2>a x 1-x 2 ,整理得x 2e x1+ax 2>x 1e x 2+ax 1,因为x 1x 2>0,所以e x1x 1+a x 1>e x 2x 2+a x 2,令f x =e x x +a x,则函数f x 在-2,0 上递减,则fx =e x x -1 -a x2≤0在-2,0 上恒成立,所以e x x -1 ≤a 在-2,0 上恒成立,令g x =e xx -1 ,则g x =e x x -1 +e x =xe x <0在-2,0 上恒成立,则g x =e x x -1 在-2,0 上递减,所以g x ≤g -2 =-3e 2,故只需满足:a ≥-3e2.故选:A .2已知a =1,b =3,1 ,向量a 与b 的夹角为π3,若对任意x 1,x 2∈m ,+∞ ,当x 1<x 2时,x 1ln x 2-x 2ln x 1x 1-x 2>2a -b恒成立,则实数m 的取值范围是()A.1e ,e 2B.e 2,+∞C.1e ,e 3D.e 3,+∞【答案】D【详解】解:因为a =1,b =3,1 ,向量a 与b 的夹角为π3,所以2a -b =2a -b 2=4a 2-4a ⋅b +b 2=4-4×1×2×cos π3+4=2,因为对任意x 1,x 2∈m ,+∞ ,当x 1<x 2时,x 1ln x 2-x 2ln x 1x 1-x 2>2a -b恒成立,所以对任意x 1,x 2∈m ,+∞ ,当x 1<x 2时,x 1ln x 2-x 2ln x 1x 1-x 2>2恒成立,所以对任意x 1,x 2∈m ,+∞ ,当x 1<x 2时,ln x 2x 2-2x 2<ln x 1x 1-2x 1恒成立,令g x =ln x x -2x,即g x 2<g x 1 成立,所以g x =ln x x -2x 在m ,+∞ 上递减,又g x =3-ln x x 2,由gx =3-ln x x2<0,解得x >e 3,所以g x 的单调减区间为e 3,+∞ ,所以m ≥e 3,则实数m 的取值范围是[e 3,+∞),故选:D 3已知函数f x =x 2+1 e x ,若对任意0<x 2<x 1,f x 1 -f x 2e x 1+ex 2<λe x 1-e x 2恒成立,则实数λ的取值范围为()A.-∞,1B.1,+∞C.-∞,3D.2e,+∞ 【答案】D【详解】当x ∈0,+∞ 时,f x =x 2+2x +1 e x =(x +1)2e x >0,故f x 1 -f x 2 =f x 1 -f x 2 =x 21+1 e x 1-x 22+1 e x2,故f x 1 -f x 2e x 1+ex 2<λe x 1-e x 2 ⇔x 21+1 e x 1-λe 2x 1<x 22+1 e x 2-λe 2x 2,令g x =x 2+1 e x-λe 2x,x ∈0,+∞ ,则gx =(x +1)2e x-2λe 2x,令gx ≤0,故2λ≥(x +1)2e x,令h x =(x +1)2e x ,故hx =1-x 2ex,故当x ∈0,1 时,h x >0,当x ∈1,+∞ 时,h x <0,即函数h x 在0,1 上单调递增,在1,+∞ 上单调递减,故2λ≥h 1 =4e ,解得λ≥2e,故实数λ的取值范围为2e,+∞ ,故选:D 4若函数f x 对∀x 1,x 2∈a ,b 且x 1≠x 2都有f x 1 -f x 2x 1-x 2>k (k >0),则称函数f x 在区间a ,b 上k阶递增.已知函数g x =a x +1 2+ln x 在2,+∞ 上2阶递增,则实数a 的取值范围为()A.2-3,+∞B.2+3,+∞C.14,+∞ D.12,+∞ 【答案】C【详解】由题意,对∀x 1,x 2∈2,+∞ 且x 1≠x 2都有g x 1 -g x 2x 1-x 2>2成立,不妨设x 1<x 2,则g x 1 -2x 1<g x 2 -2x 2,设h x =g x -2x x >2 ,则h x 1 <h x 2 ,所以函数h x =a x +1 2+ln x -2x x >2 在2,+∞ 上单调递增,即对于∀x ∈2,+∞ ,h x =2a x +1 +1x-2≥0恒成立,即对于∀x ∈2,+∞ ,2a ≥2x -1x 2+x 恒成立,而2x -1x 2+x =2x -12 x -12 2+2x -12 +34=2x -12+34x -12+2,令x -12=t t >32 ,则函数y =t +34t 在32,+∞ 上单调递增,则t +34t >32+3432=2,即x -12+34x -12>2,所以2x -1x 2+x=2x -12+34x -12+2<12,所以2a ≥12,即a ≥14,所以实数a 的取值范围为14,+∞.故选:C .【跟踪训练】1若2x -2y<3-x -3-y,则()A.ln (y -x +1)>0B.ln (y -x +1)<0C.ln |x -y |>0D.ln |x -y |<0【详解】由2x -2y <3-x -3-y 得:2x -3-x <2y -3-y,令f t =2t -3-t ,∵y =2x 为R 上的增函数,y =3-x 为R 上的减函数,∴f t 为R 上的增函数,∴x <y ,∴y -x +1>1,∴ln y -x +1 >0,则A 正确,B 错误;故CD 无法确定.故选:A .2已知函数f x =a ln x +12x 2,若对任意正数x 1,x 2x 1≠x 2 ,都有f x 1 -f x 2 x 1-x 2>2恒成立,则实数a 的取值范围为()A.0,1B.0,2C.1,+∞D.2,+∞【答案】C 【详解】根据f (x 1)-f (x 2)x 1-x 2>2,可知f (x 1)-2x 1-f (x 2)-2x 2 x 1-x 2>0,令g x =f x -2x =a ln x +12x 2-2x (a >0)由f (x 1)-2x 1-f (x 2)-2x 2 x 1-x 2>0,知g x 为增函数,所以g x =a x +x -2=x 2-2x +a x≥0x >0,a >0 恒成立,分离参数得a ≥2x -x 2,而当x >0时,2x -x 2在x =1时有最大值为1,故a ≥1,即实数a 的取值范围为1,+∞ .故选:C .3已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【详解】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a4上单调递减,在区间-1+1-8a4,+∞上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x2,令F x =ln x -x 2-2,x ∈0,+∞ ,则F x =1x -2x =1-2x 2x ,令F x =0,解得x =22,当x ∈0,22 时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x=ln x -x 2-2≤-12ln2-52<0,即h x =ln x -x 2-2x2<0,∴h x =g x x 在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx ,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴Gx =hx +λx 2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型二恒成立同构问题【精选例题】1若关于x 的不等式x +ln a e x-a ln xx >0对∀x ∈0,1 恒成立,则实数a 的取值范围为()A.-∞,1eB.1e ,+∞C.1e ,1D.0,1e【答案】B【详解】由题意可知a >0,ln e x +ln a e x >a ln x x ,即ln ae x aex>ln x x 对∀x ∈0,1 恒成立.设g x =ln x x ,则问题转化为g ae x >g x 在0,1 上恒成立,因为g x =1-ln xx2,所以当0<x <e 时,g x >0,当x >e 时,g x <0,所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,又g 1 =0,所以当x ∈0,1 时,g x <0;当x ∈1,+∞ 时,g x >0.①在x ∈0,1 上,若ae x ≥1恒成立,即a ≥1,g ae x ≥0>g x ;②在x ∈0,1 上,若0<ae x <1,则ae x >x 恒成立,即x e x <a <1恒成立,令h x =xex ,x ∈0,1 ,则h x =1-x ex>0,所以h x 在0,1 上单调递增,所以h x <h 1 =1e ,所以1e ≤a <1,综上所述,实数a 的取值范围为1e,+∞ .故选:B .2函数f x =e 2kx -ln xkx +1k ≠0 ,函数g x =x ln x ,若kf x ≥g x 对∀x ∈0,+∞ 恒成立,则实数k 的取值范围为()A.1e ,+∞ B.2e,+∞ C.1,+∞D.e ,+∞【答案】A【详解】因为kf x ≥g x ,对∀x ∈0,+∞ 恒成立,又f x =e 2kx -ln xkx+1k ≠0 ,g x =x ln x 所以ke 2kx -ln xx+k ≥x ln x ,即2kxe 2kx +2kx ≥x 2ln x 2+ln x 2,即e 2kx ln e 2kx +ln e 2kx ≥x 2ln x 2+ln x 2,令h t =t ln t +ln t ,t ∈0,+∞ ,∴h t =1+ln t +1t =u t ,设u t =1+ln t +1t ,则u t =1t -1t2=t -1t2,当t >1时,u t >0,函数u t 在1,+∞ 上单调递增,当0<t <1时,u t <0,函数u t 在0,1 上单调递减,可得t =1时,函数u t 取得极小值即最小值,u 1 =2>0,∴h t >0恒成立,∴函数h t 在t∈0,+∞ 上单调递增,又原不等式等价于h e 2kx ≥h x 2 ,所以e 2kx ≥x 2,即2kx ≥2ln x ,即k ≥ln xx恒成立,令v x =ln x x ,x ∈0,+∞ ,则v x =1-ln xx 2,当0<x <e 时,v t >0,函数u t 在0,e 上单调递增,当x >e 时,v t <0,函数u t 在e ,+∞ 上单调递减,可得x =e 时,函数v x 取得极大值即最大值.v x max =v e =1e ,所以k ≥1e.故选:A .3设实数a >0,对任意的x ∈1e3,+∞,不等式e 2ax-ln x 2a ≥1a -e 2ax ax 恒成立,则实数a 的取值范围是()A.1e ,+∞B.12e,+∞ C.0,1eD.1e2,+∞【答案】B【详解】因为e 2ax-ln x 2a ≥1a -e 2ax ax恒成立即2axe 2ax -x ln x ≥2x -2e 2ax ,可得e 2ax 2ax +2 ≥x ln x +2 ,令f x =x ln x +2 ,则f e 2ax ≥f x 恒成立.又f x =ln x +3,故当x ∈1e3,+∞时,f x >0,故f x =x ln x +2 在区间1e 3,+∞ 上为增函数.又f e 2ax ≥f x 恒成立,则e 2ax ≥x 在区间1e 3,+∞上恒成立,即2ax ≥ln x ,2a ≥ln x x .构造g x =ln x x ,x ∈1e 3,+∞,则g x =1-ln xx2,令g x =0有x =e ,故当x ∈1e3,e时g x >0,g x 为增函数;当x ∈e ,+∞ 时g x <0,g x 为减函数.故g x ≤g e =1e ,故2a ≥1e ,即a ≥12e.故选:B4若∀x ∈0,+∞ ,ln2x -ae x2≤ln a 恒成立,则a 的最小值为()A.1eB.2eC.eD.e 2【答案】B【详解】依题意,ln2x -ae x 2≤ln a ⇔ln2x -ln a ≤ae x 2⇔2ln 2x a ≤ae x ⇔2x a ln 2xa≤e x ⋅ln e x .因为x >0,a >0,所以,若0<2x a ≤1,显然成立,此时满足2x a ≤1<e x ;若2xa>1,令f x =x ln x ,f x =ln x +1>0在1,+∞ 上恒成立,∴y =f x 在1,+∞ 上单调递增,而2x a ln 2x a ≤e x ln e x ,∴2x a ≤e x .综上,2xa≤e x 在0,+∞ 上恒成立,∴a ≥2x e x .令g x =2x e x ,g x =2-2xex,所以当0<x <1时,g x >0,g x 单调递增;当x >1时,g x <0,g x 单调递减.所以g x ≤g 1 =2e ,即a ≥2e .所以a 的最小值为2e.故选:B .5若e x -ax ≥-x +ln (ax ),则正实数a 的取值范围为()A.0,1eB.0,eC.1e ,+∞D.e ,+∞【答案】B【详解】不等式e x -ax ≥-x +ln (ax ),可化为e x +x ≥e ln ax +ln ax ,设g (x )=e x +x ,则g (x )=e x +1>0,即g (x )在R 上单调递增,而g (x )≥g (ln ax ),因为a >0,x >0,所以x ≥ln ax =ln a +ln x ,由已知ln a ≤x-ln x 恒成立,令f (x )=x -ln x ,则f (x )=1-1x,当0<x <1时f (x )<0,即f (x )递减;当x >1时f (x )>0,即f (x )递增;∴f (x )≥f (1)=1,故只需ln a ≤1,即a ≤e .又a >0,所以a 的取值范围为0,e .故选:B【跟踪训练】1设函数f x =x a +1e x +a ln x ,若x ≥1,f x ≥0恒成立,则a 的取值范围是.【答案】-e ,+∞【详解】当a ≥0时,若x ≥1,则x a +1e x >0,a ln x >0,f x ≥0恒成立,符合题意;当a <0,x a +1e x ≥-a ln x ,所以xe x ≥x -a ln x -a ,构造函数g (x )=xe x ,g (x )=e x x +1 ,x >0时,g (x )>0,所以g (x )在0,+∞ 上单调递增,因为a <0,所以-a >0,则x ≥1时,ln x -a >0,所以xe x ≥x -a ln x -a ⇒g x ≥g ln x -a ⇒x ≥ln x -a ⇒ln x ≤-1a x ,-1a ≥ln x x ,令h x =ln x x ⇒h x =1-ln xx 2,所以h x 在1,e 上递增,e ,+∞ 上递减,所以h x max =h e =1e ,所以-1a ≥1e,又a <0,所以-e ≤a <0,综上可得,a ≥-e ,故答案为:-e ,+∞ .2已知函数f x =e ax -2ln x -x 2+ax ,若f x >0恒成立,则实数a 的取值范围为.【答案】2e ,+∞ 【详解】令g x =e x +x ,g x =e x +1>0,所以g x 单调递增,因为f x =e ax -2ln x -x 2+ax >0x >0 ,所以e ax+ax >ln x 2+e ln x 2,可得g ax >g ln x 2,所以ax >ln x 2,所以a >ln x 2xx >0 恒成立,即求ln x 2x max x >0 ,令F x =ln x 2x x >0 ,Fx=ln x 2 x -x ln x 2x 2=21-ln x x 2,当x ∈0,e 时,F x >0,F x 单调递增,当x ∈e ,+∞ 时,F x <0,F x 单调递减,所以F x ≤F e =2e,可得a <2e .故答案为:2e,+∞ .3已知函数f x =ae x +x +x ln x ,若f x ≥x 2恒成立,则实数a 的取值范围为.【答案】1e 2,+∞【详解】由已知不等式f x ≥x 2,可化为ae x +x ≥x 2-x ln x ,两边同时除以x 得ae x x +1≥x -ln x =ln e xx.令t =e x x ,x ∈0,+∞ ,则t =e x x -e x x 2,当0<x <1时,t<0,函数t =e x x 在0,1 上单调递减,当x >1时,t >0,函数t =e x x 在1,+∞ 上单调递增,所以当x =1时,函数t =e xx取最小值,最小值为e ,当x →0时,t →+∞,当x →+∞时,t →+∞,所以y =e x x 的范围是e ,+∞ ,即t ≥e .所以不等式ae x x +1≥ln e xx可化为at +1≥ln t ,其中t ≥e ,所以a ≥ln t -1t 在e ,+∞ 上恒成立,构造函数g t =ln t -1t ,t ∈e ,+∞ ,则g t =2-ln tt2,令g t =0,可得t =e 2,当e ≤t <e 2时,g t >0,函数g t 在e ,e 2 上单调递增,当t >e 2时,g t <0,函数g t 在e 2,+∞ 上单调递减,所以t =e 2时,g t 取最大值,最大值为1e 2,所以a ≥1e 2,所以a 的取值范围为1e2,+∞.故答案为:1e 2,+∞.4若ln x +ln2a -1-2a x -e x ≤0,则实数a 的取值范围为.【答案】0<a ≤e2【详解】因为ln x +ln2a -1-2a x -e x ≤0,a >0,x >0⇔ln (2ax )-x +2ax -e x ≤0,⇔ln (2ax )+2ax ≤x +e x =ln e x +e x ,令f (x )=ln x +x ,x >0,则原式等价于f (2ax )≤f (e x ),f (x )=1x+1=1+x x >0恒成立,所以f (x )在定义域内单调递增,所以2ax ≤e x ⇒2a ≤e x x ,令g (x )=e x x (x >0),g (x )=e x(x -1)x2,则x >1时,g (x )>0,g (x )在(1,+∞)单调递增,0<x <1时,g (x )<0,g (x )在(0,1)单调递减,所以g (x )min =g (1)=e ,则2a ≤e ,a ≤e 2.又a 为正数,故答案为:0<a ≤e2.5已知不等式x +a ln x -x a +1e x≥0对任意x ∈1,+∞ 恒成立,则实数a 的最小值是.【答案】-e【详解】由x +a ln x -x a +1ex ≥0可得x +e -x ≥x a -a ln x =x a -ln x a ,即e -x -ln e -x ≥x a -ln x a ,构造函数f x =x -ln x ,其中x >0,则f x =1-1x =x -1x.当0<x <1时,f x <0,此时函数f x 单调递减,当x >1时,f x >0,此时函数f x 单调递增,因为x >1,则-x <-1,则0<e -x <1e,要求实数a 的最小值,考虑a <0,则0<x a <1,由e -x -ln e -x ≥x a -ln x a 可得f e -x ≥f x a ,因为函数f x 在0,1 上单调递减,则x a ≥e -x ,不等式x a ≥e -x 两边取自然对数可得a ln x ≥-x ,因为x >1,则ln x >0,可得a ≥-xln x,令g x =-x ln x ,其中x >1,则g x =1-ln xln x 2,当1<x <e 时,g x >0,此时函数g x 单调递增,当x >e 时,g x <0,此时函数g x 单调递减,所以,函数g x 在1,+∞ 上的最大值为g e =-e ,所以,a ≥-e.因此,实数a 的最小值为-e.故答案为:-e.6已知a <0,不等式xe x +a ln xx a≥0对∀x ∈1,+∞ 恒成立,则实数a 的最小值为.【答案】-e 【详解】xe x ≥-a ln xxa=-a ln x ⋅e -a ln x ,构造函数f x =xe x ,f x =x +1 e x >0x >0 ,故f x 在0,+∞ 上单调递增,故f x ≥f -a ln x 等价于x ≥-a ln x ,即a ≥-xln x任意的实数x >1恒成立.令g (x )=x ln x ,x >1则g (x )=ln x -1ln 2x,故g (x )在(1,e )上单调递减,在(e ,+∞)上单调递增,g (x )min =e ,得a ≥-x ln x max=-e .故答案为:-e题型三函数零点的同构问题【精选例题】1已知λ>0,若关于x 的方程e x -1x-λx +λln (λx )=0存在正零点,则实数λ的取值范围为()A.-∞,1B.1,+∞C.-∞,3D.3,+∞【答案】B【详解】由题意得,e x -1λx -x +ln λx =e x -1eln λx -x +ln λx =e x -ln λx -1-x -ln λx =0,令t =x -ln λx ,问题转化为e t -1-t =0有解,设h t =e t -1-t ,则h ′t =e t -1-1,当t ∈-∞,1 时,h ′t <0,h t单调递减;当t ∈1,+∞ 时,h t >0,h t 单调递增,又由h 1 =0,所以h t 存在唯一零点t =1,即1=x -ln (λx )在0,+∞ 有解,即1+ln λ=x -ln x ,令p x =x -ln x ,则p ′x =1-1x =x -1x,当x ∈0,1 时,p ′x <0;当x ∈1,+∞ 时,p ′x >0,所以函数p x 在0,1 上单调递减,在1,+∞ 上单调递增,所以1+ln λ≥p 1 =1,解得λ≥1,故实数λ的取值范围为1,+∞ .故选:B .2已知a >0,若方程a ln x +e 2xe 2xa -2x +1=0恰有两个解,则a 的取值范围是()A.0,2B.0,eC.0,2 ∪2,+∞D.0,e ∪e ,+∞【答案】C【详解】a ln x +e 2x e 2x a -2x +1=0,x >0,故e 2x e 2xa =2x -1-a ln x =ln e 2x -ln e -ln x a =ln e 2x ex a ,设e 2x ex a =t ,即t e =ln t ,设f t =t e -ln t ,则f t =1e -1t,当t ∈0,e 时,f t <0,函数单调递减;当t ∈e ,+∞ 时,ft >0,函数单调递增;f t min =f e =0,故方程有唯一解t =e ,即e 2x exa =e 有两解,即a ln x =2x -2有两个解,设g x =a ln x -2x +2,g x =a x -2,a >0,当x ∈0,a2时,g x >0,函数单调递增;当x ∈a2,+∞ 时,g x <0,函数单调递减;当x 趋近于0和x 趋近于+∞时,g x 趋近于-∞,故只需满足g a 2 =a ln a 2-a +2>0,设h a =a ln a 2-a +2,h a =ln a2,当a ∈0,2 时,h a<0,函数单调递减;当a ∈2,+∞ 时,h a >0,函数单调递增;故h a ≥h 2 =0恒成立,故a ln a2-a+2>0的解为a ∈0,2 ∪2,+∞ .故选:C 3已知函数f x =x 2e x -a x +2ln x 有两个零点,则a 的取值范围是()A.a ≥1 B.a ≤2C.a ≤eD.a >e【答案】D【详解】f x =x 2e x -a x +2ln x =e x +2ln x -a x +2ln x ,令t =x +2ln x ,显然该函数单调递增,t ∈R ,则e t -at =0有两个根,当t =0时,等式为1=0,不符合题意;故t ≠0,等式转化为a =e t t 有两个根,即y =a 和y =e tt 有两个交点,设g x =ex x ,求导得g x =e x x -1 x2,故当x ∈-∞,0 和x ∈0,1 时,gx <0,g x 单调递减;x ∈1,+∞ 时,g x >0,g x 单调递增;且当x ∈-∞,0 时,g x <0,g 1=e ,故g x =e xx如图所示由图可得,a 的取值范围是a >e故选:D【跟踪训练】1若函数f x =e x 2-2ln x -2a ln x +ax 2有两个不同的零点,则实数a 的取值范围是()A.-∞,-eB.-∞,-eC.-e ,0D.-e ,0【答案】A【详解】函数f (x )的定义域为(0,+∞),f x =e x 2-2ln x -2a ln x +ax 2=e x 2-2ln x +a x 2-2ln x ,设h (x )=x 2-2ln x (x >0),则h (x )=2x -2x =2(x +1)(x -1)x,令h (x )>0⇒x >1,令h (x )<0⇒0<x <1,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且h (1)=1,所以h (x )min =h (1)=1,所以h (x )≥1,函数f (x )有两个不同的零点等价于方程f (x )=0有两个不同的解,则e x 2-2ln x +a x 2-2ln x =0⇒-a =e x 2-2ln xx 2-2ln x,等价于函数y =-a 与y =e x 2-2ln x x 2-2ln x图象有两个不同的交点.令x 2-2ln x =t ,g t =e t t ,t >1,则函数y =-a 与g t =e t t ,t >1图象有一个交点,则gt =te t -e t t 2=e t t -1 t 2>0,所以函数g (t )在(1,+∞)上单调递增,所以g t >g 1 =e ,且t 趋向于正无穷时,g t =e tt趋向于正无穷,所以-a >e ,解得a <-e.故选:A .2已知函数f (x )=xe x -x -ln x -3m 有两个不同的零点,则实数m 的取值范围是()A.-∞,13B.-∞,23C.13,+∞D.-13,+∞ 【答案】C【详解】因为f (x )=xe x -x -ln x -3m ,由f (x )=0,得到xe x -x -ln x -3m =0,所以xe x -x -ln x =3m ,令h (x )=xe x -x -ln x =e x +ln x -(x +ln x ),令t =x +ln x ,则t =1+1x>0在区间(0,+∞)上恒成立,即函数t 在区间(0,+∞)上单调递增,又x →0时,t →-∞,x →+∞时,t →+∞,即t ∈(-∞,+∞),所以y =e t -t ,所以y =e t -1,当t ∈(-∞,0)时,y <0,当t ∈(0,+∞)时,y >0,即y =e t -t 在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,所以y =e t -t ≥e 0-0=1,且当t →-∞时,y →+∞,当t →+∞时,y →+∞,又因函数f (x )=xe x -x -ln x -3m 有两个不同的零点,所以3m >1,即m >13.故选:.C3已知a >0,若方程a ln x +e 2xe 2x a -2x +1=0恰有两个解,则a 的取值范围是()A.0,2B.0,eC.0,2 ∪2,+∞D.0,e ∪e ,+∞【答案】C【详解】a ln x +e 2x e 2x a -2x +1=0,x >0,故e 2x e 2xa =2x -1-a ln x =ln e 2x -ln e -ln x a =ln e 2x ex a ,设e 2x ex a =t ,即t e =ln t ,设f t =t e -ln t ,则f t =1e -1t,当t ∈0,e 时,f t <0,函数单调递减;当t ∈e ,+∞时,ft >0,函数单调递增;f t min =f e =0,故方程有唯一解t =e ,即e 2x exa =e 有两解,即a ln x =2x -2有两个解,设g x =a ln x -2x +2,g x =a x -2,a >0,当x ∈0,a2时,g x >0,函数单调递增;当x ∈a2,+∞ 时,g x <0,函数单调递减;当x 趋近于0和x 趋近于+∞时,g x 趋近于-∞,故只需满足g a 2=a ln a 2-a +2>0,设h a =a ln a 2-a +2,ha =ln a 2,当a ∈0,2 时,h a <0,函数单调递减;当a ∈2,+∞ 时,h a >0,函数单调递增;故h a ≥h 2 =0恒成立,故a ln a2-a +2>0的解为a∈0,2 ∪2,+∞ .故选:C 4已知函数f x =a ln x +x +1x,其中a >0.(1)当a =1时,求f x 的最小值;(2)讨论方程e x +e -x -a ln ax -1ax=0根的个数.【答案】(1)f x 的最小值是f 1 =2.(2)由题e x +e -x =a ln ax +1ax ,x >0,则ax +e x +e -x =a ln ax +ax +1ax,即a ln e x +e x +e -x =a ln ax +ax +1ax .所以f e x =f ax .由f x =a ln x +x +1x ,得f x =-ax+1-1x 2=-a x -1-x 2x 2.当0<x <1时,f x =-a x +1-1x 2=-a x -1-x 2x 2<0;当x >1时,f x =a x +1-1x 2=a x +x 2-1x2>0;所以,f x 在0,1 上递减;在1,+∞ 上递增.又因为f x =f 1x ,所以f e x =f ax ,当且仅当e x =ax 或e x =1ax .又e x >1,故e x =ax 和e x =1ax不可能同时成立.所以方程根e x +e -x -a ln ax -1ax =0的个数是两函数s x =e x -ax 和t x =xe x -1a的零点个数之和,其中x >0当s x =0时,函数s x =e x-ax 的零点个数转换为直线y =a 与函数h x =e x x图象的交点个数,h x =x -1 e x x 2,令hx =0,即x -1 e xx2=0,解得x =1.当易知0<x <1时,h x <0,h x 单调递减,当x >1时,hx >0,h x 单调递增;h x 在x =1处取得最小值为h 1 =e 11=e ,所以0<a <e 时,直线y =a 与函数h x 图象无交点,函数s x 无零点;a =e 时,直线y =a 与函数h x 图象有一个交点,函数s x 有1个零点;a >e 时,直线y =a 与函数h x 图象有2个交点函数,s x 有2个零点.同理:函数t x =xe x -1a 的零点个数转化为直线y =1a与函数y =xe x 图象交点个数,设y =xe x ,x >0,则y =x +1 e x >0,所以函数y =xe x 在0,+∞ 单调递增,y =xe x 在x =0处的函数值为0×e 0=0,所以故a >0时,t x 在0,+∞ 上必有1个零点.综上所述,0<a <e 时,方程有1个根;a =e 时,方程有2个根;a >e 时,方程有3个根.题型四同构出多变量之间的关系1已知函数f x =ln xx,g x =xe -x .若存在x 1∈0,+∞ ,x 2∈R 使得f x 1 =g x 2 =k k <0 成立,则x 2x 12e k的最大值为()A.e 2B.eC.4e 2D.1e 2【答案】∵f x =ln x x ,g x =x e x =ln e xex =f e x ,由于f x 1 =ln x 1x 1=k <0,则ln x 1<0⇒0<x 1<1,同理可知,x 2<0,函数y =f x 的定义域为0,+∞ ,f x =1-ln xx2>0对∀x ∈0,1 恒成立,所以,函数y =f x 在区间0,1 上单调递增,同理可知,函数y =g x 在区间-∞,0 上单调递增,∴f x 1 =g x 2=f e x 2,则x 1=e x 2,∴x 2x 1=x 2ex 2=g x 2 =k ,则x 2x 12e k =k 2e k ,构造函数h k =k 2e k ,其中k <0,则h k=k 2+2k e k =k k +2 e k .当k <-2时,h k >0,此时函数y =h k 单调递增;当-2<k <0时,h k <0,此时函数y =h k 单调递减. 所以,h k max =h -2 =4e2. 故选:C .2已知函数f (x )=e x -ax 和g x =ax -ln x 有相同的最小值.(1)求a ;(2)证明:存在直线y =b ,其与两条曲线y =f x 和y =g x 共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(2)由(1)可得,f (x )的最小值在x =0处取到,g (x )的最小值在x =1处取到,且最小值均为1. 于是,f (x )在(0,1)上增,g (x )在(0,1)上减,则存在x 2∈(0,1),使得f (x 2)=g (x 2)>1.这样的话,令b =f (x 2)=g (x 2),且直线y =b 与两条曲线y =f (x )和y =g (x )共有三个不同的交点.另一方面,注意到f (x )=e x −x =ln e x −e x ,考虑函数g (t )=t −ln t ,则f (x )=g (e t ).设直线y =b 与两条曲线y =f (x )和y =g (x )从左到右的三个交点横坐标为x 1,x 2,x 3.且有x 1<0<x 2<1<x 3.由上述讨论可知:f (x 2)=g (e x 2)=g (x 3),故e x 2=x 3①,同理,由f (x 1)=f (ln x 2)②可得:x 1=ln x 2.又因为e x 2−x 2=x 2−ln x 2⇒2x 2=e x 2+ln x 2③联立①,②,③可得:2x 2=x 1+x 3,即从左到右的三个交点横坐标成等差数列.【跟踪训练】1已知函数f (x )=xe x ,g (x )=2x ln2x ,若f (x 1)=g (x 2)=t ,t >0,则ln tx 1x 2的最大值为()A.1e 2B.4e 2C.1eD.2e【答案】由题意得,x 1e x 1=t ,2x 2ln2x 2=t ,即2x 2ln2x 2=e ln2x 2⋅ln2x 2=t ,令函数f x =x ⋅e x ,则f '(x )=(1+x )e x ,所以,x <-1时,f '(x )<0,f x 在(-∞,-1)上单调递减,x >-1时,f '(x )>0,f x 在(-1,+∞)上单调递增,又当x ∈(-∞,0)时,f x <0,x ∈(0,+∞)时,f x >0,作函数f (x )=xe x 的图象.由图可知,当t >0时,f (x )=t 有唯一解,故x 1=ln2x 2,且x 1>0,∴ln t x 1x 2=2ln t 2x 2ln2x 2=2ln t t .设h (t )=2ln tt,t >0,则h (t )=21-ln t t2,令h (t )=0解得t =e ,所以h (t )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴h (t )≤h (e )=2e ,即ln tx 1x 2的最大值为2e. 故选:D .2已知函数f x =x ae x -1和g x=a +ln xx 有相同的最大值.(1)求实数a ;(2)设直线y =b 与两条曲线y =f x 和y =g x 共有四个不同的交点,其横坐标分别为x 1,x 2,x 3,x 4x 1<x 2<x 3<x 4 ,证明:x 1x 4=x 2x 3.【解析】(2)由f x =b ⇒xe x -1-b =0,由g x =b ⇒1+ln x x -b =0,令F x =x e x -1-b ,F x =1-xex -1,当0<x <1时,F x >0,当x >1时,Fx <0,所以F x 在0,1 上单调递增;1,+∞ 上单调递减,∴F x 至多两个零点,令G x =1+ln x x -b ,G x =-ln x x 2,当0<x <1时,G x >0,当x >1时,Gx <0,所以G (x )在0,1 上单调递增;1,+∞ 上单调递减;∴G x 至多两个零点.令F x =G x ⇒x e x -1-1+ln xx=0,当时,ln x ≤-1,所以x e x -1-1+ln x x >0;当x ∈1,+∞ 时,由x ex =ln exex =ln ex eln ex ,设m (x )=x -ln ex ,m(x )=1-1x =x -1x ,所以当x ∈1,+∞ 时,m (x )=1-1x =x -1x>0,所以m (x )=x -ln ex 在x ∈1,+∞ 单调递增,所以m (x )>m (1)=0,所以x >ln ex ,且ln ex >ln e =1,所以x >ln ex >1,设φx =x e x ,φ x =1-xex,当0<x <1时,φ x >0,当x >1时,φ x <0,所以φx 在1,+∞ 上单调递减,∴φx <φln ex 方程无解,当x ∈1e ,1时,由1≥x ≥ln ex ,φx =xex 在0,1 上单调递增,∴φx ≥φln ex 方程有唯一解x =1,当0<b <1时,注意到F (0)=-b <0,F (1)=1-b >0,设n (x )=x -2ln x x >2 ,n (x )=1-2x =x -2x>0对x >2恒成立,∴F x 在0,1 和1,1b+2 上各有一个零点x 1,x 3.如下注意到G 1e =-b 0,G 1 =1-b 0,G 4b 2=1+ln 4b 24b2-b =b 241+2ln 2b -2·2b ,令u x =1+2ln x -2x ,x >2,u x =2x -2<0,即函数u x 在2,+∞ 上单调递减,因此u x <u 2 =2ln2-3<0,即有G4b2<0,∴G t 在1e ,1 和1,4b 2上各有一个零点x 2,x 4.且由f x 1 =g x 2 =x 1ex 1-1=ln ex 2x 2⇒x 1e x 1=ln ex 2ex 2=ln ex 2eln ex 2,而x 1,ln ex 2∈0,1 ,而φx =x ex 在0,1 上单调递增,由φx 1 =φln ex 2 ⇒x 1=ln ex 2⇒∴e x 1-1=x 2,由f x 3 =g x 4 ⇒x 3e x 3-1=1+ln x 4x 4⇒x 3e x 3=ln ex 4eln ex 4,而x 3,ex 4>1而φx =x e x 在1,+∞ 上单调递减,由φx 3 =φln ex 4 ⇒x 3=ln ex 4,∴e x 3-1=x 4,于是得x 2x 4=e x 1-1ex 3-1=x 1bx 3b=x 1x 3,∴x 1x 2=x 3x 4⇒x 1x 4=x 2x 3,证毕!题型五朗博同构与隐零点代换朗博不等式是近年来随着函数同构出现的一个热门的不等式,其原理如下:下面主要注意的是xe x =e x +ln x ,那么根据指数函数的基本不等式e x ≥x +1,x ≥0可得:xe x =e x +ln x ≥x +ln x +1,等号成立当且仅当x +ln x =0.1若∀x >0,xe x >ln x +x +a ,则实数a 的取值范围是()A.(-∞,ln2)B.(-∞,1)C.(ln2,+∞)D.(1,+∞)解法1:因为ln (xe x )=ln x +x ,所以xe x =e ln x +x ,设ln x +x =t ,则t ∈R 且原不等式可化为a <e t -t ,只需a <(e t -t )min .设g (t )=e t -t ,则g (t )=e t -1,所以当t <0时,g (t )<0,g (t )单调递减;当t >0时,g (t )>0,g (t )单调递增.所以g (t )min =g (0)=1,所以a <1.故选:B .解法2:由不等式xe x ≥x +ln x +1,可得a <1.2已知函数f x =e xx4-k ln x ,当x >1时,不等式f x ≥x +1恒成立,则k 的取值范围是()A.-∞,-eB.-∞,-4C.-∞,-e 2D.-∞,0【答案】B【详解】因为x >1,所以ln x >0,则当x >1时,不等式f x ≥x +1恒成立等价于k ≤e xx 4-x -1ln x=e x -4ln x -x -1ln x .设g x =e x -x -1,则g x =e x -1.当x >0时,g x >0,g x 单调递增;当x <0时,g x <0,g x 单调递减.则g x ≥g 0 =0,即e x -x -1≥0,即e x ≥x +1,当且仅当x =0时,等号成立.设h x =x -4ln x ,则h x =1-4x =x -4x.由h x >0,得x >4;由h x <0,得0<x <4.则h x 在0,4 上单调递减,在4,+∞ 上单调递增.因为h 4 =4-4ln4<0,h e 4 =e 4-16>0,所以h x =0有解,则ex -4ln x≥x -4ln x +1,当且仅当x -4ln x =0时,等号成立,从而e x -4ln x -x -1ln x≥x -4ln x +1-x -1ln x=-4,故k ≤-4.【跟踪训练】1已知函数f x =xe ax -1-ln x -ax .若f x 的最小值为0,则实数a 的最小值是.【答案】-1e 2【详解】xe ax -1-ln x -ax =e ln x +ax -1-ln x +ax ≥ln x +ax -ln x +ax =0(利用了e x -1≥x )等号成立的条件是ln x +ax =1,即a =1-ln x x 有解.令g x =1-ln x x ,则g x =ln x -ln e 2x 2,易得g x min=g (e 2)=-1e2.2已知函数f x =e ax -x (a ∈R ,e 为自然对数的底数),g x =ln x +mx +1.(1)若f x 有两个零点,求实数a 的取值范围;(2)当a =1时,x f x +x ≥g x 对任意的x ∈0,+∞ 恒成立,求实数m 的取值范围.解析1.(2)当a =1时,f x =e x -x ,∴原命题等价于xe x ≥ln x +mx +1对一切x ∈0,+∞ 恒成立⇔m≤e x -ln x x -1x 对一切x ∈0,+∞ 恒成立.令F x =e x -ln x x -1xx >0∴m ≤F x min F x =e x +ln x x 2=x 2e x+ln xx2,令h x =x 2e x +ln x ,x ∈0,+∞ ,则h x =2xe +x 2e x +1x >0∴h x 在0,+∞ 上单增,又h 1 =e >0,h 1e=e 1e-2-1<e 0-1=0∴∃x 0∈1e,1 ,使h x 0 =0即x 20e x+ln x 0=0①当x ∈0,x 0 时,h x <0,当x ∈x 0,+∞ 时,h x >0,即F x 在0,x 0 递减,在x 0,+∞ 递增,∴F x min =F x 0 =e x 0-ln x 0x 0-1x 0由①知x 20e x=-ln x 0∴x 0e x 0=-ln x 0x 0=1x 0ln 1x 0=ln 1x 0e ln 1x 0∵函数φx =xe x 在0,+∞ 单调递增∴x 0=ln 1x 0即x 0=-ln x 0∴F x min =e -ln x 0--x 0x 0-1x 0=1x 0+1-1x 0=1,∴m ≤1∴实数m 的取值范围为-∞,1 .解析2.由不等式xe x ≥x +ln x +1,可得m ≤1.。
导数函数几何向量题型归纳总结

导数函数几何向量题型归纳总结一、导数题型。
1. 求函数的导数。
题目:求函数y = x^3+2x 1的导数。
解析:根据求导公式(x^n)^′=nx^n 1,对于y = x^3+2x 1,y^′=(x^3)^′+(2x)^′-(1)^′。
(x^3)^′ = 3x^2;(2x)^′=2;(1)^′ = 0。
所以y^′=3x^2+2。
2. 导数的几何意义(求切线方程)题目:已知函数y = x^2,求曲线y = x^2在点(1,1)处的切线方程。
解析:首先求函数y = x^2的导数,根据求导公式(x^n)^′=nx^n 1,y^′ = 2x。
曲线在点(1,1)处的切线斜率k就是函数在x = 1处的导数,把x = 1代入y^′=2x,得k = 2×1=2。
由点斜式方程y y_0=k(x x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y 1=2(x 1),即y = 2x 1。
3. 利用导数求函数的单调性。
题目:求函数y = x^3-3x^2+2的单调区间。
解析:先求函数的导数y^′=3x^2-6x = 3x(x 2)。
令y^′>0,则3x(x 2)>0,解这个不等式:当x>0且x 2>0,即x>2时,不等式成立;当x<0且x 2<0,即x<0时,不等式成立。
令y^′<0,则3x(x 2)<0,解这个不等式:当x>0且x 2<0,即0时,不等式成立。
所以函数的单调递增区间是(-∞,0)∪(2,+∞),单调递减区间是(0,2)。
二、函数题型。
1. 函数的定义域。
题目:求函数y=(1)/(√(x 1))的定义域。
解析:要使函数有意义,则分母不为0且根号下的数大于0。
对于y=(1)/(√(x 1)),x-1>0,解得x>1。
所以函数的定义域为(1,+∞)。
2. 函数的值域。
题目:求函数y = x^2+2x 3,x∈[-2,2]的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数题型总结(解析版)
1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m 的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值、解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最
值入手:等价于解法二:分离变量法:∵ 当时, 恒成立, 当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数” 则等价于当时恒成立变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)-22 例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围、(二次函数区间最值的例子)解:(Ⅰ)3aaa3a令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值= 当
x=3a时,极大值=b、(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数、(9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值
二、参数问题题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立,回归基础题型解
法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是
(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数、(Ⅰ)如果函数是偶函数,求的极大值和极小值;(Ⅱ)如果函数是上的单调函数,求的取值范围、解:、(Ⅰ)∵ 是偶函数,∴ 、此时,,令,解得:、列表如下:(-∞,-2)-2(-2,2)2(2,+∞)+0-0+递增极大值递减极小值递增可知:的极大值为,的极小值为、(Ⅱ)∵函数是上的单调函数,∴,在给定区间R上恒成立判别式法则解得:、综上,的取值范围是、例
5、已知函数(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。
子集思想(I)
1、当且仅当时取“=”号,单调递增。
2、 a-1-1单调增区间:
单调增区间:(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,综上,a的取值范围是[0,1]。
三、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二
步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例
6、已知函数,,且在区间上为增函数、(1)求实数的取值范围;(2)若函数与的图象有三个不同的交点,求实数的取值范围、解:(1)由题意∵在区间上为增函数,∴在区间上恒成立(分离变量法)即恒成立,又,∴,故∴的取值范围为(2)设,令得或由(1)知,①当时,,在R上递增,显然不合题意…②当时,,随的变化情况如下表:
,∴当即时,有一个交点;当即时,有两个交点;当时,,有一个交点、………………………13分综上可知,当或时,有一个交点;当时,有两个交点、…………………………………14分。